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Abstract. In this paper, we present a practical and provably secure two-pass au-
thenticated key exchange protocol over ideal lattices, which is conceptually sim-
ple and has similarities to the Diffie-Hellman based protocols such as HMQV
(CRYPTO 2005) and OAKE (CCS 2013). Our method does not involve other
cryptographic primitives—in particular, it does not use signatures—which simpli-
fies the protocol and enables us to base the security directly on the hardness of the
ring learning with errors problem. The security is proven in the Bellare-Rogaway
model with weak perfect forward secrecy in the random oracle model. We also
give a one-pass variant of our two-pass protocol, which might be appealing in
specific applications. Several concrete choices of parameters are provided, and a
proof-of-concept implementation shows that our protocols are indeed practical.

1 Introduction

Key Exchange (KE) is a fundamental cryptographic primitive, allowing two parties to
securely generate a common secret key over an insecure network. Because symmetric
cryptographic tools (e.g., AES) are reliant on both parties having a shared key in order
to securely transmit data, KE is one of the most used cryptographic tools in building
secure communication protocols (e.g., SSL/TLS, IPSec, SSH). Following the introduc-
tion of the Diffie-Hellman (DH) protocol [1], cryptographers have devised a wide se-
lection of KE protocols with various use-cases. One such class is Authenticated Key
Exchange (AKE), which enables each party to verify the other’s identity so that an
adversary cannot impersonate an honest party in the conversation.

For an AKE protocol, each party has a pair of static keys: a static secret key and a
corresponding static public key. The static public key is certified to belong to its owner
using a public-key or ID-based infrastructure. During an execution of the protocol, each
party generates a pair of ephemeral keys—an ephemeral secret key and an ephemeral
public key—and sends the ephemeral public key to the other party. Then, these keys are
used along with the transcripts of the session to create a shared session state, which
is then passed to a key derivation function to obtain a common session key. Intuitively,
⋆ Corresponding authors.
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such a protocol is secure if no efficient adversary is able to extract any information
about the session key from the publicly exchanged messages. More formally, Bellare
and Rogaway [2] introduced an indistinguishability-based security model for AKE, the
BR model, which captures key authentication such as implicit mutual key authentication
and confidentiality of agreed session keys. The most prominent alternatives stem from
Canetti and Krawczyk [3] and LaMacchia et al. [4], that also account for scenarios in
which the adversary is able to obtain information about a static secret key or a session
state other than the state of the target session. In practice, AKE protocols are usually
required to have a property, Perfect Forward Secrecy (PFS), that an adversary cannot
compromise session keys after a completed session, even if it obtains the parties’ static
secret keys (e.g., via the Heartbleed attack5). As shown in [5], no two-pass implicit
AKE protocol based on public-key authentication can achieve PFS (but this may not
be true for two-pass AKEs with explicit authentication [6]). Thus, the notion of weak
PFS (wPFS) is usually considered for two-pass implicit AKE protocols, which states
that the session key of an honestly run session remains private if the static keys are
compromised after the session is finished [5].

One approach for achieving authentication in KE protocols is to explicitly authenti-
cate the exchanged messages between the involved parties by using some cryptographic
primitives (e.g., signatures, or MACs), which usually incurs additional computation and
communication overheads with respect to the basic KE protocol, and complicates the
understanding of the KE protocol. This includes several well-known protocols such as
IKE [7,8], SIGMA [9], SSL [10], TLS [11–15], as well as the standard in German elec-
tronic identity cards, namely EAC [16], and the standardized protocols OPACITY [17]
and PLAID [18]. Another line of designing AKEs follows the idea of MTI [19] and
MQV [20],6 which aims at providing implicit authentication by directly utilizing the al-
gebraic structure of DH problems (e.g., HMQV [5] and OAKE [26]). All the above
AKEs are based on classic hard problems, such as factoring, the RSA problem, or
the computational/decisional DH problem. Since these hard problems are vulnerable
to quantum computers [27] and as we are moving into the era of quantum computing, it
is very appealing to find other counterparts based on problems believed to be resistant
to quantum attacks. For instance, post-quantum AKE is considered of high priority by
NIST [28]. Due to the potential benefits of lattice-based constructions such as asymp-
totic efficiency, conceptual simplicity, and worst-case hardness assumptions, it makes
perfect sense to build lattice-based AKEs.

1.1 Our Contribution

In this paper, we propose an efficient AKE protocol based on the Ring Learning With
Errors (Ring-LWE), which in turn is as hard as some lattice problems (e.g., SIVP) in the
worst case on ideal lattices [29,30]. Our method avoids introducing extra cryptographic
primitives, thus simplifying the design and reducing overhead. In particular, the parties
are not required to either encrypt any messages with the other’s public key, nor sign any

5 http://heartbleed.com/
6 Note that MQV has been widely standardized by ANS [21, 22], ISO/IEC [23] and IEEE [24],

and recommended by NIST and NSA Suite B [25].
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of their own messages during key exchange. Furthermore, by having the key exchange
as a self-contained system, we reduce the security assumptions needed, and are able to
directly rely on the hardness of Ring-LWE in the random oracle model.

By utilizing many useful properties of Ring-LWE problems and discrete Gaussian
distributions, we establish an approach to combine both the static and ephemeral pub-
lic/secret keys, in a manner similar to HMQV [5]. Thus, our protocol not only enjoys
many nice properties of HMQV such as two-pass messages, implicit key authentication,
high efficiency, and without using any explicit entity authentication techniques (e.g., sig-
natures), but also has many properties of lattice-based cryptography, such as asymptotic
efficiency, conceptual simplicity, worst-case hardness assumption, as well as resistance
to quantum computer attacks. However, there are also several shortcomings inherited
from lattice-based cryptography, such as “handling of noises” and large public/secret
keys. Besides, unlike HMQV which works on “nicely-behaved” cyclic groups, the se-
curity of our protocol cannot be proven in the CK model [3] due to the underlying
noise-based algebraic structures. Fortunately, we prove the security in the BR model
(adapted to the public-key setting [31]), which is the most common model considered
as it is usually strong enough for many practical applications and it comes with compos-
ability [32]. In addition, our protocol achieves the weak PFS property, which is known
as the best PFS notion achievable by two-pass AKEs with implicit authentication [5].

As MQV [20] and HMQV [5], we also present a one-pass variant of our basic pro-
tocol (i.e., only a single message is needed to derive a shared session key), which might
be useful in client-server based applications. Finally, we select concrete choices of pa-
rameters and construct a proof-of-concept implementation to examine the efficiency of
our protocols. Though the implementation has not undergone any real optimization, the
performance results already indicate that our protocols are practical.

Besides, we note that none of the techniques we use prevents us from instantiating
our AKE protocol based on standard lattices. One just has to keep in mind that key sizes
and performance eventually become worse.

1.2 Techniques, and Relation to HMQV

Our AKE protocol is inspired by HMQV [5], which makes our protocol share some
similarities to HMQV. However, there are also many differences between our proto-
col and HMQV due to the different underlying algebraic structures. To better illustrate
the similarities and differences between our AKE protocol and HMQV, we first briefly
recall the HMQV protocol [5]. Let G be a cyclic group with generator g ∈ G. Let
(Pi = gsi , si) and (Pj = gsj , sj) be the static public/secret key pairs of party i and
party j, respectively. During the protocol, both parties exchange ephemeral public keys,
i.e., party i sends Xi = gri to party j, and party j sends Yj = grj to party i. Then,
both parties compute the same key material ki = (P d

j Yj)
sic+ri = g(sic+ri)(sjd+rj) =

(P c
i Xi)

sjd+rj = kj where c = H1(j,X) and d = H1(i, Y ) are computed by using a
function H1, and use it as input of a key derivation function H2 to generate a common
session key, i.e., ski = H2(ki) = H2(kj) = skj .

As mentioned above, HMQV has many nice properties such as only two-pass mes-
sages, implicit key authentication, high efficiency, and without using any explicit entity
authentication techniques (e.g., signatures). Our main goal is to construct a lattice-based
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Party i Party j

Public Key: pi = asi + 2ei ∈ Rq

Secret Key: si ∈ Rq

where si, ei ←r χα

xi = ari + 2fi ∈ Rq

where ri, fi ←r χβ

ki = (pjd+ yj)(sic+ ri) + 2dgi

where gi ←r χβ

σi = Mod2(ki, wj) ∈ {0, 1}
n

ski = H2(i, j, xi, yj , wj , σi)

Public Key: pj = asj + 2ej ∈ Rq

Secret Key: sj ∈ Rq

where sj , ej ←r χα

yj = arj + 2fj ∈ Rq

kj = (pic+ xi)(sjd+ rj) + 2cgj

where rj , fj , gj ←r χβ

wj = Cha(kj) ∈ {0, 1}
n

σj = Mod2(kj , wj) ∈ {0, 1}
n

skj = H2(i, j, xi, yj , wj , σj)

xi

yj , wj

c = H1(i, j, xi) ∈ R, d = H1(j, i, yj , xi) ∈ R

Fig. 1. Our AKE protocol from Ring-LWE.

counterpart such that it not only enjoys all those nice properties of HMQV, but also
belongs to post-quantum cryptography, i.e., the underlying hardness assumption is be-
lieved to hold even against quantum computer. However, such a task is highly non-trivial
since the success of HMQV greatly relies on the nice properties of cyclic groups such
as commutativity (i.e., (ga)b = (gb)a) and perfect (and public) randomization (i.e. ga

can be perfectly randomized by computing gagr with a uniformly chosen r at random).

Fortunately, as noticed in [33–35], the Ring-LWE problem supports some kind of
“approximate” commutativity, and can be used to build a passive-secure key exchange
protocol. Specifically, let Rq be a ring, and χ be a Gaussian distribution over Rq. Then,
given two Ring-LWE tuples with both secret and errors choosen from χ, e.g., (a, b1 =
as1 + e1) and (a, b2 = as2 + e2) for randomly chosen a ←r Rq, s1, s2, e1, e2 ←r χ,
the approximate equation s1b2 ≈ s1as2 ≈ s2b1 holds with overwhelming probability
for proper parameters. By the same observation, we construct an AKE protocol (as illus-
trated in Fig. 1), where both the static and ephemeral public keys are actually Ring-LWE
elements corresponding to a globally public element a ∈ Rq. In order to overcome the
inability of “approximate” commutativity, our protocol has to send a signal informa-
tion wj computed by using a function Cha [33]. Combining this with another useful
function Mod2, both parties are able to compute the same key material σi = σj (from
the approximately equal values ki and kj) with a guarantee that σj = Mod2(kj , wj)
has high min-entropy even conditioned on the partial information wj = Cha(kj) of kj
(thus it can be used to derive a uniform session key skj).

However, the strategy of sending out the information wj = Cha(kj) inherently
brings an undesired byproduct. Specifically, unlike HMQV, the security of our AKE
protocol cannot be proven in the CK model which allows the adversaries to obtain the
session state (e.g., ki at party i or kj at party j) via session state reveal queries. This is
because in a traditional definition of session identifier that consists of all the exchanged
messages, the two “different” sessions with identifiers sid = (i, j, xi, yj , wj) and sid′ =
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(i, j, xi, yj , w
′
j) have the same session state, i.e., ki at party i.7 This also means that

we cannot directly use σi = σj as the session key, because the binding between the
value of σi and the session identifier (especially for the signal part wj) is too loose.
In particular, the fact that σi = Mod2(ki, wj) corresponding to sid is simply a shift
of σ′i = Mod2(ki, w

′
j) corresponding to sid′(by the definition of the Mod2 function),

may potentially help the adversary distinguish σi with the knowledge of σ′i. We prevent
the adversary from utilizing this weakness by setting the session key as the output of
the hash function H2 (modeled as a random oracle) which tightly binds the session
identifier sid and the key material σi (i.e., ski = H2(sid, σi)). Our technique works
due to another useful property of Mod2, which guarantees that σi = Mod2(ki, wj)
preserves the high min-entropy property of ki for anywj (and thus is enough to generate
a secure session key by using a good randomness extractor H2, e.g., a random oracle).8

In order to finally get a security proof of our AKE protocol in the BR model with
weakly perfect forward secrecy, we have to make use of the following property of Gaus-
sian distributions, namely some kind of “public randomization”. Specifically, let χα and
χβ be two Gaussian distributions with standard deviation α and β, respectively. Then,
the sum of the two distributions is still a Gaussian distribution χγ with standard devia-
tion γ =

√
α2 + β2. In particular, if β ≫ α (e.g., β/α = 2ω(log κ) for some security

parameter κ), we have that the distribution χγ is statistically close to χβ . This technique
is also known as “noise flooding” and has been applied, for instance, in proving robust-
ness of the LWE assumption [36]. The security proof of our protocol is based on the
observation that such a technique allows to statistically hide the distribution of χα in a
bigger distribution χβ , and for now let us keep it in mind that a large distribution will
be used to hide a small one.

To better illustrate our technique, we take party j as an example, i.e., the one who
combines his static and ephemeral secret keys by computing r̂j = sjd + rj where
d = H1(j, i, yj , xi). We notice that the value r̂j actually behaves like a “signature” on
the messages that party j knows so far. In other words, it should be difficult to com-
pute r̂j if we do not know the corresponding “signing key” sj . Indeed, this combination
is necessary to provide the implicit entity authentication. However, it also poses an
obstacle to getting a security proof since the simulator may also be unaware of sj . For-
tunately, if the randomness rj is chosen from a big enough Gaussian distribution, then
the value r̂j almost obliterates all information of sj . More specifically, the simulator
can directly choose r̂j such that r̂j = sjd + rj for some unknown rj by computing
yj = (ar̂j + 2f̂j) − pjd, and programming the random oracle d = H1(j, i, yj , xi)
correspondingly. The properties of Gaussian distributions and the random oracle H1

implies that yj has almost identical distribution as in the real run of the protocol. Now,
we check the randomness of kj = (pic + xi)r̂j + 2cgj . Note that for the test session,
we can always guarantee that at least one of the pair (pi, xi) is honestly generated (and

7 This problem might not exist if one consider a different definition of session identifier, e.g., the
one that was uniquely determined at the beginning of the protocol execution.

8 We remark that this is also the reason why the nice reconciliation mechanism in [34] cannot
be used in our protocol. Specifically, it is unclear whether the reconciliation function rec(·, ·)
in [34] could also preserve the high min-entropy property of the first input (i.e., which might
not be uniformly random) for any (maliciously chosen) second input.
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thus is computationally indistinguishable from uniformly distributed element under the
Ring-LWE assumption), or else there is no “secrecy” to protect if both pi and xi are
chosen by the adversary. That is, pic + xi is always random if c is invertible in Rq.
Again, by programming c = H1(i, j, xi), the simulator can actually replace pic + xi
with x̂i = cui for a uniformly distributed ring element ui. In this case, we have that
kj = x̂ir̂j + 2cgj = c(uir̂j +2gj) should be computationally indistinguishable from a
uniformly distributed element under the Ring-LWE assumption. In other words, when
proving the security one can replace kj with a uniformly distributed element to derive
a high min-entropy key material σj by using the Mod2 function as required.

Unfortunately, directly using “noise flooding” has a significant drawback, i.e., the
requirement of a super-polynomially large standard deviation β, which may lead to
a nightmare for practical performance due to a super-polynomially large modulus q
for correctness and a very large ring dimension n for the hardness of the underlying
Ring-LWE problems. Fortunately, we can reduce the big cost by further employing the
rejection sampling technique [37]. Rejection sampling is a crucial technique in signa-
ture schemes to make the distribution of signatures independent of the signing key, and
has been applied in many other lattice-based signature schemes [38–41].

In our case the combination of the static and ephemeral secret keys, r̂j = sjd+ rj ,
at party j is essentially a signature on all the public messages under party j’s public key
(we again take party j as an example, but note that similar analysis also holds for party
i). Thus, we can freely use the rejection sampling technique to relax the requirement
on a super-polynomially large β. In other words, we can use a much smaller β, but
require party j to use rj if r̂j = sjd + rj follows the distribution χβ , and to resample
a new rj otherwise. We note that by deploying rejection sampling in our AKE it is
the first time that rejection sampling is used beyond signature schemes in lattice-based
cryptography. As for signatures, rejection sampling is done locally, and thus will not
affect the interaction between the two parties, i.e., two-pass messages. Even though the
computational performance of each execution might become worse with certain (small)
probability (due to rejection and repeated sampling), the average computational cost is
much better than the setting of using a super-polynomially large β.

1.3 Related Work, Comparison and Discussion

In the past few years, many cryptographers have put effort into constructing different
kinds of KE protocols from lattices. At Asiacrypt 2009, Katz and Vaikuntanathan [42]
proposed the first password-based authenticated key exchange protocol that can be
proven secure based on the LWE assumption. Ding et al. [33] elegantly constructed
a passive-secure KE protocol on (Ring-)LWE by using a nice error-removing technique
with a signal message. Like the standard DH protocol, the protocol in [33] could not
provide authentication—it is not an AKE protocol—and is thus vulnerable to man-in-
the-middle attacks. This motivates us to design an efficient AKE protocol on (ideal)
lattices, especially an MQV-style one with implicit authentication.

Since the work of Katz et al. [42], there are four papers focusing on designing AKEs
from lattices [34, 35, 43, 44]. At a high level, all of them are following generic transfor-
mations from key encapsulation mechanisms (KEM) to AKEs. Concretely, Fujioka et
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Table 1. Comparison of lattice-based AKEs (CCA† means CCA-security with high
min-entropy keys [43], and EUF-CMA means existential unforgeability under chosen
message attacks)

Protocols KEM/PKE Signature Message-pass Model RO? Num. of Rq

FSXY12 [43] CCA† - 2-pass CK × ≫ 7

FSXY13 [44] OW-CCA - 2-pass CK
√

7

Peikert14 [34] CPA EUF-CMA 3-pass SK-security
√

> 2 ⋆

BCNS14 [35] CPA EUF-CMA 4-pass ACCE
√

2 for KEM ⋆⋆

Ours - - 2-pass BR with wPFS
√

2

⋆ The actual number of ring elements depends on the choice of the concrete lattice-
based signatures.

⋆⋆ Since the protocol uses traditional signatures to provide authentication, it does not
contain any other ring elements.

al. [43] proposed a generic construction of AKE from KEMs, which can be proven se-
cure in the CK model. Informally, they showed that if there is a CCA-secure KEM with
high min-entropy keys and a family of pseudorandom functions (PRF), then there is a
secure AKE protocol in the standard model. Thus, by using existing lattice-based CCA-
secure KEMs such as [45, 46], it is possible to construct lattice-based AKE protocols
in the standard model. However, as the authors commented, their construction was just
of theoretic interest due to huge public keys and the lack of an efficient and direct con-
struction of PRFs from (Ring-)LWE. Later, the paper [44] tried to get a practical AKE
protocol by improving the efficiency of the generic framework in [43], and showed that
one-way CCA-secure KEMs were enough to get AKEs in the random oracle model. The
two protocols in [43,44] share some similarities such as having two-pass messages, and
involving three encryptions (i.e., two encryptions under each party’s static public key
and one encryption under an ephemeral public key). However, the use of the random
oracle heuristic makes the protocol in [44] more efficient than that in [43]. Specifically,
the protocol in [44] requires exchanging seven ring elements when instantiated with the
CPA-secure encryption from Ring-LWE [29] by first transforming it into a CCA-secure
one with the Fujisaki-Okamoto transformation.

Recently, Peikert [34] presented an efficient KEM based on Ring-LWE, which was
then transformed into an AKE protocol by using the same structure as SIGMA [9].
Similar to the SIGMA protocol, the resulting protocol had three-pass messages and was
proven SK-secure [47] in the random oracle model. For the computation overheads,
Peikert’s protocol involved one KEM, two signatures and two MACs. By treating the
KEM in [34] as a DH-like KE protocol, Bos et al. [35] integrated it into the Trans-
port Layer Security (TLS) protocol by directly using signatures to provide explicit au-
thentication. Actually, the authors used traditional digital signatures such as RSA and
ECDSA, and thus their protocol was not a pure post-quantum AKE. As for the security,
the protocol in [35] was proven secure in the authenticated and confidential channel
establishment (ACCE) security model [48] (which is based on the BR model, but has
many differences to capture entity authentication and channel security).
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Due to the lack of concrete security analysis and parameter choices in the literature,
we only give a theoretical comparison of lattice-based AKEs in Table 1. In summary,
our protocol only has two-pass messages (about two ring elements) and does not use sig-
natures/MACs at all, and its security relies on the hardness of Ring-LWE in the random
oracle model. To the best of our knowledge there is not a single post-quantum authenti-
cated key exchange protocol (until this work) which directly relies on a quantum-hard
computational problem and does not make use of explicit cryptographic primitives ex-
cept hash functions.

1.4 On the Quantum Hardness of our AKE Protocol

We call our AKE protocol post-quantum as our protocol relies merely on the Ring-LWE
assumption, which is believed to hold even in presence of polynomial-time quantum
computers. However, we emphasize that it does not mean necessarily that our scheme
is quantum resistant. This may sound confusing and controversial in the beginning; that
is why we clarify this issue in the following. While the underlying assumption may give
the impression that our scheme is quantum secure, our security analysis makes use of
rewinding the adversary, which is generally hard to apply to a quantum algorithm (ex-
ceptions can be found in [49, 50]). Moreover, our proof is done in the random oracle
model. In [51], Boneh et al. introduced the quantum random oracle model, and show
that proofs in this augmented model are more realistic when considering quantum adver-
saries. In fact, many well-known transformations proven secure in the classical random
oracle model cannot be (easily) proven secure against quantum algorithms, such as the
Fiat-Shamir transform [52, 53]. Moreover, it is not clear whether the security models
for key exchange are appropriate when considering quantum adversaries. An update
of security models (in general) may necessary when considering quantum adversaries
(see [54, 55]). Therefore, we do not claim that our scheme is quantum resistant, but
believe it is a big step forward.

2 Preliminaries

2.1 Notation

Let κ be the natural security parameter, and all quantities are implicitly dependent on
κ. Let poly(κ) denote an unspecified function f(κ) = O(κc) for some constant c. The
function log denotes the natural logarithm. We use standard notationO,ω to classify the
growth of functions. If f(κ) = O(g(κ) · logc κ), we denote f(κ) = Õ(g(κ)). We say a
function f(κ) is negligible if for every c > 0, there exists a N such that f(κ) < 1/κc

for all κ > N . We use negl(κ) to denote a negligible function of κ, and we say a
probability is overwhelming if it is 1− negl(κ).

The set of real numbers (integers) is denoted by R (Z, resp.). We use←r to denote
randomly choosing an element from some distribution (or the uniform distribution over
some finite set). Vectors are in column form and denoted by bold lower-case letters (e.g.,
x). The ℓ2 and ℓ∞ norms we designate by ∥·∥ and ∥·∥∞. The ring of polynomials over
Z (Zq = Z/qZ, resp.) we denote by Z[x] (Zq[x], resp.).
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Let X be a distribution over finite set S. The min-entropy of X is defined as

H∞(X) = − log(max
s∈S

Pr[X = s]).

Intuitively, the min-entropy says that if we (privately) choose x fromX at random, then
no (unbounded) algorithm can guess the value of x correctly with probability greater
than 2−H∞(X).

2.2 Security Model for AKE

We now recall the Bellare-Rogaway security model [2, 31], restricted to the case of
two-pass AKE protocol.

Sessions. We fix a positive integer N to be the maximum number of honest parties that
use the AKE protocol. Each party is uniquely identified by an integer i in {1, 2, . . . , N},
and has a static key pair consisting of a static secret key ski and static public key pki,
which is signed by a Certificate Authority (CA). A single run of the protocol is called a
session. A session is activated at a party by an incoming message of the form (Π, I, i, j)
or the form (Π,R, j, i,Xi), whereΠ is a protocol identifier; I andR are role identifiers;
i and j are party identifiers. If party i receives a message of the form (Π, I, i, j), we
say that i is the session initiator. Party i then outputs the response Xi intended for
party j. If party j receives a message of the form (Π,R, j, i,Xi), we say that j is the
session responder; party j then outputs a response Yj to party i. After exchanging these
messages, both parties compute a session key.

If a session is activated at party i with i being the initiator, we associate with it
a session identifier sid = (Π, I, i, j,Xi) or sid = (Π, I, i, j,Xi, Yj). Similarly, if a
session is activated at party j with j being the responder, the session identifier has the
form sid = (Π,R, j, i,Xi, Yj). For a session identifier sid = (Π, ∗, i, j, ∗[, ∗]), the
third coordinate—that is, the first party identifier—is called the owner of the session;
the other party is called the peer of the session. A session is said to be completed when
its owner computes a session key. The matching session of sid = (Π, I, i, j,Xi, Yj) is
the session with identifier s̃id = (Π,R, j, i,Xi, Yj) and vice versa.

Adversarial Capabilities. We model the adversary A as a probabilistic polynomial
time (PPT) Turing machine with full control over all communication channels between
parties, including control over session activations. In particular,A can intercept all mes-
sages, read them all, and remove or modify any desired messages as well as inject its
own messages. We also supposeA is capable of obtaining hidden information about the
parties, including static secret keys and session keys to model potential leakage of them
in genuine protocol executions. These abilities are formalized by providing A with the
following oracles (we split the Send query as in [3] into Send0, Send1 and Send2

queries for the case of two-pass protocols):

– Send0(Π, I, i, j): A activates party i as an initiator. The oracle returns a mes-
sage Xi intended for party j.

– Send1(Π,R, j, i,Xi): A activates party j as a responder using message Xi. The
oracle returns a message Yj intended for party i.
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– Send2(Π,R, i, j,Xi, Yj): A sends party i the message Yj to complete a session
previously activated with a Send0(Π, I, i, j) query that returned Xi.

– SessionKeyReveal(sid): The oracle returns the session key associated with the
session sid if it has been generated.

– Corrupt(i): The oracle returns the static secret key belonging to party i. A party
whose key is given to A in this way is called dishonest; a party not compromised
in this way is called honest.

– Test(sid∗): The oracle chooses a bit b ←r {0, 1}. If b = 0, it returns a key chosen
uniformly at random; if b = 1, it returns the session key associated with sid∗. Note
that we impose some restrictions on this query. We only allowA to query this oracle
once, and only on a fresh (see Definition 1) session sid∗.

Definition 1 (Freshness). Let sid∗ = (Π, I, i∗, j∗, Xi, Yj) or (Π,R, j∗, i∗, Xi, Yj) be
a completed session with initiator party i∗ and responder party j∗. If the matching
session exists, denote it s̃id

∗
. We say that sid∗ is fresh if the following conditions hold:

– A has not made a SessionKeyReveal query on sid∗.
– A has not made a SessionKeyReveal query on s̃id

∗
(if it exists).

– Neither party i∗ nor j∗ is dishonest if s̃id
∗

does not exist. I.e., A has not made a
Corrupt query on either of them.

Recall that in the original BR model [2], no corruption query is allowed. In the
above freshness definition, we allow the adversary to corrupt both parties of sid∗ if the
matching session exists, i.e., the adversary can obtain the parties’ secret key in advance
and then passively eavesdrops the session sid∗ (and thus s̃id

∗
). We remark that this

seems to be stronger than what is needed for capturing wPFS [5], where the adversary
is only allowed to corrupt a party after an honest session sid∗ (and thus s̃id

∗
) has been

completed.

Security Game. The security of a two-pass AKE protocol is defined in terms of the
following game. The adversary A makes any sequence of queries to the oracles above,
so long as only one Test query is made on a fresh session, as mentioned above. The
game ends when A outputs a guess b′ for b. We say A wins the game if its guess is
correct, so that b′ = b. The advantage of A, AdvΠ,A, is defined as |Pr[b′ = b]− 1/2|.

Definition 2 (Security). We say that an AKE protocol Π is secure if the following
conditions hold:

– If two honest parties complete matching sessions then they compute the same ses-
sion key with overwhelming probability.

– For any PPT adversary A, the advantage AdvΠ,A is negligible.

2.3 The Gaussian Distributions and Rejection Sampling

For any positive real α ∈ R, and vectors c ∈ Rm, the continuous Gaussian distri-
bution over Rm with standard deviation α centered at v is defined by the probabil-
ity function ρα,c(x) = ( 1√

2πα2
)m exp

(
−∥x−v∥2

2α2

)
. For integer vectors c ∈ Rn, let
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ρα,c(Zm) =
∑

x∈Zm ρα,c(x). Then, we define the discrete Gaussian distribution over
Zm as DZm,α,c(x) =

ρα,c(x)
ρα,c(Zm) , where x ∈ Zm. The subscripts s and c are taken to be

1 and 0 (respectively) when omitted. The following lemma says that for large enough
α, almost all the samples from DZm,α are small.

Lemma 1 ( [56]). Letting real α = ω(
√
logm), constant η > 1/

√
2π, then we have

that Prx←rDZm,α
[∥x∥ > η · α

√
m] ≤ 1

2D
n, where D = η

√
2πe · e−π·η2

. In particular,
we have Prx←rDZm,α

[∥x∥ > α
√
m] ≤ 2−m+1.

Now, we recall rejection sampling in Theorem 1 from [37], which will be used in
the security proof of our AKE protocol.

Theorem 1 (Rejection Sampling [37]). Let V be a subset of Zm in which all the el-
ements have norms less than T , α = ω(T

√
logm) be a real, and ψ : V → R be a

probability distribution. Then there exists a constant M = O(1) such that the distribu-
tion of the following algorithm Samp1 :

1: c←r ψ
2: z←r DZm,α,c

3: output (z, c) with probability min
(

DZm,α(z)
MDZm,α,c(z)

, 1
)

.

is within statistical distance 2−ω(log m)

M from the distribution of the following algorithm
Samp2 :

1: c←r ψ
2: z←r DZm,α

3: output (z, c) with probability 1/M .

Moreover, the probability that Samp1 outputs something is at least 1−2−ω(log m)

M . More
concretely, if α = τT for any positive τ , then M = e12/τ+1/(2τ2) and the output of
algorithm Samp1 is within statistical distance 2−100

M of the output of Samp2, and the
probability that A outputs something is at least 1−2−100

M .

2.4 Ring Learning with Errors

Let the integer n be a power of 2, and consider the ring R = Z[x]/(xn + 1). For any
positive integer q, we define the ring Rq = Zq[x]/(x

n + 1) analogously. For any poly-
nomial y(x) in R (or Rq), we identify y with its coefficient vector in Zn (or Zn

q ). Then,
we define the norm of a polynomial to be the (Euclidean) norm of its coefficient vector.

Lemma 2. For any s, t ∈ R, we have ∥s · t∥ ≤
√
n · ∥s∥ · ∥t∥ and ∥s · t∥∞ ≤

n · ∥s∥∞ · ∥t∥∞.

The discrete Gaussian distribution over the ring R can be naturally defined as the
distribution of ring elements whose coefficient vectors are distributed according to the
discrete Gaussian distribution over Zn, e.g., DZn,α for some positive real α. Letting χα

be the discrete Gaussian distribution over Zn with standard deviation α centered at 0,
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i.e., χα := DZn,α, we now adopt the following notational convention: since bold-face
letters denote vectors, x ←r χα means we sample the vector x from the distribution
χα; for normal weight variables (e.g., y ←r χα) we sample an element of R whose
coefficient vector is distributed according to χα.

Now we come to the statement of the Ring-LWE assumption; we will use a special
case detailed in [29]. Let Rq be defined as above, and s←r Rq. We define As,χα to be
the distribution of the pair (a, as+x) ∈ Rq×Rq, where a←r Rq is uniformly chosen
and x←r χα is independent of a.

Definition 3 (Ring-LWE Assumption). LetRq and χα be defined as above, and s←r

Rq. The Ring-LWE assumption RLWEq,α states that it is hard for any PPT algorithm
to distinguish As,χα from the uniform distribution on Rq × Rq with only polynomially
many samples.

The following lemma says that the hardness of the Ring-LWE assumption can be re-
duced to some hard lattice problems such as the Shortest Independent Vectors Problem
(SIVP) over ideal lattices.

Proposition 1 (A special case of [29]). Let n be a power of 2, α be a real number
in (0, 1), and q be a prime such that q mod 2n = 1 and αq > ω(

√
logn). Define

Rq = Zq[x]/⟨xn+1⟩ as above. Then, there exists a polynomial time quantum reduction
from Õ(

√
n/α)-SIVP in the worst case to average-case RLWEq,β with ℓ samples, where

β = αq · (nℓ/ log(nℓ))1/4.

It has been proven that the Ring-LWE assumption still holds even if the secret s
is chosen according to the error distribution χβ rather than uniformly [29, 57]. This
variant is known as the normal form, and is preferable for controlling the size of the
error term [58, 59]. The underlying Ring-LWE assumption also holds when scaling the
error by a constant t relatively prime to q [58], i.e., using the pair (ai, ais+ txi) rather
than (ai, ais+ xi). Several lattice-based cryptographic schemes have been constructed
based on this variant [58, 59]. In our case, we will fix t = 2. Besides, recall that the
RLWEq,β assumption guarantees that for some prior fixed (but randomly chosen) s, the
tuple (a, as + 2x) is computationally indistinguishable from the uniform distribution
over Rq × Rq if a←r Rq and x← χβ . In this paper, we will use a matrix form of the
ring-LWE assumption. Formally, let Bχβ ,ℓ1,ℓ2 be the distribution of (a,B = (bi,j)) ∈
Rℓ1

q × Rℓ1×ℓ2
q , where a = (a0, . . . , aℓ1−1) ←r Rℓ1

q , s = (s0, . . . , sℓ2−1) ←r Rℓ2
q ,

ei,j ←r χβ , and bi,j = aisj + 2ei,j for i ∈ {0, . . . , ℓ1 − 1} and j ∈ {0, . . . , ℓ2 − 1}.
For polynomially bounded ℓ1 and ℓ2, one can show that the distribution of Bχβ ,ℓ1,ℓ2 is
pseudorandom based on the RLWEq,β assumption [45].

3 Authenticated Key Exchange from Ring-LWE

We now introduce some notations. For an odd prime q > 2, take Zq = {− q−1
2 , . . . ,

q−1
2 } and define the subset E := {−⌊ q4⌋, . . . , ⌊

q
4⌉} as the middle half of Zq. We also

define Cha to be the characteristic function of the complement of E, so Cha(v) =
0 if v ∈ E and 1 otherwise. Obviously, for any v in Zq, v + Cha(v) · q−1

2 mod q
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belongs to E. We define an auxiliary modular function, Mod2 : Zq × {0, 1} → {0, 1}
as Mod2(v, b) = (v + b · q−12 ) mod q mod 2.

In the following lemma, we show that given the bit b = Cha(v), and a value w =
v + 2e with sufficiently small e, one can recover Mod2(v,Cha(v)). In particular, we
have Mod2(v, b) = Mod2(w, b).

Lemma 3. Let q be an odd prime, v ∈ Zq and e ∈ Zq such that |e| < q/8. Then, for
w = v + 2e, we have Mod2(v,Cha(v)) = Mod2(w,Cha(v)).

Proof. Note that w + Cha(v) q−12 mod q = v + Cha(v) q−12 + 2e mod q. Now, v +

Cha(v) q−12 mod q is in E as we stated above; that is, −⌊ q4⌋ ≤ v + Cha(v) q−12 mod

q ≤ ⌊ q4⌉. Thus, since−q/8 < e < q/8, we have−⌊ q2⌋ ≤ v+Cha(v) q−12 mod q+2e ≤
⌊ q2⌉. Therefore, we have v+Cha(v) q−12 mod q+2e = v+Cha(v) q−12 +2e mod q =

w + Cha(v) q−12 mod q. Thus, Mod2(w,Cha(v)) = Mod2(v,Cha(v)).

Now, we extend the two functions Cha and Mod2 to ring Rq by applying them
coefficient-wise to ring elements. Namely, for ring element v = (v0, . . . , vn−1) ∈ Rq

and binary-vector b = (b0, . . . , bn−1) ∈ {0, 1}n, define C̃ha(v) = (Cha(v0), . . . ,
Cha(vn−1)) and M̃od2(v,b) = (Mod2(v0, b0), . . . , Mod2(vn−1, bn−1)). For simplic-
ity, we slightly abuse the notations and still use Cha (resp. Mod2) to denote C̃ha (resp.
M̃od2). Clearly, the result in Lemma 3 still holds when extending to ring elements.

In our AKE protocol, the two involved parties will use Cha and Mod2 to derive
a common key material. Concretely, the responder will publicly send the result of
Cha on his own secret ring element to the initiator in order to compute a shared
key material from two “close” ring elements (by applying the Mod2 function). Ide-
ally, for a uniformly chosen element v from Rq at random, we hope that the output
of Mod2(v,Cha(v)) is uniformly distributed {0, 1}n. However, this can never happen
when q is an odd prime. Fortunately, we can show that the output of Mod2(v,Cha(v))
conditioned on Cha(v) has high min-entropy, and thus can be used to extract an (al-
most) uniformly distributed session key. Actually, we can prove a stronger result.

Lemma 4. Let q be any odd prime and Rq be the ring defined above. Then, for any
b ∈ {0, 1}n and any v′ ∈ Rq, the output distribution of Mod2(v+ v′,b) given Cha(v)
has min-entropy at least −n log( 12 + 1

|E|−1 ), where v is uniformly chosen from Rq at
random. In particular, when q > 203, we have −n log( 12 + 1

|E|−1 ) > 0.97n.

Proof. Since each coefficient of v is independently and uniformly chosen from Zq at
random, we can simplify the proof by focusing on the first coefficient of v. Formally,
letting v = (v0, . . . , vn−1), v′ = (v′0, . . . , v

′
n−1) and b = (b0, . . . , bn−1), we condition

on Cha(v0):

– If Cha(v0) = 0, then v0+v′0+b0 ·
q−1
2 is uniformly distributed over v′0+b0 ·

q−1
2 +

E mod q. This shifted set has (q + 1)/2 elements, which are either consecutive
integers—if the shift is small enough—or two sets of consecutive integers—if the
shift is large enough to cause wrap-around. Thus, we must distinguish a few cases:
• If |E| is even and no wrap-around occurs, then the result of Mod2(v0 + v′0, b0)

is clearly uniform on {0, 1}. Hence, the result of Mod2(v0+v
′
0, b0) has no bias.
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• If |E| is odd and no wrap-around occurs, then the result of Mod2(v0 + v′0, b0)
has a bias 1

2|E| over {0, 1}. In other words, the Mod2(v0 + v′0, b0) will output
either 0 or 1 with probability exactly 1

2 + 1
2|E| .

• If |E| is odd and wrap-around does occur, then the set v′0+b0 ·
q−1
2 +E mod q

splits into two parts, one with an even number of elements, and one with an odd
number of elements. This leads to the same situation as with no wrap-around.

• If |E| is even and wrap-around occurs, then our sample space is split into either
two even-sized sets, or two odd sized sets. If both are even, then once again the
result of Mod2(v0 + v′0, b0) is uniform. If both are odd, it is easy to calculate
that the result of Mod2(v0 + v′0, b0) has a bias with probability 1

|E| over {0, 1}.
– If Cha(v0) = 1, v0 + v′0 + b0 · q−12 is uniformly distributed over v′0 + b0 · q−12 + Ẽ,

where Ẽ = Zq \ E. Now |Ẽ| = |E| − 1, so by splitting into the same cases as
Cha(v0) = 0, the result of Mod2(v0+v

′
0, b) has a bias with probability 1

|E|−1 over
{0, 1}.
In all, we have that the result of Mod2(v0+v

′
0, b0) conditioned on Cha(v0) has min-

entropy at least− log( 12+
1

|E|−1 ). Since the bits in the result of Mod2(v+v
′,b) are

independent, we have that given Cha(v), the min-entropyH∞(Mod2(v+v
′,b)) ≥

−n log( 12 + 1
|E|−1 ). This completes the first claim. The second claim directly fol-

lows from the fact that − log( 12 + 1
|E|−1 ) > − log(0.51) > 0.97 when q > 203.

�

Remark 1 (On Uniformly Distributed Keys). It is known that randomness extractors
can be used to obtain an almost uniformly distributed key from a biased bit-string with
high min-entropy [60–64]. In practice, as recommended by NIST [65], one can actually
use the standard cryptographic hash functions such as SHA-2 to derive a uniformly
distributed key if the source string has at least 2κ min-entropy, where κ is the length of
the cryptographic hash function.

3.1 The Protocol

We now describe our protocol in detail. Let n be a power of 2, and q be an odd prime
such that q mod 2n = 1. Take R = Z[x]/(xn + 1) and Rq = Zq[x]/(x

n + 1) as
above. For any positive γ ∈ R, let H1 : {0, 1}∗ → χγ = DZn,γ be a hash function
that always outputs invertible elements in Rq.9 Let H2 : {0, 1}∗ → {0, 1}κ be the key
derivation function, where κ is the bit-length of the final shared key. We model both
functions as random oracles [67]. Let χα, χβ be two discrete Gaussian distributions
with parameters α, β ∈ R+. Let a ∈ Rq be the global public parameter uniformly
chosen from Rq at random, and M be a constant determined by Theorem 1. Let pi =
asi + 2ei ∈ Rq be party i’s static public key, where (si, ei) is the corresponding static
secret key; both si and ei are taken from the distribution χα. Similarly, party j has static
public key pj = asj + 2ej and static secret key (sj , ej).

9 In practice, one can first use a hash function (e.g., SHA-2) to obtain a uniformly random string,
and then use it to sample from DZn,γ . The algorithm outputs a sample only if it is invertible in
Rq , otherwise, it tries another sample and repeats. By Lemma 10 in [66], we can have a good
probability to sample an invertible element in each trial for an appropriate choice of γ.
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Initiation Party i proceeds as follows:
1. Sample ri, fi ←r χβ and compute xi = ari + 2fi;
2. Compute c = H1(i, j, xi), r̂i = sic+ ri and f̂i = eic+ fi;

3. Go to step 4 with probability min
(

DZ2n,β(z)

MDZ2n,β,z1
(z) , 1

)
, where z ∈ Z2n is the

coefficient vector of r̂i concatenated with the coefficient vector of f̂i, and z1 ∈
Z2n is the coefficient vector of sic concatenated with the coefficient vector of
eic; otherwise go back to step 1;

4. Send xi to party j.
Response After receiving xi from party i, party j proceeds as follows:

1′. Sample rj , fj ←r χβ and compute yj = arj + 2fj ;
2′. Compute d = H1(j, i, yj , xi), r̂j = sjd+ rj and f̂j = ejd+ fj ;

3′. Go to step 4′ with probability min
(

DZ2n,β(z)

MDZ2n,β,z1
(z) , 1

)
, where z ∈ Z2n is the

coefficient vector of r̂j concatenated with the coefficient vector of f̂j , and z1 ∈
Z2n is the coefficient vector of sjd concatenated with the coefficient vector of
ejd; otherwise go back to step 1′;

4′. Sample gj ←r χβ , compute kj = (pic+ xi)r̂j + 2cgj where c = H1(i, j, xi);
5′. Compute wj = Cha(kj) ∈ {0, 1}n and send (yj , wj) to party i;
6′. Compute σj = Mod2(kj , wj) and derive the session key skj = H2(i, j, xi,

yj , wj , σj).
Finish Party i receives the pair (yj , wj) from party j, and proceeds as follows:

5. Sample gi ←r χβ and compute ki = (pjd + yj)r̂i + 2dgi with d = H1(j, i,
yj , xi);

6. Compute σi = Mod2(ki, wj) and derive the session key ski = H2(i, j, xi, yj ,
wj , σi).

Remark 2. Deploying our protocol practically in a large scale requires the support of a
PKI with a trusted Certificate Authority (CA). In this setting, all the system parameters
(such as a) will be generated by the CA like other PKI-based protocols.

In the above protocol, both parties will make use of rejection sampling, i.e., they will
repeat the first three steps with certain probability. By Theorem 1, the probability that
each party will repeat the steps is about 1− 1

M for some constant M and appropriately
chosen β. Thus, one can hope that both parties will send something to each other after
an averaged M times repetitions of the first three steps. Next, we will show that once
they send something to each other, both parties will finally compute a shared session
key.

3.2 Correctness

To show the correctness of our AKE protocol, i.e., that both parties compute the same
session key ski = skj , it suffices to show that σi = σj . Since σi and σj are both
the output of Mod2 with Cha(kj) as the second argument, we need only to show that
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ki and kj are sufficiently close by Lemma 3. Note that the two parties will compute
ki and kj as follows:

ki = (pjd+ yj)r̂i + 2dgi

= a(sjd+ rj)r̂i + 2(ejd+ fj)r̂i

+2dgi

= ar̂ir̂j + 2g̃i

kj = (pic+ xi)r̂j + 2cgj

= a(sic+ ri)r̂j + 2(eic+ fi)r̂j

+2cgj

= ar̂ir̂j + 2g̃j

where g̃i = f̂j r̂i + dgi, and g̃j = f̂ir̂j + cgj . Then ki = kj + 2(g̃i − g̃j), and we
have σi = σj if ∥g̃i − g̃j∥∞ < q/8 by Lemma 3.

4 Security

Theorem 2. Let n be a power of 2 satisfying 0.97n ≥ 2κ, prime q > 203 satisfying
q = 1 mod 2n, real β = ω(αγn

√
n log n) and let H1,H2 be random oracles. Then,

if RLWEq,α is hard, the proposed AKE is secure with respect to Definition 2.

The intuition behind our proof is quite simple. Since the public element a and the
public key of each party (e.g., pi = asi+2ei) actually consist of a RLWEq,α tuple with
Gaussian parameter α (scaled by 2), the parties’ static public keys are computation-
ally indistinguishable from uniformly distributed elements in Rq under the Ring-LWE
assumption. Similarly, both the exchanged elements xi and yj are also computation-
ally indistinguishable from uniformly distributed elements in Rq under the RLWEq,β

assumption.
Without loss of generality, we take party j as an example to check the distribution of

the session key. Note that if kj is uniformly distributed over Rq, we have σj ∈ {0, 1}n
has high min-entropy (i.e., 0.97n > 2κ) even conditioned onwj by Lemma 4. SinceH2

is a random oracle, we have that skj is uniformly distributed over {0, 1}κ as expected.
Now, let us check the distribution of kj = (pic + xi)(sjd + rj) + 2cgj . As one can
imagine, we want to establish the randomness of kj based on pseudorandomness of
“Ring-LWE samples” with public element âj = c−1(pic+xi) = pi+ c

−1xi, the secret
ŝj = sjd + rj , as well as the error term 2gj (thus we have kj = c(âj ŝj + 2gj)).
Actually, kj is pseudorandom due to the following fact: 1) c is invertible in Rq; 2) âj is
uniformly distributed over Rq whenever pi or xi is uniform, and 3) ŝj has distribution
statistically close to χβ by the strategy of rejection sampling in Theorem 1. In other
words, âj ŝj+2gj is statistically close to a RLWEq,β sample, and thus is pseudorandom.

Formally, let N be the maximum number of parties, and m be maximum number of
sessions for each party. We distinguish the following five types of adversaries:

Type I: sid∗ = (Π, I, i∗, j∗, xi∗ , (yj∗ , wj∗)) is the test session, and yj∗ is output by a
session activated at party j by a Send1(Π,R, j

∗, i∗, xi∗) query.
Type II: sid∗ = (Π, I, i∗, j∗, xi∗ , (yj∗ , wj∗)) is the test session, and yj∗ is not output

by a session activated at party j∗ by a Send1(Π,R, j
∗, i∗, xi∗) query.

Type III: sid∗ = (Π,R, j∗, i∗, xi∗ , (yj∗ , wj∗)) is the test session, and xi∗ is not output
by a session activated at party i∗ by a Send0(Π, I, i

∗, j∗) query.
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Type IV: sid∗ = (Π,R, j∗, i∗, xi∗ , (yj∗ , wj∗)) is the test session, and xi∗ is output by
a session activated at party i∗ by a Send0(Π, I, i

∗, j∗) query, but i∗ either never
completes the session, or i∗ completes it with exact yj∗ .

Type V: sid∗ = (Π,R, j∗, i∗, xi∗ , (yj∗ , wj∗)) is the test session, and xi∗ is output by
a session activated at party i∗ by a Send0(Π, I, i

∗, j∗) query, but i∗ completes the
session with another y′j ̸= yj∗ .

The five types of adversaries give a complete partition of all the adversaries. The
weak perfect forward secrecy (wPFS) is captured by allowing Type I and Type IV
adversaries to obtain the static secret keys of both party i∗ and j∗ by using Corrupt
queries. Since sid∗ definitely has no matching session for Type II, Type III, and Type
V adversaries, no corruption to either party i∗ or party j∗ is allowed by Definition 1.
The security proofs for the five types of adversaries are similar, except the forking
lemma [68] is involved for Type II, Type III, and Type V adversaries by using the
assumption that H1 is a random oracle. Informally, the adversary must first “commit”
xi (yj , resp.) before seeing c (d, resp.), thus it cannot determine the value pic + xi or
pjd + yi in advance (but the simulator can set the values by programming H1 when
it tries to embed Ring-LWE instances with respect to either pic + xi or pjd + yi as
discussed before).

For space reason, we only give the security proof for Type I adversaries in Lemma 5,
and defer the proofs for other types of adversaries to the full version.

Lemma 5. Let n be a power of 2 satisfying 0.97n ≥ 2κ, prime q > 203 satisfying
q = 1 mod 2n, real β = ω(αγn

√
n log n). Then, if RLWEq,α is hard, the proposed

AKE is secure against any PPT Type I adversary A in the random oracle model.
In particular, if there is a PPT Type I adversary A breaking our protocol with

non-negligible advantage ϵ, then there is a PPT algorithm B solving RLWEq,α with
advantage at least ϵ

m2N2 − negl(κ).

Proof. We prove this lemma via a sequence of gamesG1,l for 0 ≤ l ≤ 7, where the first
gameG1,0 is almost the same as the real one except that the simulator randomly guesses
the test session at the beginning of the game and aborts the simulation if the guess is
wrong, while the last game G1,7 is a fake one with randomly and independently chosen
session key for the test session (thus the adversary can only win the game with negligi-
ble advantage). The security is established by showing that any two consecutive games
are computationally indistinguishable. Bold fonts are used to highlight the changes of
each game with respect to its previous game.

Game G1,0. S chooses i∗, j∗ ←r {1, . . . , N}, si∗ , sj∗ ←r {1, . . . ,m}, and hopes that
the adversary will use sid∗ = (Π, I, i∗, j∗, xi∗ , (yj∗ , wj∗)) as the test session, where
xi∗ is output by the si∗-th session of party i∗, and yj∗ is output by the s∗j -th session
of party j∗ activated by a Send1(Π,R, j

∗, i∗, xi∗) query. Then, S chooses a ←r Rq,
generates static public keys for all parties (by choosing si, ei ←r χα), and simulates
the security game for A. Specifically, S maintains two tables L1, L2 for the random
oracles H1,H2, respectively, and answers the queries from A as follows:

– H1(in): If there does not exist a tuple (in, out) in L1, choose an invertible element
out ∈ χγ at random, and add (in, out) into L1. Then, return out to A.
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– H2(in) queries: If there does not exist a tuple (in, out) in L2, choose a vector
out←r {0, 1}κ, and add (in, out) into L2. Then, return out to A.

– Send0(Π, I, i, j):A activates a new session of i with intended party j, S proceeds
as follows:
1. Sample ri, fi ←r χβ and compute xi = ari + 2fi;
2. Compute c = H1(i, j, xi), r̂i = sic+ ri and f̂i = eic+ fi;

3. Go to step 4 with probability min
(

DZ2n,β(z)

MDZ2n,β,z1
(z) , 1

)
, where z ∈ Z2n is the

coefficient vector of r̂i concatenated with the coefficient vector of f̂i, and z1 ∈
Z2n is the coefficient vector of sic concatenated with the coefficient vector of
eic; otherwise go back to step 1;

4. Return xi to A;
– Send1(Π,R, j, i, xi): S proceeds as follows:

1′. Sample rj , fj ←r χβ and compute yj = arj + 2fj ;
2′. Compute d = H1(j, i, yj , xi), r̂j = sjd+ rj and f̂j = ejd+ fj ;

3′. Go to step 4′ with probability min
(

DZ2n,β(z)

MDZ2n,β,z1
(z) , 1

)
, where z ∈ Z2n is the

coefficient vector of r̂j concatenated with the coefficient vector of f̂j , and z1 ∈
Z2n is the coefficient vector of sjd concatenated with the coefficient vector of
ejd; otherwise go back to step 1′;

4′. Sample gj ←r χβ , compute kj = (pic+ xi)r̂j + 2cgj where c = H1(i, j, xi);
5′. Compute wj = Cha(kj) ∈ {0, 1}n and return (yj , wj) to A;
6′. Compute σj = Mod2(kj , wj) and derive the session key skj = H2(i, j, xi, yj ,

wj , σj).
– Send2(Π, I, i, j, xi, (yj , wj)): S computes ki and ski as follows:

5. Sample gi ←r χβ and compute ki = (pjd+ yj)r̂i + 2dgi where d = H1(j, i,
yj , xi);

6. Compute σi = Mod2(ki, wj) and derive the session key ski = H2(i, j, xi, yj ,
wj , σi).

– SessionKeyReveal(sid): Let sid = (Π, ∗, i, ∗, ∗, ∗, ∗), S returns ski if the session
key of sid has been generated.

– Corrupt(i): Return the static secret key si of i to A.
– Test(sid): Let sid = (Π, I, i, j, xi, (yj , wj)), S aborts if (i, j) ̸= (i∗, j∗), or xi

and yj are not output by the si∗-th session of party i∗ and the s∗j -th session of party
j∗, respectively. Else, S chooses b ←r {0, 1}, returns sk′i ←r {0, 1}κ if b = 0.
Otherwise, return the session key ski of sid.

Claim 1 The probability that S will not abort in G1,0 is at least 1
m2N2 .

Proof. This claim directly follows from the fact that S randomly chooses i∗, j∗ ←r

{1, . . . , N} and si∗ , s∗j ←r {1, . . . ,m} independently from the view of A. �

Game G1,1. S behaves almost the same as in G1,0 except in the following case:

– Send1(Π,R, j, i, xi): If (i, j) ̸= (i∗, j∗), or it is not the s∗j -th session of j∗, S
answers the query as in Game G1,0. Otherwise, it proceeds as follows:
1′. Sample rj , fj ←r χβ and compute yj = arj + 2fj ;
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2′. Sample an invertible element d←r χγ , and compute r̂j = sjd + rj , f̂j =
ejd+ fj ;

3′. Go to step 4′ with probability min
(

DZ2n,β(z)

MDZ2n,β,z1
(z) , 1

)
, where z ∈ Z2n is the

coefficient vector of r̂j concatenated with the coefficient vector of f̂j , and z1 ∈
Z2n is the coefficient vector of sjd concatenated with the coefficient vector of
ejd; otherwise go back to step 1′;

4′. Abort if there is a tuple ((j, i, yj , xi), ∗) in L1. Else, add ((j, i, yj , xi), d)

into L1. Then, sample gj ←r χβ and compute kj = (pic+xi)r̂j+2cgj where
c = H1(i, j, xi);

5′. Compute wj = Cha(kj) ∈ {0, 1}n and return (yj , wj) to A;
6′. Compute σj = Mod2(kj , wj) and derive the session key skj = H2(i, j, xi, yj ,

wj , σj).

Let F1,l be the event that A outputs a guess b′ that equals to b in Game G1,l.

Claim 2 If RLWEq,β is hard, then Pr[F1,l] = Pr[F1,0]− negl(κ).

Proof. Since H1 is a random oracle, Game G1,0 and Game G1,1 are identical if the
adversaryA does not make aH1 query ((j, i, yj , xi), ∗) before S generates yj . Thus, the
claim follows if the probability that A makes such a query in both Games is negligible.
Actually, if A can make the query before seeing yj with non-negligible probability, we
can construct an algorithm B that breaks the RLWEq,β assumption.

Formally, after given a ring-LWE challenge tuple (u,b) ∈ Rq ×Rℓ
q in matrix form

for some polynomially bounded ℓ, B sets a = u and behaves like in Game G1,0 until B
has to generate yj for the s∗j -th session of j∗ intended for party i∗. Instead of generating
a fresh yj , B simply sets yj as the first unused elements in b = (b0, . . . , bℓ−1), and
checks if there is a tuple ((j, i, yj , xi), ∗) in L1. If yes, it returns 1 and aborts, else it
returns 0 and aborts.

It is easy to check that A has the same view as in G1,0 and G1,1 until the point that
B has to compute yj . Moreover, if b = (b0 = ur0 + 2f0, . . . , bℓ−1 = urℓ−1 + 2fℓ−1)
for some randomly choose rℓ′ , fℓ′ ←r χβ where ℓ′ ∈ {0, 1, . . . , ℓ − 1}, we have
the probability that A will make the H1 query with (j, i, yj , xi) is non-negligible by
assumption. While if b is uniformly distributed over Rℓ

q, we have the probability thatA
will make the H1 query with (j, i, yj , xi) is negligible. This shows that B can be used
to solve Ring-LWE assumption by interacting with A. �

Game G1,2. S behaves almost the same as in G1,1 except in the following case:

– Send1(Π,R, j, i, xi): If (i, j) ̸= (i∗, j∗), or it is not the s∗j -th session of j∗, S
answers the query as in Game G1,1. Otherwise, it proceeds as follows:
1′. Sample an invertible element d←r χγ , and choose z←r DZ2n,β ;

2′. Parse z as two ring elements r̂j , f̂j ∈ Rq, and define yj = ar̂j + 2f̂j − pjd;
3′. Go to step 4′ with probability 1/M ; otherwise go back to step 1′;
4′. Abort if there is a tuple ((j, i, yj , xi), ∗) in L1. Else, add ((j, i, yj , xi), d) into

L1. Then, sample gj ←r χβ and compute kj = (pic + xi)r̂j + 2cgj where
c = H1(i, j, xi);
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5′. Compute wj = Cha(kj) ∈ {0, 1}n and return (yj , wj) to A;
6′. Compute σj = Mod2(kj , wj) and derive the session key skj = H2(i, j, xi, yj ,

wj , σj).

Claim 3 If β = ω(αγn
√
n log n), then Pr[F1,2] = Pr[F1,1]− negl(κ).

Proof. By Lemma 1 and Lemma 2, we have that both ∥sjd∥ ≤ αγn
√
n and ∥ejd∥ ≤

αγn
√
n (in Game G1,1) hold with overwhelming probability. This means that β =

ω(αγn
√
n log n) satisfies the requirement in Theorem 1, and thus the distribution of

(d, z) in Game G1,2 is statistically close to that in G1,1. The claim follows from the fact
that the equation yj = ar̂j + 2f̂j − pjd holds in both Game G1,1 and G1,2.

Game G1,3. S behaves almost the same as in G1,2, except for the following case:

– Send0(Π, I, i, j): If (i, j) ̸= (i∗, j∗), or it is not the si∗-th session of i∗, S answers
as in Game G1,2. Otherwise, it proceeds as follows:
1. Sample ri, fi ←r χβ and compute xi = ari + 2fi;
2. Sample an invertible element c←r χγ , and compute r̂i = sic + ri, f̂i =
eic+ fi;

3. Go to step 4 with probability min
(

DZ2n,β(z)

MDZ2n,β,z1
(z) , 1

)
, where z ∈ Z2n is the

coefficient vector of r̂i concatenated with the coefficient vector of f̂i, and z1 ∈
Z2n is the coefficient vector of sic concatenated with the coefficient vector of
eic; otherwise go back to step 1;

4. Abort if there is a tuple ((i, j, xi), ∗) in L1. Else, add ((i, j, xi), c) into L1.
Return xi to A.

Claim 4 If RLWEq,β is hard, then Pr[F1,3] = Pr[F1,2]− negl(κ).

Proof. The proof is similar to the proof of Claim 2, we omit the details. �

Game G1,4. S behaves almost the same as in G1,3 except for the following case:

– Send0(Π, I, i, j): If (i, j) ̸= (i∗, j∗), or it is not the si∗-th session of i∗, S answers
as in Game G1,3. Otherwise, it proceeds as follows:
1. Sample an invertible element c←r χγ , and choose z←r DZ2n,β ;

2. Parse z as two ring elements r̂i, f̂i ∈ Rq, and define xi = ar̂i + 2f̂i − pic;
3. Go to step 4 with probability 1/M ; otherwise go back to step 1;
4. Abort if there is a tuple ((i, j, xi), ∗) in L1. Else, add ((i, j, xi), c) into L1.

Return xi to A.

Claim 5 If β = ω(αγn
√
n log n), then Pr[F1,4] = Pr[F1,3]− negl(κ).

Proof. The proof is similar to the proof of Claim 3, we omit the details. �
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Game G1,5. S behaves almost the same as in G1,4 except for the following case:

– Send2(Π, I, i, j, xi, (yj , wj)): If (i, j) ̸= (i∗, j∗), or it is not the si∗-th session
of i∗, S behaves as in Game G1,4. Otherwise, if (yj , wj) is output by the s∗j -
th session of party j∗, S sets ski = skj , where skj is the session key of sid =

(Π,R, j, i, xi, (yj , wj)). Else, S samples gi ←r χβ and computes ki = (pjd +
yj)r̂i + 2dgi where d = H1(j, i, yj , xi). Finally, it computes σi = Mod2(ki, wj)
and derives the session key ski = H2(i, j, xi, yj , wj , σi).

Claim 6 Pr[F1,5] = Pr[F1,4]− negl(κ).

Proof. This claim follows since G1,5 is just a conceptual change of G1,4 by the correct-
ness of the protocol. �

Game G1,6. S behaves almost the same as in G1,5 except in the following case:

– Send0(Π, I, i, j): If (i, j) ̸= (i∗, j∗), or it is not the si∗-th session of i∗, S answers
as in Game G1,5. Otherwise, it proceeds as follows:
1. Sample an invertible element c←r χγ , and choose x̂i ←r Rq;
2. Define xi = x̂i − pic;
3. Go to step 4 with probability 1/M ; otherwise go back to step 1;
4. Abort if there is a tuple ((i, j, xi), ∗) in L1. Else, add ((i, j, xi), c) into L1.

Return xi to A.
– Send2(Π, I, i, j, xi, (yj , wj)): If (i, j) ̸= (i∗, j∗), or it is not the si∗ -th session of
i∗, or (yj , wj) is output by the s∗j -th session of party j∗, S behaves the same as in
G1,5. Otherwise, it proceeds as follows:
5. Randomly choose ki ←r Rq;
6. Compute σi = Mod2(ki, wj) and derive the session key ski = H2(i, j, xi, yj ,
wj , σi).

Note that in Game G1,6, we have made two changes: 1) The term ar̂i + 2f̂i in
Game G1,5 is replaced by a uniformly chosen element x̂ ∈ Rq at random; 2) The
value ki = (pjd + yj)r̂i + 2dgi in Game G1,5 is replaced by a uniformly chosen
string ki ←r Rq, when (yj , w

′
j) is output by the s∗j -th session of party j∗ but wj ̸=

w′j . In the following, we will employ the “deferred analysis” proof technique in [69],
which informally allows us to proceed the security games by patiently postponing some
tough probability analysis to a later game. Specially, for ℓ = 5, 6, 7, denote Q1,l as
the event in Game G1,ℓ that 1) (yj , w′j) is output by the s∗j -th session of party j∗ but
wj ̸= w′j ; and 2) A makes a query to H2 that is exactly used to generate the session
key ski for the si∗ -th session of party i∗, i.e., ski = H2(i, j, xi, yj , wj , σi) for σi =
Mod2(ki, wj). Ideally, if Q1,5 does not happen, then the adversary cannot distinguish
whether a correctly computed ki or a randomly chosen one is used (sinceH2 is a random
oracle, and the adversary gains no information about ki even if it obtains the session key
ski). However, we cannot prove the claim immediately due to technical reason. Instead,
we will show that Pr[Q1,5] ≈ Pr[Q1,6] ≈ Pr[Q1,7] and Pr[Q1,7] is negligible in κ.

Claim 7 If RLWEq,β is hard, Pr[Q1,6] = Pr[Q1,5] − negl(κ), and Pr[F1,6|¬Q1,6] =
Pr[F1,5|¬Q1,5]− negl(κ).
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Proof. Note that H2 is a random oracle, the event Q1,5 is independent from the dis-
tribution of the corresponding ski. Namely, no matter whether or not A obtains ski,
Pr[Q1,5] is the same, which also holds for Pr[Q1,6]. In addition, under the RLWEq,β

assumption, we have x̂i = ar̂i + 2f̂i in G1,5 is computationally indistinguishable from
uniform distribution over Rq, and thus the public information (i.e., static public keys
and public transcripts) in G1,5 and G1,6 is computationally indistinguishable. In partic-
ular, the view of the adversary A before Q1,ℓ happens for ℓ = 5, 6 is computationally
indistinguishable, which implies that Pr[Q1,6] = Pr[Q1,5] − negl(κ). Besides, if Q1,l

for l = 5, 6 does not happen, the distribution of ski is the same in both games. In other
words, Pr[F1,6|¬Q1,6] = Pr[F1,5|¬Q1,5]− negl(κ). �

Game G1,7. S behaves almost the same as in G1,6 except in the following case:

– Send1(Π,R, j, i, xi): If (i, j) ̸= (i∗, j∗), or it is not the s∗j -th session of j∗, S
answers the query as in Game G1,6. Otherwise, it proceeds as follows:
1′. Sample an invertible element d←r χγ , and choose ŷj ←r Rq;
2′. Define yj = ŷj − pjd;
3′. Go to step 4′ with probability 1/M ; otherwise go back to step 1′;
4′. Abort if there is a tuple ((j, i, yj , xi), ∗) in L1. Else, add ((j, i, yj , xi), d) into

L1. Then, the simulator S uniformly chooses kj ←r Rq at random;
5′. Compute wj = Cha(kj) ∈ {0, 1}n and return (yj , wj) to A;
6′. Compute σj = Mod2(kj , wj) and derive the session key skj = H2(i, j, xi, yj ,

wj , σj).

Claim 8 Let n be a power of 2, prime q > 203 satisfying q = 1 mod 2n, β =
ω(αγn

√
n log n). Then, if RLWEq,β is hard, Game G1,6 and G1,7 are computation-

ally indistinguishable. In particular, we have Pr[Q1,7] = Pr[Q1,6] − negl(κ), and
Pr[F1,7|¬Q1,7] = Pr[F1,6|¬Q1,6]− negl(κ).

Proof. Assume there is an adversary that distinguishes Game G1,6 and G1,7, we now
construct a distinguisher D that solves the Ring-LWE problem. Specifically, let (u =
(u0, . . . , uℓ−1),B) ∈ Rℓ

q × Rℓ×ℓ
q be a challenge Ring-LWE tuple in matrix form for

some polynomially bounded ℓ, D first sets public parameter a = u0. Then, it randomly
chooses invertible elements v = (v1, . . . , vℓ−1) ← χℓ−1

γ , and compute û = (v1 ·
u1, . . . , vℓ−1uℓ−1). Finally, D behaves the same as S in Game G1,6, except for the
following cases:

– Send0(Π, I, i, j): If (i, j) ̸= (i∗, j∗), or it is not the si∗-th session of i∗, S answers
as in Game G1,6. Otherwise, it proceeds as follows:
1. Set c and x̂i be the first unused element in v and û, respectively;
2. Define xi = x̂i − pic;
3. Go to step 4 with probability 1/M ; otherwise go back to step 1;
4. Abort if there is a tuple ((i, j, xi), ∗) in L1. Else, add ((i, j, xi), c) into L1.

Return xi to A.
– Send1(Π,R, j, i, xi): If (i, j) ̸= (i∗, j∗), or it is not the s∗j -th session of j∗, S

answers the query as in Game G1,6. Otherwise, it proceeds as follows:
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1′. Sample an invertible element d←r χγ , and set ŷj be the first unused element
in b0 = (b0,0, . . . , b0,ℓ−1);

2′. Define yj = ŷj − pjd;
3′. Go to step 4′ with probability 1/M ; otherwise go back to step 1′;
4′. Abort if there is a tuple ((j, i, yj , xi), ∗) in L1. Else, add ((j, i, yj , xi), d) into

L1. Then, let ℓ1 ≥ 1 be the index that x̂i appears in û, and ℓ2 ≥ 0 be the index
that ŷj appears in b0, the simulator S sets kj = cbℓ1,ℓ2 ;

5′. Compute wj = Cha(kj) ∈ {0, 1}n and return (yj , wj) to A;
6′. Compute σj = Mod2(kj , wj) and derive the session key skj = H2(i, j, xi, yj ,

wj , σj).

Since v is randomly and independently chosen from χℓ−1
γ , the distribution of c is

identical to that in Game G1,6 and Game G1,7. Besides, since each vi is invertible in
Rq, we have û is uniformly distributed over Rℓ−1

q , which shows that the distribution of
x̂i is identical to that in Game G1,6 and Game G1,7. Moreover, if (u,B) ∈ Rℓ

q ×Rℓ×ℓ
q

is a Ring-LWE challenge tuple in matrix form, we have ŷj = u0sℓ2 + 2e0,ℓ2 and kj =
cbℓ1,ℓ2 = cuℓ1sℓ2 + 2ceℓ1,ℓ2 = x̂isℓ2 + 2ceℓ1,ℓ2 = (xi + pic)sℓ2 + 2ceℓ1,ℓ2 for some
randomly chosen sℓ2 , e0,ℓ2 , eℓ1,ℓ2 ←r χβ . This shows that the view of A is the same as
in GameG1,6. While if (u,B) ∈ Rℓ

q×Rℓ×ℓ
q is uniformly distributed overRℓ

q×Rℓ×ℓ
q , we

have both ŷj and kj = cbℓ1,ℓ2 are uniformly distributed over Rq (since c is invertible).
Thus, the view of A is the same as in G1,7. In all, we have shown that D can be used to
break Ring-LWE assumption if A can distinguish Game G1,6 and G1,7. �

Claim 9 If 0.97n > 2κ, we have Pr[Q1,7] = negl(κ)

Proof. Let ki,ℓ be the element “computed” by S for the s∗i -th session at party i∗ in
Games G1,ℓ, and kj,ℓ be the element “computed” by S for the s∗j -th session at party
j∗. By the correctness of the protocol, we have that ki,5 = kj,5 + ĝ for some ĝ with
small coefficients in G1,5. Since we have proven that the view of the adversary before
Q1,ℓ happens in Game G1,5, G1,6 and G1,7 is computationally indistinguishable, the
equation ki,7 = kj,7 + ĝ′ should still hold for some ĝ′ with small coefficients in the
adversary’s view untilQ1,7 happens inG1,7. Let (yj , wj) be output by the s∗j -th session
of party j = j∗, and (yj , w

′
j) be the message that is used to complete the test session

(i.e., the si∗-th session of party i = i∗). Note that kj,7 is randomly chosen from Rq,
and the adversary can only obtain the information of kj,7 from the public wj , the de-
pendence of ĝ on kj should be totally determined by the information of wj . Thus, we
have that σ′i = Mod2(ki, w

′
j) = Mod2(kj + ĝ′, w′j) conditioned on wj has high min-

entropy by Lemma 4. In other words, the probability that the adversary makes a query
H2(i, j, xi, yj , w

′
j , σ
′
i) is at most 2−0.97n + negl(κ), which is negligible in κ. �

Claim 10 Pr[F1,7|¬Q1,7] = 1/2 + negl(κ)

Proof. Let (yj , wj) be output by the s∗j -th session of party j = j∗, (yj , w′j) be the
message that is used to complete the test session (i.e., the si∗-th session of party i = i∗).
We distinguish the following two cases:
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– wj = w′j : In this case, we have ski = skj = H2(i, j, xi, yj , wj , σi), where σi =
σj = Mod2(kj , wj). Note that in G1,7, kj is randomly chosen from the uniform
distribution over Rq, we have that σj ∈ {0, 1}n (conditioned on wj) has min-
entropy at least 0.97n by Lemma 4. Thus, the probability that A has made a H2

query with σi is less than 2−0.97n + negl(κ).
– wj ̸= w′j : By assumption that Q1,7 does not happen, we have that A will never

make a H2 query with σi.

The probability that A has made a H2 query with σi is negligible. This claim follows
from the fact that if the adversary does not make a query with σi exactly, the distri-
bution of ski is uniform over {0, 1}κ due to the random oracle property of H2, i.e.,
Pr[F1,7|¬Q1,7] = 1/2 + negl(κ). �

Combining the claims 1∼10, we have that Lemma 5 follows.

5 One-Pass Protocol from Ring-LWE

As MQV [20] and HMQV [5], our AKE protocol has a one-pass variant, which only
consists of a single message from one party to the other. Let a ∈ Rq be the global
public parameter uniformly chosen from Rq at random, and M be a constant. Let pi =
asi + 2ei ∈ Rq be party i’s static public key, where (si, ei) is the corresponding static
secret key; both si and ei are taken from the distribution χα. Similarly, party j has
static public key pj = asj + 2ej and static secret key (sj , ej). The other parameters
and notations used here are the same as that in Section 3.

Initiation Party i proceeds as follows:
1. Sample ri, fi ←r χβ and compute xi = ari + 2fi;
2. Compute c = H1(i, j, xi), r̂i = sic+ ri and f̂i = eic+ fi;

3. Go to step 4 with probability min
(

DZ2n,β(z)

MDZ2n,β,z1
(z) , 1

)
, where z ∈ Z2n is the

coefficient vector of r̂i concatenated with the coefficient vector of f̂i, and z1 ∈
Z2n is the coefficient vector of sic concatenated with the coefficient vector of
eic; otherwise go back to step 1;

4. Sample gi ←r χβ and compute ki = pj r̂i + 2gi where c = H1(i, j, xi);
5. Compute wi = Cha(ki) ∈ {0, 1}n and send (yi, wi) to party j;
6. Compute σi = Mod2(ki, wi), and derive the session key ski = H2(i, j, xi,
wi, σi).

Finish Party j receives the pair (xi, wi) from party i, and proceeds as follows:
1′. Sample gj ←r χα, compute kj = (pic+ xi)sj + 2cgj where c = H1(i, j, xi);
2′. Compute σj = Mod2(kj , wi) and derive the session key skj = H2(i, j, xi,

wi, σj).

The correctness of the protocol simply follows from the fact that ki = pj r̂i+2gi =
(asj+2ej)(sic+ri)+2gi ≈ a(sic+ri)sj+2(eic+fi)sj+2cgj = kj . The security of
the protocol cannot be proven in the BR model with party corruption, since the one-pass
protocol inherently can not provide wPFS due to the lack of messages from the receiver
j. Besides, the protocol cannot prevent a replay attack without additional measures like



25

keeping a state or using synchronized time. However, we can prove its security in a
weak model similar to [5] which avoids the (above) inherent insufficiencies for one-
pass protocols. Since the proof is parallel to the two-pass one, we omit the details.

Finally, we remark that the one-pass protocol can essentially be used as a KEM, and
can be transformed into a CCA-secure encryption scheme in the random oracle model
by combining it with a CPA-secure symmetric-key encryption scheme together with a
MAC algorithm in a standard way (where both keys are derived from the session key
in the one-pass protocol). The resulting encryption has two interesting properties: 1) it
allows the receiver to verify the sender’s identity, but no one else can verify it (since
only the receiver can compute the session key, i.e., it provides some kind of sender
authentication); 2) the sender can deny having created such a ciphertext, because the
receiver can also create such a ciphertext by itself (i.e., it is a deniable encryption).

6 Concrete Parameters and Timings

In this section, we present concrete choices of parameters, and the timings in a proof-
of-concept implementation. Our selection of parameters for our AKE protocols can be
found in Table 2. Those parameters were chosen such that the correctness property is
satisfied with high probability and with the choice of different levels of security.

For the correctness of our two-pass protocol, the error term must be bounded by
∥g̃i− g̃j∥∞ < q/8. Note that g̃i = (ejd+fj)(sic+ri)+dgi, and g̃j = (eic+fi)(sjd+
rj) + cgj , where ei, ej ←r χα, c, d ←r χγ , and fi, fj , ri, rj , gi, gj ←r χβ . Due to
the symmetry, we only estimate the size of ∥g̃i∥∞. At this point, we use the following
fact about the product of two Gaussian distributed random values (as stated in [35]).
Let x ∈ R and y ∈ R be two polynomials whose coefficients are distributed according
to a discrete Gaussian distribution with standard deviation σ and τ , respectively. The
individual coefficients of the product xy are then (approximately) normally distributed
around zero with standard deviation στ

√
n where n is the degree of the polynomial.

In our case, it means that we have ∥(ejd+fj)(sic+ri)∥∞ ≤ 6β2
√
n and ∥dgi∥∞ ≤

6γβ
√
n with overwhelming probability (since erfc(6) is about 2−55). Note that the dis-

tributions of ejd+ fj and sic+ ri are both according to χβ since we use rejection sam-
pling in the protocol. Now, to choose an appropriate β we set η = 1/2 in Lemma 1 such
that ∥ejd∥, ∥sic∥ ≤ 1/2αγnwith probability at most 2 ·0.943−n. Hence, for n ≥ 1024,
we get a potential decryption error with only a probability about 2−87. In order to make
the rejection sampling work, it is sufficient to set β ≥ τ ·1/2αγn = 1/2ταγn for some
constant τ (which is much better than the worst-case bound β = ω(αγ

√
n log n) in

Theorem 1). For instance, if τ = 12, we have an expect number of rejection sampling
about M = 2.72 and a statistical distance about 2−100

M by Theorem 1. For such a choice
of β, we can safely assume that ∥g̃i∥∞ ≤ 6β2

√
n + 6γβ

√
n ≤ 7β2

√
n. Thus, it is

enough to set 16 · 7β2
√
n < q for correctness of the protocol in Section 3.

Though the Ring-LWE problem enjoys a worst-case connection to some hard prob-
lems (e.g., SIVP [29]) on ideal lattices, the connection as summarized in Proposition 1
seems less powerful to estimate the actual security for concrete choices of parameters.
In order to assess the concrete security of our parameters, we use the approach of [70],
which investigates the two most efficient ways to solve the underlying (Ring-)LWE
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Table 2. Choices of parameters (The bound 6α with erfc(6) ≈ 2−55 is used to estimate the size
of secret keys)

Protocol
Choice of

n Security α τ log β log q (bits)
Size (KB)

Parameters pk sk (expt.) init. msg resp. msg

Two-pass

I1
1024

80 bits 3.397 12 16.1 45 5.625 1.5 5.625 5.75

I2 75 bits 3.397 24 17.1 47 5.875 1.5 5.875 6.0

II1
2048

230 bits 3.397 12 17.1 47 11.75 3.0 11.75 12.0

II2 210 bits 3.397 36 18.7 50 12.50 3.0 12.50 12.75

One-pass

III1
1024

160 bits 3.397 12 16.1 30 3.75 1.5 3.875 -

III2 140 bits 3.397 36 17.7 32 4.0 1.5 4.125 -

IV1
2048

360 bits 3.397 12 17.1 32 8.0 3.0 8.25 -

IV2 350 bits 3.397 36 18.7 33 8.25 3.0 8.5 -

problem, namely the embedding and decoding attacks. As opposed to [70], the decoding
attack is more efficient against our instances because the Ring-LWE case with m ≥ 2n
is close to the optimal attack dimension for the corresponding attacks. The decoding
attack first uses a lattice reduction algorithm, such as BKZ [71] / BKZ 2.0 [72] and
then applies a decoding algorithm like the ones in [73–75]. Finally, the closest vector
is returned as the error polynomial, and the secret polynomial is recovered.

As recommended in [74, 76], it is enough to set the Gaussian parameter α ≥ 3.2 so
that the discrete Gaussian DZn,α approximates the continuous Gaussian Dα extremely
well.10 In our experiment, we fix α = 3.397 for a better performance of the Gaussian
sampling algorithm in [39]. As for the choices of γ, we set γ = α for simplicity (actually
such a choice in our experiments works very well: no rejection happened in 1000 hash
evaluations). In Table 2, we set all other parameters β, n, q for our two-pass protocol
to satisfy the correctness condition. We also give the parameter choices of our one-pass
protocol (in this case, we can save a factor of β in q due to the asymmetry). Note that n
is required to be a power of 2 in our protocol (i.e., it is very sparsely distributed11). We
present several candidate choices of parameters for n = 1024, 2048, and estimate the
sizes of public keys, secret keys, and communication overheads in Table 2.

Table 3. Timings of proof-of-concept implementations in ms.

Protocol Parameters τ Initiation Response Finish

Two-pass

I1 12 22.05 ms 30.61 ms 4.35 ms

I2 24 14.26 ms 19.18 ms 4.41 ms

II1 12 49.77 ms 60.31 ms 9.44 ms

II2 36 25.40 ms 36.96 ms 9.59 ms

Protocol Parameters τ Initiation Finish

One-pass

III1 12 26.17 ms 3.64 ms

III2 36 14.57 ms 3.70 ms

IV1 12 53.78 ms 7.75 ms

IV2 36 32.28 ms 7.94 ms

10 Only α is considered because β ≫ α, and the (Ring-)LWE problem becomes harder as α
grows bigger (for a fixed modulus q).

11 We remark such a choice of n is not necessary, but it gives a simple analysis and implemen-
tation. In practice, one might use the techniques for Ring-LWE cryptography in [77] to give a
tighter choice of parameters for desired security levels.
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We have implemented our AKE protocol by using the NTL library compiled with
the option NTL GMP LIP = on (i.e., building NTL using the GNU Multi-Precision
package). The implementations are written in C++ without any parallel computations
or multi-thread programming techniques. The program is run on a Dell Optiplex 780
computer with Ubuntu 12.04 TLS 64-bit system, a 2.83GHz Intel Core 2 Quad CPU and
3.8GB RAM. We use an n-dimensional Fast Fourier Transform (FFT) for the multipli-
cations of two ring elements [78, 79], and the CDT algorithm [80] as a tool for hashing
to DZn,γ and sampling from DZn,α, but the DDLL algorithm [39] for sampling from
DZn,β (because the CDT algorithm has to store large precomputed values for a big β).
In Table 3, we present the average timings of each operation (in millisecond, ms) for
1000 executions. Since our protocols also allow some precomputations like sampling
Gaussian distributions offline, the timings can be greatly reduced if this is considered
in practice. Finally, we note that our implementation has not undergone any real opti-
mization, and it can be much improved in practice.

7 Conclusions and Open Problems

In this paper, a two-pass AKE and its one-pass variant are proposed. Both protocols
are carefully built upon on the algebraic structure of (Ring-)LWE problems and several
recent developments in lattice-based cryptography, and are proven secure based on the
hardness of Ring-LWE in the random oracle model. However, the literature shows that
the use of random oracle is delicate for proving quantum resistance [51]. It is of great
interest to investigate the quantum security of our protocol, or to design an efficient
protocol without the random oracle heuristic (and the need of rewinding).

Acknowledgements. Jiang Zhang and Zhenfeng Zhang are supported by China’s 973
program (No. 2013CB338003) and the National Natural Science Foundation of China
(No. 61170278, 91118006). Jintai Ding is partially supported by the Charles Phelps Taft
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38. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptography: A
signature scheme for embedded systems. In: CHES. (2012) 530–547

39. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal Gaus-
sians. In: CRYPTO. (2013) 40–56

40. Bai, S., Galbraith, S.D.: An improved compression technique for signatures based on learn-
ing with errors. In: CT-RSA. (2014) 28–47

41. Hoffstein, J., Pipher, J., Schanck, J.M., Silverman, J.H., Whyte, W.: Practical signatures from
the partial fourier recovery problem. In: ACNS. (2014) 476–493

42. Katz, J., Vaikuntanathan, V.: Smooth projective hashing and password-based authenticated
key exchange from lattices. In: ASIACRYPT. (2009) 636–652

43. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Strongly secure authenticated key
exchange from factoring, codes, and lattices. In: PKC. (2012) 467–484

44. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Practical and post-quantum authen-
ticated key exchange from one-way secure key encapsulation mechanism. In: ASIACCS.
(2013) 83–94

45. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: STOC. (2008)
187–196

46. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended
abstract. In: STOC. (2009) 333–342

47. Canetti, R., Krawczyk, H.: Security analysis of IKEs signature-based key-exchange protocol.
In: CRYPTO. (2002) 143–161
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