
A Formal Treatment of Backdoored
Pseudorandom Generators

Yevgeniy Dodis1, Chaya Ganesh1, Alexander Golovnev1, Ari Juels2, and
Thomas Ristenpart3

1 Department of Computer Science, New York University
2 Jacobs Institute, Cornell Tech

3 Department of Computer Sciences, University of Wisconsin

Abstract. We provide a formal treatment of backdoored pseudorandom
generators (PRGs). Here a saboteur chooses a PRG instance for which
she knows a trapdoor that allows prediction of future (and possibly past)
generator outputs. This topic was formally studied by Vazirani and Vazi-
rani, but only in a limited form and not in the context of subverting cryp-
tographic protocols. The latter has become increasingly important due
to revelations about NIST’s backdoored Dual EC PRG and new results
about its practical exploitability using a trapdoor.
We show that backdoored PRGs are equivalent to public-key encryption
schemes with pseudorandom ciphertexts. We use this equivalence to build
backdoored PRGs that avoid a well known drawback of the Dual EC
PRG, namely biases in outputs that an attacker can exploit without the
trapdoor. Our results also yield a number of new constructions and an
explanatory framework for why there are no reported observations in the
wild of backdoored PRGs using only symmetric primitives.
We also investigate folklore suggestions for countermeasures to back-
doored PRGs, which we call immunizers. We show that simply hash-
ing PRG outputs is not an effective immunizer against an attacker that
knows the hash function in use. Salting the hash, however, does yield a
secure immunizer, a fact we prove using a surprisingly subtle proof in the
random oracle model. We also give a proof in the standard model un-
der the assumption that the hash function is a universal computational
extractor (a recent notion introduced by Bellare, Tung, and Keelveedhi).

1 Introduction

Pseudorandom number generators (PRGs) stretch a short, uniform bit string to
a larger sequence of pseudorandom bits. Beyond being a foundational primitive
in cryptography, they are used widely in practice within applications requiring
relatively large amounts of cryptographic randomness. Seed the PRG via the
output of some (more expensive to use) source of randomness, such as a system
random number generator, and then use it to efficiently generate effectively
unbounded number of pseudorandom bits for the application. Unfortunately, an
adversary that can distinguish such bits from uniform or, worse yet, outright
predict the outputs of a PRG, almost invariably compromises security of higher

level applications. This fragility in the face of poor pseudorandom sources is
borne out by a long history of vulnerabilities [7, 8, 14,16,17,22,24,33].

Perhaps it is no coincidence, then, that PRGs have also been a target for
backdoors. As far back as 1983, Vazirani and Vazirani [30, 31] introduce the
notion of trapdoored PRGs and show the Blum-Blum-Shub PRG is one [10].
Their purpose was not for sabotaging systems, however, but instead they used
the property constructively in a higher level protocol. The best known example
of potential sabotage is the backdoored NIST Dual EC PRG [23]. It is parame-
terized by two elliptic curve points; call them P and Q. The entity that selects
these points can trivially know d = dlogQ P , and armed with d any attacker can
from an output of the PRG predict all future outputs. This algorithm and the
proposed use of it as a way of performing key escrow was detailed at length in a
patent by Brown and Vanstone [11]. The possibility of the Dual EC PRG having
been standardized so as to include a backdoor was first discussed publicly by
Shumow and Ferguson [27]. More recent are allegations that the United States
government did in fact retain trapdoor information for the P and Q constants
mandated by the NIST standard. The practical implications of this backdoor,
should those constants be available, were recently explored experimentally by
Checkoway et al. [13]: they quantified how saboteurs might decrypt TLS ses-
sions using the trapdoor information and sufficient computational resources.

Given the importance of backdoored PRGs (and protecting against them),
we find it striking that there has been, thus far, no formal treatment of the topic
of maliciously backdoored PRGs. We rectify this, giving appropriate notions for
backdoored PRGs (building off of [30]) that not only capture Dual EC, but
allow us to explore other possible avenues by which a backdoored PRG might be
designed, the relationships between this primitive and others, and the efficacy
of potential countermeasures against backdoors. We provide an overview of each
set of contributions in turn.

Backdoored PRGs. We focus on families of PRGs, meaning that one assumes a
parameter generation algorithm that outputs a public set of parameters that we
will call, for reasons that will become clear shortly, a public key. A generation
algorithm takes a public key, the current state of the generator, and yields a
(hopefully) pseudorandom output, as well as a new state. This is standard. A
backdoored PRG, on the other hand, has a parameter generation algorithm
that additionally outputs a trapdoor value that we will also call a secret key.
A backdoored PRG should provide, to any party that has just the public key,
a sequence of bits that are indistinguishable from random. To a party with
the secret key these bits may be easily distinguishable or, better yet from the
attacker’s perspective, predictable with some reasonable success probability.

As an example, the generation algorithm for backdoored Dual EC picks a
fixed group element Q, a random exponent d, and outputs as public key the
pair P = Qd and Q. The secret key is d. (We use multiplicative notation for
simplicity.) Generation works by taking as input an initial, random state s, and
then computing s′ = P s as the next state. An output is computed as all but the
last 16 bits of Qs

′
. (We ignore here for simplicity the possible use of additional

input.) An attacker that knows d can guess the unknown 16 bits of Qs
′

and
compute P s

′
, the value which defines the next output as well as all future states.

In practice applications allow the attacker to check guesses against future PRG
outputs, allowing exact discovery of the future state (c.f., [13]).

The Dual EC PRG does not provide outputs that are provably indistinguish-
able from random bits, and in fact some analysis has shown that despite dropping
the low 16 bits, abusable biases remain [25]. A natural question is whether one
can build a similarly backdoored PRG but which is provably secure as a PRG?

We answer this in the positive. To do so, we first show a more general result:
the equivalence of pseudorandom public-key encryption (PKE) and backdoored
PRGs whose outputs are pseudorandom (to those without the trapdoor). Pseu-
dorandom PKE schemes have ciphertexts that are indistinguishable from random
bits. Constructions from elliptic curves include Möller’s [21] and the more recent
Elligator proposal [9] and its variants [2,29]. Another approach to achieve pseu-
dorandom bits is via public-key steganography [3,12,32,36]. We give a black-box
construction of backdoored PRGs from any pseudorandom PKE. To complete
the equivalence we show how any secure backdoored PRG can be used to build
pseudorandom PKE scheme. The latter requires using an amplification result
due to Holenstein [18].

We also show how a saboteur can get by with key encapsulation mechanisms
that have pseudorandom ciphertexts (which are simpler than regular PKE).
A KEM encapsulate algorithm takes as input randomness and a public key,
and outputs a ciphertext and a one-time-use secret key. We use this algorithm
directly as a generator for a backdoored PRG: the ciphertext is the output and
the session key is the next state. The secret key for decapsulation reveals the
next state. Seen in this light, the Dual EC PRG is, modulo the bit truncations,
an instantiation of our generic KEM construction using the ElGamal KEM.

The types of backdoored PRGs discussed thus far only allow use of a trapdoor
to predict future states. We formalize another type of backdoored PRG which
requires the attacker to be able to determine any output (as chosen at random
from a sequence of outputs) using another output (again chosen at random from
the same sequence). Such “random access” could be useful to attackers that want
to predict previous outputs from future ones, for example.

Immunization countermeasures. So far we have formalized the problem and dis-
cussed improved backdoored PRGs. We now turn to countermeasures, a topic of
interest given the reduced trust in PRGs engendered by the possibility of back-
dooring. While the best countermeasure would be to use only trusted PRGs,
this may not be possible in all circumstances. For example, existing proprietary
software or hardware modules may not be easily changed, or PRG choices may
be mandated by standards, as in the case of FIPS. Another oft-suggested route,
therefore, is to efficiently post-process the output of a PRG in order to pre-
vent exploitation of the backdoor. We call such a post-processing strategy an
immunizer.

A clear candidate for an immunizer is a cryptographic hash function, such as
SHA-256 (or SHA-3). A natural assumption is that hashing the output of a PRG

will provide security even when the attacker knows the trapdoor, as the hash will
hide the data the attacker might use to break PRG security. (This assumption
presumes that SHA-256 is itself not backdoored; we have no evidence otherwise,
although see [1].) Another, similar idea is to truncate a large number of the
output bits.

We show that successful immunization is, perhaps surprisingly, more subtle
than näıve approaches like this would suggest. We show that, a saboteur that
knows the immunizer strategy ahead of time can build a backdoored PRG that
bypasses the immunizer. We refer to this setting as the public immunizer security
model, as both the PRG designer and the backdoor exploiter know the exact
immunizer function. We show that for any such immunizer, the attacker can leak
secret state bit-by-bit. Hence, this is true even when hashing and truncating, and
even when modeling the hash function as a random oracle (RO).

This observation suggests that a the designer of a secure PRG should not
have exact knowledge of the immunizer. We introduce two further security mod-
els for immunizers. In the semi-private model, the immunizer can use randomness
unknown to the PRG designer, but which is revealed to the backdoor exploiter.
In the private model, the randomness is never revealed to the saboteur. Con-
structing provably strong immunizers is straightforward in this last model, but
not necessarily practical ones.

For semi-private immunizers, one can prevent basic immunizer-bypassing at-
tacks against hashing (such as we describe below) by using the immunizer’s
randomness as a salt for the hash. While this immunization strategy thwarts
such attacks, proving that it is secure — meaning that its outputs are provably
indistinguishable from random bits even for an attacker that has the trapdoor se-
cret of the original backdoored RNG and the immunization salt — is surprisingly
tricky. One would like to argue that since the PRG must be indistinguishable
from random to attackers without the secret trapdoor, then they must have high
entropy, and hence hashing with a salt can extract uniform bits from these unpre-
dictable outputs. However, the distinguisher here does know the trapdoor, and
thus we cannot directly use the assumed backdoored PRG’s security against
distinguishers who do not know the trapdoor. Giving an analysis in the RO
model (ROM), we overcome this hurdle by exploiting the fact that, to achieve
standard PRG security (no trapdoor available) across multiple invocations with
fresh seeds, the backdoored PRG must have low collision probability of outputs.
We can in turn use the collision probability as a bound on the predictability of
outputs by an adversary, and thereby prove the security of the hashed outputs.
We also extend this result to work in the standard model assuming only that
the hash function is a universal computational extractor (UCE) [4].

Further related work. As already mentioned, Vazirani and Vazirani [30, 31] in-
troduce the notion of trapdoored generators and use them constructively in pro-
tocol design. We build on their notion, but require stronger security in normal
operation (indistinguishability from random bits). We also generalize to other
trapdoor exploitation models, and study broader connections and countermea-
sures. Their trapdoor PRG using Blum-Blum-Shub can be recast to work as

a backdoored PRG using our KEM-style framework (the generated parity bits
being the next state and the final squaring of the seed being the generator out-
put). This approach does produce an unbounded number of bits, however, as no
further bits can be produced once the final squaring is output.

Young and Yung studied what they called kleptography: subversion of cryp-
tosystems by modifying encryption algorithms in order to leak information sub-
liminally [34–36]. Juels and Guajardo [20] propose an immunization scheme for
kleptographic key-generation protocols that involves publicly-verifiable injection
of private randomness by a trusted entity. More recent work by Bellare, Pa-
terson, and Rogaway [5] treats a special case of Young and Yung’s setting for
symmetric encryption. We treat a different case, that of PRGs, that has not yet
been extensively treated (but our general setting is the same).

Goh et al. [15] investigate how to modify TLS or SSH implementations in
order to leak session keys to network attackers that know a trapdoor. One could
use a backdoored PRG to accomplish this; indeed this was seemingly the intent
behind use of Dual EC in TLS [13]. However, their work does not try to subvert
PRGs.

Some of our results, in particular the backdoored PRG that foils public im-
munizers, use channels that can be viewed as subliminal in the sense introduced
by Simmons [28]. Our technique is also reminiscent of the one used to build
secret-key steganography [19].

2 Models and Definitions

Notation. We denote the set of all binary strings of length n by {0, 1}n, and the
set of all binary strings {0, 1}∗ = ∪∞i=0{0, 1}i. We denote the concatenation of
two bit strings s1 and s2 by s1‖s2. We use lsb and lsb2 to mean the last bit and
the last two bits of a bit string, respectively. We denote by R�1 and R�2 the
bit strings obtained by one and two right shifts of R, respectively.

An algorithm is a function mapping inputs from some domain to outputs
in some range. For non-empty sets X ,Y,Z, we denote the composition of al-
gorithms F: X → Y and G: Y → Z by F ◦ G, i.e. (F ◦ G)(s) = F(G(s)). A
randomized algorithm is an algorithm with a designated bit-string input (al-
ways the last) called the coins. We write F(x; r) to denote the output resulting
from running F on input x and coins r. We write y ← F(x; r) to assign y that
value. We will write F(x) when the coins are understood from context and write
y←$ F(x) to denote picking a fresh r appropriately and running F(x; r). We
assume r is always of some sufficient length that we leave implicit. For brevity,
we often introduce algorithms without their domain and range when these are
clear from context.

The running time of an algorithm is the worst-case number of steps to com-
pute it in an abstract model of computation with unit basic operation costs. In
most cases the implementation will be clear, and we will clarify when not; our
results extend in straightforward ways to finer-grained models of computation.

We write x←$ X to denote sampling a value x uniformly from a set X . We
use the same notation for non-uniform distributions, and in such cases specify the
distribution. We let Un denote the uniform distribution over {0, 1}n and Uqn the
uniform distribution over Un × · · · × Un (q repeats of Un). For ease of notation,
we abbreviate Un to U when the length n is clear from context. Applying an
algorithm (or other function) to a distribution, e.g., F(x;U), denotes the implied
distribution over outputs.

PRFs, PRPs, and Encryption. We recall a number of standard cryptographic
primitives.

Definition 1 (Computational Indistinguishability). Two distributions
X and Y are called (t, ε)-computationally indistinguishable (denoted by
CDt(X,Y) ≤ ε) if for any algorithm D running in time t, |Pr[D(X) =
1]− Pr[D(Y) = 1]| ≤ ε.
Definition 2 (Pseudorandom Function). A family of algorithms
{Fsk : {0, 1}m → {0, 1}n | sk ∈ {0, 1}k} is called a family of
(t, q, δ)-pseudorandom functions if AdvPRF

F , maxD AdvPRF
F (D) ,

maxD(2 |Pr[GPRF
F (D) ⇒ true] − 1

2 |) ≤ δ where the maximum is taken
over all algorithms D running in time t and making up to q queries to the oracle
O (the game GPRF

F (D) is shown in Fig. 1). Function F in Fig. 1 is a uniformly
selected random function F : {0, 1}m → {0, 1}n.

Definition 3 (Pseudorandom Permutation). A family of functions
{fseed : {0, 1}n → {0, 1}n | seed ∈ {0, 1}`} is called a (t, q, ε)-pseudorandom
permutation if it is a (t, q, ε)-pseudorandom function and fseed is a permutation
for every seed ∈ {0, 1}`.

Conventional public-key encryption (PKE) schemes meet semantic security
style notions, meaning no partial information about plaintexts is leaked. Many
traditional ones additionaly are such that ciphertexts are indistinguishable from
uniformly chosen group elements (e.g., ElGamal). We use something slightly dif-
ferent still: public-key encryption (PKE) with pseudorandom ciphertexts. These
schemes have ciphertexts that are indistinguishable from random bit strings (of
appropriate length). Both theoretical and practical constructions of such pub-
lic key encryption schemes were shown in [3, 12, 32]. Constructions from elliptic
curves include [21] and [9].

Definition 4 (IND$-CPA Public Key Encryption). A triple
(K,Encpk,Decsk), where K → {0, 1}p × {0, 1}k, pk ∈ {0, 1}p,Encpk : {0, 1}m ×
{0, 1}ρ → {0, 1}n, sk ∈ {0, 1}k,Decsk : {0, 1}n → {0, 1}m is called a
(t, q, δ)− IND$-CPA public key encryption scheme if

– Pr[Decsk(Encpk(s;α)) = s] = 1, where s ← {0, 1}m, (pk, sk) ← K, α ←
{0, 1}ρ,

– AdvCPA
K,Enc(D) , 2 |Pr[GCPA

K,Enc(D)⇒ true]− 1
2 | ≤ δ for any algorithm D running

in time t and making up to q queries to the oracle O. (The game GCPA
K,Enc(D)

is defined in Fig. 2, the function R outputs a uniformly selected output of
length n.)

Game GPRF
F (D)

sk ← Uk
b←$ {0, 1}
if b = 1 then
O ← Fsk

else
O ← F

b′ ← DO

return (b = b′)

Fig. 1. PRF game

Game GCPA
K,Enc(D)

(pk, sk)←$ K
b←$ {0, 1}
if b = 1 then
O ← Encpk

else
O ← R

b′ ← DO(pk)
return (b = b′)

Fig. 2. IND$-CPA Game

Pseudorandom generators. A pseudorandom generator (PRG) is a pair of al-
gorithms (K,G). The parameter generation algorithm K takes input coins and
outputs a pair (pk, sk), called the public key and secret or private key (or trap-
door). Traditionally, a PRG has no trapdoor, and pk would be referred to as the
public parameter. Our notation of public / private keys is for consistency with
the next section; for an ordinary PRG, sk may be taken as null. We assume that
sk uniquely determines pk. A public key pk designates a family of algorithms
denoted by G. Each algorithm Gpk : S → {0, 1}n × S maps an input called the
state to an n-bit output and a new state. We drop the subscript pk where it
is clear from context. We refer to S as the state space; it will often simply be
bit strings of some length. We will always specify a distribution over S that
specifies the selection of an initial state, written s←$ S, for the PRG. For any
integer q ≥ 1, we let outq(G, s) for s ∈ S denote the sequence of bit strings
(r1, r2, . . . , rq) output by running (r1, s1)← G(s), then (r2, s2)← G(s1), and so
on. By stateq(G, s) we denote the sequence of states (s1, s2, . . . , sq). A PRG is
secure when no adversary can distinguish between its outputs and random bits.

Definition 5 (PRG security). A PRG (K,G) is a (t, q, δ)-secure PRG if for
pk ← K, CDt((pk, out

q(Gpk,U)),U) ≤ δ.

This definition does not capture forward-secrecy, meaning that past outputs
should be indistinguishable from random bits even if the current state is revealed.
In all the PRG constructions that follow, we point out which of the results satisfy
the forward-security notion and which are forward-insecure.

3 Backdoored Pseudorandom Generators

A backdoored pseudorandom generator (BPRG) is a triple of algorithms
(K,G,A). The pair (K,G) is a PRG, as per the definition in the last section. The
third algorithm A we call the adversary, although it is in fact co-designed with
the rest of the scheme. It uses the trapdoor output by K to violate security of

Game GBPRG
dist (K,G,A)

(pk, sk)←$ K

s←$ S
r01, . . . , r

0
q ← outq(Gpk, s)

r11, . . . , r
1
q ←$ Uqn

b←$ {0, 1}
b′ ← A(sk, rb1, . . . , r

b
q)

return (b = b′)

Game GBPRG
next (K,G,A)

(pk, sk)←$ K

s←$ S
r1, . . . , rq ← outq(Gpk, s)

s1, . . . , sq←$ stateq(Gpk, s)

s′q←$ A(sk, r1, . . . , rq)

return (s′q = sq)

Game GBPRG
rseek (K,G,A, i, j)

(pk, sk)←$ K

s←$ S
r1, . . . , rq ← outq(Gpk, s)

r′j ←$ A(sk, i, j, ri)

return (rj = r′j)

Fig. 3. Security games defining success of trapdoor-equipped adversaries.

the PRG in one of several potential ways. We give games defining these distinct
ways of violating security in Figure 3.

The first game is identical to the standard PRG definition except that the
adversary here gets the trapdoor. The second tasks A with recovering the cur-
rent state, given the trapdoor and a sequence of outputs. This is, by definition,
sufficient information to produce all future outputs of Gpk. The last tasks A with
predicting the full output of some state j given the trapdoor and the output for
i.

Definition 6 (Backdoored PRG). A triple (K,G,A) is called a
(t, q, δ, (Gtype, ε))-backdoored PRG for type ∈ {dist, next, rseek} if (K,G) is

a (t, q, δ)-secure PRG and AdvBPRG
type (K,G,A) ≥ ε, where

AdvBPRG
dist (K,G,A) , 2 ·

∣∣∣∣Pr[GBPRG
dist (K,G,A)⇒ true]− 1

2

∣∣∣∣ ,
AdvBPRG

next (K,G,A) , Pr[GBPRG
next (K,G,A)⇒ true], and

AdvBPRG
rseek (K,G,A) , min

1≤i,j≤q
Pr[GBPRG

rseek (K,G,A, i, j)⇒ true].

A Gdist-BPRG is only interesting when ε� δ, as otherwise the distinguisher
without the trapdoor information can distinguish already with advantage δ. For
the other types, even if ε < δ the definition is still meaningful.

A (t, q, δ, (Gnext, ε)-BPRG is (strictly) better for the saboteur than achieving
a Gdist-BPRG under the same parameters. The random seek notion is orthogo-
nal; it may or may not be better depending on the situation. Our attacks and
(looking ahead to later sections) defenses will be given according to the strongest
definitions. That is when taking on the role of the sabotuer, we will build Gnext-
BPRGs and/or Grseek-BPRGs with as efficient as possible A. When considering
defenses against saboteurs by way of immunization, we will target showing that
no efficient A can succeed in Gdist.

Example: the Dual EC BPRG. As an example of a BPRG we turn to Dual EC.
It uses an elliptic curve group G with generator g. For consistency with later

sections, we use multiplicative notation for group operations. We also skip for
simplicity some details about representation of elliptic curve points, these being
unimportant for understanding the attack. For a more detailed description of
the algorithm and backdoor see [13].

Key generation K picks a random point Q ∈ G and an exponent d←$ Z|G|.
It computes P = Qd. The public key is set to pk = (P,Q) and the secret is x.
The state space is S = Z|G|. On input a seed si ∈ S, the generation algorithm
G computes si+1 ← P si and computes ri+1 as all but the last 16 bits of Qsi+1 .
The output is (ri+1, si+1).

With knowledge of d and given two consecutive outputs r1, r2 correspond-
ing to states s, s1 we can give a Gnext adversary A that efficiently recovers s2.
Adversary A starts by computing from r1 a set of at most 216 possibilities for
Qs1 . Let these possibilities be X1, . . . , X216 . Then for each i ∈ [1..216], the adver-

sary checks whether QX
d
i has all but last 16 bits that match r2. If so it outputs

s2 = Xd
i = Qs1d = P s1 . Note that while A cannot recover the generator’s second

state s1, it can predict the generator’s second output r2, the third state s2, and
all subsequent states and outputs. Also A is relatively efficient, working in time
about 216 operations.

As for basic PRG security without the trapdoor, a result due to Schoenmakers
and Sidorenko [25] gives an attack working in time about 216 using a single
output to achieve distinguishing advantage around 1/100. Thus, putting it all
together, we have that Dual EC is a (t, q, δ, (Gnext, 1))-BPRG for t ≈ 216, q > 2,
and δ ≈ 1/100.

From a saboteur’s perspective, that Dual EC doesn’t achieve PRG secu-
rity (against distinguishers without the trapdoor) seems a limitation. One can
truncate more than 16 bits to achieve better security, but this would make A
exponentially less efficient. In the next section we will show how a saboteur can
construct a BPRG with strong PRG security and efficient state recovery.

4 Backdoored PRG Constructions

We start by simplifying and improving the Dual EC BPRG. Let G be a group
and g a generator of G. Let K pick a random secret key x←$ Z|G| and let

pk , X = gx. The PRG works simply as G(pk, si) = (ri+1, si+1) = (gsi , Xsi).
A Gnext adversary can recover si+1 = Xsi by computing ri+1

x. For a G that is
DDH secure and for which uniform group elements are indistinguishable from
bit strings (e.g., [2, 9, 29]), this construction can be proven GPRG

dist secure under
the DDH assumption.

4.1 Backdoored PRGs from Key Encapsulation

We in fact can generalize significantly by observing that
the previous construction is actually using the ElGa-
mal key encapsulation scheme (KEM) in a direct way.

K′

(pk, sk)←$ Gen
return (pk, sk)

G′(pk, s)

(r′, s′)← Encap(pk; s)
return (r′, s′)

A′(sk, r1, . . . , rq)

s′ ← Decap(sk, rq)
return s′

Fig. 5. Backdoored PRG from a pseudorandom KEM.

Game DistDKEM

(pk, sk)←$ Gen
r←$ {0, 1}n
(c0,K0)←$ Encap(pk; r)
c1←$ {0, 1}n
K1←$ {0, 1}n
b←$ {0, 1}
b′←$ D(pk, cb,Kb)
return (b = b′)

Fig. 4. Pseudorandom KEM secu-
rity.

Recall that a KEM scheme is a triple of algo-
rithms KEM Γ = (Gen,Encap,Decap). The
key generation outputs a public key / secret
key pair (pk, sk) ← Gen. The encapsula-
tion algorithm takes the public key, random
coins r ∈ {0, 1}n for some n and outputs
a ciphertext-key pair (c,K)← Encap(pk; r)
where K ∈ {0, 1}n. The decapsulation al-
gorithm takes a secret key and ciphertext
and outputs a key: Decap(sk, c) = K̃ ∈
{0, 1}n ∪ {invalid}. We require correctness,
meaning that Decap(sk, c) = K for (c,K) =
Encap(pk; r) and for all pk, sk pairs gener-
atable by Gen and all coin strings r.

We give a variant of KEM security that
requires ciphertexts to be pseudorandom:
the output of Encap is indistinguishable from a pair of random bit strings. See
Figure 4. We define AdvDist

KEM(D) = 2
∣∣Pr[DistDKEM ⇒ true]− 1

2

∣∣. A KEM Γ is said

to be a (t, δ)-pseudorandom KEM if AdvDist
Γ
··= maxD AdvDist

Γ (D) ≤ δ, where the
maximum is taken over all algorithms D running in time t.

This is a strictly stronger security notion than the conventional one for
KEMs [26], which does not demand that ciphertexts have any particular ap-
pearance to attackers. This stronger pseudorandomness requirement was first
introduced by Möller [21]. He gave an elliptic curve variant of ElGamal that
provably meets it, and other KEM constructions can be built using [2, 9, 29].

We have the following result showing that any pseudorandom KEM gives a
Gnext-BPRG.

Proposition 1. Let Γ = (Gen,Encap,Decap) be a (t, δ)-pseudorandom KEM.
Then (K′,G′,A′) defined in Fig. 5 is a (t, q, qδ, (Gnext, 1))-BPRG.

Proof. The correctness of the KEM gives that AdvBPRG
next (K′,G′,A′) = 1 and

that A′ is efficient. We now prove (standard) PRG security against distinguish-
ers without the trapdoor. To do so we use a hybrid argument, applying the
pseudorandom KEM security q times. Let H0 be the GPRG

dist game with b = 0 and
Hq be GPRG

dist with b = 1. Let Hi for 1 ≤ i ≤ q − 1 be the same as game Hi−1
except that we replace the ith output of Encap with two independent, random

bit strings. A straightforward reduction gives that CDt(Hi, Hi+1) ≤ δ, and since
we have q hybrids AdvPRG

dist (K,G,D) ≤ qδ for any D running in time t. ut

4.2 Random Seek Backdoored PRGs

We now show a prediction attack, where the prediction algorithm can seek to any
output quickly. Given one output, we can predict any other, and the prediction
can seek in both directions, that is predict previous outputs as well. In the
construction shown, we use the lsb of a random string to make a decision, and
we shift by one bit, so that the randomness used later is independent of the bit
used for decision. We assume that the underlying PRG or PRF was used to get
enough number of bits so that after the shift we have enough random bits for
encryption.

Proposition 2. Let (K,Encpk,Decsk) be a (t, q, δ)-IND$-CPA public key encryp-
tion scheme, Fsk be a (t, q, δ)-pseudorandom function. Then (K′,G′,A′) defined
in Fig. 6 is a (t, q, 3δ, (Grseek, 14 − δ))-backdoored pseudorandom generator.

K′

(pk, sk)← K
return (pk, sk)

G′(pk, (s0, s1, count))
α← Fs1(count)
if lsb(α) = 0 then

r ← Encpk(s0;α�1)
else

r ← Fs0(count)
count← count + 1
return (r, (s0, s1, count))

A′(sk, i, j, ri)

if (i = j) then
return ri

s0 ← Decsk(ri)
if (s0 = ⊥) then

return 0
rj ← Fs0(j)
return rj

Fig. 6. Random seek backdoored PRG

Proof.

AdvBPRG
rseek (K′,G′,A′) = Pr[rj = r′j] ≥ Pr[lsb(Fs1(i)) = 0∧lsb(Fs1(j)) = 1] ≥ 1

4
−δ.

From pseudorandomness of F’s outputs

CDt(Fs0(1), . . . ,Fs0(q),U) ≤ δ,CDt(Fs1(1), . . . ,Fs1(q),U) ≤ δ.

Then CDt((pk, s0,Encpk(s0;α�1)), (pk, s0,U)) ≤ 2δ due to IND$-CPA security.
Thus,

CDt((pk, out
q(G′pk,U)),U) ≤ 3δ.

ut

The distinguishing and predicting PRGs we discussed also satisfy the notion
of forward security, whereas the Grseek construction in Fig 6 is forward-insecure.

4.3 Public-key Encryption from a Backdoor PRG

We show that the existence of backdoored PRGs implies public-key encryption
(PKE). From a backdoored PRG, we construct a bit encryption scheme with
noticeable correctness and overwhelming secrecy. Using parallel repetition and
privacy amplification of key-agreement [18], we can amplify secrecy and correct-
ness without increasing the number of rounds. Since the number of rounds is not
increased, we obtain secure public-key encryption.

Theorem 1. If (K,Gpk,A) is a (t, q, δ, (Gdist, ε))-backdoored PRG, then the pro-
tocol in Fig. 7 is a bit-encryption protocol with correctness ε and security 1− δ
against attackers running in time t.

Gen
(pk, sk)← K
return (pk, sk)

Enc(pk, b)
s← U
if (b = 0) then

r ← U
else

r ← outq(Gpk, s)
return r

Dec(sk, r)

b′ ← A(sk, r)
return b′

Fig. 7. Bit Encryption

Proof. Correctness:

Pr[Dec(sk,Enc(pk, b)) = b] = Pr[b = b′] = Pr[GBPRG
dist (K,G,A)⇒ true] ≥ 1

2
+
ε

2
.

Security:
For any adversary D who runs in time t,

Pr[D(pk, r) = b] =
1 + CDt((pk, out

q(G,U)),U)

2
≤ 1

2
+
δ

2
.

ut

Note that combining this result with our earlier construction of backdoored
PRGs from PKE and Proposition 1, we arrive at the promised conclusion that
backdoored PRGs and pseudorandom PKE are equivalent. We capture this with
the following informal theorem, which is a corollary of the results so far.

Theorem 2. Backdoor PRGs exist iff public-key encryption with pseudorandom
ciphertexts exists.

5 Immunization

In this section, we ask how to immunize a potentially backdoored PRG. A natu-
ral idea is for the user to apply a non-trivial function f to the output of the PRG.
So now the attacker A learns f(ri) rather than ri. We ask the question: when
does f successfully immunize a PRG? We study the immunization functions
that turn a backdoored PRG into a backdoor-less PRG. Letting the immuniza-
tion function be a family of algorithms {fseed | seed ∈ {0, 1}`}, we consider the
following immunization models:

1. Public immunization: In this model, seed is revealed to the attacker A prior
to construction of the PRG algorithm. The attacker thus knows the immu-
nization function fseed that will be applied to the outputs of the generator.
In this setting, the goal of the attacker A is to develop a PRG G with a
backdoor that bypasses the known immunization.

2. Semi-private immunization: In this model, the PRG generator G is con-
structed without reference to seed. We may view this as a setting in which
the PRG attacker A learns seed, and thus fseed, only after the specification
of G. This situation can arise, for example, when the immunization function
f depends upon a source of fresh public randomness.

3. Private immunization: In this model, seed is secret, in the sense that G is
constructed without reference to seed and A never learns seed. We might
imagine the user using a source of private randomness, unavailable to A, to
seed the immunization function f . (Note that although the user has some
private randomness, she might still need the PRG to generate longer pseu-
dorandom strings.)

Now we give formal definitions of secure immunization in the three models
discussed above. We slightly abuse notation in the following way: For a PRG G
such that (ri, si)← G(si−1), we write f ◦G to mean f(ri), i.e., f applied to the
output of G only (and not G’s internal state). Similarly, by outq(f ◦ G, s) we
mean the sequence (f(r1), . . . , f(rq)), where (r1, . . . , rq) = outq(G, s).

Definition 7 (Public Immunization). Let type ∈ {dist, next, rseek}.
A family of algorithms {fseed | seed ∈ {0, 1}`} is called a public
((t, q, δ), (t′, q′, δ′), (Gtype, ε))-immunization, if for any (t, q, δ)-secure PRG
(K,G), and for any algorithm A running in time t′,

– {fseed ◦ Gpk(seed, ·) | (seed, pk) ∈ {0, 1}` × {0, 1}p} is a (t′, q′, δ′)-
pseudorandom generator,

– AdvBPRG
type (K, fseed ◦G(seed, ·),A(seed, ·)) ≤ ε.

Definition 8 (Semi-private Immunization). Let type ∈ {dist, next, rseek}.
A family of algorithms {fseed | seed ∈ {0, 1}`} is called a semi-private
((t, q, δ), (t′, q′, δ′), (Gtype, ε))-immunization, if for any (t, q, δ)-secure PRG
(K,G), and for any algorithm A running in time t′,

– {fseed ◦ Gpk(·) | (seed, pk) ∈ {0, 1}` × {0, 1}p} is a (t′, q′, δ′)-pseudorandom
generator,

– AdvBPRG
type (K, fseed ◦G(·),A(seed, ·)) ≤ ε.

Definition 9 (Private Immunization). Let type ∈ {dist, next, rseek}.
A family of algorithms {fseed | seed ∈ {0, 1}`} is called a private
((t, q, δ), (t′, q′, δ′), (Gtype, ε))-immunization, if for any (t, q, δ)-secure PRG
(K,G), and for any algorithm A running in time t′,

– {fseed ◦ Gpk(·) | (seed, pk) ∈ {0, 1}` × {0, 1}p} is a (t′, q′, δ′)-pseudorandom
generator,

– AdvBPRG
type (K, fseed ◦G(·),A(·)) ≤ ε.

In Section 5.1 we show that it is possible to successfully create a PRG backdoor
in the public immunization setting. On the other hand, in Section 5.2 we show
that there exist immunizations in the semi-private model that separate these
two models. Also, as we will see in Section 5.3, a pseudorandom function is a
secure private immunization. To separate semi-private and private models, in
the following simple lemma we show that a pseudorandom permutation is not a
semi-private immunization. The construction we give for the separation in Fig. 8
also satisfies forward security.

Lemma 1. Let fseed be a (t, q, δ)-pseudorandom permutation. Then there
exists a triple (K′,G′,A′), such that (K′, fseed ◦ G′(·),A′(seed, ·)) is a
(t, q, 2qδ, (Gnext, 1))-backdoored pseudorandom generator.

Proof. Let G be a (t′, q, δ)-pseudorandom generator, and Γ =
(Gen,Encap,Decap) be a (t, δ)-pseudorandom ciphertext KEM. Consider the
triple (K′,G′pk,A

′(seed, ·)) shown in Fig. 8. Then AdvBPRG
next (K′, fseed ◦ G′,A′) =

Pr[Decap(r′, sk) = s′|(r′, s′) ← Encap(pk;α), (pk, sk) ← Gen] = 1. From pseu-
dorandomness of G’s outputs CDt(out

q(G,U),U) ≤ δ, (t, δ)-pseudorandomness
of Γ , and using a hybrid argument similar to the proof of Proposition 1,

CDt((pk, out
q(G′pk,U)),U) ≤ 2qδ.

K′

(pk, sk)← Gen
return (pk, sk)

G′(pk, s)
(α, β)← G(s)
(r′, s′)← Encap(pk;α)
return (r′, s′)

A′(sk, seed, fseed(ri))

c← f−1seed(fseed(ri))
s′ ← Decap(c, sk)
return s′i

Fig. 8. PRP Immunization Insecure in Semi-private Model

ut

5.1 Public Immunization Model

In the public immunization model, the PRG algorithms G and A know the seed
of the immunization function that will be applied on the output. In this section
we demonstrate backdoored pseudorandom generator that cannot be immunized
in the public immunization model. Since seed of the immunization function fseed
is known to both G and A, in order to construct a backdoored pseudorandom
generator from the viewpoint of the saboteur, we fix the strongest function from
this family so that for any function in the family, the backdoored PRG after
immunization is compromised. The idea behind the construction is to leak the
initial state bit by bit, by rejection sampling of the output of the immunization
function such that the bias is unnoticeable. For a bit string s, we denote the ith
bit of s by s(i).

K′

(pk, sk)← K
return (pk, sk)

G′(pk, seed, (s0, s1, count))
c← Encpk(s1)
L← |c|
if count ≤ L then

j ← 0
s′0 ← s0
count2 ← 0
repeat

count2 ← count2 + 1
(r′, s′0)← G(s′0)

until (fseed(r
′)(1) = c(count)) ∨

(count2 >
lnL
1−δ);

s′1 ← s1
else

(r′, s′1)← G(s1)
s′0 ← 0

count′ ← count + 1
return (r′, (s′0, s

′
1, count

′))

A′(sk, seed, fseed(r1), . . . , fseed(rq))

for 1 ≤ i ≤ L do
ci ← fseed(ri)(1)

s1 ← Decsk(c)
for L+ 1 ≤ i ≤ q do

r′i, s1 ← G(s1)
return (0, s1, q + 1)

Fig. 9. Predicting backdoored PRG in Public Model

Lemma 2. Let (K,Encpk,Decsk) be a (t, q, δ) − IND$-CPA public key encryp-
tion scheme, G be a (t, q, δ)-pseudorandom generator, and f such that for
seed ← {0, 1}` , CDt(fseed(U),U) ≤ δ. Then (K′,G′,A′) defined in Fig. 9
is a (t, q − L lnL

1−δ , 2δ, (Gnext, ε))-backdoored pseudorandom generator, where ε =

1− L · exp
(
− ln2 L
3(1−δ)

)
, L is the length of ciphertexts produced by Encpk.

Proof. From pseudorandomness of G’s outputs CDt(out
q(G,U),U) ≤ δ and

pseudorandomness of ciphertexts CDt((pk, s1,Encpk(s1)), (pk, s1,U)) ≤ δ,

CDt((pk, out
q(G′pk,U)),U) ≤ 2δ.

From the Chernoff bound:

AdvBPRG
next (K′,G′,A′) ≥ 1− L · Pr[count2 ≥

lnL

1− δ
] ≥ 1− L · exp

(
− ln2 L

3(1− δ)

)
.

ut

5.2 Semi-private Immunization Model

In the semi-private model, the generator G does not know seed of fseed, but the
attacker does. We show that a Random Oracle and a Universal Computational
Extractor are secure immunizations in the semi-private model. We will first
bound the collision probability of pseudorandom outputs. The collision proba-
bility bounds the probability that an algorithm can predict the output of a PRG
run on a uniformly random seed, even with the knowledge of some trapdoor
information, because, intuitively, the output of a PRG should depend on the
input seed also.

Definition 10. The conditional predictability of X conditioned on Y is defined
as

Pred(X|Y) ··= Ey←Y [max
x

(Pr[X = x|y = Y])].

Definition 11. The conditional collision probability of X conditioned on Y is
defined as

Col(X|Y) ··= Ey←Y [Pr
x1,x2←X

[x1 = x2|Y = y]].

Lemma 3. For any distributions X and Y , Pred(X|Y) ≤
√

Col(X|Y).

Proof. Let py = Pr[Y = y], px|y = Pr[X = x|Y = y]. Then

Pred[X|Y] =
∑
y

py ·max
x

px|y =
∑
y

√
py · (

√
py max

x
px|y) ≤

√∑
y

py ·
∑
y

py max p2x|y ≤
√

1 ·
∑
y

(py ·
∑
x

p2x|y) =
√

Col(X|Y).

ut

Let {Gpk : {0, 1}m → {0, 1}n × {0, 1}m|pk ∈ {0, 1}p} be a family of algo-
rithms, then by outi(Gpk,U) we denote the distribution of Gpk’s ith output, i.e.
the distribution of ri where (r1, . . . , ri, . . . , rq)← outq(Gpk,U).

Lemma 4. Let {Gpk : {0, 1}m → {0, 1}n × {0, 1}m|pk ∈ {0, 1}p} be a (t, q, δ)-
pseudorandom generator. 4 Then for any 1 ≤ i ≤ q, for any K→ {0, 1}p×{0, 1}k
such that CDt(pk, Up) ≤ δ, where (pk, sk)← K,

Pred(outi(Gpk,U)|sk) ≤
√
δ +

1

2n
.

4 Here and below we assume that t > C(p + q(n + m + time(Gpk))) for some absolute
constant C > 0, so that the attacker can always parse the input, and run G for q
times.

Proof. We show that Col(outi(Gpk,U)|sk) ≤ δ + 1
2n , then Lemma 3 implies the

desired bound.
Assume, to the contrary, Col(outi(Gpk,U)|sk) > δ + 1

2n . This implies that
there exists i such that E(pk,sk)←K Pr[ri = r′i|sk] > δ + 1

2n , where ri, r
′
i ←

outi(Gpk,U). Let D be a PRG-distinguisher for Gpk as defined in Fig. 10. Then,

|Pr[D(outq(Gpk,U)) = 1]− Pr[D(U) = 1]| ≥ Col(outi(Gpk,U)|sk)− 1

2n
> δ,

which contradicts the (t, q, δ)-pseudorandomness of {Gpk}. ut

D(pk, r1, . . . , rq)

s← {0, 1}m
r′1, · · · , r′q ← outq(Gpk, s)

if ri = r′i then
return 1

else
return 0

Fig. 10. Distinguisher D for Gpk

Positive result in Random Oracle Model. A random oracle (RO) is an
oracle that responds to every unique query with a random response chosen uni-
formly from its output domain. If a query is repeated it responds the same way
every time that query is submitted. A RO : {0, 1}n × {0, 1}k → {0, 1}n is cho-
sen uniformly at random from the set of all functions that map {0, 1}n+k to
{0, 1}n. We show that in the semi-private model, a Random Oracle is a secure
immunization function.

Theorem 3. Let {Gpk : {0, 1}m → {0, 1}n × {0, 1}m|pk ∈ {0, 1}p} be a
(t, q, δ)-pseudorandom generator. Then fseed(x) = RO(x‖seed) is a semiprivate
((t, q, δ), (t, q, δ), (Gdist, ε))-immunization for Gpk, where

ε = δ +
q2

2n
+
qG
2k

+ qqA

√
δ +

1

2n
,

k = |seed|, qG and qA are the bounds on the number of times G and A query the
random oracle, respectively.

Proof. Assume, to the contrary, there exists a pair of algorithms (K,A) running
in time t′, such that the triple (K, fseed ◦ G(·),A(seed, ·)) is a (t, q, δ, (Gdist, ε))-
backdoored pseudorandom generator. I.e.,

AdvBPRG
dist (K, fseed ◦G,A) = 2

∣∣∣∣Pr[GBPRG
dist (K, fseed ◦G,A)⇒ true]− 1

2

∣∣∣∣ > ε

in Game GBPRG
dist (K, fseed ◦G,A) from Fig. 3. Let r1, . . . , rq be the outputs of Gpk

before the immunization, i.e. s← U , (r1, . . . , rq)← outq(Gpk, s). The immuniza-
tion is fseed(ri) = RO(ri‖seed) for 1 ≤ i ≤ q.

We define the following three events:

– W1: ri = rj for i 6= j.
– W2: Gpk queries (ri‖seed) for some 1 ≤ i ≤ q.
– W3: A queries (ri‖seed) for some 1 ≤ i ≤ q.

Note that if none of the events above happened then the two distributions
in the distinguishing game corresponding to the challenge bit being 0 or 1, are
identical. Now we proceed to bound the probabilities of these three events.

– Since the PRG-security of G is δ, Pr[W1] ≤ q2

2n + δ.
– In the semiprivate model G does not see seed, therefore, the probability that

G queries ri‖seed in one of its queries is the probability that the G guesses

seed, and by the union bound this is bounded from above by qG

2k
. Thus,

Pr[W2] ≤ qG/2k.
– Now, we look at the probability that A makes a relevant query, given that

G did not query ri‖seed for all i. Assume A predicts ri for i ∈ I ⊆ [q].
Then there exists i ∈ I that was predicted first, i.e. when all fseed(rj)
looked random to A. Then, the probability that A predicts at least one ri
is at most

∑q
i=1 Pr[A predicts ri using qA queries given sk]. Since A makes

at most qA calls to the random oracle, the latter probability, by the union
bound, is bounded by qA

∑q
i=1 Pr[A predicts ri using one query given sk].

Now Lemma 4 gives us the following bound:

Pr[W3] ≤
q∑
i=1

Pr[A predicts ri using qA queries|sk]

≤ qA
q∑
i=1

Pr[A predicts ri using one query|sk]

≤ qA
q∑
i=1

Pred[ri|sk] ≤ qqA

√
δ +

1

2n
.

By the claims above,

ε = Pr[W1] + Pr[W2] + Pr[W3] ≤ δ +
q2

2n
+
qG
2k

+ qqA

√
δ +

1

2n
.

ut

Positive result in standard model. In this section, we show that replacing
the Random Oracle with a UCE function [4] is secure in the standard model.
First, we briefly recall Universal Computational Extractor (UCE) defined in [4]
by Bellare et al. UCE is a family of security notions for a hash function family.

UCE Security. A notion of UCE security is specified by specifying a class of
sources S. The source is given oracle access to the hash function. UCE security for
the class of sources S states that for any PPT algorithm called the distinguisher
D, who receives the key of the hash function and leakage L passed by the source,
cannot tell better than random guessing whether Hk was used or a random
function. We now give the formal definitions. A source S is a PPT algorithm
which is given oracle access to Hash, and outputs a value L called the leakage.
For a pair of source S and distinguisher D, define the UCES,DH game as shown
in Fig. 11.

Definition 12. A function H is called UCE[S, qD, ε]-secure, if for all sources
S ∈ S, and all polynomial-time algorithms D that make at most qD queries to
H, AdvUCE

H (S,D) ··= 2 Pr[UCES,DH ⇒ true]− 1 ≤ ε.

For a source S, and a polynomial-time algorithm P called the predictor, define
the game PredPS as shown in Fig. 12.

Definition 13. A source S is called (l, ε)-statistically unpredictable, denoted
by S ∈ Ssup[l, ε], if for all computationally unbounded algorithms P that output
a list of at most l guesses AdvPred

S,P
··= Pr[PredPS ⇒ true] ≤ ε.

Main UCES,DH
b← {0, 1}
k ← K
L← SHash

b′ ← D(k, L)
return (b′ = b)

Hash(x)

if T [x] = ⊥ then
if (b = 1) then

T [x]← H(k, x)
else

T [x]← {0, 1}k
return T [x]

Fig. 11. Game UCE and Hash Oracle

PredPS
done← false
Q← ∅
L← SHash

done← true
Q′ ← PHash(L)
return (Q ∩Q′ 6= ∅)

Hash(x)

if done← false then
Q← Q ∪ {x}

if T [x] = ⊥ then
T [x]← {0, 1}k

return T [x]

Fig. 12. Game Pred and Hash Oracle

Theorem 4. Let {Gpk : {0, 1}m → {0, 1}n × {0, 1}m|pk ∈ {0, 1}p} be a
(t, q, δ)-pseudorandom generator. Then fseed(x) = Hseed(x) is a semiprivate
((t, q, δ), (t, q, δ + ε), (Gdist, ε′))-immunization for Gpk, where

ε′ = 2ε+ δ +
q2

2n
,

H ∈ UCE[S, qD, ε], S = Ssup[l, δ + q2

2n + ql
√
δ + 1

2n].

Proof. Given an adversary A playing the distinguishing attack game
GBPRG
dist (K, H ◦G,A(seed)) we will construct a statistically unpredictable source

S and a polynomial-time distinguisher D (see Fig. 13) such that AdvBPRG
dist (K, H◦

G,A(seed)) ≤ 2AdvUCE
H (S,D) + δ + q2

2n .

SHash

(pk, sk)← K
s← {0, 1}m
r1, r2, · · · , rq ← outq(Gpk, s)
for 1 ≤ i ≤ q do

u0i ← Hash(Ri)
u1i ← {0, 1}n

d← {0, 1}
I = {ud1, . . . , udq}
return (d, pk, sk, I)

D(d, sk, I, k)

d′ ← A(sk, I, k)
if (d = d′) then

return 1
else

return 0

Fig. 13. Source S and Distinguisher D

Let b be the challenge bit in the UCE game UCES,DH . Then,

Pr[UCES,DH ⇒ true|b = 1] = Pr[GBPRG
dist (K, H ◦G,A(seed))⇒ true],

Pr[UCES,DH ⇒ true|b = 0] = 1− Pr[GBPRG
dist (K,RO ◦G,A(seed))⇒ true],

where in the RO immunization game, A has to distinguish uniformly random
outputs from RO applied to the outputs of G. If r’s are distinct, then these two
distributions are identical. From the PRG security, the probability of the event

ri = rj for i 6= j is less than δ + q2

2n . Therefore,

Pr[UCES,DH ⇒ true|b = 0] ≥ 1

2
− 1

2
(δ +

q2

2n
)

Summing yields,

AdvUCE
H (S,D) =

1

2
AdvBPRG

dist (K, H ◦G,A)− 1

2
δ − 1

2
.
q2

2n
,

AdvBPRG
dist (K, H ◦G,A) ≤ 2AdvUCE

H (S,D) + δ +
q2

2n
.

Now we argue that S is statistically unpredictable; that is, it is hard to guess
the source’s Hash queries even given the leakage, in the random case of the
UCE game. Consider an arbitrary predictor P , and the advantage of P in the

game PredPS . If all Ri are distinct (which happens with probability 1− δ − q2

2n),
the probability that P guesses at least one of r’s given the leakage is at most
qPred(R|sk). Now, since P outputs a list of length l, by Lemma 4,

AdvPred
S,P ≤ δ +

q2

2n
+ ql

√
δ +

1

2n
.

ut

5.3 Private Immunization Model

We now study the strongest model of immunization which is the private model,
where seed is secret from both the PRG and the attacker. We show that a
PRF is an immunization function in this model. But if users had access to a
backdoor-less PRF, then instead of using it to immunize a backdoored PRG,
they could use the PRF itself for pseudorandomness. In this section, we explore
using functions weaker than PRF as immunization functions, and show that
some natural functions are not secure immunizations.

PRF Immunization.

Lemma 5. Let {Gpk : {0, 1}m → {0, 1}n × {0, 1}m|pk ∈ {0, 1}p} be a (t, q, δ)-
pseudorandom generator, let also {fseed : {0, 1}n → {0, 1}k|seed ∈ {0, 1}l}
be a (t, q, ε)-pseudorandom function. Then fseed is a private ((t, q, δ), (t, q, δ +
ε), (Gdist, ε′))-immunization for Gpk, where

ε′ = ε+ δ +
q2

2n
.

Proof. From the definition of PRF, no distinguisher D running in time t given q
outputs of Fseed can distinguish the output from uniformly random with advan-
tage greater than ε. By PRG security of Gpk, CDt((pk, out

q(Gpk,U)),U) ≤
δ. Therefore, {fseed ◦ Gpk(·)|(seed, pk) ∈ {0, 1}` × {0, 1}p} is a (t, q, δ + ε)-

pseudorandom generator. Similar to the proof of Theorem 3, AdvBPRG
dist (K, fseed ◦

G(·),A(·)) ≤ AdvPRF
f +Pr[∃i, j : ri = rj |(r1, . . . , rq)← outq(Gpk,U)] ≤ ε+δ+ q2

2n .
ut

Attack against XOR. One of natural candidates for the immunization func-
tion in the private randomness model is the function XOR with a random string
as private randomness. In this section we show an attack against fseed(x) =
seed ⊕ x, where seed is private randomness of immunization function f . The
backdoored PRG works as follows: it outputs strings such that the XOR of two
consecutive outputs leaks one bit of s1 where s1 is a part of the seed of length n,
such that the bias introduced is negligible. After (n+ 1) outputs A can recover
all of s1, and can predict future outputs.

Lemma 6. Let (K,Encpk,Decsk) be a (t, q, δ) − IND$-CPA public key encryp-
tion scheme, G be a (t, q, δ)-pseudorandom generator. Then for (K′,G′,A′)
defined in Fig. 14 and fseed(x) = seed ⊕ x, (K′, fcirc ◦ G′(·),A′(·)) is a
(t, q−n logn

1−δ , 2δ, (Gnext, ε))-backdoored pseudorandom generator, where ε = 1−n ·
exp

(
− ln2 n
3(1−δ)

)
.

K′

(pk, sk)← K
return (pk, sk)

G′(pk, (s0, s1, c, rprev, count))

s′0 ← s0
s′1 ← s1
if count = 1 then

(α, s0)← G(s0)
c← Encpk(s1;α)
n← |c|
(r′, s′0)← G(s0)

if 1 < count ≤ n+ 1 then
count2 ← 0
repeat

(r′, s′0)← G(s′0)
until ((r′ ⊕ rprev)(1) = c(i)) ∨
(count2 >

lnn
1−δ);

if count > (n+ 1) then
(r′, s′1)← G(s1)

rprev = r′

count← count + 1
return
(r′, (s′0, s

′
1, c, rprev, count))

A′(sk, fseed(r1), · · · fseed(rq))
for 1 ≤ i ≤ n do

c(i) ← (fseed(ri) ⊕
fseed(ri+1))(1)

c = c(1)c(2) . . . c(n)
s1 ← Decsk(c)
r′n+2 ← G(s1)
seed′ ← r′n+2 ⊕ f(seed, r′n+2)
for n+ 1 < j ≤ q + 1 do

(r′j , s1)← G(s1)

return r′q+1 ⊕ seed′

Fig. 14. Predicting backdoored PRG — Private immunization with fseed(x) = seed⊕x

Proof. From the Chernoff bound:

AdvBPRG
next (K′,G′,A′) ≥ 1− n · Pr[count2 ≥

lnn

1− δ
] ≥ 1− n · exp

(
− ln2 n

3(1− δ)

)
.

From pseudorandomness of G’s outputs CDt(out
q(Gpk,U),U) ≤ δ, and

CDt((pk, s1,Enc(s1)), (pk, s1,U)) ≤ δ due to IND$-CPA security. Thus,
CDt((pk, out

q(G′pk,U)),U) ≤ 2δ. ut

Extensions of XOR-attack. The previous attack can be extended in two
ways. First, the PRG can be modified so that one does not need to see q > n
outputs to guess the next one, with high probability it is enough to see just three
random outputs. Although this kind of attack is weaker than the definition of
rseek-attack, it is much stronger than next-attack. Second, using homomorphic

encryption, the previous attack can be extended to some other natural immuniza-
tion functions. Here we show an example where the multiplication with a private
random string is not a private immunization. Let (K,Encpk,Decsk) be a homo-
morphic (t, q, δ)− IND$-CPA encryption scheme. For simplicity we assume that
Encpk : Zb → Zn,Decsk : Zn → Zb, and Encpk(m1) ·Encpk(m2) = Enc((m1+m2)
mod b), and the immunization function fseed(r) = (seed ·r) mod n (e.g., one can
think of Benaloh cryptosystem [6]).

K′

(pk, sk)← K
return (pk, sk)

G′(pk, s0, s1, count)
α← Fs1(count)
if (lsb2(α) = 00) then

r′ ← Encpk(0;α�2)
else if (lsb2(α) = 10) then

r′ ← 1/(Encpk(s0;α�2))
else

r′ ← Fs0(count)
return (r′, (s0, s1, count + 1))

A′(sk, fseed(ra), fseed(rb), fseed(rc), d)
e← (fseed(ra))/fseed(rb)
s′0 ← Decsk(e)
if s′0 6= ⊥ then

r′c ← Fs′0(c)

seed′ ← fseed(rc)/r
′
c

r′d ← Fs′0(d) · seed′
return r′d

return 0

Fig. 15. Predicting Backdoored PRG — Private Immunization

By 3rseek we mean the rseek-game where the adversary gets to see 3 outputs
rather than just one.

Lemma 7. Let (K,Encpk,Decsk) be a (t, q, δ) − IND$-CPA public key encryp-
tion scheme which is multiplicatively homomorphic as above, Fsk be a (t, q, δ)-
pseudorandom function for q ≥ 4. Then for (K′,G′,A′) defined in Fig. 15 and
fseed(x) = seed ·x, (K′, fseed◦G′(·),A′(·)) is a (t, q, 3δ, (G3rseek, 1

64−δ))-backdoored
pseudorandom generator.

Proof. From pseudorandomness of F’s outputs

CDt((Fs0(1), . . . ,Fs0(q)),U) ≤ δ,CDt((Fs1(1), . . . ,Fs1(q)),U) ≤ δ.

Then CDt((pk, s0,Enc(s0;α�2)), (pk, s0,U)) ≤ 2δ due to IND$-CPA security.
Thus,

CDt((pk, out
q(G′pk,U)),U) ≤ 3δ.

AdvBPRG
3rseek (K′, fseed ◦G′,A′) = Pr[rd = r′d] ≥

Pr[lsb(Fs1(d)) = 1 ∧ seed′ = seed ∧ s′0 = s0] ≥
Pr[lsb(Fs1(d)) = 1 ∧ r′c = rc ∧ s′0 = s0] ≥

Pr[lsb(Fs1(d)) = 1 ∧ lsb(Fs1(c)) = 1 ∧ s′0 = s0] ≥
Pr[lsb(Fs1(d)) = 1 ∧ lsb(Fs1(c)) = 1 ∧ ra = Encpk(0) ∧ rb = 1/(Encpk(s0))] ≥

Pr[lsb(Fs1(d)) = 1 ∧ lsb(Fs1(c)) = 1 ∧ lsb2(Fs1(a)) = 00 ∧ lsb2(Fs1(b)) = 10] ≥
1

64
− δ

for q ≥ 4.
ut

References

1. Albertini, A., Aumasson, J.P., Eichlseder, M., Mendel, F., Schläffer, M.: Malicious
hashing: Eve’s variant of SHA-1. Cryptology ePrint Archive, Report 2014/694
(2014), http://eprint.iacr.org/

2. Aranha, D.F., Fouque, P.A., Qian, C., Tibouchi, M., Zapalowicz, J.C.: Binary
elligator squared. Cryptology ePrint Archive, Report 2014/486 (2014), http://

eprint.iacr.org/

3. Backes, M., Cachin, C.: Public-key steganography with active attacks. In: Theory
of Cryptography, pp. 210–226. Springer (2005)

4. Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via UCEs.
In: Advances in Cryptology–CRYPTO 2013, pp. 398–415. Springer (2013)

5. Bellare, M., Paterson, K., Rogaway, P.: Security of symmetric encryption against
mass surveillance. In: Advances in Cryptology–CRYPTO 2014, pp. 1–19. Springer
(2014)

6. Benaloh, J.: Dense probabilistic encryption. In: Proceedings of the workshop on
selected areas of cryptography. pp. 120–128 (1994)

7. Bendel, M.: Hackers describe PS3 security as epic fail,
gain unrestricted access, http://www.exophase.com/20540/

hackers-describe-ps3-security-as-epic-fail-gain-unrestricted-access/

8. Bernstein, D.J., Chang, Y.A., Cheng, C.M., Chou, L.P., Heninger, N., Lange, T.,
van Someren, N.: Factoring RSA keys from certified smart cards: Coppersmith in
the wild. In: Advances in Cryptology — ASIACRYPT 2013, pp. 341–360. Springer
(2013)

9. Bernstein, D.J., Hamburg, M., Krasnova, A., Lange, T.: Elligator: Elliptic-curve
points indistinguishable from uniform random strings. In: Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security. pp. 967–980.
ACM (2013)

10. Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo-random number
generator. SIAM Journal on computing 15(2), 364–383 (1986)

11. Brown, D., Vanstone, S.: Elliptic curve random number generation (2007), http:
//www.google.com/patents/US20070189527

12. Cachin, C.: An information-theoretic model for steganography. In: Information
Hiding. pp. 306–318. Springer (1998)

13. Checkoway, S., Fredrikson, M., Niederhagen, R., Green, M., Lange, T., Ristenpart,
T., Bernstein, D.J., Maskiewicz, J., Shacham, H.: On the practical exploitability
of Dual EC DRBG in TLS implementations (2014)

14. Everspaugh, A., Zhai, Y., Jellinek, R., Ristenpart, T., Swift, M.: Not-so-random
numbers in virtualized linux and the Whirlwind RNG (2014)

15. Goh, E.J., Boneh, D., Pinkas, B., Golle, P.: The design and implementation of
protocol-based hidden key recovery. In: Information Security, pp. 165–179. Springer
(2003)

16. Goldberg, I., Wagner, D.: Randomness and the Netscape browser. Dr Dobb’s Jour-
nal pp. 66–71 (1996)

17. Heninger, N., Durumeric, Z., Wustrow, E., Halderman, J.A.: Mining your Ps and
Qs: Detection of widespread weak keys in network devices. In: USENIX Security.
pp. 205–220. USENIX (2012)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.exophase.com/20540/ hackers-describe-ps3-security-as-epic-fail-gain-unrestricted- access/
http://www.exophase.com/20540/ hackers-describe-ps3-security-as-epic-fail-gain-unrestricted- access/
http://www.google.com/patents/US20070189527
http://www.google.com/patents/US20070189527

18. Holenstein, T.: Key agreement from weak bit agreement. In: Proceedings of the
thirty-seventh annual ACM symposium on Theory of computing. pp. 664–673.
ACM (2005)

19. Hopper, N., von Ahn, L., Langford, J.: Provably secure steganography. Computers,
IEEE Transactions on 58(5), 662–676 (May 2009)

20. Juels, A., Guajardo, J.: Rsa key generation with verifiable randomness. In: Public
Key Cryptography. pp. 357–374. Springer (2002)

21. Möller, B.: A public-key encryption scheme with pseudo-random ciphertexts. In:
Computer Security–ESORICS 2004, pp. 335–351. Springer (2004)

22. Mowery, K., Wei, M., Kohlbrenner, D., Shacham, H., Swanson, S.: Welcome to the
Entropics: Boot-time entropy in embedded devices. pp. 589–603. IEEE (2013)

23. National Institute of Standards and Technology: Special Publication 800-
90: Recommendation for random number generation using deterministic ran-
dom bit generators (2012), http://csrc.nist.gov/publications/PubsSPs.html#
800-90A, (first version June 2006, second version March 2007)

24. Ristenpart, T., Yilek, S.: When good randomness goes bad: Virtual machine reset
vulnerabilities and hedging deployed cryptography. In: NDSS (2010)

25. Schoenmakers, B., Sidorenko, A.: Cryptanalysis of the dual elliptic curve pseudo-
random generator. IACR Cryptology ePrint Archive 2006, 190 (2006)

26. Shoup, V.: A proposal for an iso standard for public key encryption (version 2.1).
IACR E-Print Archive 112 (2001)

27. Shumow, D., Ferguson, N.: On the possibility of a back door in the NIST SP800-90
Dual Ec Prng. Proc. Crypto’07 (2007)

28. Simmons, G.J.: The prisoners’ problem and the subliminal channel. In: Advances
in Cryptology. pp. 51–67. Springer (1984)

29. Tibouchi, M.: Elligator squared: Uniform points on elliptic curves of prime order
as uniform random strings. Cryptology ePrint Archive, Report 2014/043 (2014),
http://eprint.iacr.org/

30. Vazirani, U.V., Vazirani, V.V.: Trapdoor pseudo-random number generators, with
applications to protocol design. In: FOCS. vol. 83, pp. 23–30 (1983)

31. Vazirani, U.V., Vazirani, V.V.: Efficient and secure pseudo-random number gener-
ation. In: Advances in cryptology. pp. 193–202. Springer (1985)

32. Von Ahn, L., Hopper, N.J.: Public-key steganography. In: Advances in Cryptology-
EUROCRYPT 2004. pp. 323–341. Springer (2004)

33. Yilek, S., Rescorla, E., Shacham, H., Enright, B., Savage, S.: When private keys
are public: Results from the 2008 Debian OpenSSL vulnerability. In: SIGCOMM
Conference on Internet Measurement. pp. 15–27. ACM (2009)

34. Young, A., Yung, M.: The dark side of “black-box” cryptography or: Should we
trust capstone? In: Advances in Cryptology—CRYPTO’96. pp. 89–103. Springer
(1996)

35. Young, A., Yung, M.: Kleptography: Using cryptography against cryptography. In:
Advances in Cryptology—Eurocrypt’97. pp. 62–74. Springer (1997)

36. Young, A., Yung, M.: Kleptography from standard assumptions and applications.
In: Security and Cryptography for Networks, pp. 271–290. Springer (2010)

http://csrc.nist.gov/publications/PubsSPs.html#800-90A
http://csrc.nist.gov/publications/PubsSPs.html#800-90A
http://eprint.iacr.org/

	A Formal Treatment of Backdoored Pseudorandom Generators

