
Hosting Services on an Untrusted Cloud

Dan Boneh1?, Divya Gupta2??, Ilya Mironov3? ? ?, and Amit Sahai2??

1 Stanford University, dabo@cs.stanford.edu
2 UCLA and Center for Encrypted Functionalities, {divyag, asahai}@cs.ucla.edu

3 Google, mironov@gmail.com

Abstract. We consider a scenario where a service provider has created a soft-
ware service S and desires to outsource the execution of this service to an un-
trusted cloud. The software service contains secrets that the provider would like
to keep hidden from the cloud. For example, the software might contain a secret
database, and the service could allow users to make queries to different slices of
this database depending on the user’s identity.
This setting presents significant challenges not present in previous works on out-
sourcing or secure computation. Because secrets in the software itself must be
protected against an adversary that has full control over the cloud that is exe-
cuting this software, our notion implies indistinguishability obfuscation. Further-
more, we seek to protect knowledge of the software S to the maximum extent
possible even if the cloud can collude with several corrupted users.
In this work, we provide the first formalizations of security for this setting, yield-
ing our definition of a secure cloud service scheme. We provide constructions of
secure cloud service schemes assuming indistinguishability obfuscation, one-way
functions, and non-interactive zero-knowledge proofs.
At the heart of our paper are novel techniques to allow parties to simultaneously
authenticate and securely communicate with an obfuscated program, while hid-
ing this authentication and communication from the entity in possession of the
obfuscated program.

1 Introduction

Consider a service provider that has created some software service S that he wants
to make accessible to a collection of users. However, the service provider is compu-
tationally weak and wants to outsource the computation of S to an untrusted cloud.
Nevertheless, the software is greatly valuable and he does not want the cloud to learn

? Supported by NSF and DARPA.
?? Research supported in part from a DARPA/ONR PROCEED award, NSF Frontier Award

1413955, NSF grants 1228984, 1136174, 1118096, and 1065276, a Xerox Faculty Research
Award, a Google Faculty Research Award, an equipment grant from Intel, and an Okawa Foun-
dation Research Grant. This material is based upon work supported by the Defense Advanced
Research Projects Agency through the U.S. Office of Naval Research under Contract N00014-
11-1-0389. The views expressed are those of the author and do not reflect the official policy or
position of the Department of Defense, the NSF, or the U.S. Government.

? ? ? Work done in Microsoft Research.

what secrets are embedded in the software S. There are many concrete examples of
such a scenario; for example, the software could contain a secret database, and the ser-
vice could allow users to make queries to different slices of this database depending on
the user’s identity.

At first glance, such a scenario seems like a perfect application of obfuscation
and can be thought to be solved as follows: The provider could obfuscate the soft-
ware O(S) and send this directly to the cloud. Now, the cloud could receive an input
(id, x) directly from a user with identity id, and respond with the computed output
O(S)(id, x) = S(id, x). Secure obfuscation would ensure that the cloud would never
learn the secrets built inside the software, except for what is efficiently revealed by the
input-output behavior of the software. But this approach does not provide any privacy
to the users. In such a setting, the cloud will be able to learn the inputs x and the outputs
S(id, x) of the multitude of users which use this service. This is clearly undesirable in
most applications. Worse still, the cloud will be able to query the software on arbitrary
inputs and identities of its choice. In our scheme, we want to guarantee input and output
privacy for the users. Moreover, we want that only a user who pays for and subscribes to
the service is able to access the functionality that the service provides for that particular
user.

Ideally, we would like that, first, a user with identity id performs some simple one-
time set-up interaction with the service provider to obtain a keyKid. This keyKid would
also serve as authentication information for the user. Later, in order to run the software
on input x of his choice, he would encrypt x to EncKid

(x) and send it to the cloud. The
cloud would run the software to obtain an encryption of S(id, x), which is sent back to
the user while still in encrypted form. Finally, the user can decrypt in order to obtain its
output.

Let us step back and specify a bit more precisely the security properties we desire
from such a secure cloud service.

1. Security against malicious cloud. In our setting, if the cloud is the only malicious
party, then we require that it cannot learn anything about the nature of the compu-
tation except a bound on the running time. In particular, it learns nothing about the
code of the software or the input/output of users.

2. Security against malicious clients. If a collection of users is malicious, they can-
not learn anything beyond what is learnable via specific input/output that the mali-
cious users see. Furthermore, if a client is not authenticated by the service provider,
it cannot learn anything at all.

3. Security against a malicious cloud and clients. Moreover, even when a malicious
cloud colludes with a collection of malicious users, the adversary cannot learn any-
thing beyond the functionality provided to the malicious users. That is, the adver-
sary does not learn anything about the input/output of the honest users or the slice
of service provided to them. More precisely, consider two software services S and
S′ which are functionally equivalent when restricted to corrupt users. Then the ad-
versary cannot distinguish between the instantiations of the scheme with S and S′.

4. Efficiency. Since the service provider and the users are computationally weak par-
ties, we want to make their online computation highly efficient. The interaction
in the set-up phase between the provider and a user should be independent of the

complexity of the service being provided. For the provider, only its one-time en-
coding of the software service should depend polynomially on the complexity of
the software. The work of the client in encrypting his inputs should only depend
polynomially on the size of his inputs and a security parameter. And finally, the
running time of the encoded software on the cloud should be bounded by a fixed
polynomial of the running time of the software.

Note that since the scheme is for the benefit of the service provider, who could choose
to provide whatever service it desires, we assume that the service provider itself is
uncompromised.

We call a scheme that satisfies the above listed properties, a Secure Cloud Ser-
vice Scheme (SCSS). In this work, we provide the first construction of a secure cloud
service scheme, based on indistinguishability obfuscation, one-way functions, and non-
interactive zero-knowledge proofs. At the heart of our paper are novel techniques to
allow parties to simultaneously authenticate and securely communicate with an obfus-
cated program, while hiding this authentication and communication from the entity in
possession of the obfuscated program.

Relationships to other models. At first glance, the setting we consider may seem simi-
lar to notions considered in earlier works. However, as we describe below, there are sub-
stantial gaps between these notions and our setting. As an initial observation, we note
that a secure cloud service scheme is fundamentally about protecting secrets within
software run by a single entity (the cloud), and therefore is intimately tied to obfus-
cation. Indeed, our definition of a secure cloud service scheme immediately implies
indistinguishability obfuscation. Thus, our notion is separated from notions that do not
imply obfuscation. We now elaborate further, comparing our setting to two prominent
previously considered notions.

◦ Delegation of Computation. A widely studied topic in cryptography is secure
delegation or outsourcing of computation (e.g., [14,11,7,16]), where a single user
wishes to delegate a computation to the cloud. The most significant difference be-
tween delegation and our scheme is that in delegation the role of the provider and
the user is combined into a single entity. In contrast, in our setting the entity that de-
cides the function S is the provider, and this entity is completely separate from the
entities (users) that receive outputs. Indeed, a user should learn nothing about the
function being computed by the cloud beyond what the specific input/output pairs
that the user sees. Moreover, the vast majority of delegation notions in literature do
not require any kind of obfuscation.
Furthermore, we consider a setting where multiple unique users have access to a
different slice of service on the cloud (based on their identities), whereas in stan-
dard formulations of delegation, only one computation is outsourced from client to
the cloud. There is a recent work on delegation that does consider multiple users:
the work of [8] on outsourcing RAM computations goes beyond the standard set-
ting of delegation to consider a multi-user setting. But as pointed out by the authors
themselves, in this setting, the cloud can learn arbitrary information about the de-
scription of the software. Their notion of privacy only guarantees that the cloud

learns nothing about the inputs and outputs of the users, but not about the nature
of the computation – which is the focus of our work. Moreover, in their setting,
no security is promised in the case of a collusion between a malicious cloud and a
malicious client. The primary technical contributions of our work revolve around
guaranteeing security in this challenging setting.

◦ Multi-Input Functional Encryption (MIFE). Recently, the work of [10] intro-
duced the extremely general notion of multi-input functional encryption (MIFE),
whose setting can capture a vast range of scenarios. Nevertheless, MIFE does not
directly apply to our scenario: In our setting, there are an unbounded number of
possible clients, each of which gets a unique encryption key that is used to prepare
its input for the cloud. MIFE has been defined with respect to a fixed number of
possible encryption keys [10], but even if it were extended to an unbounded num-
ber of encryption keys, each function evaluation key in an MIFE would necessarily
be bound to a fixed number of encryption keys. This would lead to a combinatorial
explosion of exponentially many function evaluation keys needed for the cloud.
Alternatively, one could try to build a secure cloud service scheme by “jury-rigging”
MIFE to nevertheless apply to our scenario. Fundamentally, because MIFE does
imply indistinguishability obfuscation [10], this must be possible. But, as far we
know, the only way to use MIFE to build a secure cloud service scheme is by essen-
tially carrying out our entire construction, but replacing our use of indistinguisha-
bility obfuscation with calls to MIFE. At a very high level, the key challenges in
applying MIFE to our setting arise from the IND-definition of MIFE security [10],
which largely mirrors the definition of indistinguishability obfuscation security. We
elaborate on these challenges below, when we discuss our techniques.

1.1 Our Results.

In this work, we formalize the notion of secure cloud service scheme (Section 3) and
give the first scheme which achieves this notion. In our formal notion, we consider
potential collusions involving the cloud and up to k corrupt users, where k is a bound
fixed in advance. (Note again that even with a single corrupt user, our notion implies
indistinguishability obfuscation.) We then give a protocol which implements a secure
cloud service scheme. More formally,

Theorem 1. Assuming the existence of indistinguishability obfuscation, statistically
simulation-sound non-interactive zero-knowledge proof systems and one-way functions,
for any bound k on the number of corrupt users that is polynomially related to the se-
curity parameter, there exists a secure cloud service scheme.

Note that we only require a bound on the number of corrupt clients, and not on the
total number of users in the system. Our scheme provides an exponential space of possi-
ble identities for users. We note that the need to bound the number of corrupt users when
using indistinguishability obfuscation is related to several other such bounds that are
needed in other applications of indistinguishability obfuscation, such as the number of
adversarial ciphertexts in functional encryption [6] and multi-input functional encryp-
tion [10] schemes. We consider the removal of such a bound using indistinguishability
obfuscation to be a major open problem posed by our work.

Furthermore, we also consider the case when the software service takes two in-
puts: one from the user and other from the cloud. We call this setting a secure cloud
service scheme with cloud inputs. This setting presents an interesting technical chal-
lenge because it opens up exponential number of possible functions that could have
been provided to a client. We resolve this issue using a technically interesting sequence
of 2` hybrids, where ` is the length of the cloud’s input (see Our Techniques below
for further details). To prove security, we need to assume sub-exponential hardness of
indistinguishability obfuscation. More formally, we have the following result.

Theorem 2. Assuming the existence of sub-exponentially hard indistinguishability ob-
fuscation, statistically simulation-sound non-interactive zero-knowledge proof systems
and sub-exponentially hard one-way functions, for any bound k on the number of cor-
rupt users that is polynomially related to the security parameter, there exists a secure
cloud service scheme with cloud inputs.

1.2 Our Techniques.

Since a secure cloud service scheme implies indistinguishability obfuscation (iO), let
us begin by considering how we may apply obfuscation to solve our problem, and use
this to identify the technical obstacles that we will face.

The central goal of a secure cloud service scheme is to hide the nature of the service
software S from the cloud. Thus, we would certainly use iO to obfuscate the software
S before providing it to the cloud. However, as we have already mentioned, this is not
enough, as we also want to provide privacy to honest users. Our scheme must also give
a user the ability to encrypt its input x in such a way that the cloud cannot decrypt it,
but the obfuscated software can. After choosing a public key PK and decryption key
SK for a public-key encryption scheme, we could provide PK to the user, and build
SK into the obfuscated software to decrypt inputs. Finally, each user should obtain
its output in encrypted form, so that the cloud cannot decrypt it. In particular, each
user can choose a secret key Kid, and then to issue a query, it can create the ciphertext
c = EncPK(x,Kid). Thus, we need to build a program Ŝ that does the following: It
takes as input the user id id and a ciphertext c. It then decrypts c using SK to yield
(x,Kid). It then computes the output y = S(id, x). Finally, it outputs the ciphertext
d = Enc(Kid, y). The user can decrypt this to obtain y. The cloud should obtain an
obfuscated version of this software Ŝ.

At first glance, it may appear that this scheme would already be secure, at least if
given an “ideal obfuscation” akin to Virtual Black-Box obfuscation [1]. However, this
is not true. In particular, there is a malleability attack that arises: Consider the scenario
where the cloud can malleate the ciphertext sent by the user, which contains his input
x and key Kid, to an encryption of x and K∗, where K∗ is maliciously chosen by the
cloud. If this were possible, the cloud could use its knowledge of K∗ to decrypt the
output d = Enc(Kid, y) produced by the obfuscated version of Ŝ. But this is not all.
Another problem we have not yet handled is authentication: a malicious user could
pretend to have a different identity id than the one that it is actually given, thereby
obtaining outputs from S that it is not allowed to access. We must address both the

malleability concern and the authentication concern, but also do this in a way that works
with indistinguishability obfuscation, not just an ideal obfuscation.

Indeed, once we constrain ourselves to only using indistinguishability obfuscation,
additional concerns arise. Here, we will describe the two most prominent issues, and
describe how we deal with them.

Recall that our security notion requires that if an adversary corrupts the cloud and
a user id∗, then the view of the adversary is indistinguishable for any two softwares S
and S′ such that S(id∗, x) = S′(id∗, x) for all possible inputs x. However, S and S′

could differ completely on inputs for several other identities id. Ideally, in our proof,
we would like to use the security of iO while making the change from S to S′ in
the obfuscated program. In order to use the security of iO, the two programs being
obfuscated must be equivalent for all inputs, and not just the inputs of the malicious
client with identity id∗. However, we are given no such guarantee for S and S′. So in our
proof of security, we have to construct a hybrid (indistinguishable from real execution
on S) in which S can only be invoked for the malicious client identity id∗. Since we
have functional equivalence for this client, we will then be able to make the switch from
Ŝ to Ŝ′ by security of iO. We stress that the requirement to make this switch is that
there does not exist any input to the obfuscated program which give different outputs
for Ŝ and Ŝ′. It does not suffice to ensure that a differing input cannot be computed
efficiently. To achieve this, in this hybrid, we must ensure that there does not exist any
valid authentication for all the honest users. Thus, since no honest user can actually get
a useful output from Ŝ or Ŝ′, they will be functionally equivalent. In contrast, all the
malicious users should still be able to get authenticated and obtain outputs from the
cloud; otherwise the adversary would notice that something is wrong. We achieve this
using a carefully designed authentication scheme that we describe next.

At a high level, we require the following: Let k be the bound on the number of
malicious clients. The authentication scheme should be such that in the “fake mode” it
is possible to authenticate the k corrupt user identities and there does not exist (even
information-theoretically) any valid authentication for any other identity. We achieve
this notion by leveraging k-cover-free sets of [4,13] where there are a super-polynomial
number of sets over a polynomial sized universe such that the union of any k sets does
not cover any other set. We use these sets along with length doubling PRGs to build our
authentication scheme.

Another problem that arises with the use of indistinguishability obfuscation con-
cerns how outputs are encrypted within Ŝ. The output of the obfuscated program is
a ciphertext which encrypts the actual output of the software. We are guaranteed that
the outputs of S and S′ are identical for the corrupt clients, but we still need to en-
sure that the corresponding encryptions are also identical (in order to apply the se-
curity of iO.) We ensure this by using an encryption scheme which satisfies the fol-
lowing: If two obfuscated programs using S and S′, respectively, are given a cipher-
text as input, then if S and S′ produce the same output, then the obfuscated programs
will produce identical encryptions as output. In particular, our scheme works as fol-
lows: the user sends a pseudo-random function (PRF) key Kid and the program outputs
y = PRF(Kid, r)⊕ S(x, id), where the r value is computed using another PRF applied
to the ciphertext c itself. Thus we ensure that for identical ciphertexts as inputs, both

programs produce the same r, and hence the same y. This method allows us to switch S
to S′, but the new challenge then becomes how to argue the security of this encryption
scheme. To accomplish this, we use the punctured programming paradigm of [18] to
build a careful sequence of hybrids using punctured PRF keys to argue security.

We need several other technical ideas to make the security proof work. Please see
our protocol in Section 4 and proof in Section 4.1 for details.

When considering the case where the cloud can also provide an input to the com-
putation, the analysis becomes significantly more complex because of a new attack:
The cloud can take an input from an honest party, and then try to vary the cloud’s own
input, and observe the impact this has on the output of the computation. Recall that
in our proof of security, in one hybrid, we will need to “cut off” honest parties from
the computation – but we need to do this in a way that is indistinguishable from the
cloud’s point of view. But an honest party that has been cut off will no longer have an
output that can depend on the cloud’s input. If the cloud can detect this, the proof of
security fails. In order to deal with this, we must change the way that our encryption of
the output works, in order to include the cloud input in the computation of the r value.
But once we do this, the punctured programming methods of [18] become problematic.
To deal with this issue, we create a sequence of exponentially many hybrids, where we
puncture out exactly one possible cloud input at a time. This lets us avoid a situation
where the direct punctured programming approach would have required an exponential
amount of puncturing, which would cause the programs being obfuscated to blow up to
an exponential size.

2 Prelims

Let λ be the security parameter. Below, we describe the primitives used in our scheme.

2.1 Public Key Encryption Scheme

A public key encryption scheme pke over a message spaceM =Mλ consists of three
algorithms PKGen,PKEnc,PKDec. The algorithm PKGen takes security parameter 1λ

and outputs the public key pk and secret key sk. The algorithm PKEnc takes public key
pk and a message µ ∈ M as input and outputs the ciphertext c that encrypts µ. The
algorithm PKDec takes the secret key sk and ciphertext c and outputs a message µ.

A public key encryption scheme pke is said to be correct if for all messages µ ∈M:

Pr[(pk, sk)← PKGen(1λ);PKDec(sk,PKEnc(pk, µ;u)) 6= µ] 6 negl(λ)

A public key encryption scheme pke is said to be IND-CPA secure if for all PPT
adversaries A following holds:

Pr

[
b = b′

∣∣∣∣ (pk, sk)← PKGen(1λ); (µ0, µ1, st)← A(1λ, pk);

b
$←{0, 1}; c = PKEnc(pk, µb;u); b

′ ← A(c, st)

]
6

1

2
+ negl(λ)

2.2 Indistinguishability Obfuscation

The definition below is from [6]; there it is called a “family-indistinguishable obfus-
cator”, however they show that this notion follows immediately from their standard
definition of indistinguishability obfuscator using a non-uniform argument.

Definition 1 (Indistinguishability Obfuscator (iO)). A uniform PPT machine iO is
called an indistinguishability obfuscator for acircuit class {Cλ} if the following condi-
tions are satisfied:

◦ For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have that

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1

◦ For any (not necessarily uniform) PPT adversaries Samp,D, there exists a negligi-
ble functionα such that the following holds: if Pr[∀x,C0(x) = C1(x) : (C0, C1, σ)←
Samp(1λ)] > 1− α(λ), then we have:

∣∣∣Pr [D(σ, iO(λ,C0)) = 1 : (C0, C1, σ)← Samp(1λ)
]

−Pr
[
D(σ, iO(λ,C1)) = 1 : (C0, C1, σ)← Samp(1λ)

]∣∣∣ ≤ α(λ)
In this paper, we will make use of such indistinguishability obfuscators for all

polynomial-size circuits:

Definition 2 (Indistinguishability Obfuscator for P/poly). A uniform PPT machine
iO is called an indistinguishability obfuscator for P/poly if the following holds: Let Cλ
be the class of circuits of size at most λ. Then iO is an indistinguishability obfuscator
for the class {Cλ}.

Such indistinguishability obfuscators for all polynomial-size circuits were constructed
under novel algebraic hardness assumptions in [6].

2.3 Puncturable PRF

Puncturable PRFs are a simple types of constrained PRFs [2,12,3]. These are PRFs that
can be defined on all bit strings of a certain length, except for any polynomial-size set
of inputs. Following definition has been taken verbatim from [18].

Definition 3. A puncturable family of PRFs F is given by a triple of turing machines
PRFKeyF,PunctureF,EvalF, and a pair of computable functions n(·) and m(·), satis-
fying the following conditions.

◦ Functionality preserved under puncturing. For every PPT adversaryA such that
A(1λ) outputs a set S ⊆ {0, 1}n(λ), then for all x ∈ {0, 1}n(λ) where x /∈ S, we
have that:

Pr
[
EvalF(K,x) = EvalF(KS , x) : K ← PRFKeyF(1

λ),KS = PunctureF(K,S)
]
= 1

◦ Pseudorandom at punctured points. For every PPT adversary (A1,A2) such that
A1(1

λ) outputs a set S ⊆ {0, 1}n(λ) and state st, consider an experiment where
K ← PRFKeyF(1

λ) and KS = PunctureF(K,S). Then we have∣∣∣Pr [A2(σ,KS , S,EvalF(K,S)) = 1
]
−Pr

[
A2(st,KS , S, Um(λ)·|S|) = 1

]∣∣∣ = negl(λ)

where EvalF(K,S) denotes the concatenation of EvalF(K,x1)), . . . ,EvalF(K,xk))
where S = {x1, . . . , xk} is the enumeration of the elements of S in lexicographic
order, negl(·) is a negligible function, and U` denotes the uniform distribution over
` bits.

For ease of notation, we write PRF(K,x) to represent EvalF(K,x). We also repre-
sent the punctured key PunctureF(K,S) by K(S).

The GGM tree-based construction of PRFs [9] from one-way functions are easily
seen to yield puncturable PRFs, as recently observed by [2,12,3]. Thus we have:

Theorem 3. [9,2,12,3] If one-way functions exist, then for all efficiently computable
functions n(λ) and m(λ), there exists a puncturable PRF family that maps n(λ) bits to
m(λ) bits.

2.4 Statistical Simulation-Sound Non-Interactive Zero-Knowledge

This primitive was introduced in [6] and was constructed from standard NIZKs using a
commitment scheme. A statistically simulation-sound NIZK proof system for a relation
R consists of three algorithms: NIZKSetup, NIZKProve, and NIZKVerify and satisfies
the following properties.

Perfect completeness. An honest prover holding a valid witness can always convince
an honest verifier. Formally,

Pr

[
NIZKVerify(crs, x, π) = 1

∣∣∣∣ crs← NIZKSetup(1λ); (x,w) ∈ R;
π ← NIZKProve(crs, x, w)

]
= 1

Statistical soundness. A proof system is sound if it is infeasible to convince an honest
verifier when the statement is false. Formally, for all (even unbounded) adversaries A,

Pr

[
NIZKVerify(crs, x, π) = 1

∣∣∣∣ crs← NIZKSetup(1λ);
(x, π)← A(crs);x /∈ L

]
6 negl(λ)

Computational zero-knowledge [5]. A proof system is zero-knowledge if a proof does
not reveal anything beyond the validity of the statement. In particular, it does not reveal
anything about the witness used by an honest prover. We say that a non-interactive
proof system is zero-knowledge if there exists a PPT simulator S = (S1,S2) such that

S1 outputs a simulated CRS and a trapdoor τ for proving x and S2 produces a simulated
proof which is indistinguishable from an honest proof. Formally, for all PPT adversaries
A, for all x ∈ L such w is witness, following holds.

Pr

[
A(crs, x, π) = 1

∣∣∣∣ crs← NIZKSetup(1λ);
π ← NIZKProve(crs, x, w)

]
≈

Pr

[
A(crs, x, π) = 1

∣∣∣∣ (crs, τ)← S1(1
λ, x);

π ← S2(crs, τ, x)

]
Statistical simulation-soundness. A proof system is said to be statistical simulation
sound if is infeasible to convince an honest verifier when the statement is false even
when the adversary is provided with a simulated proof (of a possibly false statement.)
Formally, for all (even unbounded) adversariesA, for all statements x, following holds.

Pr

[
NIZKVerify(crs, x′, π′) = 1

∣∣∣∣ (crs, τ)← S1(1
λ, x);π ← S2(crs, τ, x);

(x′, π′)← A(crs, x, π);x′ /∈ L

]
6 negl(λ)

2.5 Cover-Free Set Systems and Authentication Schemes.

The authentication system we will use in our scheme will crucially use the notion of a
cover-free set systems. Such systems were considered and build in [4,13]. Our defini-
tions and constructions are inspired by those in [13].

Definition 4 (k-cover-free set system). Let U be the universe and n:=|U |. A family
of sets T = {T1, . . . , TN}, where each Ti ⊆ U is a k-cover-free set family if for
all T1, . . . , Tk ∈ T and T ∈ T such that T 6= Ti for all i ∈ [k] following holds:
T \ ∪i∈[k] Ti 6= ∅.

[13] constructed such a set system using Reed-Solomon codes. We define these
next. Let Fq be a finite field of size q. Let Fq,k denote the set of polynomials on Fq of
degree at most k.

Definition 5 (Reed-Solomon code). Let x1, . . . , xn ∈ Fq be distinct and k > 0. The
(n, k)q-Reed-Solomon code is given by the subspace {〈f(x1), . . . , f(xn)〉 | f ∈ Fq,k}.

It is well-known that any two distinct polynomials of degree at most k can agree on
at most k points.

Construction of k-cover-free sets. Let Fq = {x1, . . . , xq} be a finite field of size q.
We will set q in terms of security parameter λ and k later. Let universe be U = Fq×Fq .
Define d:= q−1

k . The k-cover-free set system is as follows: T = {Tf | f ∈ Fq,d}, where
Tf = {〈x1, f(x1)〉, . . . 〈xq, f(xq)〉} ⊂ U .

Note thatN := |T | = qd+1. For example, by putting q = k log λ, we getN = λω(1).
In our scheme, we will set q = kλ to obtain N > 2λ.

Claim. The set system T is k-cover-free.

Proof. Note that each set Tf is a (q, d)q-Reed-Solomon code. As pointed out earlier,
any two distinct Reed-Solomon codes of degree d can agree on at most d points. Hence,
|Ti∩Tj | 6 d for all Ti, Tj ∈ T . Using this we get, for any T, T1, . . . , Tk ∈ T such that
T 6= Ti for all i ∈ [k], ∣∣T \ ∪i∈[k]Ti∣∣ > q − kd = 1

Authentication Scheme based on k-cover-free sets. At a high level, there is an honest
authenticator H who posses a secret authentication key ask and announces the public
verification key avk. There are (possibly unbounded) polynomial number of users and
each user has an identity. We want to design a primitive such that H can authenticate a
user depending on his identity. The authentication tid can be publicly verified using the
public verification key.
Let PRG : Y → Z be a pseudorandom generator. with Y = {0, 1}λ and Z = {0, 1}2λ.
Let the number of corrupted users be bounded by k. Let Fq = {x1, . . . , xq} be a finite
field with q > kλ. In the scheme below we will use the k-cover-free sets described
above. Let d = q−1

k . Let T be the family of cover-free sets over the universe F2
q such

that each set is indexed by an element in Fd+1
q .

The authentication schemes has three algorithms AuthGen, AuthProve and Authverify
described as follows.

◦ Setup: The algorithm AuthGen(1λ) works follows: For all i, j ∈ [q], picks sij
$←

Y . Set ask = {sij}i,j∈[q] and avk = {PRG(sij)}i,j∈[q] = {zij}i,j∈[q]. Returns
(avk, ask). The keys will also contain the set-system T . We assume this implicitly,
and omit writing it.

◦ Authentication: The algorithm AuthProve(ask, id) works as follows for a user id.
Interpret id as a polynomial in Fq,d for d = q−1

k , i.e., id ∈ Fd+1
q . Let Tid be the

corresponding set in T . For all i ∈ [q], if id(xi) = xj for some j ∈ [q], then set
yi = sij . It returns tid = {yi} for all i ∈ [q].

◦ Verification: The algorithm Authverify(avk, id, tid) works as follows: Interpret id as
a polynomial in Fq,d for d = q−1

k , i.e., id ∈ Fd+1
q . Let Tid be the corresponding set

in T . Let tid = {y1, . . . , yq}. For all i ∈ [q], if id(xi) = xj for some j ∈ [q], then
check whether PRG(yi) = zij . Accept tid if and only if all the checks pass.

The security properties this scheme satisfies are as follows:
Correctness. Honestly generated authentications always verify under the verification
key. Formally, for any id, following holds.

Pr[Authverify(avk, id, tid) = 1 | (avk, ask)← AuthGen(1λ); tid ← AuthProve(ask, id)] = 1

k-Unforgeability. Given authentication of any k users {id1, . . . , idk}, for any PPT ad-
versary A, it is infeasible to compute tid∗ for any id∗ 6= idi for all i ∈ [k]. More
formally, we have that for PPT adversary A and any set of at most k corrupt ids I such
that |I| 6 k, following holds.

Pr

 id∗ /∈ I ∧
Authverify(avk, id∗, tid∗) = 1

∣∣∣∣∣∣
(ask, avk)← AuthGen(1λ);
tidi ← AuthProve(ask, idi)∀idi ∈ I;
(id∗, tid∗)← A(avk, {idi, tidi}idi∈I)

 6 negl(λ)

Our scheme satisfies unforgeability as follows: Since T is a k-cover-free set system,
there exists an element in Tid∗ which is not present in ∪idi∈ITidi . Hence, we can use an
adversary A who breaks unforgeability to break the pseudorandomness of PRG.

Fake Setup: In our hybrids, we will also use a fake algorithm of setup. Consider a
scenario where a PPT adversary A controls k corrupt users with identities id1, . . . , idk,
without loss of generality. The fake setup algorithm we describe below will generate
keys (ask, avk) such that it is only possible to authenticate the corrupt users and there
does not exist any authentication which verifies under avk for honest users. Moreover,
these two settings should be indistinguishable to the adversary. Below, we describe this
setup procedure and then state and prove the security property.

The algorithm FakeAuthGen(1λ, id1, . . . , idk) works follows: For each i ∈ [k], in-
terpret idi as a polynomial in Fq,d for d = q−1

k , i.e., idi ∈ Fd+1
q . Let Tidi be the

corresponding set in T . Define T ∗ = ∪iTidi . Recall that the universe is F2
q .

Start with ask = ∅. For all i, j ∈ [q], if (xi, xj) ∈ T ∗, pick sij
$←Y and add (i, j, sij)

to ask. For all i, j ∈ [q], if (xi, xj) ∈ T ∗, set zij = PRG(sij) else set zij
$← Z. Define

avk = {PRG(sij)}i,j∈[q]. Return (avk, ask).
Let I = {id1, . . . , idk}. The security properties of algorithm FakeAuthGen are:

◦ Correct authentication for all id ∈ I: It is easy to see that for any corrupt user
id ∈ I, AuthProve will produce a tid which will verify under avk.

◦ No authentication for all id /∈ I: For any id /∈ I, by property of k-cover-free sets,
there exists a (xi, xj) ∈ Tid such that (xi, xj) /∈ T ∗. Moreover, a random element
z

$←Z does not lie in im(PRG) with probability 1−negl(λ). Hence, with probability
1 − negl(λ), zij has no pre-image under PRG. This ensures that no tid can verify
under avk using algorithm Authverify.

◦ Indistinguishability: This implies that any PPT adversary given avk and tid for all
corrupt users cannot distinguish between real setup and fake setup. More formally,
we have that for any PPT adversary A, and any set of at most k corrupt ids I =
{idi}i∈[k], following holds.

Pr

A(avk, {tidi}i∈[k]) = 1

∣∣∣∣∣∣
(ask, avk)← AuthGen(1λ);
tidi ← AuthProve(ask, idi)
∀i ∈ [k]

 ≈
Pr

A(avk, {tidi}i∈[k]) = 1

∣∣∣∣∣∣
(ask, avk)← AuthGen(1λ, I);
tidi ← AuthProve(ask, idi)
∀i ∈ [k]



We can prove this via a sequence of q2 − |T ∗| hybrids. In the first hybrid, we use
the algorithm AuthGen to produce the keys. In each subsequent hybrid, we pick a
new i, j such that (xi, xj) /∈ T ∗ and change zij to a random element in Z instead
of PRG(sij . Indistinguishability of any two consecutive hybrids can be reduced to
the pseudorandomness of PRG.

3 Secure Cloud Service Scheme (SCSS) Model

In this section, we first describe the setting of the secure cloud service, followed by var-
ious algorithms associated with the scheme and finally the desired security properties.

In this setting, we have three parties: The provider, who owns a program P , the
cloud, where the program is hosted, and arbitrary many collection of users. At a very
high level, the provider wants to hosts the program P on a cloud. Additionally, it wants
to authenticate users who pay for the service. This authentication should allow a legit-
imate user to access the program hosted on the cloud and compute output on inputs
of his choice. To be useful, we require the scheme to satisfy the following efficiency
properties:

Weak Client. The amount of work done by the client should depend only on the size
of the input and the security parameter and should be completely independent of
the running time of the program P . In other words, the client should perform sig-
nificantly less work than executing the program himself. This implies that both the
initial set up phase with the provider and the subsequent encoding of inputs to the
cloud are both highly efficient.

Delegation. The one-time work done by the provider in hosting the program should
be bounded by a fixed polynomial in the program size. But, henceforth, we can
assume that the work load of the provider in authenticating users only depends on
the security parameter.

Polynomial Slowdown. The running time of the cloud on encoded program is bounded
by a fixed polynomial in the running time of the actual program.

Next, we describe the different procedures associated with the scheme formally.

Definition 6 (Secure Cloud Service Scheme (SCSS)). A secure cloud service scheme
consists of following procedures SCSS = (SCSS.prog,SCSS.auth,SCSS.inp,SCSS.eval):

◦ (P̃ , σ) ← SCSS.prog(1λ, P, k): Takes as input security parameter λ, program P
and a bound k on the number of corrupt users and returns encoded program P̃ and
a secret σ to be useful in authentication.

◦ authid ← SCSS.auth(id, σ): Takes the identity of a client and the secret σ and
produces an authentication authid for the client.

◦ (x̃, α) ← SCSS.inp(1λ, authid, x): Takes as input the security parameter, authen-
tication for the identity and the input x to produce encoded input x̃. It also outputs
α which is used by the client later to decode the output obtained.

◦ ỹ ← SCSS.eval(P̃ , x̃): Takes as input encoded program and encoded input and
produces encoded output. This can be later decoded by the client using α produced
in the previous phase.

In our scheme, the provider will run the procedure SCSS.prog to obtain the encoded
program P̃ and the secret σ. It will then send P̃ to the cloud. Later, it will authenticate
users using σ. A user with identity id who has a authentication authid, will encode his
input x using procedure SCSS.inp to produce encoded input x̃ and secret α. He will
send x̃ to the cloud. The cloud will evaluate the encoded program P̃ on encoded input
x̃ and return encoded output ỹ to the user. The user can now decode the output using α.

Security properties. Our scheme is for the benefit of the provider and hence we as-
sume that the provider is uncompromised. The various security properties desired are
as follows:

Definition 7 (Untrusted Cloud Security). Let SCSS be the secure cloud service scheme
as described above. This scheme satisfies untrusted cloud security if the following
holds. We consider an adversary who corrupts the cloud as well as k clients I ′ =
{id′1, . . . , id

′
k}. Consider two programs P and P ′ such that P (id′i, x) = P ′(id′i, x) for

all i ∈ [k] and all inputs x. Let m(λ) be an efficiently computable polynomial. For any
m honest users identities I = {id1, . . . , idm} such that I∩I ′ = ∅ and for any sequence
of pairs of inputs for honest users {(x1, x′1), . . . , (xm, x′m)}, consider the following two
experiments:

The experiment Real(1λ) is as follows:

1. (P̃ , σ)← SCSS.prog(1λ, P, k).
2. For all i ∈ [m], authidi ← SCSS.auth(idi, σ).
3. For all i ∈ [m], (x̃i, αi)← SCSS.inp(1λ, idi, authidi , xi).
4. For all j ∈ [k], authid′j

← SCSS.auth(id′j , σ).

5. Output (P̃ , {authid′j
}j∈[k], {x̃i}i∈[m]).

The experiment Real′(1λ) is as follows:

1. (P̃ ′, σ)← SCSS.prog(1λ, P ′, k).
2. For all i ∈ [m], authidi ← SCSS.auth(idi, σ).
3. For all i ∈ [m], (x̃′i, αi)← SCSS.inp(1λ, idi, authidi , x

′
i).

4. For all j ∈ [k], authid′j
← SCSS.auth(id′j , σ).

5. Output (P̃ ′, {authid′j
}j∈[k], {x̃′i}i∈[m]).

Then we have,
Real(1λ) ≈c Real′(1λ)

Remark: In the above definition, the only difference between two experiments is that
Real uses the program P and honest users inputs {x1, . . . , xm} and Real′ uses program
P ′ and honest users inputs {x′1, . . . , x′m}. Note that no relationship is required to exist
between the set of inputs {x1, . . . , xm} and the set of inputs {x′1, . . . , x′m}.

Definition 8 (Untrusted Client Security). Let SCSS be the secure cloud service scheme
as described above. This scheme satisfies untrusted client security if the following holds.

Let A be a PPT adversary who corrupts at most k clients I ′ = {id′1, . . . , id
′
k}. Con-

sider any program P . Let n(λ) be an efficiently computable polynomial. Consider the
following two experiments:

The experiment Real(1λ) is as follows:

1. (P̃ , σ)← SCSS.prog(1λ, P, k).
2. For all i ∈ [k], authid′i

← SCSS.auth(id′i, σ). Send {authid′i
}i∈[k] to A.

3. For each i ∈ [n],
◦ A (adaptively) sends an encoding x̃i using identity id.
◦ Run SCSS.eval(P̃ , x̃i) to compute ỹi. Send this to A.

4. Output ({authid′i
}i∈[k], {ỹi}i∈[n]).

We require that there The definition requires that there exist two procedures decode
and response. Based on these procedures, we define SimP (1λ) w.r.t. an oracle for the
program P . Below, dummy is any program of the same size as P .

1. (d̃ummy, σ)← SCSS.prog(1λ, dummy, k).
2. For all i ∈ [k], authid′i

← SCSS.auth(id′i, σ). Send {authid′i
}i∈[k] to A.

3. For each i ∈ [n],
◦ A (adaptively) sends an encoding x̃i using some identity id.
◦ If id /∈ I ′ set ỹ = ⊥. Otherwise, run decode(σ, x̃i) which either outputs (xi, τi)

or ⊥. If it outputs ⊥, set ỹ = ⊥. Else, the simulator sends (id, xi) to the oracle
and obtains yi = P (id, xi). Finally, it computes ỹi ← response(yi, τi, σ). Send
ỹi to A.

4. Output ({authid′i
}i∈[k], {ỹi}i∈[n]).

Then we have,
Real(1λ) ≈c SimP (1λ)

Intuitively, the above security definition says that a collection of corrupt clients do
not learn anything beyond the program’s output w.r.t. to their identities on certain inputs
of their choice. Moreover, it says that if a client is not authenticated, it learns nothing.

We describe a scheme which is a secure cloud service scheme in Section 4 and prove
its security in Section 4.1.

3.1 Additional Properties.

We believe our scheme can also be modified to achieve some additional properties
which are not the focus of this work. We use this section to mention them below.

Verifiability. In the above scenario, where the cloud outputs ỹ intended for the client,
we may also want to add verifiability, where the client is sure that the received output
ỹ is indeed the correct output of the computation. We stress that verifiability is not the
focus of this work. The scheme we present in Section 4 can be augmented with known
techniques to get verifiability. One such method is to use one-time MACs as suggested
in [8].

Persistent Memory. An interesting setting to consider is the one where the the cloud also
holds a user-specific persistent memory that maintains state across different invocations
of the service by the user. In this setting we must ensure that for each invocation of
the functionality by a user, there only exists one valid state for the persistent memory
that can be used for computing the user’s output and the next state for the persistent
memory. Such a result would only require the assumptions present in Theorem 2, and
would not require any complexity leveraging. We believe that techniques developed in
this paper along with those in [8] should be helpful to realize this setting as well.

3.2 Secure Cloud Service Scheme with Cloud Inputs.

Here we consider a more general scenario, where the program takes two inputs: one
from the user and another from the cloud.

This setting is technically more challenging since the cloud can use any input in each
invocation of the program. In particular, it allows users to access super-polynomially
potentially different functionalities on the cloud based on cloud’s input.

Notationally, this scheme is same as the previous scheme except that the procedure
SCSS.eval(P̃ , x̃, z) → ỹ takes additional input z from the cloud. The efficiency and
security requirements for this scheme are essentially the same as the simple scheme
without the cloud inputs.

There is absolutely no change required in Definition 7. This is because it talks about
the view of a malicious cloud. There is a minor change in untrusted client security
(Definition 8). The oracle on query (id, xi), returns P (id′i, xi, zi), where z1, . . . , zn are
arbitrarily chosen choice for cloud’s inputs. Note that the security guarantee for an
honest cloud is captured in this definition.

We provide a scheme which is secure cloud service scheme with cloud inputs in
Section 5.

4 Our Secure Cloud Service Scheme

In this section, we describe our scheme for hosting on the cloud. We have three different
parties: The provider who owns the program, the cloud where the program is hosted,
and the users. Recall that we assume that the provider of the service is honest.

Let λ be the security parameter. Note that the number of users can be any (un-
bounded) polynomial in λ. Let k be the bound on the number of corrupt users. In our
security game, we allow the cloud as well as any subset of users to be controlled by the
adversary as long as the number of such users is at most k.

In order to describe our construction, we first recall the primitives and their no-
tation that we use in our protocol. Let T be a k-cover-free set system using a fi-
nite field Fq and polynomials of degee d = (q − 1)/k described in Section 2.5. Let
(AuthGen,AuthProve,Authverify) be the authentication scheme based on this k-cover-
free set system. As mentioned before, we will use q = kλ, so that the number of
sets/users is at least 2λ. We will interpret the user’s identity id as the coefficients of a

polynomial over Fq of degree at most d. Let the length of the identity be `id:=(d+1) lg q
and length of the authentication be `auth. Note that in our scheme `auth = 2λq.

Let pke = (PKGen,PKEnc,PKDec) be public key encryption scheme which ac-
cepts messages of length `e = (`id + `in + `auth + `kout + 1) and returns ciphertexts of
length `c. Here `in is the length of the input of the user and `kout is the length of the key
for PRF2 described below.

Let (NIZKSetup,NIZKProve,NIZKVerify) be the statistical simulation-sound non-
interactive zero-knowledge proof system with simulator (S1,S2). In our scheme we use
the two-key paradigm along with statistically simulation-sound non-interactive zero-
knowledge for non-malleability inspired from [15,17,6].

We will make use of two different family of puncturable PRFs. a) PRF1(K, ·) that
accepts inputs of length (`id + `c) and returns strings of length `r. b) PRF2(Kid, ·) that
accepts inputs of length `r and returns strings of length `out, where `out is the length of
the output of program. Such PRFs exist by Theorem 3.

Now we describe our scheme.
Consider an honest provider H who holds a program F which he wants to hosts on

the cloud C. Also, there will be a collection of users who will interact with the provider
to obtain authentication which will enable them to run the program stored on the cloud.
We first describe the procedure SCSS.prog(1λ,F, k) run by the provider.

1. Chooses PRF key K at random for PRF1.
2. Picks (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).
3. Picks (avk, ask) ← AuthGen(1λ) with respect to k-cover-free set system T and

pseudorandom generator PRG : {0, 1}λ → {0, 1}2λ.
4. Picks crs← NIZKSetup(1λ).
5. Creates an indistinguishability obfuscationPcomp = iO(Compute), where Compute

is the program described in Figure 1.

Here F̃ = Pcomp and σ = (ask, pk1, pk2, crs,K). Note that K is not used by
the honest provider in any of the future steps, but we include it as part of secret for
completion. This would be useful in proving untrusted client security later.

Next, we describe the procedure SCSS.auth(id, σ = (ask, pk1, pk2, crs)), where a
user sends his id to the provider for authentication. The provider sends back authid =
(tid, pk1, pk2, crs), where tid = AuthProve(ask, id). We also describe this interaction in
Figure 2.

Finally, we describe the procedures SCSS.inp and SCSS.eval. This interaction be-
tween the user and the cloud is also described in Figure 3.
Procedure SCSS.inp(1λ, authid = (tid, pk1, pk2, crs), x): The user chooses a keyKid,out

for PRF2. Let m = (id||x||tid||Kid,out||0). It then computes c1 = PKEnc(pk1,m; r1),
c2 = PKEnc(pk2,m; r2) and a SSS-NIZK proof π for

∃m, t1, t2 s.t. (c1 = PKEnc(pk1,m; t1) ∧ c2 = PKEnc(pk2,m; t2))

It outputs x̃ = (id, c = (c1, c2, π)) and α = Kid,out.

Procedure SCSS.eval(F̃ = Pcomp, x̃): Run F̃ on x̃ to obtain ỹ. The user parses ỹ as
ỹ1, ỹ2 and computes y = PRF2(α, ỹ1)⊕ ỹ2.

Compute

Constants: Secret key sk1, puncturable PRF key K, verification key avk and
common reference string crs.
Input: Identity id and ciphertext c = (c1, c2, π).

1. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.
2. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate length

strings. If id 6= id′, output ⊥ and end.
3. Compute r = PRF1(K, (id, c)).
4. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.
5. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y =

(r,PRF2(Kid,out, r)⊕ F(id, x)) and end.
6. Output y = ⊥ and end.

Fig. 1: Program Compute

Provider and User

Inputs: Let the user’s identity be id. The provider has two public keys
pk1, pk2, common reference string crs and secret key ask for authentication.

1. The user sends his identity id to the provider.
2. The provider computes tid ← AuthProve(ask, id) and sends authid =

(tid, pk1, pk2, crs) to the user.

Fig. 2: Authentication phase between the provider and the user.

User and Cloud

Inputs: Let the user’s identity be id. Let the user’s input to the function be
x. An authenticated user has the authentication authid = (tid, pk1, pk2, crs)
obtained from the provider. The cloud has obfuscated program Pcomp. The
user encodes his input for the cloud using SCSS.inp(1λ, authid, x) as follows:

1. Pick a key Kid,out for PRF2. Set flag = 0.
2. Let m = (id||x||tid||Kid,out||flag). Compute c1 = PKEnc(pk1,m; r1),
c2 = PKEnc(pk2,m; r2) and a SSS-NIZK proof
π = NIZKProve(crs, stmt, (m, r1, r2)), where stmt is

∃m, t1, t2 s.t. (c1 = PKEnc(pk1,m; t1) ∧ c2 = PKEnc(pk2,m; t2))

3. x̃ = (id, c = (c1, c2, π)) and α = Kid,out.

The cloud runs the program Pcomp on the input x̃ and obtains output ỹ. It
sends ỹ to the user.
The user parses ỹ as ỹ1, ỹ2 and computes y = PRF2(α, ỹ1)⊕ ỹ2.

Fig. 3: Encoding and evaluation phase between an authenticated user and the cloud

4.1 Security Proof

In this section, we give a proof overview for Theorem 1 for the scheme described above.

Untrusted client security. In our scheme, the secret information σ created after run-
ning the procedure SCSS.prog is σ = (ask, pk1, pk2, crs,K). Hence, on obtaining a
encoded x̃ from the adversary the decode procedure can work identically to the pro-
gram Compute to extract an input x, authentication tid, a key Kid,out, and flag from x̃.
If flag = 1, it gives y = 0 to response procedure. Else, if authentication tid verifies
using avk, it sends the (id, x) to the oracle implementing P and obtains y which is sent
to response. The response procedure finally encodes the output y using τ = Kid,out and
K ∈ σ and sends it to the corrupt client. if flag = 0 and tid is invalid, send ⊥ to the
client. This is exactly what the obfuscated program would have done. Hence, the real
and simulated experiments are indistinguishable as is required by this security property.

To prove security against unauthenticated clients, we need to prove the following:
Any PPT malicious client id who has not done the set up phase to obtain authid should
not be able to learn the output of F on any input using interaction with the honest cloud.
Note that in our scheme F is invoked only if the authentication extracted by the program
verifies under avk. Hence, the security will follow from the k-unforgeability property
of our scheme (see Section 2.5).

Untrusted cloud security. Consider a PPT adversary A who controls the cloud and
a collection of at most k users. Let F and G be two functions such that F and G are
functionally equivalent for corrupt users. Then, we will prove thatA can not distinguish
between the cases when the provider uses the function F or G. We will prove this via a
sequence of hybrids. Below, we first give a high level overview of these hybrids.

Let m be the number of honest users in the scheme. Without loss of generality,
let their identities be id1, . . . , idm and inputs be x1, . . . , xm. In the first sequence of
hybrids, we will change the interaction of the honest users with the cloud such that all
honest user queries will use flag = 1 and input 0`in . This will ensure that in the final
hybrid of this sequence, function F is not being invoked for any of the honest users.

In the next sequence of hybrids, we will change the output of the procedure AuthGen
such that there does not exist any valid authentication for honest users. Now, we can be
absolutely certain that the program does not invoke the function F on any of the hon-
est ids. We also know that the functions F and G are functionally equivalent for all
the corrupt ids. At this point, we can rely on the indistinguishability of obfuscations of
program Compute using F and program Compute using G.

Finally, we can reverse the sequence of all the hybrids used so far so that the final
hybrid is the real execution with G with honest user inputs x′1, . . . , x

′
m.

Overview of hybrids. Below we describe the important steps in the hybrid arguments.
For detailed and formal security proof, refer to the full version. We denote changes
between subsequent hybrids using underlined font.

Each hybrid below is an experiment that takes as input 1λ. The final output of each
hybrid experiment is the output produced by the adversary when it terminates. More-

over, in each of these hybrids, note that the adversary also receives authentication iden-
tities for all the corrupt users.

The first hybrid Hyb0 is the real execution with F.

1. Choose PRF key K at random for PRF1.
2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).
3. Pick (avk, ask)← AuthGen(1λ) with respect to cover-free set system T and pseu-

dorandom generator PRG.
4. Pick crs← NIZKSetup(1λ).
5. Let Pcomp = iO(Compute).
6. On receiving a corrupt user’s identity id, return the authentication as in real execu-

tion. That is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs) to the
user.

7. Authentication for honest users and queries of honest users are also computed as in
real execution. See Figure 3 for details.

8. Output Pcomp and queries of all honest users id1, . . . , idm.

Compute

Constants: Secret key sk1, puncturable PRF key K, verification key avk and
common reference string crs.
Input: Identity id and ciphertext c = (c1, c2, π).

1. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.
2. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate length

strings. If id 6= id′, output ⊥ and end.
3. Compute r = PRF1(K, (id, c)).
4. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.
5. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y =

(r,PRF2(Kid,out, r)⊕ F(id, x)) and end.
6. Output y = ⊥ and end.

Fig. 4: Program Compute

Next we describe the first sequence of hybrids Hyb1:1, . . . ,Hyb1:6, . . . ,Hybm:1, . . . ,
Hybm:6. In the sub-sequence of hybrids Hybi:1, . . . ,Hybi:6, we only change the behav-
ior of the honest user idi. All the other honest users idj such that j 6= i behave identi-
cally as in Hybi−1:6. Hence, we omit their behavior from the description of the hybrids
for ease of notation.

Also, we denote idi by id∗.
Let Hyb0:6 = Hyb0.

Hybi:1. This is same as Hybi−1:6. We use this hybrid as a way to write how the user
id∗ behaves in the real execution explicitly. This would make it easier to describe the
changes next.

It is obvious that the output of the adversary in Hybi−1:6 and Hybi:1 is identical.

1. Choose PRF key K at random for PRF1.
2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).
3. Pick (avk, ask)← AuthGen(1λ) with respect to cover-free set system T and PRG.
4. On receiving a corrupt user’s identity id, return the authentication as in real execu-

tion. That is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs) to the
user.

5. Set tid∗ = AuthGen(ask, id∗).
6. Set flag∗ = 0.
7. Choose a random PRF key Kid∗,out for PRF2.
8. Let x∗ be the input. Let m∗1 = (id∗||x∗||tid∗ ||Kid∗,out||flag∗) and
m∗2 = (id∗||x∗||tid∗ ||Kid∗,out||flag∗).

9. Compute c∗1, c
∗
2 as follows: c∗1 = PKEnc(pk1,m

∗
1; r1), c

∗
2 = PKEnc(pk2,m

∗
2; r2).

10. Pick crs← NIZKSetup(1λ).
11. Compute π∗ = NIZKProve(crs, stmt, (m∗1, r1, r2)).
12. Set c∗ = (c∗1, c

∗
2, π
∗).

13. Let r∗ = PRF1(K, (id
∗, c∗)).

14. Let y∗ = (r∗,PRF2(Kid∗,out, r
∗)⊕ F(id∗, x∗)).

15. Let Pcomp = iO(Compute).
16. Output (Pcomp, (id∗, c∗)) and the queries of other honest users.

Compute

Constants: Secret key sk1, puncturable PRF key K, verification key avk and
common reference string crs.
Input: Identity id and ciphertext c = (c1, c2, π).

1. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.
2. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1). If id 6= id′, output ⊥.
3. Compute r = PRF1(K, (id, c)).
4. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.
5. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y =

(r,PRF2(Kid,out, r)⊕ F(id, x)) and end.
6. Output y = ⊥ and end.

Fig. 5: Program Compute

Hybi:2. We modify the Compute program as follows. First, we add the constants id∗, c∗, y∗

to the program and add an if statement that outputs y∗ if the input is (id∗, c∗). Now, be-
cause the “if” statement is in place, we know that PRF1(K, ·) cannot be evaluated at
(id∗, c∗) within the program. Hence, we can safely puncture keyK at this point. By con-
struction, the Compute program in this hybrid is functionally equivalent to the Compute
program in the previous hybrid. Hence, indistinguishability follows by the iO security.

Next, the value r∗ is chosen randomly (at the beginning), instead of as the output of
PRF1(K, (id

∗, c∗)). The indistinguishability of two hybrids follows by pseudorandom-
ness property of the punctured PRF PRF1.

1. Choose PRF key K at random for PRF1.
2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).
3. Pick (avk, ask)← AuthGen(1λ) with respect to cover-free set system T and PRG.
4. On receiving a corrupt user’s identity id, return the authentication as in real execu-

tion. That is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs).
5. Set tid∗ = AuthGen(ask, id∗).
6. Set flag∗ = 0.
7. Let r∗ be chosen randomly.
8. Choose a random PRF key Kid∗,out for PRF2.
9. Let x∗ be the input. Let m∗1 = (id∗||x∗||tid∗ ||Kid∗,out||flag∗) and
m∗2 = (id∗||x∗||tid∗ ||Kid∗,out||flag∗).

10. Compute c∗1, c
∗
2 as follows: c∗1 = PKEnc(pk1,m

∗
1; r1), c

∗
2 = PKEnc(pk2,m

∗
2; r2).

11. Pick crs← NIZKSetup(1λ).
12. Compute π∗ = NIZKProve(crs, stmt, (m∗1, r1, r2)).
13. Set c∗ = (c∗1, c

∗
2, π
∗).

14. Let y∗ = (r∗,PRF2(Kid∗,out, r
∗)⊕ F(id∗, x∗)).

15. Let Pcomp = iO(Compute).
16. Output (Pcomp, (id∗, c∗)) and the queries of other honest users.

Compute

Constants: (id∗, c∗, y∗), Secret key sk1, puncturable PRF key
K({(id∗, c∗)}), verification key avk and common reference string crs.
Input: Identity id and ciphertext c = (c1, c2, π).

1. If (id, c) = (id∗, c∗) output y∗ and end.
2. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.
3. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1). If id 6= id′, output ⊥.
4. Compute r = PRF1(K, (id, c)).
5. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.
6. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y =

(r,PRF2(Kid,out, r)⊕ F(id, x)) and end.
7. Output y = ⊥ and end.

Fig. 6: Program Compute

Hybi:3. In this sequence of hybrids, first, instead of generating crs honestly, we generate
it using the simulator S1 and also simulate the proof π∗ using S2. The two hybrids are
indistinguishable by computational zero-knowledge property of NIZK used.

Next, using a sequence of hybrids, using the two-key switching technique we change
both m∗1 and m∗2 to include a punctured key Kid∗,out({r∗}) instead of original key
Kid∗,out. In these hybrids we will be relying on iO as well as IND− CPA security of
public key encryption scheme pke. For details, refer to the full version.

1. Choose PRF key K at random for PRF1.
2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).
3. Pick (avk, ask)← AuthGen(1λ) with respect to cover-free set system T and PRG.
4. On receiving a corrupt user’s identity id, return the authentication as in real execu-

tion. That is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs).
5. Set tid∗ = AuthGen(ask, id∗).
6. Set flag∗ = 0.
7. Let r∗ be chosen randomly.
8. Choose a random PRF key Kid∗,out for PRF2.
9. Let x∗ be the input. Let m∗1 = (id∗||x∗||tid∗ ||Kid∗,out({r∗})||flag∗) and
m∗2 = (id∗||x∗||tid∗ ||Kid∗,out({r∗})||flag∗).

10. Compute c∗1, c
∗
2 as follows: c∗1 = PKEnc(pk1,m

∗
1; r1), c

∗
2 = PKEnc(pk2,m

∗
2; r2).

11. Pick (crs, τ)← S1(1
λ, stmt).

12. Compute π∗ = S2(crs, τ, stmt).
13. Set c∗ = (c∗1, c

∗
2, π
∗).

14. Let y∗ = (r∗,PRF2(Kid∗,out, r
∗)⊕ F(id∗, x∗)).

15. Let Pcomp = iO(Compute).
16. Output (Pcomp, (id∗, c∗)) and the queries of other honest users.

Compute

Constants: (id∗, c∗, y∗), Secret key sk1, puncturable PRF key
K({(id∗, c∗)}), verification key avk and common reference string crs.
Input: Identity id and ciphertext c = (c1, c2, π).

1. If (id, c) = (id∗, c∗) output y∗ and end.
2. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.
3. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1). If id 6= id′, output ⊥.
4. Compute r = PRF1(K, (id, c)).
5. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.
6. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y =

(r,PRF2(Kid,out, r)⊕ F(id, x)) and end.
7. Output y = ⊥ and end.

Fig. 7: Program Compute

Hybi:4. Here, first we change the value of y∗ = (r∗, u∗) where u∗ is a uniformly
random string of appropriate length. By pseudorandomness property of punctured key
Kid∗,out({r∗}), PRF2(Kid∗,out, r

∗) is indistinguishable from random string.
Then, we change the value of y∗ to (r∗,PRF2(Kid∗,out, r

∗)). Again indistinguisha-
bility follows from pseudorandomness property of punctured key.

1. Choose PRF key K at random for PRF1.
2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).
3. Pick (avk, ask)← AuthGen(1λ) with respect to cover-free set system T and PRG.
4. On receiving a corrupt user’s identity id, return the authentication as in real execu-

tion. That is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs).
5. Set tid∗ = AuthGen(ask, id∗).
6. Set flag∗ = 0.
7. Let r∗ be chosen randomly.
8. Choose a random PRF key Kid∗,out for PRF2.
9. Let x∗ be the input. Let m∗1 = (id∗||x∗||tid∗ ||Kid∗,out({r∗})||flag∗) and m∗2 =

(id∗||x∗||tid∗ ||Kid∗,out({r∗})||flag∗).
10. Compute c∗1, c

∗
2 as follows: c∗1 = PKEnc(pk1,m

∗
1; r1), c

∗
2 = PKEnc(pk2,m

∗
2; r2).

11. Pick (crs, τ)← S1(1
λ, stmt).

12. Compute π∗ = S2(crs, τ, stmt).
13. Set c∗ = (c∗1, c

∗
2, π
∗).

14. Let y∗ = (r∗,PRF2(Kid∗,out, r
∗)).

15. Let Pcomp = iO(Compute).
16. Output (Pcomp, (id∗, c∗)) and the queries of other honest users.

Compute

Constants: (id∗, c∗, y∗), Secret key sk1, puncturable PRF key
K({(id∗, c∗)}), verification key avk and common reference string crs.
Input: Identity id and ciphertext c = (c1, c2, π).

1. If (id, c) = (id∗, c∗) output y∗ and end.
2. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.
3. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1). If id 6= id′, output ⊥.
4. Compute r = PRF1(K, (id, c)).
5. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.
6. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y =

(r,PRF2(Kid,out, r)⊕ F(id, x)) and end.
7. Output y = ⊥ and end.

Fig. 8: Program Compute

Hybi:5. In this hybrid, we change the value of flag∗ to 1 instead of 0 and tid∗ to be a
random string of appropriate length. We also set x∗ = 0`in . We also change back the
key Kid∗,out used in m∗1 and m∗2 to the original unpunctured key.

The indistinguishability follows via a sequence of hybrids using the two-key switch-
ing techniques. Note that here we crucially use that the fact that the program in the pre-
vious hybrid does not use x∗ in computing the output on input c∗. Moreover, because
of the initial “if” condition, there is no check on flag∗ or tid∗ . Hence, while switching
keys for decryption, functional equivalence follows in a straight-forward manner.

1. Choose PRF key K at random for PRF1.
2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).
3. Pick (avk, ask)← AuthGen(1λ) with respect to cover-free set system T and PRG.
4. On receiving a corrupt user’s identity id, return the authentication as in real execu-

tion. That is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs).
5. Pick tid∗ to be a uniformly random string of appropriate length.
6. Set flag∗ = 1.
7. Let r∗ be chosen randomly.
8. Choose a random PRF key Kid∗,out for PRF2.
9. Set x∗ = 0`in . Let m∗1 = (id∗||x∗||tid∗ ||Kid∗,out||flag∗) and m∗2 =

(id∗||x∗||tid∗ ||Kid∗,out||flag∗).
10. Compute c∗1, c

∗
2 as follows: c∗1 = PKEnc(pk1,m

∗
1; r1), c

∗
2 = PKEnc(pk2,m

∗
2; r2).

11. Pick (crs, τ)← S1(1
λ, stmt).

12. Compute π∗ = S2(crs, τ, stmt).
13. Set c∗ = (c∗1, c

∗
2, π
∗).

14. Let y∗ = (r∗,PRF2(Kid∗,out, r
∗)).

15. Let Pcomp = iO(Compute).
16. Output (Pcomp, (id∗, c∗)) and the queries of other honest users.

Compute

Constants: (id∗, c∗, y∗), Secret key sk1, puncturable PRF key
K({(id∗, c∗)}), verification key avk and common reference string crs.
Input: Identity id and ciphertext c = (c1, c2, π).

1. If (id, c) = (id∗, c∗) output y∗ and end.
2. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.
3. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate length

strings. If id 6= id′, output ⊥ and end.
4. Compute r = PRF1(K, (id, c)).
5. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.
6. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y =

(r,PRF2(Kid,out, r)⊕ F(id, x)) and end.
7. Output y = ⊥ and end.

Fig. 9: Program Compute

Hybi:6. In this sequence of hybrids, we revert back some of the changes we made. First,
we again start generating the crs and the proof π∗ honestly. The indistinguishability
follows from the computational zero-knowledge property of the NIZK used.

Next, we set r∗ = PRF1(K, (id
∗, c∗)) instead of random. The indistinguishability

follows from the pseudorandomness property of the punctured PRF PRF1.
Finally, we remove the initial “if” condition and the constants (id∗, c∗, y∗), and un-

puncture the key K. The indistinguishability follows from the security of iO.

1. Choose PRF key K at random for PRF1.
2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).
3. Pick (avk, ask)← AuthGen(1λ) with respect to cover-free set system T and PRG.
4. On receiving a corrupt user’s identity id, return the authentication as in real execu-

tion. That is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs).
5. Pick tid∗ to be a uniformly random string of appropriate length.
6. Set flag∗ = 1.
7. Choose a random PRF key Kid∗,out for PRF2.
8. Set x∗ = 0`in . Let m∗1 = (id∗||x∗||tid∗ ||Kid∗,out||flag∗) and
m∗2 = (id∗||x∗||tid∗ ||Kid∗,out||flag∗).

9. Compute c∗1, c
∗
2 as follows: c∗1 = PKEnc(pk1,m

∗
1; r1), c

∗
2 = PKEnc(pk2,m

∗
2; r2).

10. Pick crs← NIZKSetup(1λ).
11. Compute π∗ = NIZKProve(crs, stmt, (m∗1, r1, r2)).
12. Set c∗ = (c∗1, c

∗
2, π
∗).

13. Let r∗ = PRF1(K, (id
∗, c∗)).

14. Let y∗ = (r∗,PRF2(Kid∗,out, r
∗)).

15. Let Pcomp = iO(Compute).
16. Output (Pcomp, (id∗, c∗)) and the queries of other honest users.

Compute

Constants: Secret key sk1, puncturable PRF key K, verification key avk and
common reference string crs.
Input: Identity id and ciphertext c = (c1, c2, π).

1. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.
2. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1). If id 6= id′, output ⊥.
3. Compute r = PRF1(K, (id, c)).
4. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.
5. Else if flag = 0, and Authverify(avk, id, tid) = 1, output y =

(r,PRF2(Kid,out, r)⊕ F(id, x)) and end.
6. Output y = ⊥ and end.

Fig. 10: Program Compute

In this sequence of hybrids described above, we have shown that the view of the
adversary is indistinguishable in the following two scenarios: 1) The honest user en-

codes his actual input x with flag = 0 and a valid authentication tid, and obtains output
according to the function F on (id, x). 2) The honest user encodes 0`in with flag = 1
and uniformly random tid, and receives encoding of 0 as output (without invoking the
function F.)

Below we write the final hybrid obtained above as Hyb1 as follows:

Hyb1: This hybrid is same as Hybm:6. In the hybrid Hybm:6, all the user queries will
have flag = 1, tid will be a random string, and input will be 0`in. Hence, the program
Compute will not invoke the function F for any of the honest users.

The underlined statement summarizes the main difference between Hyb0 and Hyb1.
Since the program being obfuscated does not change between Hyb0 and Hyb1, we omit
its description from here.

1. Choose PRF key K at random for PRF1.
2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).
3. Pick (avk, ask)← AuthGen(1λ) with respect to cover-free set system T and PRG.
4. Pick crs← NIZKSetup(1λ).
5. Let Pcomp = iO(Compute).
6. On receiving a corrupt user’s identity id, return the authentication as in real execu-

tion. That is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs) to the
user.

7. For each of the honest users, tid is set to a random string of appropriate length, flag

is set to 1 and input is set to 0`in . Ciphertexts (c1, c2) and proof π are generated honestly.
8. Output Pcomp and queries of all honest users id1, . . . , idm.

Hyb2: We change the setup phase of authentication scheme to use FakeAuthGen in-
stead of AuthGen. Let I denote the set of corrupt user identities. Note that |I| 6 k and
set system T used in our scheme is a k-cover-free set system.

The two hybrids are indistinguishable by security properties of FakeAuthGen (see
Section 2.5). Note that both hybrids do not depend on ask and need only the valid
authentications for corrupt users.

1. Choose PRF key K at random for PRF1.
2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).
3. Pick (avk, ask)← FakeAuthGen(1λ, I) w.r.t. cover-free set system T and PRG.
4. Pick crs← NIZKSetup(1λ).
5. Let Pcomp = iO(Compute).
6. On receiving a corrupt user’s identity id, return the authentication as in real execu-

tion. That is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs). As
noted before, AuthProve still returns valid authentication for all users in I.

7. For each of the honest users, tid is set to a random string of appropriate length and
flag is set to 1. Ciphertexts (c1, c2) and proof π is generated as in real execution.

8. Output Pcomp and queries of all honest users id1, . . . , idm.

Hyb3: This is the most important hybrid, where we change the program from F to
F. The two hybrids are indistinguishable by security of iO. Note that in both hybrids
the function is invoked iff the authentication of the user verifies under avk. In the both
hybrids, this can happen only for corrupt users as there is no valid authentication for
honest users. Finally, recall that the functions F and G are equivalent for corrupt users.

1. Choose PRF key K at random for PRF1.
2. Pick (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).
3. Pick (avk, ask)← FakeAuthGen(1λ, I) w.r.t. cover-free set system T and PRG.
4. Pick crs← NIZKSetup(1λ).
5. Let Pcomp = iO(Compute).
6. On receiving a corrupt user’s identity id, return the authentication as in real execu-

tion. That is, compute tid ← AuthProve(ask, id) and send (tid, pk1, pk2, crs).
7. For each of the honest users, tid is set to a random string of appropriate length and

flag is set to 1. Ciphertexts (c1, c2) and proof π is generated as in real execution.
8. Output Pcomp and queries of all honest users id1, . . . , idm.

Compute

Constants: Secret key sk1, puncturable PRF key K, verification key avk and
common reference string crs.
Input: Identity id and ciphertext c = (c1, c2, π).

1. If NIZKVerify(crs, (c1, c2), π) = 0, output ⊥ and end.
2. Let (id′||x||tid||Kid,out||flag) = PKDec(sk1, c1) for appropriate length

strings. If id 6= id′, output ⊥ and end.
3. Compute r = PRF1(K, (id, c)).
4. If flag = 1, output y = (r,PRF2(Kid,out, r)) and end.
5. Else if flag = 0, and Authverify(avk, id, tid) = 1, output
y = (r,PRF2(Kid,out, r)⊕ G(id, x)) and end.

6. Output y = ⊥ and end.

Fig. 11: Program Compute

Finally, using a similar sequence of hybrids we can move from Hyb3 to a hybrid
which corresponds to real execution using G and honest party inputs x′1, . . . , x

′
m.

5 Our Secure Cloud Service Scheme with Cloud Inputs

In this section, we describe our modified scheme for service hosting on the cloud with
cloud inputs. As before, we have three different parties: The provider who owns the
service, the cloud where the service is hosted, and the users. Recall that we assume that
the provider of the service is honest.

As before, let λ be the security parameter. Let k be the bound on the number of
corrupt users.

Let T be a k-cover-free set system using a finite field Fq and polynomials of degee
d = (q − 1)/k and (AuthGen,AuthProve,Authverify) be the authentication scheme
w.r.t. T as described in Section 2.5. As mentioned before, we use q = kλ, so that the
number of sets/users is at least 2λ. We interpret the user’s identity id as the coefficients
of a polynomial over Fq of degree at most d. Let the length of the identity be `id:=(d+
1) lg q and length of the authentication be `auth. Note that in our scheme `auth = 2λq.

Let pke = (PKGen,PKEnc,PKDec) be public key encryption scheme which ac-
cepts messages of length `e = (`id + `in + `auth + `kout + 1) and returns ciphertexts of
length `c. Here `in is the length of the input of the user and `kout is the length of the key
for PRF2 described below.

Let (NIZKSetup,NIZKProve,NIZKVerify) be the statistical simulation-sound non-
interactive zero-knowledge proof system with simulator (S1,S2). In our scheme we use
the two-key paradigm along with statistically simulation-sound non-interactive zero-
knowledge for non-malleability inspired from [15,17,6].

We will make use of two different family of puncturable PRFs. a) PRF1(K, ·) that
accepts inputs of length (`id + `c + `z) and returns strings of length `r > (`id + `c +
`z)+λ. Here `z is the length of the cloud’s input z. b) PRF2(Kid, ·) that accepts inputs
of length `r and returns strings of length `out, where `out is the length of the output of
program. Such PRFs exist by Theorem 3.

We put a lower bound on the length of output of PRF1 because in the proof we
would require that a random string of length `r does not lie in the image of PRF1(K, ·).

Scheme Description. Consider an honest providerH who holds a function F which he
wants to hosts on the cloud C. Also, there will be a collection of users who will interact
with the provider to obtain authentication which will enable them to run the program
stored on the cloud. The provider does the following:
1. Chooses PRF key K at random for PRF1.
2. Picks (pk1, sk1)← PKGen(1λ), (pk2, sk2)← PKGen(1λ).
3. Picks (avk, ask) ← AuthGen(1λ) with respect to k-cover-free set system T and

pseudorandom generator PRG.
4. Picks crs← NIZKSetup(1λ).
5. Creates an indistinguishability obfuscationPcomp = iO(Compute), where Compute

is the same program as in Figure 1 with the following change: It takes an additional
input z from the cloud along with identity id and ciphertext c = (c1, c2, π) from
the user. And while computing the output in Step 5 when flag = 0 and user is
authenticated as y = (r,PRF2(Kid,out, r)⊕ F(id, x, z)) (using the cloud input z).

Here F̃ = Pcomp and σ = (ask, pk1, pk2, crs).

Next, we describe the procedures SCSS.auth, SCSS.inp and SCSS.eval.
Procedure SCSS.auth: It takes as input user’s id and secret state of the service provider
σ = (ask, pk1, pk2, crs)). The provider computes tid = AuthProve(ask, id) and sends
back authid = (tid, pk1, pk2, crs).
Procedure SCSS.inp(1λ, authid = (tid, pk1, pk2, crs), x): The user chooses a keyKid,out

for PRF2. Let m = (id||x||tid||Kid,out||0). It then computes c1 = PKEnc(pk1,m; r1),

c2 = PKEnc(pk2,m; r2) and a SSS-NIZK proof π for

∃m, t1, t2 s.t. (c1 = PKEnc(pk1,m; t1) ∧ c2 = PKEnc(pk2,m; t2))

It outputs x̃ = (id, c = (c1, c2, π)) and α = Kid,out.

Procedure SCSS.eval(F̃ = Pcomp, x̃, z): Let the cloud’s input be z. Run F̃ on (x̃, z) to
obtain ỹ. The user parses ỹ as ỹ1, ỹ2 and computes y = PRF2(α, ỹ1)⊕ ỹ2.

Security Proof. For a formal proof that our scheme satisfies Theorem 2 i.e. it is a secure
cloud service scheme with cloud inputs please refer to our full version.

References
1. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On

the (im)possibility of obfuscating programs. In: CRYPTO. pp. 1–18 (2001)
2. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications. In: ASI-

ACRYPT. pp. 280–300 (2013)
3. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. In:

PKC. pp. 501–519 (2014)
4. Erdös, P., Frankl, P., Füredi, Z.: Families of finite sets in which no set is covered by the union

of r others. Israel Journal of Mathematics 51(1-2), 79–89 (1985)
5. Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge proofs under

general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)
6. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistin-

guishability obfuscation and functional encryption for all circuits. In: FOCS. pp. 40–49
(2013)

7. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: Outsourcing com-
putation to untrusted workers. In: CRYPTO. pp. 465–482 (2010)

8. Gentry, C., Halevi, S., Raykova, M., Wichs, D.: Outsourcing private ram computation. Cryp-
tology ePrint Archive, Report 2014/148 (2014), http://eprint.iacr.org/

9. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions (extended
abstract). In: FOCS. pp. 464–479 (1984)

10. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F., Sahai, A., Shi, E., Zhou,
H.: Multi-input functional encryption. In: EUROCRYPT. pp. 578–602 (2014)

11. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive proofs for
muggles. In: STOC. pp. 113–122 (2008)

12. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseudorandom
functions and applications. In: CCS. pp. 669–684 (2013)

13. Kumar, R., Rajagopalan, S., Sahai, A.: Coding constructions for blacklisting problems with-
out computational assumptions. In: CRYPTO. pp. 609–623 (1999)

14. Micali, S.: CS proofs (extended abstracts). In: 35th Annual Symposium on Foundations of
Computer Science, Santa Fe, New Mexico, USA, 20-22 November 1994. pp. 436–453 (1994)

15. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext
attacks. In: STOC. pp. 427–437 (1990)

16. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical verifiable com-
putation. In: SP. pp. 238–252 (2013)

17. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext
security. In: FOCS. pp. 543–553 (1999)

18. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and
more. In: STOC. pp. 475–484 (2014)

http://eprint.iacr.org/

	Hosting Services on an Untrusted Cloud

