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Abstract. We present a modular framework for the design of efficient
adaptively secure attribute-based encryption (ABE) schemes for a large
class of predicates under the standard k-Lin assumption in prime-order
groups; this is the first uniform treatment of dual system ABE across
different predicates and across both composite and prime-order groups.
Via this framework, we obtain concrete efficiency improvements for sev-
eral ABE schemes. Our framework has three novel components over
prior works: (i) new techniques for simulating composite-order groups
in prime-order ones, (ii) a refinement of prior encodings framework for
dual system ABE in composite-order groups, (iii) an extension to weakly
attribute-hiding predicate encryption (which includes anonymous identity-
based encryption as a special case).

1 Introduction

Attribute-based encryption (ABE) [27, 15] is a new paradigm for public-key en-
cryption that enables fine-grained access control for encrypted data. In ABE,
ciphertexts are associated with descriptive values x in addition to a plaintext,
secret keys are associated with values y, and a secret key decrypts the ciphertext
if and only if P(x, y) = 1 for some boolean predicate P. Here, y together with P
may express an arbitrarily complex access policy, which is in stark contrast to
traditional public-key encryption, where access is all or nothing. The simplest
example of ABE is that of identity-based encryption (IBE) [28, 5, 12] where P
corresponds to equality. The security requirement for ABE enforces resilience
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to collusion attacks, namely any group of users holding secret keys for different
values learns nothing about the plaintext if none of them is individually autho-
rized to decrypt the ciphertext. This should hold even if the adversary adaptively
decides which secret keys to ask for.

ABE in Prime-Order Groups. The goal of this work is to obtain efficient
adaptively secure ABE for a large class of predicates. We now have a fairly good
understanding of how to obtain such schemes in composite-order bilinear groups,
thanks to Waters’ powerful dual system encryption methodology [30] and recent
unifying frameworks in [2, 31] for the design of dual system ABE schemes. How-
ever, these latter frameworks only work in composite-order bilinear groups, for
which group operations and especially pairing computations are prohibitively
slow. In practice, prime-order bilinear groups are preferable [16] as they admit
not only more efficient but also more compact instantiations. To mitigate the gap
between ease of theoretical design and practical efficiency, a series of works stud-
ied techniques for converting cryptosystems relying on composite-order groups
to cryptosystems based on prime-order groups [23, 24, 14, 20, 11, 10], largely
in the context of dual system ABE. In addition, we have direct constructions of
dual system prime-order hierarchical identity-based encryption (HIBE) schemes
in [18, 3] that bypass a conversion from composite-order groups, but the tech-
niques in these constructions do not seem to naturally extend beyond (H)IBE.
Furthermore, the prior constructions rely on fairly distinct techniques, and ef-
ficiency improvements in one construction do not necessarily translate to a dif-
ferent construction and a different predicate. In short, prior works fall short of
providing a unifying and modular framework for the design of efficient dual sys-
tem ABE schemes in prime-order groups that work for a large class of predicates
(c.f. Fig. 1).

1.1 Our contributions

We present a modular framework for the design of efficient dual system ABE
schemes for a large class of predicates under the standard k-Lin assumption in
prime-order groups; this is the first uniform treatment of dual system ABE across
different predicates and across both composite and prime-order groups. Via this
framework, we obtain concrete efficiency improvements for several ABE schemes.
Our framework has three novel components over prior works: (i) new techniques
for simulating composite-order groups in prime-order ones, (ii) a refinement of
the encodings framework for dual system ABE for composite-order groups in
[2, 31], (iii) an extension to weakly attribute-hiding predicate encryption [19, 6]
(which includes anonymous IBE as a special case). The last two components
answer the open problems left in [2, 31].

New techniques for simulating composite-order groups. The starting
point of our construction is simply a simpler choice of basis. Fix a bilinear
group (G1, G2, GT ) with e : G1 × G2 → GT of prime order p. We pick random
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k-Lin
anonymous

IBE
weakly-AH

ZIPE

DPVS [23, 24, 20, 11] no yes yes yes yes

sparse DPVS [26] yes ? ? yes yes

QANIZK [18] yes ? yes yes ?

dual system groups [10] yes ? yes ? ?

MAC-to-(H)IBE [3] yes ? yes yes ?

this work yes yes yes yes yes

Fig. 1. Summary of previous approaches for building efficient dual system (H)IBE and
ABE in prime-order groups. The first column refers to HIBE with constant-size cipher-
texts; the second refers to KP/CP-ABE for boolean formula. The third column refers to
instantiations from the general k-Lin assumption. The last two columns address exten-
sions to stronger notions of security like anonymity and weakly attribute-hiding (AH)
inner product encryption (ZIPE). Additional discussion is provided in Section 1.2.

matrices (A,B)←r Z(k+1)×k
p , along with random vectors a⊥,b⊥ ∈ Zk+1

p so that

a⊥
⊤
A = b⊥⊤

B = 0, and we assume a⊥
⊤
b⊥ ̸= 0. Observe that1

([A]1, [b
⊥]1) := (gA1 , gb

⊥

1 ) ∈ G
(k+1)×k
1 ×Gk+1

1

forms a basis for Gk+1
1 . Similarly,

([B]2, [a
⊥]2) := (gB2 , ga

⊥

2 ) ∈ G
(k+1)×k
2 ×Gk+1

2

forms a basis for Gk+1
2 . In the context of dual system encryption, we use [A]1

as a basis for normal components in the ciphertext space, and [b⊥]1 as a basis
for semi-functional components. Similarly, we use [B]2 as a basis for normal
components in the secret key space, and [a⊥]2 as a basis for semi-functional
components. Indistinguishability for elements with and without random semi-
functional components follow readily from the k-Lin assumption. Moreover, we
have an orthogonality property given by a⊥

⊤
A = b⊥⊤

B = 0, which tells us that
the normal and semi-functional components in different spaces cancel out.

We can then randomize this basis by choosing W ∈ Z(k+1)×(k+1)
p uniformly

at random and using ([W⊤A]1, [W
⊤b⊥]1) for Gk+1

1 and ([WB]2, [Wa⊥]2) for
Gk+1

2 . For decryption correctness, we will exploit the following “associative”
property when the new basis interacts with the original one, namely:

e([A]1, [WB]2) = e([W⊤A]1, [B]2) (1)

where we define the pairing operation on matrices via

e([M]1, [M
′]2) := e(g1, g2)

M⊤M′
.

1 Following [13], we use the implicit representation notation for group elements, as
explained in Section 4.1.



Observe that W has one unit of residual entropy given (W⊤A,WB). This will
be crucial for carrying out the information-theoretic argument in the proof of
ABE security via the dual system encryption methodology [30, 2, 31].

We note that prior transformations in prime-order groups in [14, 23, 24, 20]
try to simulate all of the structure in composite-order groups (e.g. orthogonality).
We simulate less structure (associativity, c.f. Eqn. (1)), thus leading to better
concrete efficiency. However, when combined with the existing encodings frame-
work for dual system ABE schemes in composite-order groups, we cannot even
guarantee ABE decryption correctness. We compensate for less structure while
simulating composite-order groups by imposing more structure to the encodings,
which we can achieve without increasing the size of the encodings. We will ex-
ploit the additional structure in the encodings for correctness and for security.
We now proceed to describe our encodings framework for ABE.

Modular approach for ABE. We begin with the observation that the prior
composite-order ABE schemes in [31, 2] (generalizing [21, 22]) may be modified
so that master public key, secret key and ciphertext are of the form:

mpk :=
(
g1, g

w
1 , e(g1, g1)

α
)

sky :=
(
gr1, g

kE(y,α)+r·rE(y,w)
1

)
ctx :=

(
gs1, g

s·sE(x,w)
1 , e(g1, g1)

αs ·m
) (2)

Here, g1 is a generator of order p1 where the underlying composite group order
is the product of three primes p1, p2, p3 (for simplicity we consider the case of a
symmetric bilinear group); w is a vector of length n; and kE, rE, sE are a triple
of deterministic “encoding” functions that depend on the underlying predicate
P (we refer to these functions as key encoding, receiver encoding and sender
encoding respectively.) Syntactically, this is already a refinement of the prior
frameworks in [31, 2] which associates a single function with sky given by

(y, α,w, r) 7→
(
r, kE(y, α) + r · rE(y,w)

)
(3)

in the exponent. The prior frameworks allow for instance for kE to be ran-
domized. With the refinement in place, we can now specify the restricted α-
reconstruction property used for correctness:

(restricted α-reconstruction.) For every x, y for which P(x, y) = 1,
there is a linear map Lxy such that for all α, r,

Lxy

(
kE(y, α) + r · rE(y,w), r · sE(x,w)

)
= α.

This means that we can recover e(g1, g1)
αs given

e(gs1, g
kE(y,α)+r·rE(y,w)
1 ) and e(g

s·sE(x,w)
1 , gr1),



upon which we can decrypt the ciphertext. Observe that we only need to pair
the first component gs1 of ctx with the second component of sky and the second
component of ctx with the first component gr1 of sky. Correctness now relies on
a so-called associativity property [10], namely that for all i and all wi:

e(gs1, g
wir
1 ) = e(gwis

1 , gr1) (4)

To translate the scheme to prime-order groups, we carry out the following sub-
stitution:

wi 7→Wi ∈ Z(k+1)×(k+1)
p , s 7→ s ∈ Zk

p, r 7→ r ∈ Zk
p

gs1 7→ [As]1, gr1 7→ [Br]2

gwis
1 7→ [W⊤

iAs]1, gwir
1 7→ [WiBr]2

Using (1), we have

e([As]1, [WiBr]2) = e([W⊤
iAs]1, [Br]2)

which is exactly what we used in composite-order groups in (4). In fact, a stronger
“pairwise associativity” property holds in composite-order groups, namely for all
i, j and all wi, wj :

e(g
wjs
1 , gwir

1 ) = e(gwis
1 , g

wjr
1 )

which is not satisfied by our prime-order techniques since Wi and Wj do not
commute. Restricted α-reconstruction means that we do not need to pair g

wjs
1

with gwir
1 during decryption, and thus the associativity property already suffices

for decryption correctness. For maximal modularity, we describe our compiler
using the framework of dual system groups introduced in [10], which allows us
to simultaneously capture prime-order and composite-order groups.

Next, we specify the privacy property which we use in the proof of ABE
security:

(α-privacy.) For every x, y for which P(x, y) = 0, α is perfectly hidden
given

sE(x,w), kE(y, α) + rE(y,w)

where w←r Zn
p .

We stress that the privacy requirement only needs to hold in a private-key setting
where the adversary does not seew and in a one-time setting where the adversary
only gets a single copy of sE(x,w), kE(y, α)+rE(y,w). As pointed out in [31], the
dual system encryption methodology can be used to boost security in a private-
key, one-time, non-adaptive setting as given by α-privacy to a full-fledged public-
key, many-time, adaptive setting as is required for ABE security. One novelty in
this work over [31, 2] lies in carrying this out over prime-order bilinear groups.
In the proof, we exploit the fact that the key sky leaks no information about
w when r = 0 (c.f. Eqn. (2)). This way, we can ensure that in each step in the
proof of security, at most one secret key leaks information about w in the semi-
functional space. This is important since α-privacy only holds when w is used
once. We also introduce new attribute-hiding privacy requirements for encodings
in this work (c.f. Section 7.2).



New encodings. For many predicates, the prior encodings in [31, 2] satisfy the
new refinement trivially. In addition, we introduce a number of new encodings:

– For KP-ABE for boolean formula, the prior encoding corresponding to the
secret key in [31, 2] is given by

(r, α1 + rw1, . . . , αℓ + rwℓ)

where (α1, . . . , αℓ) are random shares of α using a linear secret-sharing
scheme and fresh randomness for each secret key. This does not satisfy the
syntactic refinement captured in Eqn. (3). In our scheme, we use

(r, α′
1 + r(w1 + v1), . . . , α

′
ℓ + r(wℓ + vℓ))

where (α′
1, . . . , α

′
ℓ) are deterministically derived from α using the secret-

sharing scheme with randomness fixed to 0 and (v1, . . . , vℓ) are random
shares of 0. In the ensuing KP-ABE scheme, we use the same v1, . . . , vℓ
across all secret keys whereas prior constructions use fresh randomness for
secret-sharing for each key. In addition, we obtain an analogous construction
for CP-ABE. Here, we avoid having to consider randomized sender encod-
ings as in [31, 2]. The final encodings have the same sizes as the prior ones,
while satisfying the new refinement requirement. Moreover, by using asso-
ciativity (c.f. Eqn. (4)), we reduce the number of pairings for the decryption
to a constant and avoid exponentiations in the target group at the cost of
cheaper exponentiations in the source groups.

– We extend the encodings for KP-ABE and CP-ABE to arithmetic branching
programs, based on the selectively secure KP-ABE for arithmetic branching
programs in [17]. Combined with our generic framework, we obtain the first
adaptively secure KP-ABE and CP-ABE for arithmetic branching programs.

– We also present a new encoding for broadcast encryption with n users where
both the receiver and sender encoding have sublinear O(

√
n) length and a

simple encoding for large universe fuzzy IBE.

Achieving weak attribute-hiding. In a weakly attribute-hiding scheme, we
need to guarantee the privacy of the ciphertext attribute x against collusions
that are not authorized to decrypt the challenge ciphertext. To achieve this
property, we require additional properties from the underlying encoding and the
underlying group structure (extending ideas from [25, 1, 3]). We use the fact
that for any vector c ∈ Zk+1

p outside the span of A, the vector W⊤c is uniformly
random given W⊤A, where W is a uniformly random matrix. We can then use
W⊤c to information-theoretically blind the attribute in the challenge ciphertext.
For this to work, we need to make sure that the semi-functional secret keys do
not leak any additional information about WB.

New ABE schemes. We describe several concrete new ABE schemes obtained
via our new framework (c.f. Fig. 2). Specifically, we obtain:



functionality improvements

KP-ABE boolean formula 50% savings in SK size, faster Dec

CP-ABE boolean formula 50% savings in CT size, faster Dec

KP-ABE arithmetic formula first adaptively secure scheme

CP-ABE arithmetic formula first adaptively secure scheme

NIPE 25-50% savings in SK and CT size and in Dec time

weakly attribute-hiding ZIPE 25% savings in SK and CT size and in Dec time

Fig. 2. Summary of efficiency improvements in our new ABE schemes. Here, SK, CT,
and Dec stand for secret key, ciphertext, and decryption respectively.

– ABE schemes for the inner product and non-zero inner product predicates
with a 25% improvement in secret key and ciphertext sizes and decryption
time, improving upon previous constructions in [26];

– a key-policy ABE scheme for boolean formula with a 50% improvement in
secret key size and faster decryption and an analogous result for ciphertext-
policy ABE, improving upon previous constructions in [25, 20];

– the first adaptively secure key-policy and ciphertext-policy ABE schemes for
arithmetic formula and branching programs without an exponential security
loss, improving upon previous constructions in [17, 8].

Along the way, we also generalize several previous constructions for k = 2 to
general k with k = 1 being particularly relevant for practical efficiency. More
generally, the parameters of our schemes under k-Lin is k+1 times those of the
best composite-order schemes based on subgroup assumptions: this achieves a
“seemingly best-possible” composite-to-prime-order transformation where each
composite element is simulated using k + 1 prime-order elements.

Finally, our prime-order ABE schemes are simpler to describe than prior
schemes as they share the same structure as existing composite-order schemes.
In particular, we obtain the following anonymous IBE scheme:

mpk = [A,W⊤
0A,W⊤

1A]1, [k
⊤A]T

skid = [Br,k+ (W0 + id ·W1)Br]2 ∈ G
2(k+1)
2

ctid = [As, (W0 + id ·W1)
⊤As]1, [k

⊤As]T ·m ∈ G
2(k+1)
1 ×GT

where A,B ∈ Z(k+1)×k
p , W0,W1 ∈ Z(k+1)×(k+1)

p , s, r ∈ Zk
p, k ∈ Zk+1

p . This
scheme extends naturally to a non-anonymous BBG-style compact HIBE [7]
(this is not the case for the prime-order IBE schemes in [20, 11]).

1.2 Discussion

Comparison with prior works. A summary of the prior approaches for ob-
taining efficient adaptively secure efficient dual system (H)IBE and ABE is pre-



sented in Fig. 1. The most general technique we have for simulating composite-
order groups in prime-order ones are those based on “dual pairing vector spaces”
(DPVS) [23, 24, 20, 11]. However, these techniques do not preserve the asymp-
totic efficiency of the underlying schemes; in particular, applying them to the
composite-order compact HIBE schemes in [21] blows up the ciphertext size
from constant to linear. The sparse DPVS technique [26, 29] uses subgroups of
sparse matrices with mostly zero entries to overcome this limitation; however,
they substantially limit the generality of the DPVS technique: the structure of
these matrices now depend on the predicate and the composite-order scheme
(to preserve efficiency), and the analysis for correctness, efficiency and security
are more involved. The constructions in [10] fail to extend to boolean formula
due to the need for additional randomness for secret-sharing, and also do not
extend to yield anonymous IBE. The direct constructions in [18, 3] that bypass a
conversion from composite-order groups do not seem to naturally extend beyond
(H)IBE: the former uses tag-based languages where tags correspond to identi-
ties, and the latter relies on the notion of message authentication codes where
messages correspond to identities. In particular, we do not know analogues of
these constructions for either the inner product predicate or CP/KP-ABE for
boolean formula.

As noted earlier, another novel contribution in this work over prior unify-
ing frameworks in [2, 31] (generalizing [21, 22]) for composite-order groups lies
in realizing the weakly-attribute guarantee. This is particularly challenging in
composite-order groups for two reasons: (i) there is an explicit anonymity attack
on the Lewko-Waters IBE [21] in composite-order group and (ii) the attribute
in the semi-functional ciphertext is leaked in the Gp1 -component. Interestingly,
we are still able to show that our prime-order analog of the Lewko-Waters IBE
is anonymous.

Organization. We recall the definition of an attribute-based encryption scheme
in Section 2. We recall the notion of dual system groups in Section 3 and describe
our instantiations in Section 4. We describe our notion of predicate encodings
in Section 5. We present our generic ABE construction in Section 6. We handle
weakly attribute-hiding predicate encryption in Section 7. We defer instantia-
tions of predicate encodings and all other details to the full version of this paper.

2 Preliminaries

Notation. We denote by s←r S the fact that s is picked uniformly at random
from a finite set S. By PPT, we denote a probabilistic polynomial-time algo-
rithm. Throughout this paper, we use 1λ as the security parameter. We use · to
denote multiplication as well as component-wise multiplication.

2.1 Attribute-Based Encryption

An attribute-based encryption (ABE) scheme for a predicate P( · , · ) consists of
four algorithms (Setup,Enc, KeyGen,Dec):



Setup(1λ,X ,Y,M) → (mpk,msk). The setup algorithm gets as input the se-
curity parameter λ, the attribute universe X , the predicate universe Y, the
message space M and outputs the public parameter mpk, and the master
key msk.

Enc(mpk, x,m)→ ctx. The encryption algorithm gets as inputmpk, an attribute
x ∈ X and a message m ∈ M. It outputs a ciphertext ctx. Note that x is
public given ctx.

KeyGen(mpk,msk, y) → sky. The key generation algorithm gets as input msk
and a value y ∈ Y. It outputs a secret key sky. Note that y is public given
sky.

Dec(mpk, sky, ctx) → m. The decryption algorithm gets as input sky and ctx
such that P(x, y) = 1. It outputs a message m.

Correctness. We require that for all (x, y) ∈ X × Y such that P(x, y) = 1 and
all m ∈M,

Pr[Dec(mpk, sky,Enc(mpk, x,m)) = m] = 1,

where the probability is taken over (mpk,msk) ← Setup(1λ,X ,Y,M), sky ←
KeyGen(mpk,msk, y), and the coins of Enc.

Security definition. For a stateful adversary A, we define the advantage func-
tion

AdvabeA (λ) := Pr

b = b′ :

(mpk,msk)← Setup(1λ,X ,Y,M);

(x∗,m0,m1)← AKeyGen(msk,·)(mpk);

b←r {0, 1}; ctx∗ ← Enc(mpk, x∗,mb);

b′ ← AKeyGen(msk,·)(ctx∗)

−
1

2

with the restriction that all queries y that A makes to KeyGen(msk, ·) satisfies
P(x∗, y) = 0 (that is, sky does not decrypt ctx∗). An ABE scheme is adaptively
secure if for all PPT adversaries A, the advantage AdvabeA (λ) is a negligible
function in λ.

3 Dual System Groups

This section is largely adapted from [10].

3.1 Overview

Dual system groups contain a triple of abelian groups (G,H,GT ) and a non-
degenerate bilinear map e : G × H → GT . For concreteness, we may think



of (G,H,GT ) as composite-order bilinear groups. Dual system groups take as
input a parameter 1n (think of n as the universe size in KP-ABE) and satisfy
the following properties:

(subgroup indistinguishability.) There are two computationally indistinguish-
able ways to sample correlated (n + 1)-tuples from Gn+1: the “normal”
distribution, and a higher-entropy distribution with “semi-functional com-
ponents”. We sample the normal distribution using SampG and the semi-

functional components using ŜampG. An analogous property holds for Hn+1,

with algorithms SampH and ŜampH respectively, with an important distinc-
tion in the auxiliary input provided to the distinguisher. For concreteness,
think in terms of symmetric bilinear groups of composite order N where

SampG→ (gs1, g
sw
1 ) ∈ Gn+1

N and SampH→ (gr1, g
rw
1 ) ∈ Gn+1

N

ŜampG→ (gs2, g
sw
2 ) ∈ Gn+1

N and ŜampH→ (gr2, g
rw
2 ) ∈ Gn+1

N

Here, N is the product of three primes p1, p2, p3; g1, g2 are generators of
order p1, p2; and gw1 ∈ Gn

N is part of the public parameters.

(associativity.) For all (g0, g1, . . . , gn) ∈ Gn+1 and all (h0, h1, . . . , hn) ∈ Hn+1

drawn from the respective normal distributions according to SampG and
SampH, we have that for all i = 1, . . . , n,

e(g0, hi) = e(gi, h0).

We require this property for correctness (c.f. Eqn. (4)).

(right subgroup H.) There is some distinguished element h∗ ∈ H, which gen-
erates the semi-functional components in H. It is convenient to think of h∗ as
being orthogonal to the normal distribution over G (c.f. orthogonality). On
the other hand, we require that h∗ is not orthogonal to the semi-functional
components in G (c.f. non-degeneracy), so that we get a random value when
we decrypt a semi-functional ciphertext with a semi-functional key.

(parameter-hiding.) Both normal distributions can be efficiently sampled given
the public parameters; on the other hand, given only the public parameters,
the higher-entropy distributions contain n “units” of information-theoretic
entropy (in the semi-functional component), one unit for each of the n el-
ements in the (n + 1)-tuple apart from the first. In the formal statement,
the hidden entropy is captured by n random exponents (u1, . . . , un) shared
across G and H. It is crucial here that we use the same ui in G and in H, so
that decryption succeeds with nominally semi-functional objects.

3.2 Definitions

Syntax. Dual system groups consist of six randomized algorithms given by

(SampP, SampGT, SampG, SampH) along with (ŜampG, ŜampH):



SampP(1λ, 1n): On input (1λ, 1n), output public and secret parameters (pp, sp),
where:

– pp contains a prime p of lengthΩ(λ), a triple of abelian groups (G,H,GT ),
a non-degenerate bilinear map e : G×H→ GT , a linear map µ defined
on H, along with some additional parameters used by SampG,SampH;

– the groups (G,H,GT ) are Zp-modules where Zp acts on G,H,GT via
exponentiation;

– given pp, we can uniformly sample from H;

– sp contains h∗ ∈ H (where h∗ ̸= 1), along with some additional parame-

ters used by ŜampG, ŜampH;

SampGT : Im(µ) → GT. (As a concrete example, suppose µ : H → GT and
Im(µ) = GT.)

SampG(pp): Output g ∈ Gn+1.

SampH(pp): Output h ∈ Hn+1.

ŜampG(pp, sp): Output ĝ ∈ Gn+1.

ŜampH(pp, sp): Output ĥ ∈ Hn+1.

The first four algorithms are used in the actual scheme, whereas the last two
algorithms are used only in the proofs of security. We define SampG0 to denote

the first group element in the output of SampG, and we define ŜampG0, ŜampH0

analogously.

Remark 1. Given a Zp-linear function L : Zn
p → Zp given by (w1, . . . , wn) 7→

a1w1 + · · · + anwn (where a1, . . . , an ∈ Zp are fixed constants), L acts on Zp-
modules Gn,Hn,Gn

T in the natural way. For instance, L : Gn → G is given
by (g1, . . . , gn) 7→ ga1

1 · · · gan
n . This extends also to general Zp-linear functions

L : Zn
p → Zm

p coordinate-wise.

Correctness. The requirements for correctness are as follows:

(projective.) For all h ∈ H and all coin tosses s, we have SampGT(µ(h); s) =
e(SampG0(pp; s), h).

(associative.) For all (g0, g1, . . . , gn) ← SampG(pp) and (h0, h1, . . . , hn) ←
SampH(pp) and for all i = 1, . . . , n, we have e(g0, hi) = e(gi, h0).

(H-subgroup.) The output of SampH(pp) is the uniform distribution over a
subgroup of Hn+1.



Security. The requirements for security are as follows:

(orthogonality.) µ(h∗) = 1.

(non-degeneracy.) For all ĥ0 ← ŜampH0(pp, sp), h
∗ lies in the group gener-

ated by ĥ0. For all ĝ0 ← ŜampG0(pp, sp), we have e(ĝ0, h
∗)α is identically

distributed to the uniform distribution over GT , where α←r Zp.

(left subgroup indistinguishability.) For any adversary A, we define the ad-
vantage function:

AdvlsA(λ) :=
∣∣Pr[ A(pp, g ) = 1 ]− Pr[ A(pp, g · ĝ ) = 1 ]

∣∣
where (pp, sp)← SampP(1λ, 1n), g← SampG(pp), ĝ← ŜampG(pp, sp).

(right subgroup indistinguishability.) For any adversary A, we define the
advantage function:

AdvrsA (λ) :=
∣∣Pr[ A(pp, h∗,g · ĝ, h ) = 1 ]− Pr[ A(pp, h∗,g · ĝ, h · ĥ ) = 1 ]

∣∣
where (pp, sp)← SampP(1λ, 1n), g← SampG(pp), ĝ← ŜampG(pp, sp), h←
SampH(pp), ĥ← ŜampH(pp, sp).

(parameter-hiding.) The following distributions are identically distributed

{pp, h∗, ĝ, ĥ } and {pp, h∗, ĝ · ĝ′, ĥ · ĥ
′
}

where

(pp, sp)← SampP(1λ, 1n); u1, . . . , un ←r Zp;

ĝ = (ĝ0, . . .)← ŜampG(pp, sp); ĥ = (ĥ0, . . .)← ŜampH(pp, sp);

ĝ′ := (1, ĝu1
0 , . . . , ĝun

0 ) ∈ Gn+1; ĥ
′
:= (1, ĥu1

0 , . . . , ĥun
0 ) ∈ Hn+1.

4 Instantiations of DSG from k-Lin

We present a new instantiation of dual system groups under the k-Lin assump-
tion, inspired by the constructions in [3, 10].

Overview. The prior construction of DSG [10] (building upon [24, 25, 20, 11])
starts with a random B←r GLk+1(Zp) and defines B∗ := (B⊤)−1 so that B⊤B∗

is the identity matrix; then uses B for SampG, ŜampG and B∗ for SampH, ŜampH.

In our construction, we may start with any pair of matrices A,B in Z(k+1)×k
p of

full rank:

– In addition, we pick a⊥,b⊥ so that a⊥
⊤
A = b⊥⊤

B = 0 and a⊥
⊤
b⊥ ̸= 0; we

then use (A,b⊥) for SampG, ŜampG and (B,a⊥) for SampH, ŜampH.



– We achieve randomization as follows: again, pick a randomW←r Z(k+1)×(k+1)
p

and replace (A,B) with (W⊤A,WB). The associativity property follows
from the equation:

(W⊤A)⊤B = A⊤(WB)

Interestingly, the prior construction in [10] randomizes by multiplying a random
W on the right, whereas our construction multiplies a random W on the left.
Together with the fact that we no longer require the fact that B⊤B∗ is the
identity, we substantially simplify the proof of subgroup indistinguishability.

4.1 Cryptographic assumptions

We follow the notation and algebraic framework for Diffie-Hellman-like assump-
tions in [13].

Prime-order bilinear groups. A generator G takes as input a security pa-
rameter λ and outputs a description (p,G1, G2, GT , g1, g2, e), where p is a prime
of Θ(λ) bits; G1, G2 and GT are cyclic groups of order p; g1, g2 are generators
of G1 and G2 respectively; and e : G1 × G2 → GT is a non-degenerate bilinear
map. Given a ∈ Zp, we use [a]1 to denote ga1 , [a]2 to denote ga2 , [a]T to denote
e(g1, g2)

a. This extends to vectors and matrices in the obvious way. We define
e([A]1, [B]2) := [A⊤B]T .

Linear assumption. Let Dk be an efficiently samplable distribution of matrices

(A,a⊥) over Z(k+1)×k
p × Zk+1

p so that A⊤a⊥ = 0 and a⊥ ̸= 0. In particular, we
consider the distribution generated as follows: pick a1, . . . , ak ←r Z∗

p and set

A :=



a1

a2
. . .

ak

1 1 · · · 1


∈ Z(k+1)×k

p and a⊥ :=



a−1
1

a−1
2

...

a−1
k

−1


∈ Z(k+1)

p .

This distribution captures the k-linear assumption, which stipulates that

([A] , [As]) ≈c ([A] , [z])

where s←r Zk
p, z←r Zk+1

p in both G1 and G2.

Assumption 1 (k-Lin: the k-linear assumption in G1) For any adversary
A, we define the advantage function:

Advk-LinA :=
∣∣Pr[A((p,G1, G2, GT , g1, g2, e); [A]1 , [As]1) = 1]

− Pr[A((p,G1, G2, GT , g1, g2, e); [A]1 , [z]1) = 1]
∣∣

where (p,G1, G2, GT , g1, g2, e)← G(1λ), (A,a⊥)← Dk, s←r Zk
p, z←r Zk+1

p .



We will slightly abuse notation and also use Advk-LinA to denote the corresponding
advantage function for G2.

Basis lemma. The following structural lemma tells us that if we pick random
(A,a⊥), (B,b⊥) ← Dk, then with overwhelming probability, both (A,b⊥) and
(B,a⊥) form a basis for Zk+1

p and a⊥,b⊥ are not orthogonal. We will assume
henceforth that this property always holds.

Lemma 1 (basis lemma). With probability 1 − 1/p over (A,a⊥), (B,b⊥) ←
Dk, it holds that:(

a⊥ ̸∈ span(B)
)
∧
(
b⊥ ̸∈ span(A)

)
∧
(
a⊥

⊤
b⊥ ̸= 0

)
.

Proof. It is easy to see that if a⊥
⊤
b⊥ ̸= 0, then(

a⊥ ̸∈ span(B)
)

and
(
b⊥ ̸∈ span(A)

)
since every vector in span(A) is orthogonal to a⊥ and every vector in span(B)

is orthogonal to b⊥. Observe that a⊥
⊤
b⊥ = 1 +

∑d
i=1(aibi)

−1 and

Pr
[
1 +

d∑
i=1

(aibi)
−1 ̸= 0 : a1, b1, . . . , ak, bk ←r Z∗

p

]
= 1− 1/p.

The lemma then follows readily. ⊓⊔

Remark 2. Observe that Lemma 1 is not particular to the k-Lin distribution,
since a similar proof works for any example of matrix distribution Dk presented
in [13], namely Uk+1,k, k-Casc, k-SCasc and k-ILin [13, Section 3.4].

4.2 Construction

Our construction is as follows:

SampP(1λ, 1n): On input (1λ, 1n), do:

– run (p,G1, G2, GT , g1, g2, e) ← G(1λ), where G(1λ) is an asymmetric
prime-order group generator;

– define (G,H,GT , e) := (Gk+1
1 , Gk+1

2 , GT , e);

– sample (A,a⊥), (B,b⊥)← Dk, along withW1, . . . ,Wn ←r Z(k+1)×(k+1)
p ;

– define µ : Gk+1
2 → Gk

T by µ([k]2) = [A⊤k]T ;

– set h∗ :=
[
a⊥

]
2
.

Output

pp :=

 (p,G,H,GT , e);
[A]1 , [W

⊤
1A]1 , . . . , [W

⊤
nA]1

[B]2 , [W1B]2 , . . . , [WnB]2

 ;

sp :=
(
a⊥,b⊥,W1, . . . ,Wn

)
.



SampGT([p]T ): Pick s←r Zk
p and output [s⊤p]T ∈ GT .

SampG(pp): Pick s←r Zk
p and output(

[As]1 , [W
⊤
1As]1 , . . . , [W

⊤
nAs]1

)
∈ (Gk+1

1 )n+1.

SampH(pp): Pick r←r Zk
p and output(

[Br]2 , [W1Br]2 , . . . , [WnBr]2

)
∈ (Gk+1

2 )n+1.

ŜampG(pp, sp): Pick ŝ←r Z∗
p and output([

b⊥ŝ
]
1
,
[
W⊤

1b
⊥ŝ

]
1
, . . . ,

[
W⊤

nb
⊥ŝ

]
1

)
∈ (Gk+1

1 )n+1.

ŜampH(pp, sp): Pick r̂ ←r Z∗
p and output([

a⊥r̂
]
2
,
[
W1a

⊥r̂
]
2
, . . . ,

[
Wna

⊥r̂
]
2

)
∈ (Gk+1

2 )n+1.

Correctness. We check correctness properties as follows:

(projective.) This follows readily from the fact that for all k ∈ Zk+1
p , s ∈ Zk

p:

(As)⊤k = (A⊤k)⊤s.

(associative.) This follows readily from the fact that for all s ∈ Zk
p, r ∈ Zk

p,Wi ∈
Z(k+1)×(k+1)
p :

(W⊤
iAs)⊤(Br) = (As)⊤(WiBr).

(H-subgroup.) This follows readily from the fact that Zk
p is an additive group.

Security. We check security properties as follows:

(orthogonality.) This follows readily from A⊤a⊥ = 0.

(non-degeneracy.) This follows readily from b⊥⊤
a⊥ ≠ 0.

We establish left subgroup indistinguishability, right subgroup indistinguisha-
bility, and parameter-hiding in the next three lemmas. The left and right sub-
group indistinguishability relies on the k-Lin assumption in prime-order groups,
whereas parameter-hiding is unconditional.

Lemma 2 (left subgroup indistinguishability from k-Lin). For any ad-
versary A, there exists an adversary B such that:

AdvlsA(λ) ≤ Advk-LinB + 2/p

and Time(B) ≈ Time(A) + k2 · poly(λ, n) where poly(λ, n) is independent of
Time(A).



The proof is a simpler case of the proof of Lemma 3, we omit it here.

Lemma 3 (right subgroup indistinguishability from k-Lin). For any ad-
versary A, there exists an adversary B such that:

AdvrsA (λ) ≤ Advk-LinB + 2/p

and Time(B) ≈ Time(A) + k2 · poly(λ, n) where poly(λ, n) is independent of
Time(A).

We may rewrite the corresponding advantage function as:

AdvrsA (λ) :=
∣∣Pr[ A(pp, h∗,g · ĝ,h) = 1 ]− Pr[ A(pp, h∗,g · ĝ,h · ĥ) = 1 ]

∣∣
where

(pp, sp)← SampP(1λ, 1n); s, r←r Zk
p; ŝ, r̂ ←r Z∗

p; h∗ :=
[
a⊥

]
2
;

g · ĝ :=
([

As+ b⊥ŝ
]
1
,
[
W⊤

1(As+ b⊥ŝ)
]
1
, . . . ,

[
W⊤

n(As+ b⊥ŝ)
]
1

)
;

h :=
(
[Br]2 , [W1Br]2 , . . . , [WnBr]2

)
;

h · ĥ :=
([

Br+ a⊥r̂
]
2
,
[
W1(Br+ a⊥r̂)

]
2
, . . . ,

[
Wn(Br+ a⊥r̂)

]
2

)
.

Proof. The adversary B samples (A,a⊥) ← Dk along with W1, . . . ,Wn ←r

Z(k+1)×(k+1)
p . Recall that (B,a⊥) is a basis for Zk+1

p , so {Br + a⊥r̂ : r ←r

Zk
p, r̂ ←r Z∗

p} is statistically close to the uniform distribution. Adversary B then
gets as input (

(p,G1, G2, GT , g1, g2, e), [B]2 ,
[
Br+ a⊥r̂

]
2

)
where either r̂ = 0 or r̂ ←r Z∗

p, and proceeds as follows:

Simulating pp, h∗. Output

[A]1 , [W⊤
1A]1 , . . . , [W⊤

nA]1

[B]2 , [W1B]2 , . . . , [WnB]2

and
[
a⊥

]
2

Simulating
[
As+ b⊥ŝ

]
1
,
[
W⊤

i (As+ b⊥ŝ)
]
1
. Note that B does not know b⊥.

Instead, B samples s̃←r Zk+1
p and outputs

[s̃]1 , [W
⊤
1 s̃]1 , . . . , [W

⊤
ns̃]1 .

Observe that As+ b⊥ŝ is statistically close to the uniform vector s̃ as long
as b⊥ ̸∈ span(A) and ŝ←r Zp.

Simulating the challenge. Upon receiving a k-Lin challenge, B outputs[
Br+ a⊥r̂

]
2
,
[
W1(Br+ a⊥r̂)

]
2
, . . . ,

[
Wn(Br+ a⊥r̂)

]
2



where either r̂ = 0 or r̂ ←r Zp.
Observe that:

– if r̂ = 0, then we can write the output challenge as

[Br]2 , [W1Br]2 , . . . , [WnBr]2 .

which equals h; we obtain the left distribution in the statement of the lemma;

– if r̂ ←r Zp, then we can write the output challenge as[
Br+ a⊥r̂

]
2
,
[
W1(Br+ a⊥r̂)

]
2
, . . . ,

[
Wn(Br+ a⊥r̂)

]
2
.

which equals h · ĥ; we obtain the right distribution in the statement of the
lemma.

Typically, we sample ŝ, r̂ ←r Z∗
p for ŜampG(pp, sp) and ŜampH(pp, sp); this yields

a 2/p negligible difference in the advantage. The lemma then follows readily. ⊓⊔

Lemma 4 (parameter-hiding). The following distributions are identically dis-
tributedpp,

[
a⊥

]
2
,

[
b⊥ŝ

]
1
,
[
W⊤

1b
⊥ŝ

]
1
, . . . ,

[
W⊤

nb
⊥ŝ

]
1[

a⊥r̂
]
2
,
[
W1a

⊥r̂
]
2
, . . . ,

[
Wna

⊥r̂
]
2

 and

pp,
[
a⊥

]
2
,

[
b⊥ŝ

]
1
,
[
(W⊤

1b
⊥ + u1b

⊥)ŝ
]
1
, . . . ,

[
(W⊤

nb
⊥ + unb

⊥)ŝ
]
1[

a⊥r̂
]
2
,
[
(W1a

⊥ + u1a
⊥)r̂

]
2
, . . . ,

[
(Wna

⊥ + una
⊥)r̂

]
2


where (pp, sp)← SampP(1λ, 1n), ŝ, r̂ ←r Z∗

p and u1, . . . , un ←r Zp.

Proof. Fix g1, g2, (A,a⊥), (B,b⊥), ŝ, r̂; that is, we prove that the statement holds

for all g1, g2, (A,a⊥), (B,b⊥), ŝ, r̂. Set V := a⊥b⊥⊤ ∈ Z(k+1)×(k+1)
p which satis-

fies the following properties:

V⊤A = 0 and VB = 0 (5)

Va⊥ = (a⊥
⊤
b⊥)a⊥ and V⊤b⊥ = (a⊥

⊤
b⊥)b⊥ (6)

Eqn. (6) basically says that a⊥ and b⊥ are the respective eigenvectors of V and
V⊤. Now, consider the following “change of variables” in the first distribution,
namely, replace

Wi with Wi + ui(a
⊥⊤

b⊥)−1V, i = 1, . . . , n.

Clearly, this does not change the first distribution. Now, observe that[
(Wi + ui(a

⊥⊤
b⊥)−1V)⊤A

]
1
= [W⊤

iA]1 ;[
(Wi + ui(a

⊥⊤
b⊥)−1V)B

]
2
= [WiB]2



where we use (5) in the last equalities. That is, pp remains unchanged. In addi-
tion, we have [

(Wi + ui(a
⊥⊤

b⊥)−1V)⊤b⊥
]
1
=

[
W⊤

ib
⊥ + uib

⊥]
1
;[

(Wi + ui(a
⊥⊤

b⊥)−1V)a⊥
]
2
=

[
Wia

⊥ + uia
⊥]

2

where we use (6) in the last equalities. Indeed, this is exactly the second distri-
bution. ⊓⊔

5 Predicate Encodings

In this section, we describe a refinement of the predicate encodings from [31,
2] which we use in this work. We refer to Section 1.1 for an overview of the
refinement.

Predicate encodings. Fix a predicate P : X × Y → {0, 1}. A Zp-bilinear
predicate encoding for P is a tuple of deterministic algorithms (sE, rE, kE, sD, rD)
satisfying the following properties:

(linearity.) For all (x, y) ∈ X × Y, the functions sE(x, ·), rE(y, ·), kE(y, ·),
sD(x, y, ·), rD(x, y, ·) are Zp-linear.

(restricted α-reconstruction.) For all (x, y) ∈ X × Y such that P(x, y) = 1
and for all w ∈ W:

sD(x, y, sE(x,w)) = rD(x, y, rE(y,w)) and rD(x, y, kE(y, α)) = α.

(α-privacy.) For all (x, y) ∈ X×Y such that P(x, y) = 0, and for all α ∈ Zp, the
joint distribution {sE(x,w), kE(y, α) + rE(y,w)} perfectly hides α. That is,
for all α ∈ Zp, the following joint distributions2 are identically distributed:{

x, y, α, sE(x,w), kE(y, α) + rE(y,w)
}

and
{
x, y, α, sE(x,w), rE(y,w)

}
where the randomness is taken over w←r W.

Remark 3. Given a predicate encoding as defined above, we can construct an
encoding (rE′, sE′) which achieves the notion in [31, 2] by considering:

sE′ = sE and rE′(y, α,w, r) =
(
r, kE(y, α) + r · rE(y,w)

)
.

Note that rE′ leaks no information about w when r = 0 which trivially yields
the w-hiding property in [31] (aka parameter-hiding in [2]). Here, we use the
fact that kE does not depend on w.

2 Note that since kE(y, ·) is Zp-linear, we have kE(y, 0) + rE(y,w) = rE(y,w).



Example: equality. Fix a prime integer p. Consider the equality predicate
where X = Y = Zp and P(x, y) = 1 iff x = y. The following is a predicate
encoding for equality used in [4, 21]:

sE(x, (w1, w2)) := w1 + w2x rE(y, (w1, w2)) := w1 + w2y kE(y, α) := α

sD(x, y, c) = c rD(x, y, k) = k

When x = y, w1 +w2x = w1 +w2y and we can reconstruct α. For α-privacy, we
exploit the fact that (w1+w2x,w1+w2y) are pairwise independent when x ̸= y.

6 ABE from Dual System Groups and Predicate
Encodings

Starting from a predicate encoding for P, we construct an ABE for P using dual
system groups. We refer to Section 1.1 for an overview of the scheme, which is
of the form:

mpk :=
(
g1, g

w
1 , e(g1, g1)

α
)

sky :=
(
gr1, g

kE(y,α)+r·rE(y,w)
1

)
ctx :=

(
gs1, g

s·sE(x,w)
1 , e(g1, g1)

αs ·m
)

We will generatempk using SampP(1λ, 1n), wherew ∈ Zn
p . We will use SampG(pp)

to generate the terms (gs1, g
sw
1 ) in the ciphertext, from which we can compute

(gs1, g
s·sE(x,w)
1 ) by linearity of sE(x, ·). Similarly, we use SampH(pp) to generate

the terms (gr1, g
rw
1 ) in the secret key, from which we can compute (gr1, g

r·rE(y,w)
1 ).

We replace gα1 with msk←r H.

6.1 Construction

Setup(1λ, 1n): On input (1λ, 1n), first sample

(pp, sp)← SampP(1λ, 1n).

Pick msk←r H and output the master public and secret key pair

mpk := ( pp, µ(msk) ) and msk.

Enc(mpk, x,m): On input x ∈ X and m ∈ GT , sample

(g0, g1, . . . , gn)← SampG(pp; s), g′T ← SampGT(µ(msk); s)

and output3

ctx := ( C0 := g0, C1 := sE(x, (g1, . . . , gn)), C
′ := g′T ·m ) .

3 See Remark 1 for an explanation of the function sE(x, (g1, . . . , gn)).



KeyGen(mpk,msk, y): On input y ∈ Y, sample

(h0, h1, . . . , hn)← SampH(pp)

and output

sky := ( K0 := h0, K1 := kE(y,msk) · rE(y, (h1, . . . , hn)) ) .

Dec(mpk, sky, ctx): Compute

e(g0,msk)← e(C0, rD(x, y,K1))/e(sD(x, y,C1),K0)

and recover the message as

m← C ′ · e(g0,msk)−1 ∈ GT .

Correctness. For all (x, y) ∈ X × Y such that P(x, y) = 1, we have

e(C0, rD(x, y,K1))

= e(g0, rD(x, y, rE(y, (h1, . . . , hn)))) · e(g0, rD(x, y, kE(y,msk)))

= e(g0, rD(x, y, rE(y, (h1, . . . , hn)))) · e(g0,msk)

= rD(x, y, rE(y, (e(g0, h1), . . . , e(g0, hn)))) · e(g0,msk)

= rD(x, y, rE(y, (e(g1, h0), . . . , e(gn, h0)))) · e(g0,msk)

= sD(x, y, sE(x, (e(g1, h0), . . . , e(gn, h0)))) · e(g0,msk)

= e(sD(x, y, sE(x(g1, . . . , gn))), h0) · e(g0,msk)

= e(sD(x, y,C1),K0) · e(g0,msk)

In line 2, we use linearity of rD(x, y, ·) and e(g0, ·). In line 3 and line 6, we use
α-reconstruction. In line 4 and line 7, we use the fact that the functions e(g0, ·),
e(·, h0) and sD(x, y, sE(y, ·)) commute with linear functions. That is, given a Zp-
linear function L : Zn

p → Zp given by (w1, . . . , wn) 7→ a1w1 + · · · + anwn, we
have:

e(g0, L(h1, . . . , hn)) = e(g0, h
a1
1 · · ·han

n )

= e(g0, h1)
a1 · · · e(g0, hn)

an

= L(e(g0, h1), . . . , e(g0, hn))

In line 5, we use associativity in DSG. Finally, by projective, g′T = e(g0,msk).
Correctness follows readily.

6.2 Proof of Security

We prove the following theorem:



game ciphertext (C0,C1, C
′) secret key (K0,K1) justification

0 (1,1, 1) (1, (h∗)kE(y,0) · 1) 1 = (h∗)kE(y,0)

1 (ĝ0, sE(x, ĝ), e(ĝ0,msk)) (1, (h∗)kE(y,0) · 1) left subgroup ind.

2.i.1 (ĝ0, sE(x, ĝ), e(ĝ0,msk)) ( ĥ0 , (h∗)kE(y,0) · rE(y, ĥ) ) right subgroup ind.

2.i.2 (ĝ0, sE(x, ĝ), e(ĝ0,msk)) (ĥ0, (h∗)kE(y,α) · rE(y, ĥ)) α-privacy

2.i.3 (ĝ0, sE(x, ĝ), e(ĝ0,msk)) ( 1 , (h∗)kE(y,α) · 1 ) right subgroup ind.

3 (ĝ0, sE(x, ĝ), random ) (1, (h∗)kE(y,α) · 1)

Fig. 3. Sequence of games in the “semi-functional” space. We omitted the normal
components: those sampled using SampG,SampH, and we omitted e(g0,msk) ·m in C′

and kE(y,msk) in sky. We drew a box to highlight the differences between each game
and the preceding one, and games 2.i.x refer to the i’th secret key. The semi-functional
components of the keys transition from (h∗)kE(y,0) to (h∗)kE(y,α). For the final transition,
we use the fact that e(ĝ0,msk) is statistically random given msk · (h∗)α.

Theorem 1. Under the left and right subgroup indistinguishability (described
in Section 3), the ABE scheme described in Section 6.1 is adaptively secure (in
the sense of Definition 2.1). More precisely, for any adversary A that makes at
most q key queries against the ABE scheme, there exist adversaries B1,B2,B3
such that:

AdvabeA (λ) ≤ AdvlsB1
(λ) + q · AdvrsB2

(λ) + q · AdvrsB3
(λ)

and

max{Time(B1),Time(B2),Time(B3)} ≈ Time(A) + q · poly(λ, n)

where poly(λ, n) is independent of Time(A).
The proof follows via a series of games, analogous to that in [10, 31, 30, 21],
and outlined in Fig. 3. We first define two auxiliary algorithms and then the
semi-functional distributions, upon which we can describe the games.

Auxiliary algorithms. We consider the following algorithms:

Ênc(pp, x,m;msk, t): On input x ∈ X , m ∈ GT , and t := (T0, T1, . . . , Tn) ∈
Gn+1, output

ctx := ( T0, sE(x, (T1, . . . , Tn)), e(T0,msk) ·m ) .

K̂eyGen(pp,msk′, y; t): On input msk′ ∈ H, y ∈ Y, and t := (T0, T1, . . . , Tn) ∈
Hn+1, output

sky :=
(
T0, kE(y,msk′) · rE(y, (T1, . . . , Tn))

)
.

In all the proofs and figures that follow, we denote sE(x, (T1, . . . , Tn)) by sE(x, t)
for notational convenience, and we define rE(y, t) analogously.



Auxiliary distributions.

Semi-functional master secret key.

m̂sk := msk · (h∗)α,

where α←r Zp .

Semi-functional ciphertext.

Ênc(pp, x,m;msk, g · ĝ ),

where g← SampG(pp) and ĝ← ŜampG(pp, sp) .

Pseudo-normal secret key.

K̂eyGen(pp,msk, y; h · ĥ ),

where fresh h← SampH(pp) and ĥ← ŜampH(pp, sp) are chosen for each secret

key.

Pseudo-SF secret key.

K̂eyGen(pp, m̂sk , y;h · ĥ),

where fresh h← SampH(pp) and ĥ← ŜampH(pp, sp) are chosen for each secret
key.

Semi-functional secret key.

K̂eyGen(pp, m̂sk, y; h ),

where a fresh h← SampH(pp) is chosen for each secret key. We note that the

semi-functional key generation algorithm is identical to the normal key genera-

tion except that it replaces msk with m̂sk as input.

Game sequence. We present a series of games. We write Advxxx(λ) to denote
the advantage of A in Gamexxx.

– Game0: is the real security game (c.f. Section 2.1).

– Game1: is the same as Game0 except that the challenge ciphertext is semi-
functional.

– Game2,i,1 for i from 1 to q, Game2,i,1 is the same as Game1 except that the
first i− 1 keys are semi-functional, the last q − i keys are normal while the
i’th key is pseudo-normal.



– Game2,i,2 for i from 1 to q, Game2,i,2 is the same as Game1 except that the
first i− 1 keys are semi-functional, the last q − i keys are normal while the
i’th key is pseudo-SF.

– Game2,i,3 for i from 1 to q, Game2,i,3 is the same as Game1 except that the
first i keys are semi-functional, the last q − i keys are normal.

– Game3: is the same as Game2,q,3, except that the challenge ciphertext is a
semi-functional encryption of a random message in GT .

In Game3, the view of the adversary is statistically independent of the challenge
bit b. Hence, Adv3(λ) = 0. We complete the proof by establishing the following
sequence of lemmas. We omit the proofs of lemmas 5, 6, 8, 9 as they are the
same as those of lemmas 1, 2, 5, 6 in [10, Section 4].

Lemma 5 (normal to SF ciphertext: Game0 to Game1). For any adversary
A that makes at most q key queries, there exists an adversary B1 such that

|Adv0(λ)− Adv1(λ)| ≤ AdvlsB1
(λ)

and Time(B1) ≈ Time(A) + q · poly(λ, n) where poly(λ, n) is independent of
Time(A).

Lemma 6 (normal to pseudo-normal keys: Game2,i−1,3 to Game2,i,1). For
i = 1, . . . , q, for any adversary A that makes at most q key queries, there exists
an adversary B2 such that

|Adv2,i−1,3(λ)− Adv2,i,1(λ)| ≤ AdvrsB2
(λ)

and Time(B2) ≈ Time(A) + q · poly(λ, n) where poly(λ, n) is independent of
Time(A). (We note that Game2,0,3 is identical to Game1.)

Lemma 7 (pseudo-normal to pseudo-SF keys: Game2,i,1 to Game2,i,2).
For i = 1, . . . , q, we have

|Adv2,i,1(λ)− Adv2,i,2(λ)| = 0.

Proof. Observe that the only difference between Game2,i,1 and Game2,i,2 lies in

that we replace msk in Game2,i,1 with m̂sk in Game2,i,2 as input for the i’th secret

key query, where msk ←r H, α ←r Zp and m̂sk := msk · (h∗)α. Thus, it suffices
to establish the following:

Claim. For all α, all x ∈ X and y ∈ Y, where P(x, y) = 0, the following
distributions are identically distributed:

{pp,msk, (h∗)α, Ênc(pp, x,mβ ;msk,g · ĝ), K̂eyGen(pp, msk , y;h · ĥ)} and

{pp,msk, (h∗)α, Ênc(pp, x,mβ ;msk,g · ĝ), K̂eyGen(pp, msk · (h∗)α , y;h · ĥ)}.



We defer the proof of the claim for now, and first explain how the lemma follows
from the claim. Given (pp,msk, (h∗)α), we can output mpk := (pp, µ(msk)) and
generate the first i−1 semi-functional secret keys, and the remaining q−i normal
secret keys using

K̂eyGen(pp,msk · (h∗)α, y; SampH(pp)) and K̂eyGen(pp,msk, y;SampH(pp))

respectively.
This would in turn imply that Game2,i,1 and Game2,i,2 are statistically indis-

tinguishable. We note that this holds even if the adversary chooses y adaptively
after seeing the challenge ciphertext ctx∗ , or if the challenge x∗ is chosen after
the adversary sees sky. ⊓⊔

Proof (of claim). By linearity, we have:

Ênc(pp, x,mβ ;msk,g · ĝ) = Ênc(pp, x,mβ ;msk,g) · Ênc(pp, x, 1;msk, ĝ)

K̂eyGen(pp,msk, y;h · ĥ) = K̂eyGen(pp,msk, y;h) · K̂eyGen(pp, 1, y; ĥ)

K̂eyGen(pp,msk · (h∗)α, y;h · ĥ) = K̂eyGen(pp,msk, y;h) · K̂eyGen(pp, (h∗)α, y; ĥ)

Therefore, it suffices to show that:

{pp,msk, (h∗)α, Ênc(pp, x, 1;msk, ĝ), K̂eyGen(pp, 1 , y; ĥ)} and

{pp,msk, (h∗)α, Ênc(pp, x, 1;msk, ĝ), K̂eyGen(pp, (h∗)α , y; ĥ)}

are identically distributed.

By parameter-hiding, we may replace (pp, h∗, ĝ, ĥ ) with (pp, h∗, ĝ · ĝ′, ĥ · ĥ
′
),

which means it suffices to show that:

{pp,msk, (h∗)α, Ênc(pp, x, 1;msk, ĝ · ĝ′), K̂eyGen(pp, 1 , y; ĥ · ĥ
′
)} and

{pp,msk, (h∗)α, Ênc(pp, x, 1;msk, ĝ · ĝ′), K̂eyGen(pp, (h∗)α , y; ĥ · ĥ
′
)}

are identically distributed. At this point, we expand the expressions for Ênc and

K̂eyGen:

Ênc(pp, x, 1;msk, ĝ · ĝ′) = (ĝ0, sE(x, ĝ) · sE(x, ĝ′), e(ĝ0,msk))

= (ĝ0, sE(x, ĝ) · ĝsE(x,u)0 , e(ĝ0,msk))

where u denotes the vector u := (u1, . . . , un) and thus sE(x, ĝ′) = sE(x, ĝu0 ) =

ĝ
sE(x,u)
0 ;

K̂eyGen(pp, 1, y; ĥ · ĥ
′
) = (ĥ0, rE(y, ĥ) · ĥrE(y,u)

0 )

K̂eyGen(pp, (h∗)α, y; ĥ · ĥ
′
) = (ĥ0, kE(y, (h

∗)α) · rE(y, ĥ) · ĥrE(y,u)
0 )

Since h∗ lies in the group generated by ĥ0, we have kE(y, (h
∗)α) = kE(y, (h0)

α′
) =

ĥ
kE(y,α′)
0 for some α′ ∈ Zp; the claim then follows readily from α′-privacy, that

is, rE(y,u) and kE(y, α′) + rE(y,u) are identically distributed. ⊓⊔



Lemma 8 (pseudo-SF to SF keys: Game2,i,2 to Game2,i,3). For i = 1, . . . , q,
for any adversary A that makes at most q key queries, there exists an adversary
B3 such that

|Adv2,i,2(λ)− Adv2,i,3(λ)| ≤ AdvrsB3
(λ)

and Time(B3) ≈ Time(A) + q · poly(λ, n) where poly(λ, n) is independent of
Time(A).

Lemma 9 (final transition: Game2,q,3 to Game3). For any adversary A, we
have

|Adv2,q,3(λ)− Adv3(λ)| = 0.

7 Extension to Weakly Attribute-Hiding

We present an extension of our framework to weakly attribute-hiding predicate
encryption [19, 6]. A predicate encryption scheme has the same syntax as an
ABE in Section 2.1 except the attribute x on the ciphertext is not public; for
security, we require in addition that x remains hidden from the adversary.

7.1 Security definition

For a stateful adversary A, we define the advantage function

AdvpeA (λ) := Pr

b = b′ :

(mpk,msk)← Setup(1λ,X ,Y,M);

(x∗
0, x

∗
1,m0,m1)← AKeyGen(msk,·)(mpk);

b←r {0, 1}; ctx∗
b
← Enc(mpk, x∗

b ,mb);

b′ ← AKeyGen(msk,·)(ctx∗
b
)

−
1

2

with the restriction that all queries y that A makes to KeyGen(msk, ·) satisfies
P(x∗

0, y) = P(x∗
1, y) = 0 (that is, sky does not decrypt the challenge ciphertext).

A predicate encryption scheme is adaptively secure and weakly attribute-hiding
if for all PPT adversaries A, the advantage AdvpeA (λ) is a negligible function in
λ.4

7.2 Attribute-Hiding Encodings

We say that a Zp-bilinear predicate encoding (c.f. Section 5) for P : X × Y →
{0, 1} is attribute-hiding if it satisfies the following additional properties:

(x-oblivious α-reconstruction.) sD(x, y, ·) and rD(x, y, ·) are independent of
x.

4 In a fully attribute-hiding scheme, the adversary is also allowed key queries y for
which P(x∗

0, y) = P(x∗
1, y) = 1, in which case the challenge messages m0,m1 must be

equal.



(attribute-hiding.) For all (x, y) ∈ X ×Y such that P(x, y) = 0, the joint dis-
tribution of {sE(x,w), rE(y,w)} is uniformly random. That is, the following
distributions are identically distributed:{

x, y, sE(x,w), rE(y,w)
}

and
{
x, y,v

}
where the randomness is taken over w←r W and v←r Z|sE(·)|+|rE(·)|

p .

7.3 Attribute-Hiding Dual System Groups

Recall from the introduction in Section 1.1 that to realize weakly attribute-hiding
predicate encryption, we will use the fact that for any vector c ∈ Zk+1

p outside the

span of A, the vector W⊤c ∈ Zk+1
p is uniformly random given W⊤A ∈ Z(k+1)×k

p ,
provided WB remains hidden. We can then use W⊤c to completely blind the
attribute in the challenge ciphertext. We also need to make sure that the semi-
functional secret keys do not leak any additional information about WB. The
former is captured by G-uniformity, and the latter by H-hiding. In particular, the
secret keys in the predicate encryption scheme satisfy the following properties:

– the distribution of normal secret keys is completely determined given
B,W1B, . . . ,WnB and leaks no additional information about W1, . . . ,Wn;

– the distribution of semi-functional secret keys is completely determined given
A,W⊤

1A, . . . ,W⊤
nA and leaks no additional information aboutW1, . . . ,Wn.

Additional properties. We assume that pp in dual system groups has a ppG-
component which is sufficient to run SampG. We then require dual system groups
to satisfy the following additional properties.

(H-hiding) There is an (inefficient) randomized procedure SampH∗ that given
ppG and h∗, outputs a distribution identical to that of

h · (h∗)(0,v)

where h← SampH(pp), v←r Zn
p .

(G-uniformity) The following distributions are identically distributed{
ppG, h

∗, g · ĝ
}

and
{
ppG, h

∗, g′
}

where (pp, sp)← SampP(1λ, 1n), g = (g0, . . .)← SampG(pp), ĝ = (ĝ0, . . .)←
ŜampG(pp, sp), g′ ←r {g0ĝ0} ×Gn.

In the full version of this paper, we show that our instantiations satisfy the
additional attribute-hiding requirements when ppG is defined to be:

ppG := ( (p,G,H,GT , e); [A]1 , [W
⊤
1A]1 , . . . , [W

⊤
nA]1 , [B]2 ) .



7.4 Weakly Attribute-Hiding PE

Starting from an attribute-hiding encoding and an attribute-hiding dual sys-
tem group, we can construct a predicate encryption scheme as described in
Section 6.1, with the following modification: we put ppG instead of pp in mpk
(which suffices for SampG and Enc). We show that the ensuing scheme is weakly
attribute-hiding:

Theorem 2. Under the left and right subgroup indistinguishability (described in
Section 3), the predicate encryption scheme described above is adaptively secure
and weakly attribute-hiding (in the sense of Definition 7.1). More precisely, for
any adversary A that makes at most q key queries against the predicate encryp-
tion scheme, there exist adversaries B1,B2,B3 such that:

AdvpeA (λ) ≤ AdvlsB1
(λ) + q · AdvrsB2

(λ) + q · AdvrsB3
(λ)

and

max{Time(B1),Time(B2),Time(B3)} ≈ Time(A) + q · poly(λ, n)

where poly(λ, n) is independent of Time(A).

The proof follows via a series of games, outlined in Fig. 4.

Auxiliary distributions. The auxiliary algorithms and distributions are the
same as in Section 6.2 with the following modifications: (1) pseudo-SF and semi-

functional secret keys have additional h∗-components, (2) Ênc and K̂eyGen get
as input ppG instead of pp (neither algorithm needs to run SampH).

Pseudo-SF secret key.

K̂eyGen(ppG, m̂sk , y; h · ĥ · (h∗)(0,v) ),

where fresh h← SampH(pp), ĥ← ŜampH(pp, sp), and v←r Zn
p are chosen for

each secret key.

Semi-functional secret key.

K̂eyGen(ppG, m̂sk, y; h · (h∗)(0,v) ),

where a fresh h← SampH(pp) and v←r Zn
p are chosen for each secret key.



game ciphertext (C0,C1, C
′) secret key (K0,K1) justification

0 (1,1, 1) (1, (h∗)kE(y,0) · 1) 1 = (h∗)kE(y,0)

1 (ĝ0, sE(x, ĝ), e(ĝ0,msk)) (1, (h∗)kE(y,0) · 1) left subgroup ind.

2.i.1 (ĝ0, sE(x, ĝ), e(ĝ0,msk)) ( ĥ0 , (h∗)kE(y,0)· rE(y, ĥ) ) right subgroup ind.

2.i.2 (ĝ0, sE(x, ĝ), e(ĝ0,msk)) (ĥ0, (h∗)kE(y,α)+rE(y,vi) · rE(y, ĥ)) AH encoding

2.i.3 (ĝ0, sE(x, ĝ), e(ĝ0,msk)) ( 1 , (h∗)kE(y,α)+rE(y,vi) · 1 ) right subgroup ind.

3 (ĝ0, sE(x, ĝ), random ) (1, (h∗)kE(y,α)+rE(y,vi) · 1)

4 (ĝ0, random , random) (1, (h∗)kE(y,α)+rE(y,vi) · 1) AH encoding

H-hiding

G-uniformity

Fig. 4. Sequence of games in the “semi-functional” space for weakly attribute-hiding
PE. We omitted the normal components: those sampled using SampG,SampH, and we
omitted e(g0,msk) · m in C′ and kE(y,msk) in sky. We drew a box to highlight the
differences between each game and the preceding one, and games 2.i.x refer to the
i’th secret key. The semi-functional components of the keys transition from (h∗)kE(y,0)

to (h∗)kE(y,α)+rE(y,vi), with a fresh vi ←r Zn
p for the i’th key. In the penultimate

transition, we use the fact that e(ĝ0,msk) is statistically random given msk · (h∗)α.
In the final transition, we use the fact that C1 (including normal components) is
statistically random.

Game sequence. We proceed exactly as in Section 6.2 with the same aux-
iliary algorithms but with the following modifications: (1) the distributions of
pseudo-SF and semi-functional secret keys have additional h∗-components, (2)
the challenge ciphertext uses the attribute x∗

b as defined in the security experi-
ment, and (3) we append an extra game Game4 where we switch x∗

b to random
at the end:

– Game0: is the real security game (c.f. Section 7.1).

– The descriptions of Game1, Game2,i,1, Game2,i,2, Game2,i,3, and Game3 are
identical to those in Section 6.2, we omit them here.

– Game4: is the same as Game3, except we replace x
∗
b in the challenge ciphertext

with a random attribute x∗ ←r X .

In Game4, the view of the adversary is statistically independent of the challenge
bit b. Hence, Adv4(λ) = 0. We defer the proofs to the full version of this paper.
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