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Abstract. The Learning With Error problem (LWE) is becoming more
and more used in cryptography, for instance, in the design of some fully
homomorphic encryption schemes. It is thus of primordial importance to
find the best algorithms that might solve this problem so that concrete
parameters can be proposed. The BKW algorithm was proposed by Blum
et al. as an algorithm to solve the Learning Parity with Noise problem
(LPN), a subproblem of LWE. This algorithm was then adapted to LWE
by Albrecht et al.
In this paper, we improve the algorithm proposed by Albrecht et al. by
using multidimensional Fourier transforms. Our algorithm is, to the best
of our knowledge, the fastest LWE solving algorithm. Compared to the
work of Albrecht et al. we greatly simplify the analysis, getting rid of
integrals which were hard to evaluate in the final complexity. We also
remove some heuristics on rounded Gaussians. Some of our results on
rounded Gaussians might be of independent interest. Moreover, we also
analyze algorithms solving LWE with discrete Gaussian noise.
Finally, we apply the same algorithm to the Learning With Rounding
problem (LWR) for prime q, a deterministic counterpart to LWE. This
problem is getting more and more attention and is used, for instance, to
design pseudorandom functions. To the best of our knowledge, our algo-
rithm is the first algorithm applied directly to LWR. Furthermore, the
analysis of LWR contains some technical results of independent interest.

1 Introduction

The Learning With Error problem (LWE) was introduced by Regev in [43] and
can be seen as an extension of the Learning (from) Parity with Noise prob-
lem (LPN). Roughly, the adversary is given queries from an LWE oracle, which
returns uniformly random vectors aj in Zq and their inner-product with a fixed
secret vector s ∈ Z

k
q to which some noise was added (typically some discrete

Gaussian noise). The goal of the adversary is then to recover the secret s.
In LPN, q = 2 and the noise follows a Bernoulli distribution. In his seminal
paper [43], Regev shows a quantum reduction from some well-known Lattice
problems like the decisional shortest vector problem (Gap-SVP) or the short
independent vector problem (SIVP) to the LWE problem. Later, Peikert and
Brakerski et al. showed how to make this reduction classical [16,42]. The LWE
problem was then used to design a wide range of cryptographic primitives. For
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instance, Gentry et al. showed how to construct a trapdoor function based on
LWE and created an identity-based cryptosystem [26]. Applebaum et al. used
LWE to design encryption schemes with strong security properties [4]. However,
the biggest breakthrough that uses LWE is its use in the design of (fully) homo-
morphic encryption schemes (FHE). FHE was first introduced by Gentry in his
PhD thesis [25]. While the initial construction was not using the LWE problem,
most of the recent designs are, e.g., [17,15,27].

The Learning With Rounding problem (LWR) was introduced by Banerjee,
Peikert, and Rosen to construct pseudorandom functions [8]. LWR can be seen
as a derandomization of LWE where the random noise is replaced by a rounding
modulo p < q. This rounding introduces a deterministic error which makes the
problem hard to solve. Banerjee et al. showed that the hardness of the LWE
problem can be reduced to the hardness of LWR, when q/p = kω(1), where k is
the length of the secret. The LWR problem was later revisited by Alwen et al.
to get rid of this exponential blowup [3]. However, the number of LWR samples
given to the adversary is limited in this case. LWR finds new applications every
year. Among them, there is the design of pseudorandom functions [8], lossy
trapdoor functions and reusable extractors [3], or key-homomorphic PRFs [13].

When designing a new cryptosystem, one critical part is to propose some
concrete parameters so that the new scheme can be used in practice. Regarding
the LWE problem, there was no such algorithmic analysis before the work of
Albrecht et al. [1]. This lack of concrete complexity analysis implied that most
of the constructions based on LWE propose only asymptotic parameters. Hence,
it is of primary importance to study algorithms that solve the hard problems on
which our cryptosystems rely.

Previous Work. Algorithms solving LWE can be divided into two categories:
those finding short vectors in a lattice using, e.g., Regev’s [43] or Brakerski et
al.’s [16] reduction and those attacking the LWE problem directly. The first type
of algorithms is extensively studied (see, e.g., [9,36,21,40,31,30,23,41]). However,
there is still no precise complexity analysis for large dimensions. In this paper, we
focus only on the second type of algorithms the study of which started with the
LPN problem and the Blum—Kalai—Wasserman algorithm (BKW) [11] with
complexity 2O(k/ log k) where k is the length of the secret vector. The idea of
BKW is to add queries together, such that the vectors aj are zero in all but one
positions. Then, using a majority rule, one can recover the corresponding bit of
the secret with good probability.

In [35], Levieil and Fouque proposed an optimization of the BKW algorithm
for LPN, denoted LF1, which recovers a full block of b bits of the secret s at once
by cleverly applying a Walsh-Hadamard transform. Compared to the original
BKW algorithm, their method has the advantage of making use of all the avail-
able samples after reduction, instead of having to discard those with more than
one non-zero position. Instead of an exhaustive search, they use a fast Walsh-
Hadamard transform to recover the most likely secret block in time O

(
m+ b2b

)

(where m is the number of samples left after reduction). The analysis of their
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algorithm shows that it clearly outperforms the standard BKW, although their
asymptotic complexities remain the same. In the same paper, they also proposed
to apply some heuristics to reduce the query complexity (LF2 algorithm).

In parallel, Fossorier et al. also improved the original BKW algorithm us-
ing techniques taken from fast correlation attacks [22]. Later, Bernstein and
Lange [10] combined both the LF algorithms and Fossorier et al.’s work to at-
tack Lapin [32], an authentication protocol based on a version of LPN over a ring
(ring-LPN). However, all these results achieve the same asymptotic complexity
of 2O(k/ log k).

Many cryptographic applications of LPN make sure that the number of
queries to the LPN oracle is limited. However, all the algorithms based on
BKW initially require a sub-exponential number of LPN samples. In [37], Lyuba-
shevsky proposed a clever way to combine queries using a universal hash func-
tion. He could, thus, obtain an algorithm using less queries (the minimal being
k1+2/ log k for a worse time complexity).

In ICALP 2011, Arora and Ge publish the first algorithm targeting a specific
version of LWE, namely when the Gaussian noise is low [5]. Using BKW for
LWE was first mentioned by Regev [43]. However, it is only in 2013 that the
first detailed analysis of a generic algorithm targeting LWE is published by
Albrecht et al. [1]. It is an adaptation of the original BKW algorithm with
some clever improvements of the memory usage and achieves complexity 2O(k).
Their analysis is extremely detailed and we present their results in Section 3.
Finally, Albercht et al. presented in PKC 2014 an algorithm targeting LWE when
the secret vector has small components (typically binary). Using BKW along
with modulus switching techniques, they managed to reduce the complexity for
solving the LWE problem in these cases [2].

Our Contribution. We contributed in the following:

– First we propose a new algorithm for LWE, which is better than the cur-
rent state of the art. Our new algorithm replaces the log-likelihood part
from [1] by a multidimensional Fourier transform. We also propose a heuris-
tic adapted from LF2 [35] to reduce the number of oracle queries even further.

– Albrecht et al. in [1] were relying on the heuristic that the sum of rounded
Gaussian variables remain rounded Gaussians. We remove this heuristic by a
careful analysis. In particular, we give good bounds on the expected value of
the cosine of the rounded Gaussian distribution. Our algorithm relies solely
on the common heuristic stating that after having performed all the XORs in
the BKW algorithm, all the noises are independent. This heuristic is already
used in most of the LPN-solving algorithms (e.g. [35,22,1]).

– In [1], only the rounded Gaussian distribution for the noise in LWE is con-
sidered. While this distribution was initially used by Regev [43], more recent
papers tend to use the discrete Gaussian distribution instead. We perform
our analysis for both distributions.

– Albrecht et al.’s complexity is rather difficult to estimate when
√
2aσ >

q/2 [1, Theorem 2]. Indeed, their result contains a parameter which they
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could express only using an integral and the erf function. Our detailed anal-
ysis allows us to bound the Fourier coefficients of the rounded Gaussian
distribution in all the cases and, hence, all our complexities are simple to
evaluate.

– We adapt Lyubashevsky’s idea to LWE and show that for LWE (and LWR),
the minimum number of queries required using his method is k1+(log q+1)/ log k.

– We propose the first algorithmic analysis of the LWR problem when q is
prime. While our proposal requires a subexponential number of samples,
our detailed analysis contains many results of independent interest.

Organization. In Section 2, we introduce the LWE and LWR problems and give
basic results about Gaussians and Fourier transforms. In Section 3, we present
the BKW algorithm as it was done in [1]. We detail our algorithm and apply it
to LWE in Section 4. We adapt it to LWR in Section 5. Finally, we conclude in
Section 6.

2 Preliminaries

2.1 Notations

Given a vector a we denote by aj its j-th component. We write a(j) to say
that we access the j-th vector of a set. We let ⌈.⌋ : R → Z be the rounding
function that rounds to the closest integer.1 We define

√
−1 = i ∈ C. Finally,

for a predicate π(x), we denote by 1{π(x)} the function which is 1 when π(x) is
true and 0 otherwise.

2.2 The LWE Problem

In this section, we define the LWE problem.

Definition 1 (LWE Oracle). Let k, q be positive integers. A Learning with
Error (LWE) oracle Πs,χ for a hidden vector s ∈ Z

k
q and a probability distribution

χ over Zq is an oracle returning

(
a

U←− Z
k
q , 〈a, s〉+ ν

)
,

where ν ← χ.

Definition 2 (Search-LWE). The Search-LWE problem is the problem of re-
covering the hidden secret s given n queries (a(j), c(j)) ∈ Z

k
q ×Zq obtained from

Πs,χ.

In typical schemes based on LWE, the parameter q is taken to be polynomial in
k, and χ follows a discretized Gaussian distribution (see next section).

1 In case of equality, we take the floor.
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2.3 Gaussian Distributions

Let N (0, σ2) denote the Gaussian distribution of mean 0 and standard devia-
tion σ. We denote its probability density function by φ 7→ p(φ;σ), for φ ∈ R.
Consider the wrapped Gaussian distribution Ψσ,q resulting from wrapping the
Gaussian distribution around a circle of circumference q > 0. Its probability
density function g(θ;σ, q) is given by

g(θ;σ, q) :=

∞∑

ℓ=−∞

1

σ
√
2π

exp

[−(θ + ℓq)2)

2σ2

]
, for θ ∈

]
−q

2
,
q

2

]
. (1)

Note that Ψσ,2π is the standard wrapped normal distribution obtained by
wrapping N (0, σ2) around the unit circle, used for instance in directional statis-
tics [39].

LWE schemes use a discretization of a Gaussian over Zq. There are two vari-
ants of LWE that we will consider in this paper. We will see that we obtain
similar results for both distributions. In the initial version by Regev [43], the
noise in LWE was a rounded Gaussian distribution. This is also what is consid-
ered in [1,29]. Such a distribution can be obtained by sampling from Ψσ,q and
rounding the result to the nearest integer in the interval ]−q2 , q

2 ]. We denote this
distribution by Ψ̄σ,q. Its probability mass function is given by

Pr[x← Ψ̄σ,q] =

x+ 1
2∫

x− 1
2

g(θ;σ, q) dθ , (2)

for x an integer in the interval ]−q2 , q
2 ].

The LWE problem is believed to be hard when σ ≥
√
k and q ∈ poly(k).

The second Gaussian distribution used for LWE is the discrete Gaussian
distribution Dσ,q. This distribution is used in most of the applications and in
the classical LWE reduction [16]. This distribution is, for x an integer in ]− q

2 ,
q
2 ]:

Pr[x← Dσ,q] =
exp(x2/(2σ2))∑

y∈]− q
2
, q
2
]

exp(y2/(2σ2))
. (3)

2.4 The LWR problem

In this section, we define the LWR problem.

Definition 3 (Rounding Function). Let q ≥ p ≥ 2 be positive integers. The
LWR problem uses the rounding function from Zq = {0, . . . , q − 1} to Zp =
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{0, . . . , p− 1}, given by2

⌈·⌋p : Zq → Zp : x 7→
⌈(

p

q

)
· x
⌋
.

Definition 4 (LWR Oracle). Let k and q ≥ p ≥ 2 be positive integers. A
Learning with Rounding (LWR) oracle Λs,p for a hidden vector s ∈ Z

k
q , s 6= 0

is an oracle returning (
a

U←− Z
k
q , ⌈〈a, s〉⌋p

)
.

Definition 5 (Search-LWR). The Search-LWR problem is the problem of re-
covering the hidden secret s given n queries (a(j), c(j)) ∈ Z

k
q ×Zp obtained from

Λs,p.

Two reductions from LWE to LWR exist: one with exponential parameters and
another with a limited number of samples.

Theorem 6 (Theorem 3.2 in [8]). Let β ∈ R+ and let χ be any efficiently
sampleable distribution over Z such that Prx←χ[|x| > β] is negligible. Let q ≥
p · β · kω(1). Then, solving decision-LWR with secrets of size k and parameters p
and q is at least as hard as solving decision-LWE over Zq with secret of size k
and noise distribution χ.

The second result reduces this explosion in the parameters but limits the number
of samples the adversary is allowed to get from the LWR oracle.

Theorem 7 (Theorem 4.1 from [3]). Let λ be the security parameter. Let
k, ℓ,m, p, γ be positive integers, pmax be the largest prime divisor of q, and pmax ≥
2βγkmp. Let χ be a probability distribution over Z such that E[|χ|] ≤ β. Then, if
k ≥ (ℓ+λ+1) log(q)/ log(2γ)+ 2λ and if gcd(q, q/pmax) = 1, the decision-LWR
with secret of size k, parameters p and q and limited to m queries is at least as
hard as solving decision-LWE over Zq with secrets of size ℓ, noise distribution χ
and limited to m queries.

2.5 Discrete Fourier Transform

Let p1, · · · , pb be integers and let θpj
:= exp(2πi/pj), for 1 ≤ j ≤ b and where

i =
√
−1. Define the group G := Zp1

×· · ·×Zpb
. We may write an element x ∈ G

as (x1, · · · , xb). The discrete Fourier transform (DFT) of a function f : G → C

is a function f̂ : G→ C defined as

f̂(α) :=
∑

x∈G

f(x)θ−α1x1

p1
· · · θ−αbxb

pb
. (4)

The discrete Fourier transform can be computed in time O (|G| log(|G|)) =:
CFFT · |G| log(|G|) for a small constant CFFT.

2 For the second component returned by the LWR oracle, we decided to return the
rounding of 〈a, s〉 instead of the usual ⌊〈a, s〉⌋. The problem is equivalent (see,
e.g., [3]). However, if we would use the floor operation, the noise in Lemma 19 would
not have zero mean but mean (1/2− gcd(p, q)/2q) and we would have to introduce
tedious correcting terms in (32).
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2.6 Hoeffding’s Inequality

We will use the following Hoeffding bound.

Theorem 8 ([33]). Let X1, X2, . . . , Xn be n independent random variables such
that Pr[Xj ∈ [αj , βj ]] = 1 for 1 ≤ j ≤ n. We define X = X1 + . . . + Xn and
E[X] to be the expected value of X. We have that

Pr[X − E[X] ≥ t] ≤ exp

(
−2t2∑n

j=1(βj − αj)2

)

and

Pr[X − E ≤ −t] ≤ exp

(
−2t2∑n

j=1(βj − αj)2

)
,

for any t > 0.

3 The BKW Algorithm

The BKW algorithm [11], introduced by Blum et al., was the first sub-exponential
algorithm given for solving the Learning Parity with Noise (LPN) problem.
Asymptotically, it has a time and samples complexity of 2O(k/ log k). Since LPN
can be seen as a special case of LWE where we work over Z2, the BKW algo-
rithm can be adapted to solve Search-LWE over Zq with an asymptotic sample
and time complexity of qO(k/ log(k)) = 2O(k) when the modulus q is polynomial
in k [1,43,44].

The BKW algorithm can be described as a variant of the standard Gaussian
elimination procedure, where a row addition results in the elimination of a whole
block of elements instead of a single element. The main idea is that by using
‘few’ row additions and no row multiplications, we limit the size of the noise
at the end of the reduction, allowing us to recover a small number of elements
of s with high probability through maximum likelihood. The main complexity
drawback of the algorithm comes from finding samples colliding on a block of
elements such that their addition eliminates multiple elements at once.

The BKW algorithm takes two integer parameters, usually denoted a and b,
such that a = ⌈k/b⌉. The algorithm repeatedly eliminates blocks of up to b ele-
ments per row addition, over a rounds, to obtain the samples used for recovering
elements of s. Minimizing the complexity of the algorithm requires a tradeoff
between the two parameters. For small a, the reduced samples have low noise
and the complexity of recovering elements of s with high probability is reduced.
For large b however, the complexity of finding colliding samples increases.

In [1], Albrecht et al. view the BKW algorithm as a linear system solving
algorithm consisting of three stages, denoted sample reduction, hypothesis testing
and back substitution. For convenience, we briefly describe each of these stages
below.
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Sample Reduction. Given an LWE oracle Πs,χ, the goal of this stage is to
construct a series of oracles As,χ,ℓ, each of which produces samples (a, c), where
the first b · ℓ elements of a are zero. To create the oracles As,χ,ℓ for 0 < ℓ < a,
Albrecht et al. make use of a set of tables T ℓ, which are maintained throughout
the execution of the algorithm. To sample from As,χ,1, we query the oracle As,χ,0

(which is the original LWE oracle) to obtain samples (a, c) to be stored in table
T 1. If T 1 already contains a sample (a′, c′) such that a and ±a′ agree on their
first b coordinates, we do not store (a, c) but instead output (a∓a′, c∓ c′). If a
sample from As,χ,0 already has its first b elements to be zero, we directly output
it as a sample from As,χ,1.

For 1 < ℓ < a, we proceed recursively by populating a table T ℓ of non-zero
samples from As,χ,ℓ−1 and outputting a query as soon as we get a collision in
the table.

Exploiting the symmetry of Zq and the fact that we do not need to store
queries which are already all-zero on a block, a table T ℓ contains at most (qb −
1)/2 samples. Then, to create m samples from As,χ,ℓ, we will need at most

m+ qb−1
2 calls to As,χ,ℓ−1. Furthermore, since there is no use in storing the zero

elements from reduced samples, table T ℓ stores samples of size n− (ℓ− 1) · b+1
elements from Zq. The description of the oracles As,χ,ℓ is given in Algorithm 1.

In the original BKW algorithm (see [11,35]), one would then take samples
from As,χ,a−1, i.e., samples with zeros everywhere except in the first b positions,
and delete any sample (a, c) with more than one non-zero coordinate ai. The
remaining samples would be used to recover one bit of s at a time.

Albrecht et al. generalized a bit the result. Instead of keeping only one single
element of the secret vector, they select a parameter d ≤ k−(a−1) ·b and create
a final oracle As,χ,a, which produces samples with d non-zero entries at fixed
positions in a. These samples are used to recover d bits of s through exhaustive
search over qd values. The oracle As,χ,a is defined similarly as above, making
use of a final table T a. It samples from As,χ,a−1 and adds (or subtracts) queries
(a, c), (a′, c′), for which a and ±a′ agree on coordinates (a− 1) · b+ 1 through
k − d − 1. Albrecht et al. note that they obtain the best results when choosing
d equal to 1 or 2. Note that d = 1 corresponds to the BKW algorithm.3

Hypothesis testing. After the reduction phase, Albrecht et al. are left with
samples (a, c) from As,χ,a, where a has d non-zero elements. We can view As,χ,a

as outputting samples in Z
d
q × Zq. Let s

′ denote the d first elements of s. Since
a was obtained by summing or subtracting up to 2a samples from the LWE
oracle Πs,χ (and considering the fact that χ is symmetric around 0), the noise
(c − 〈a, s′〉) of the reduced samples follows the distribution of the sum of 2a

noise samples. The problem of recovering s′ can then be seen as a problem of
distinguishing between the noise distributions for s′ and v 6= s′.

3 The only difference between the two algorithms is that the original BKW algorithm
restarts every time As,χ,a outputs something.
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Algorithm 1 Oracle As,χ,ℓ, for 0 < ℓ < a

State: A table T ℓ (initially empty)
Output: An LWE tuple (a, c) such that a has the first b · ℓ elements set to 0.
1: loop

2: Let (a, c)← As,χ,ℓ−1.
3: if a has the first b · ℓ elements set to 0 then

4: return (a, c).
5: end if

6: if there is (a′, c′) ∈ T ℓ such that a and ±a′ are equal on the first b · ℓ positions
then

7: return (a∓ a
′, c∓ c′)

8: end if

9: Add (a, c) to T ℓ.
10: end loop

By performing an exhaustive search over Z
d
q and making use of the log-

likelihood ratio, Albrecht et al. determine the number m of samples from As,χ,a

which should be required to recover s′ with high enough probability.
As already mentioned, the analysis of the solving phase from [1] makes use of

the heuristic assumption that the noise contributions of the samples from As,χ,a

are independent and that the sum of rounded Gaussians also follows a rounded
Gaussian distribution.

Back substitution. This stage was not part of the original BKW algorithm
for LPN [11,35] (which does not make use of the set of tables T defined previ-
ously either). It is analogous to the back substitution typically used in Gaussian
elimination and is a clever way of reducing the size of the LWE problem after
part of the secret s has been recovered.

Indeed, once d elements of s are recovered with high probability, we can
perform a back substitution over the set of tables T , zeroing-out d elements in
each sample. To recover the next d elements from s, we query m new samples
from Πs,χ and reduce them through the tables T (which are already filled) to
obtain samples for hypothesis testing. Note that as soon as we recover all the
bits at positions (ℓ−1) ·b through ℓ ·b−1, the oracle As,χ,ℓ and its corresponding
table T ℓ become superfluous and further samples will need one reduction phase
less.

4 The LWE-solving Algorithm

In this section, we present our new LWE-solving algorithm. Following the struc-
ture from [1], our algorithm will also consist of the sample reduction, hypothesis
testing and back substitution phases. However, we change the hypothesis test-
ing phase with an idea similar to the LF1 algorithm [35]. Indeed, since the
Walsh-Hadamard transform can be seen as a multidimensional discrete Fourier
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transform in Z2, it would seem plausible that a similar optimization could be
achieved over Zq for LWE. As we have seen, the BKW algorithm for LWE from
[1] differs slightly from the original BKW algorithm in its reduction phase. Re-
call that after reducing samples to a block of size k′ ≤ b, Albrecht et al. further
reduce the samples to d elements. Our idea is to remove this last reduction to
d elements and recover directly the k′ elements of s using a DFT. Thus, the
samples we use for the DFT would have noise sampled from the sum of 2a−1

discretized Gaussians instead of 2a, which might also lead to a significant im-
provement. As for most other works on LPN or LWE solving algorithms, we will
make use of an heuristic assumption of independence for the noise of the reduced
samples.

Finally, note that the LF1 algorithm uses the exact same reduction phase as
the original BKW. Similarly, our algorithm will use (nearly) the same reduction
phase as in [1], combined with a different hypothesis testing phase. The major
differences in our reduction phase will be that we perform one reduction round
less, and that we decide to store and re-use samples for solving successive blocks
of s.

4.1 Sample reduction

As mentioned previously, our algorithm uses the same reduction phase as the
BKW algorithm from [1], except that we always stop the reduction as soon as we
reach a block of k′ ≤ b non-zero elements. We will construct the oracles As,χ,ℓ

and the tables T ℓ only for 1 ≤ ℓ ≤ a − 1. It is thus fairly trivial to adapt the
results from [1] to bound the complexity of our algorithm’s reduction phase.

Lemma 9 (Lemma 2 and 3 from [1]). Let k, q be positive integers and Πs,χ

be an LWE oracle, where s ∈ Z
k
q . Let a ∈ Z with 1 ≤ a ≤ k, let b be such that

ab ≤ k, and let k′ = k − (a − 1)b. The worst case cost of obtaining m samples
(ai, ci) from the oracle As,χ,a−1, where the ai are zero for all but the first k′

elements, is upper bounded by

(
qb − 1

2

)(
(a− 1) · (a− 2)

2
(k + 1)− ab · (a− 1) · (a− 2)

6

)
+m

(
a− 1

2
(k + 2)

)

additions in Zq and (a− 1) · qb−12 +m calls to Πs,χ.
The memory required in the worst case to store the set of tables T 1 through

T a−1, expressed in elements of Zq is upper bounded by

(
qb − 1

2
· (a− 1) ·

(
k + 1− b

a− 2

2

))
.

Proof. The proof follows exactly the one from [1], with the exception that we do
not use any table T a. ⊓⊔
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4.2 Hypothesis testing

At the end of the reduction phase, we are left with m samples (a(j), c(j)) from
the oracle As,χ,a−1, where each a(j) has all elements equal to zero except for a
block of size k′ = k−(a−1)·b. Let s′ denote the corresponding block of the secret
s. We can view the oracle As,χ,a−1 as returning samples in Z

k′

q × Zq. We will
consider that each such sample is the sum of 2a−1 samples (or their negation)
from the LWE oracle Πs,χ. Then, the noise 〈a(j), s′〉 − c(j) will correspond to
the sum of 2a−1 independent samples from the distribution χ, multiplied by ±1,
and taken modulo q. We perform our analysis when χ is the discrete Gaussian
distribution (3) and when χ is the rounded Gaussian distribution (2) which are
used in most of the LWE research, i.e., we let χ = Dσ,q or χ = Ψ̄σ,q.

We represent our m samples as a matrix A ∈ Z
m×k′

q with rows Aj and a
vector c ∈ Z

m
q . Recall that θq := exp(2πi/q). Let us consider the function

f(x) :=

m∑

j=1

1{Aj=x} θ
cj
q , ∀x ∈ Z

k′

q . (5)

The discrete Fourier transform of f is

f̂(α) :=
∑

x∈Zk′

q

f(x)θ−〈x,α〉q =
∑

x∈Zk′

q

m∑

j=1

1{Aj=x} θ
cj
q θ−〈x,α〉q =

m∑

j=1

θ−(〈Aj ,α〉−cj)
q .

In particular, note that

f̂(s′) =
m∑

j=1

θ−(〈Aj ,s
′〉−cj)

q =
m∑

j=1

θ
−(νj,1±···±νj,2a−1 )
q , (6)

where the νj,l are independent samples from χ. Note that we dropped the re-
duction of the sum of the ν modulo q, since θkqq = 1, for k ∈ Z.

We will now show, through a series of lemmas, that for appropriate values
for m and a, the maximum value of the function Re(f̂(α)) is reached by s′ with
high probability. Our algorithm for recovering s′ will thus consist in finding the
highest peak of the real part of the DFT of f(x).

We start first with two technical lemmas regarding Gaussian distributions
which might be of independent interest.

Lemma 10. For q an odd integer, let X ∼ Ψ̄σ,q and let Y ∼ 2πX/q. Then

E[cos(Y )] ≥ q

π
sin

(
π

q

)
e−2π

2σ2/q2 and E[sin(Y )] = 0 .

11



Proof. Let Sℓ be the set of integers in ]− q/2 + ℓq, q/2 + ℓq]. Using (1) and (2),
we can write

E[cos(Y )] =
∑

x∈S0

cos

(
2π

q
x

) ∞∑

ℓ=−∞

∫ x+1/2

x−1/2

p(θ + ℓq;σ) dθ (7)

=
∞∑

ℓ=−∞

∑

x∈S0

cos

(
2π

q
x+ 2πℓ

)∫ x+1/2

x−1/2

p(θ + ℓq;σ) dθ (8)

=
∞∑

ℓ=−∞

∑

x∈S0

cos

(
2π

q
(x+ ℓq)

)∫ x+1/2+ℓq

x−1/2+ℓq

p(θ;σ) dθ (9)

=

∞∑

ℓ=−∞

∑

x′∈Sℓ

cos

(
2π

q
x′
)∫ x′+1/2

x′−1/2

p(θ;σ) dθ (10)

=
∞∑

x′=−∞

cos

(
2π

q
x′
)∫ x′+1/2

x′−1/2

p(θ;σ) dθ (11)

=
∞∑

χ=−∞

F
(
cos

(
x
2π

q

)∫ x+1/2

x−1/2

p(θ;σ) dθ

)
(χ) , (12)

where, for (10), we used x′ := x + ℓq and, for (12), we used the Poisson sum-
mation formula (Lemma 25 in Appendix A). Basics about continuous Fourier
transforms can be found in Appendix A. The Fourier transforms of cos(2πx/q)

and 1/(σ
√
2π) exp[−x/(2σ2)] can be found in Appendix A. We are now ready

to prove the lemma (we drop some (χ) for readability). For integer values of χ,
we have

F
(

cos

(
x
2π

q

)∫ x+1/2

x−1/2

1

σ
√
2π

e−θ2/(2σ2) dθ

)

(13)

= F
(
cos

(
x
2π

q

))
∗
(

F
(∫ x+ 1

2

−∞

1

σ
√
2π

e
− θ2

2σ2 dθ

)

−F
(∫ x− 1

2

−∞

1

σ
√
2π

e
− θ2

2σ2 dθ

))

(14)

= F
(
cos

(
x
2π

q

))
∗
((

eπiχ − e−πiχ
)
F
(∫ x

−∞

1

σ
√
2π

e−θ2/(2σ2) dθ

))
(15)

=
1

2

(
δ

(
χ− 1

q

)
+ δ

(
χ+

1

q

))
∗
((

eπiχ − e−πiχ
)( 1

2πiχ
e−2π2σ2χ2

+
1

2
δ(χ)

))

(16)

=
1

2

(
δ

(
χ− 1

q

)
+ δ

(
χ+

1

q

))
∗
(
sin(πχ)

(
1

πχ
e−2π2σ2χ2

))
(17)

=
q

2π
sin

(
π

q

)
(−1)χ

(
e−2π2σ2(qχ+1)2/q2

qχ+ 1
− e−2π2σ2(qχ−1)2/q2

qχ− 1

)

, (18)

where (14) is the convolution property of the FT, (15) comes from the translation
property of the FT, (16) comes from the integration property of the FT, and

12



(17) holds since δ(χ± 1/q) ∗ δ(χ) = 0 for integer values of χ. We can write (12)
as

q

π
sin

(
π

q

)
exp−2π

2σ2/q2

+

∞∑

χ=1

q

π
sin

(
π

q

)
(−1)χ

(
e−2π

2σ2(qχ+1)2/q2

qχ+ 1
− e−2π

2σ2(qχ−1)2/q2

qχ− 1

)
.

Notice that the sum term in this equation is alternating and decreasing in abso-
lute value when χ grows (derivative is negative). Notice also that the first term
(when χ = 1) is positive. Hence this sum is greater than 0 and we get our result
for E [cos(Y )].

For E [sin(Y )], note that when q is odd, X and Y are perfectly symmetric
around 0. The result then follows trivially from the symmetry of the sine func-
tion. ⊓⊔
Lemma 11. For q an odd integer, let X ∼ Dσ,q and let Y ∼ 2πX/q. Then

E[cos(Y )] ≥ 1− 2π2σ2

q2
and E[sin(Y )] = 0 .

Proof. Using [7, Lemma 1.3] with a = 1/(2σ2), we have that E[X2] ≤ σ2. Hence,
using cos(x) ≥ 1− x2/2,

E[cos(2πX/q)] ≥ 1− 2π2
E[X2]/q2 = 1− 2π2σ2/q2 .

For E [sin(Y )], note that when q is odd, X and Y are perfectly symmetric around
0. The result then follows trivially from the symmetry of the sine function. ⊓⊔
Definition 12 (Rσ,q,χ). In the following, let Rσ,q,χ := E[cos(χ)], i.e.,

Rσ,q,χ :=

{
q
π sin

(
π
q

)
e−2π

2σ2/q2 when χ = Ψ̄q,σ

1− 2π2σ2

q2 when χ = Dq,σ

Lemma 13. E

[
Re(f̂(s′))

]
≥ m · (Rσ,q,χ)

2a−1

.

Proof. From (6), we get

E

[
Re(f̂(s′))

]
= Re

(
m∑

j=1

E

[
θ
−(νj,1±···±ν

j,2a−1 )

q

])

= Re

(
m∑

j=1

E

[
cos

(
2π

q
νj,1

)]2a−1
)

,

using the independence of the noise samples νj,ℓ and E[θ
±νj,ℓ
q ] = E[cos(2πνj,ℓ/q)]

(which follows from Lemmas 10 and 11). Using Lemmas 10 and 11 again, we have
that E[cos(2πνj,ℓ/q)] ≥ Rσ,q,χ. Hence, we get that

E

[
Re(f̂(s′))

]
>

m∑

j=1

(Rσ,q,χ)
2a−1

= m · (Rσ,q,χ)
2a−1

. (19)

⊓⊔
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Lemma 14. Let G ⊆ Zq be a subgroup of Zq, let X
U←− G and let e ∈ Zq be

independent from X. Then, E
[
θX+e
q

]
= 0.

Proof. Define Y = 2π
q X. Then Y is a random variable following a discrete uni-

form distribution on the unit circle. Then E[θXq ] = 0 follows from the analysis
of discrete circular uniform distributions (see e.g. [6]). Now, since X and e are
independent, E[θX+e

q ] = E[θXq ]E[θeq ] = 0. ⊓⊔

Lemma 15. argmaxα Re(f̂(α)) = s′ with probability greater than

1− qk
′ · exp

(
−m

8
· (Rσ,q,χ)

2a
)

.

Proof. A similar proof is proposed for LPN in [12]. We are looking to upper

bound the probability that there is some α 6= s′ such that Re(f̂(α)) ≥ Re(f̂(s′)).
Using a union bound, we may upper bound this by qk

′

times the probability
that Re(f̂(α)) ≥ Re(f̂(s′)) for some fixed vector α ∈ Z

k′

q , α 6= s′ which is the
probability that

m∑

j=1

(
Re
(
θ−(〈Aj ,s

′〉−cj)
q

)
− Re

(
θ−(〈Aj ,α〉−cj)
q

))
≤ 0 .

Let y = α − s′ ∈ Z
k′

q . Also, define ej := 〈Aj , s
′〉 − cj , for 1 ≤ j ≤ m.

Then, 〈Aj ,α〉−cj = 〈Aj ,y〉+ej . Note that since Aj is uniformly distributed at
random, independently from ej , and y is fixed and non-zero, 〈Aj ,y〉 is uniformly
distributed in a subgroup of Zq, and thus so is 〈Aj ,α〉−cj . Hence, we can apply
Lemma 14.

From our heuristic assumption, we will consider X1, X2, . . . , Xm to be inde-
pendent random variables with Xj = uj − vj , where

uj = Re
(
θ−(〈Aj ,s

′〉−cj)
q

)
and vj = Re

(
θ−(〈Aj ,α〉−cj)
q

)
. (20)

Note that Xj ∈ [−2, 2] for all j. Furthermore, let X =
∑m

j=1 Xj . Using
Lemmas 13 (for the uj ’s) and 14 (for the vj ’s), we get that

E [X] ≥ m · (Rσ,q,χ)
2a−1

. (21)

We will bound the probability that X ≤ 0 using Hoeffding’s inequality (The-
orem 8). Let t = E[X] > 0. Then,

Pr[X ≤ 0] = Pr
[
(X − E[X]) ≤ −E[X]

]
≤ exp

(−2(E[X])2

16m

)

≤ exp
(
−m

8
· (Rσ,q,χ)

2a
)

.

(22)

Applying the aforementioned union-bound, we get the desired result. ⊓⊔
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We are now ready to derive the number of samples m required to recover the
correct secret block s′ with high probability.

Theorem 16. Let k, q be positive integers and Πs,χ be an LWE oracle, where
s ∈ Z

k
q . Let a ∈ Z with 1 ≤ a ≤ k, let b be such that ab ≤ k, and let k′ =

k − (a − 1)b. Let As,χ,a−1 be the oracle returning samples (ai, ci) where the ai

are zero for all but the first k′ elements. Denote the vector consisting of the
first k′ elements of s as s′. Fix an ǫ ∈ (0, 1). Then, the number of independent
samples mLWE from As,χ,a−1, which are required such that we fail to recover the
secret block s′ with probability at most ǫ satisfies

mLWE ≥




8 · k′ · log

(
q
ǫ

)
·
(

q
π sin

(
π
q

)
e−2π

2σ2/q2
)−2a

when χ = Ψ̄σ,q

8 · k′ · log
(
q
ǫ

)
·
(
1− 2π2σ2

q2

)−2a
when χ = Dσ,q .

Furthermore, the hypothesis testing phase (the FFT phase in Algorithm 2)
that recovers s′ requires 2mLWE + CFFT · k′ · qk

′ · log q operations in C and re-
quires storage for qk

′

complex numbers, where CFFT is the small constant in the
complexity of the FFT.4

Proof. For a fixed m, we get

ǫ = Pr
[
∃ α 6= s′ : Re(f̂(α)) ≥ Re(f̂(s′))

]
< qk

′ · exp
(
−m

8
· (Rσ,q,χ)

2a
)

.

Solving for m, we get the desired result.
Concerning the algorithmic and memory complexities, we need to store the

values of the function f(x) as qk
′

elements from C. For each of themLWE samples
we receive from As,χ,a−1, we compute an exponentiation and an addition in C to
update f(x) and then discard the sample. Finally, computing the discrete Fourier
transform of f can be achieved with CFFT ·k′ · qk

′ · log q complex operations, and
no additional memory, using an in-place FFT algorithm. ⊓⊔

The hypothesis testing part of the algorithm is summarized in Algorithm 2.

4.3 Back substitution

We use a similar back substitution mechanism as the one described in [1]. Note
that we have to apply back substitution on one table less, since we performed
only a − 1 reductions. Furthermore, since we recovered a complete block of s,
the table T a−1 would be completely zeroed-out by back substitution and can

4 One might comment on the required precision needed to compute the DFT. For this,

we set our precision to O
(
log(m(Rσ,q,χ)

2a)
)
bits which is the expected size of our

highest peak in the DFT. Using this result along with some standard results about
the exact complexity to compute a DFT with a given precision (see, e.g., [18]), the
ratio between our (binary) complexities and the binary complexities of [1] remain
the same.
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Algorithm 2 Hypothesis testing algorithm for LWE.

Input: m independent LWE samples with only k′ := k−(a−1)b non-zero components

in a. We represent our samples as a matrix A ∈ Z
m×k′

q and a vector c ∈ Z
m
q .

Output: A vector consisting of the k′ elements of s that are at the non-zero positions
of a

1: Compute the fast Fourier Transform f̂(α) of the function f(x) :
∑m

j=1 1Aj=xθ
cj
q

2: return argmax
α∈Zk′

q
f̂(α)

therefore simply be dropped after the hypothesis testing phase. Finally, we do
not discard the mLWE queries from Πs,χ, which were reduced and then used
for the solving phase. Instead, we store these mLWE original queries and re-use
m′ < mLWE of these queries for the next block of s.

4.4 Complexity of BKW with multidimensional DFT

We now have all the results we need in order to state the total complexity of
solving SEARCH-LWE with our algorithm. For ease of notation, we will consider
from here on that the parameters a and b are chosen such that k = a·b. Note that
the general case, where k = (a − 1) · b + k′, follows similarly from our previous
results.

Theorem 17 (Complexity of SEARCH-LWE). Let k, q be positive integers
and Πs,χ be an LWE oracle, where s ∈ Z

k
q . Let a, b ∈ N be such that a · b = k.

Let CFFT be the small constant in the complexity of the fast Fourier transform
computation. Let 0 < ǫ < 1 be a targeted success rate and define ǫ′ := (1− ǫ)/a.
For 0 ≤ j ≤ a− 1, let

mLWE

j,ǫ :=




8 · b · log

(
q
ǫ

)
·
(

q
π sin

(
π
q

)
e−2π

2σ2/q2
)−2a−j

when χ = Ψ̄σ,q

8 · b · log
(
q
ǫ

)
·
(
1− 2π2σ2

q2

)−2a−j

when χ = Dσ,q .

Under the standard heuristic that all the samples after reduction are independent
(which was also used in the previous work), the time complexity of our algorithm
to recover the secret s with probability at least ǫ is c1 + c2 + c3 + c4, where

c1 :=

(
qb − 1

2

)
·
(
(a− 1) · (a− 2)

2
(k + 1)− b

6
(a · (a− 1) · (a− 2))

)
(23)

is the number of additions in Zq to produce all tables T j, 0 ≤ j ≤ a− 1,

c2 :=

a−1∑

j=0

mLWE

j,ǫ′ ·
a− 1− j

2
· (k + 2) (24)
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is the number of additions in Zq to produce the samples required to recover all
blocks of s with probability ǫ,

c3 := 2




a−1∑

j=0

mLWE

j,ǫ′


+ CFFT · k · qb · log(q) (25)

is the number of operations in C to prepare and compute the DFTs,and

c4 := (a− 1) · (a− 2) · b · q
b − 1

2
(26)

is the number of operations in Zq for back substitution.

The number of calls to the oracle Πs,χ is

(a− 1) · q
b − 1

2
+mLWE

0,ǫ . (27)

Finally, the memory complexity in number of elements from Zq and C are
respectively

(
qb − 1

2
· (a− 1) ·

(
k + 1− b

a− 2

2

))
+mLWE

0,ǫ and qb . (28)

Proof. To recover s, we need to recover each block of s successfully. Since we
are making use of the same set of tables T and reduced queries for each block,
these events are not independent. Using a union bound, and a failure probability
bounded by (1 − ǫ)/a for each of the a blocks thus leads to a overall success
probability of at least ǫ.

– The cost of constructing the set of tables T in (23) is given by Lemma 9. Note
that theses tables are constructed only once and maintained throughout the
execution of the algorithm.

– As per Lemma 9, the cost of obtaining m samples from the oracle As,χ,a−1

is upper bounded by m · a−12 ·(k+2). Noting that after solving the jth block,
the table T j is dropped, the result in (24) follows.

– The DFT has to be applied a times, for each block of size b. Since the number
of samples required is updated for each block, we get equation (25).

– After solving the first block, back substitution has to be applied to a − 2
tables (table T a−1 can be dropped). Per table, the substitution has cost 2b

for each of the qb−1
2 rows. In total, we get a cost of

∑a−2
j=1 2 · b ·

(
i · qb−12

)
, as

in (26).

– The required number of oracle samples follows from Lemma 9. Note that
the samples needed to fill up the tables are required only once and that the
mLWE

0,ǫ additional queries are stored and can be reused for each block of s

since mLWE
0,ǫ > mLWE

j,ǫ for j > 0. This gives us the total from (27).
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– Finally, the storage cost for the tables follows from Lemma 9. In addition,
we need an array of size qb to store the complex function on which we apply
the DFT (we assume an in-place DFT algorithm requiring no extra storage).
We also store the mLWE

0,ǫ samples queried to solve the first block. Combining
these results gives us (28).

⊓⊔

4.5 Using Fewer Samples

If the number of queries to the LWE oracle is limited we can use an idea in-
troduced by Lyubashevsky [37]. The idea is to use a universal family of hash
function to combine samples and create new ones. However, these new samples
will have higher noise.

Theorem 18. Let ǫ ≥ (log q+1)/ log k. Then, one can convert an LWE instance
Πs,χ where χ is Ψ̄σ,q (resp. Dσ,q) and using k1+ǫ samples into an LWE instance
Πs,χ′ where χ′ is Ψ̄σ⌈(log q+1)k/(ǫ log k)⌉,q (resp. Dσ⌈(log q+1)k/(ǫ log k)⌉) without any
sample limit.

Proof (sketch). The proof is exactly the same as in [37] except for few differences

that we state here. We let our samples be A = a(1), · · ·a(k1+ǫ) ∈ Z
k
q . Let alsoX ⊂

{0, 1}k
1+ǫ

with x ∈ X if
∑

j xj = ⌈(log(q) + 1)k/(ǫ log k)⌉. We use the following

universal family of hash function H :=
{
hA : X ← Z

k
q

}
where A is defined above

and hA(x) := x1a
(1) + · · · + xk1+ǫa(k

1+ǫ). By the Leftover Hash Lemma [34],
when A and x are uniformly distributed, with probability greater than 1−2−k/4,
∆(hA(x), U) ≤ 2−n/4, where U is the uniform probability distribution over Zk

q .
Note that the Leftover Hash Lemma holds since

|X| ≥
(

k1+ǫ

⌈(log q + 1)k/(ǫ log k)⌉

)⌈(log q+1)k/(ǫ log k)⌉

≥ qk ,

when ǫ ≥ (log q + 1)/ log k. ⊓⊔

The LF2 Heuristic. In [35], Levieil and Fouque propose LF2, an heuristic
improvement for the reduction phase of their LPN solving algorithm LF1. The
main idea of LF2 is to compute the sum (or difference) of any pair of samples
(a, c) and (a′, c′), which agree on b particular coordinates. Thus, in an entry
of a reduction table T i, we would store not only one, but all samples agreeing
(up to negation) on b coordinates. Then, when reducing a sample (a, c), we
could output (a ± a′, c ± c′) for each sample (a′, c′) in the corresponding table
entry. Note that if we have x samples agreeing on b positions, we can output

(
x
2

)

reduced samples.
An interesting case arises when we take exactly 3 · qb/2 oracle samples. In

the worst case, we get exactly 3 samples per entry in table T 1. Then, applying
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all the pairwise reductions, we again get 3 · qb/2 samples to be stored in table
T 2 and so forth. Hence, if we take

max
{
mLWE

0,ǫ′ , 3 · qb/2
}

(29)

oracle queries, we are ensured to have enough samples for the Fourier transform.
We could thus solve the LWE problem using fewer oracle samples than in The-
orem 17 and with a similar time complexity, at the expense of a higher memory
complexity (to store multiple samples per table entry).

4.6 Results

We computed the number of operations needed in Zq to solve the LWE problem
for various values of k when the parameters are chosen according to Regev’s
cryptosystem [43] and ǫ = 0.99. In this scheme, q is a prime bigger than k2

and σ = q/(
√
k log2(k)

√
2π). For our table, we took q to be the smallest prime

greater than k2. Our results are displayed in Table 1.5 To simplify our result,
we considered operations over C to have the same complexity as operations over
Zq. We also took CFFT = 1 which is the best one can hope to obtain for a FFT.
Regarding the noise distribution, we obtained the same results for both Dσ,q

and Ψ̄σ,q. If we compare our results with [1, Table1], we see that we are better in
all the cases.6 This improvement with respect to log likelihood comes from the
fact that we do one reduction less in our reduction phase as we recover a full
block instead of a single element in Zq. This implies that our noise is going to
be smaller and, hence, we will need a lower number of queries. However, we still
achieve the same asymptotic complexity.

5 Applying our Algorithm to LWR

In this section, we try to apply a similar algorithm to LWR. In the following, we
will always consider q to be prime.

Lemma 19. Let k and q > p ≥ 2 be positive integers, q prime. Let (a, c) be
a random sample from an LWR oracle Λs,p. Then, the “rounding error”, given
by ξ = (p/q)〈a, s〉 − c, follows a uniform distribution in a discrete subset of
[−1/2, 1/2] with mean zero.

Furthermore, for γ ∈ R6=0,

E
[
e±iξγ

]
=

1

q
· sin(

γ
2 )

sin( γ
2q )

. (30)

5 The code used to compute these value is available on our website
http://lasec.epfl.ch/lwe/

6 Albrecht et al. simplified their complexity by considering non-integer a which ex-
plains why the difference between our results varies depending on k.
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k q a log(#Zq) log(m) log(m) for LF2 log(#Zq) in [1]

64 4 099 19 52.62 43.61 41.01 54.85
80 6 421 20 63.23 53.85 51.18 65.78
96 9 221 21 73.72 63.95 61.98 76.75
112 12 547 21 85.86 75.94 73.20 87.72
128 16 411 22 95.03 84.86 82.05 98.67
160 25 601 23 115.87 105.33 102.46 120.43
224 50 177 24 160.34 149.26 146.32 163.76
256 65 537 25 178.74 167.43 164.43 185.35
384 147 457 26 269.18 257.23 254.17 −
512 262 147 27 357.45 345.03 341.92 −

Table 1.We write #Zq for the worst case cost (in operations over Zq) of solving Search-
LWE for various parameters for the Regev cryptosystem [43] when ǫ = 0.99 according
to Theorem 17. We provide also the value of a that minimizes the complexity, the
number of queries (m) according to (27), and the number of queries (m) when we
apply the LF2 heuristic (29).

Proof. We first prove the first part of the lemma. We will prove that for any
α ∈ [−q+1

2 , . . . , q−1
2 ], ξ takes the value α/q with probability 1/q. We have p ·

〈a, s〉 ≡ ξq (mod q). So α = ξq = ((p · 〈a, s〉 + (q − 1)/2) mod q) − (q − 1)/2.
Since 〈a, s〉 is uniform in Zq (for s 6= 0), α is uniform in −(q+1)/2, · · · , (q−1)/2
and has mean zero. Hence, so has ξ.

We now prove the second part of our lemma. Let X = q · ξ be a random
variable following a discrete uniform distribution on the set of integers {(−q +
1)/2, . . . , (q − 1)/2}. Then, from the characteristic function of X, for any t ∈ R

we have

E
[
eitX

]
=

e−it(q−1)/2 − eit(q+1)/2

q · (1− eit)
. (31)

By simple arithmetic, we obtain

E
[
eiξγ

]
= E

[
eiγq

−1X
]
=

eiγ/(2q)
(
e−iγ/2 − eiγ/2

)

q
(
1− eiγ/q

) =
− sin(γ/2) · 2i

q
(
e−γi/(2q) − eγi/(2q)

)

which gives our result. ⊓⊔

In our case, q is an odd prime and different from p. Hence, E[eiξγ ]tends to
2
γ sin(γ/2) as q grows to infinity. We will be interested in the value γ = 2π/p.

Then, for small p = {2, 3, 4, 5, . . .}, E[eiξγ ] is {0.6366, 0.8270, 0.9003, 0.9355, . . .}.

5.1 The LWR-solving Algorithm

From the similarity of the LWR and LWE problems, it should not seem surprising
that we would use the same sample reduction and back substation phases, but
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we need an alternative “hypothesis testing phase” (which we call solving phase)
to account for the difference in error distributions.

As for LWE, we choose some a, b ≤ k such that ab ≤ k and we let k′ =
k − (a− 1)b. We will view the reduction phase of our algorithm as producing a
series of oracles Bs,p,ℓ for 0 ≤ ℓ ≤ a− 1, where Bs,p,0 is the original LWR oracle
Λs,p. The final oracle Bs,p,a−1 produces samples (a, c) where a is non-zero only
on the first k′ elements.

Solving Phase. We consider the samples from Bs,p,a−1 as belonging to Zk′

q ×Zp.

We assume we have m such samples and represent them as a matrix A ∈ Z
m×k′

q

with rows Ai and a vector c ∈ Z
m
p . The corresponding block of k′ elements of

the secret s is denoted s′.
Additionally, we assume that each sample (a(j), c(j)) from Bs,p,a−1 is the sum

of 2a−1 samples (or their negation) from the LWR oracle. The ‘noise’ 〈a(j), s′〉pq−
c(j) will then correspond to the sum of 2a−1 independent “rounding errors” (or
their negation) from the original samples.

For θu := exp(2πi/u), we consider the function

flwr(x) :=
m∑

j=1

1{Aj=x} θ
cj
p , ∀x ∈ Z

k′

q . (32)

The discrete Fourier transform of flwr is

f̂lwr(α) :=
∑

x∈Zk′

q

flwr(x)θ
−〈x,α〉
q =

m∑

j=1

θ
−(〈Aj ,α〉

p
q
−cj)

p . (33)

In particular, note that

f̂lwr(s
′) =

m∑

j=1

θ
−(〈s′,α〉 p

q
−cj)

p =

m∑

j=1

θ
−(±ξj,1±···±ξj,2a−1 )
p , (34)

where the ξj,ℓ are independent rounding errors from the original LWR samples.
Note that it is irrelevant whether the noise has been reduced modulo p, since
θ−upp = 1 for u ∈ Z.

As for LWE, we can now derive an explicit formula for the number of samples
m, which are required to recover s′ with high probability.

Lemma 20. For q > p ≥ 2, q prime, E
[
Re(f̂lwr(s

′))
]
= m ·

(
1
q ·

sin(π
p
)

sin( π
pq

)

)2a−1

.

Proof. Let ξ be the random variable defined in Lemma 19. Since the original
rounding errors are independent, using Lemma 19, we may write

E

[
Re(f̂lwr(s

′))
]
= m · Re

(
E

[
e∓iξ

2π
p

]2a−1)
= m ·

(
1

q
·
sin(πp )

sin( π
pq )

)2a−1

. (35)

⊓⊔
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We need also to bound the values of f̂ when not evaluated at s′.

Lemma 21. Let α 6= s′. Then

E

[
Re(f̂lwr(α))

]
≤ m

(
2

p
+

1

p
cos

(
π

p

))2a−1

≤ m

(
3

p

)2a−1

.

Proof. Like in the previous lemma, we can write, for a uniformly distributed,

E

[
Re(f̂lwr(α))

]
= m · Re

(
E

[
e∓i(2π〈a,α〉/q−2πc/p)

]2a−1)
. (36)

However, unlike in the LWE case, we cannot use the independence of a and
the noise to obtain a zero expected value. This occurs because the errors are
computed deterministically from the vectors a in LWR. In fact, experiments
showed that the error is strongly correlated to a and that the expected value is
not zero. Thus, we will instead bound this expected value. To do this, we write

E

[
e∓i(2π〈a,α〉/q−2πc/p)

]
= E

[
cos

(
2π〈a,α〉

q
− 2πc

p

)]
±i·E

[
sin

(
−2π〈a,α〉

q
+

2πc

p

)]

and we bound both the sine and the cosine term.

– We first show that the contribution of the sine is zero, i.e., that for α 6= s′

fixed,7

E [sin (2π〈a,α〉/q − 2πc/p)] = 0 . (37)

Let w(a) := sin (2π〈a,α〉/q − 2π⌈〈a, s′〉(p/q)⌋/p). First, note that for a = 0,
c = 0. For a 6= 0, the contribution in the expected value is w(a). We have

w(−a) = sin (2π〈−a,α〉/q − 2π⌈〈−a, s′〉(p/q)⌋/p)
= sin (−2π〈a,α〉/q − 2π⌈−〈a, s′〉(p/q)⌋/p) = −w(a) .

Since q is odd, −a 6= a and, thus, in the expected value, the contribution of
any a 6= 0 is cancelled. Hence, the result.

– For the cosine, as in Lemma 15, we let y = α− s′ ∈ Z
k′

q . We get,

cos

(
2π〈a,α〉

q
− 2πc

p

)
= cos

(
2π〈a,y〉

q
+

2π(〈a, s′〉p/q − c)

p

)

= cos

(
2π〈a,y〉

q
+

2πξ

p

)
, (38)

where ξ ∈ [−1/2, 1/2] is the rounding error from Lemma 19. We are looking
for an upper-bound and, hence, we assume that ξ ∈ [−1/2, 1/2] will always

7 This is where the round function instead of the floor function in the definition of
LWR becomes handy.
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be such that cos(2π〈a,y〉/q+2πξ/p) is maximized. Figure 1 might help with
the reading. We divide the circle into sets of the form

Sℓ :=
[
ℓπ

p
,
(ℓ+ 1)π

p

]
∪
[−ℓπ

p
,
−(ℓ+ 1)π

p

]
, ℓ ∈ [0, p− 1] .

Note that this covers the whole circle. The hashed surface in Figure 1 is such
a set.
When 2π〈a,y〉/q ∈ Sℓ for ℓ 6= 0, we upper-bound (38) by cos((ℓ − 1)π/p)
(the bold line in Figure 1). Indeed, |2πξ/p| ≤ π/p. When 2π〈a,y〉/q ∈ S0,
we upper-bound (38) by cos(0) = 1.

cos

sin

ℓπ/p

(ℓ + 1)π/p

(ℓ− 1)π/p

−ℓπ/p

−(ℓ + 1)π/p

−(ℓ− 1)π/p

Fig. 1. Figure for the proof of Lemma 21.

Note that Pr[2π〈a,y〉/q ∈ Sℓ]] = 1/p since 〈a,y〉 is uniformly distributed in
Zq and p ≤ q. Hence,

E [cos (2π〈a,y〉+ 2πξ/p)] ≤ 1

p
+

1

p

p−1∑

ℓ=1

cos

(
(ℓ− 1)π

p

)

=
1

p
+

1

p
cos(0)− 1

p
cos

(
(p− 1)π

p

)
=

2

p
+

1

p
cos

(
π

p

)
≤ 3

p
. (39)

Plugging the values of the sine and the upper-bound for the cosine in (36) finishes
the proof. ⊓⊔
Lemma 22. When q > p ≥ 4 and q is prime, argmaxα Re(f̂lwr(α)) = s′ with
probability greater than

1− qk
′ · exp


−m

8
·



(
1

q
·
sin(πp )

sin( π
pq )

)2a−1

−
(
3

p

)2a−1



2

 .
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Proof. We first want the probability that Re(f̂(x)) ≥ Re(f̂(s′)) for some fixed
vector x ∈ Z

k′

q , x 6= s′. Applying the same heuristic argument as for LWE, we
consider X1, X2, . . . , Xm to be independent random variables with Xj = uj−vj ,
where

uj = Re

(
θ
−(〈Aj ,s

′〉 p
q
−cj)

p

)
and vj = Re

(
θ
−(〈Aj ,x〉

p
q
−cj)

p

)
. (40)

Note that Xj ∈ [−2, 2] for all j. Furthermore, let X =
∑m

j=1 Xj . Using
Lemmas 20 and 21, we get that

E [X] ≥ m ·



(
1

q
·
sin(πp )

sin( π
pq )

)2a−1

−
(
3

p

)2a−1

 ≥ 0 . (41)

We will again bound the probability that X ≤ 0 using Hoeffding’s inequality.
Let t = E[X] > 0. Then,

Pr[X ≤ 0] = Pr
[
(X − E[X]) ≤ −E[X]

]
≤ exp

(−2(E[X])2

16m

)

≤ exp


−m

8
·



(
1

q
·
sin(πp )

sin( π
pq )

)2a−1

−
(
3

p

)2a−1



2

 . (42)

The final result follows by applying a union bound over all possible values of
x. ⊓⊔

As for LWE, we may now deduce the number m of reduced samples that are
required to recover a block s′.

Theorem 23. Let k and q > p ≥ 4 be positive integers, q prime, and Λs,p be
an LWR oracle, where s ∈ Z

k
q . Let a ∈ Z with 1 ≤ a ≤ k, let b be such that

ab ≤ k, and let k′ = k − (a − 1)b. Let Bs,p,a−1 be the oracle returning samples
(ai, ci) where the ai are zero for all but the first k′ elements. Denote the vector
consisting of the first k′ elements of s as s′. Fix an ǫ ∈ (0, 1). Then, the number
of samples m from Bs,p,a−1 , which are required such that we fail to recover the
secret block s′ with probability at most ǫ satisfies

mLWR ≥ 8 · k′ · log
(q
ǫ

)
·



(
1

q
·
sin(πp )

sin( π
pq )

)2a−1

−
(
3

p

)2a−1


−2

.

Furthermore, recovering s′ in the solving phase (the FFT phase) requires
2mLWR +CFFT · k′ · qk

′ · log q operations in C, as well as storage for qk
′

complex
numbers.

We now summarize the complexity of our algorithm in the following theorem
(the proof of which is analogous to the proof of Theorem 17).
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Theorem 24 (Complexity of SEARCH-LWR). Let k, q > p ≥ 4 be positive
integers, q prime, and Πs,χ be an LWE oracle, where s ∈ Z

k
q . Let a, b ∈ Zq be

such that a · b = k. For 0 ≤ j ≤ a− 1, let

mLWR

j,ǫ := 8 · b · log
(q
ǫ

)
·



(
1

q
·
sin(πp )

sin( π
pq )

)2a−1−j

−
(
3

p

)2a−1−j


−2

.

Let 0 < ǫ < 1 be a targeted success rate and define ǫ′ := (1 − ǫ)/a. The (time,
memory and query) complexities to recover the LWR secret s with probability ǫ
are the same as in Theorem 17 where we replace mLWE

j,ǫ by mLWR

j,ǫ .

5.2 Results

The current hardness results for LWR require either a parameter q exponential in
k or a bound m on the number of oracle samples that an adversary may query.
It is an open problem ([3]) to assess the hardness of LWR with polynomial
parameters when the adversary has no sample limit. In such a case, for a =
O (log k) and b = ⌈k/a⌉, our algorithm would solve LWR in time 2O(k), as for
LWE.

However, the bound on the number of oracle samples in Theorem 7 is much
lower than the amount of samples required by our algorithm. Using an idea
from Lyubashevsky [37] we can generate additional samples with higher noise
(see Theorem 18). Yet, even this method requires at least k1+ǫ samples for
ǫ ≥ (log q + 1)/ log k, which is incompatible with the constraints of Theorem 7,
for a q polynomial in k.

in [3, Corollary 4.2], two types of parameters are proposed: parameters min-
imizing the Modulus/Error ratio (a) and parameters maximizing efficiency (b).
For completeness, we show in Table 2 the complexity of our algorithm applied
to these parameters. More precisely, we took for the underlying LWE problem
Regev’s parameters and ignored the constrains on the number of samples. For
the type (a) parameters, we took

σ =
k2√

k log2(k)
√
2π

q = nextprime(⌈(2σk)3⌉) p = nextprime(⌈ 3
√
q⌉)

and for the type (b) parameters

σ =
k2√

k log2(k)
√
2π

p = 13 q = nextprime(⌈2σkp⌉) .

Table 2 shows that the parameters proposed in [3] seem secure even if we remove
the constrain on the number of samples as the complexities are still quite high.

6 Conclusion

To summarize, we propose an algorithm which is currently the best algorithm
for solving the LWE problem. Our algorithm uses Fourier transforms and we
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k q p a log(#Zq) log(m) type

64 383 056 211 733 23 92.20 82.80 (a)
80 1 492 443 083 1 151 25 110.91 101.11 (a)
96 ≈ 232 1 663 26 132.26 122.15 (a)
112 ≈ 233 2 287 28 148.08 137.68 (a)
128 ≈ 234 3 023 29 167.52 156.87 (a)
64 9 461 13 12 81.61 72.90 (b)
80 14 867 13 12 103.89 94.86 (b)
96 21 611 13 12 126.97 117.66 (b)
112 29 717 13 13 140.21 130.60 (b)
128 39 241 13 13 162.63 152.84 (b)

Table 2. Worst case cost (in operations over Zq) of solving Search-LWR for various
parameters for the Regev cryptosystem [43] when ǫ = 0.99 according to Theorem 24.
We provide also the value of a that minimizes the complexity, the number of queries
(m) according to (27).

propose a careful analysis of the rounded Gaussian distribution which can be of
independent interest. In particular, we study its variance and the expected value
of its cosine. We also adapt our algorithm to the LWR problem when q is prime.
This algorithm is the first LWR-solving algorithm.

Further work includes the study of the Ring variants of LWE and LWR [38,8]
and the study of variants of LWE, e.g., when the secret follows a non-uniform
distribution (like in [2]) or when the noise follows a non Gaussian distribution.
It would also be interesting to see if our LWR algorithm can be extended for q
non prime.
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A Continuous Fourier Transforms

We use the following definition for continuous Fourier Transforms. The continu-
ous Fourier transform (FT) of a function f : R→ C is a function F(f) : R→ C

defined as

F(f)(χ) =
∫ ∞

−∞

f(x)e−2πiχx dx . (43)

We will use the following well-known properties.

Linearity.

F(f(x) + g(x))(χ) = (F(f) + F(g))(χ) . (44)

Translation.

F(f(x− y))(χ) = e−i2πyχF(f)(χ) . (45)

Convolution.

F(f(x)g(x))(χ) = (F(f(x)) ∗ F(g(x)))(χ) , (46)

where ∗ denotes the convolution operator which is defined as

(u ∗ v)(x) :=
∫ ∞

−∞

u(y)v(x− y) dy .
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Integration.

F
(∫ x

−∞

f(τ) dτ

)
(χ) =

1

2iπχ
F(f)(χ) + 1

2
F(f)(0)δ(χ) , (47)

where δ is the Dirac delta distribution. We will use the following property of the
Dirac delta. ∫ ∞

−∞

f(τ)δ(τ − ℓ) dτ = f(ℓ) .

We refer the reader to, e.g., [24,45,47] for more information about the Dirac delta
distribution and its derivatives or, e.g. [14] for a more engineering approach.

We will also use the Poisson summation formula.

Lemma 25 (Poisson summation formula (see, e.g., [46])). Let f(x) : R→
C be a function in the Schwartz space8 and F(f) its continuous Fourier trans-
form then

∞∑

ℓ=−∞

f(ℓ) =

∞∑

χ=−∞

F(f)(χ) . (48)

Useful Fourier Transforms.

F
(

1

σ
√
2π

e−x
2/(2σ2)

)
(χ) = e−2π

2σ2χ2

. (49)

Let γ ∈ R. Then

F (cos(αx)) (χ) =
1

2

(
δ
(
χ− γ

2π

)
+ δ

(
χ+

γ

2π

))
, (50)

where δ is the Dirac delta distribution.

8 A function f(x) is in the Schwartz space if ∀α, β ∈ N, ∃Cα,β such that
sup|xα∂β

xf(x)| ≤ Cα,β . A function in C∞ with compact support is in the Schwartz
space.
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