
SPHINCS: practical stateless hash-based
signatures

Daniel J. Bernstein1,3, Daira Hopwood2, Andreas Hülsing3, Tanja Lange3,
Ruben Niederhagen3, Louiza Papachristodoulou4, Michael Schneider,

Peter Schwabe4, and Zooko Wilcox-O’Hearn2

1 Department of Computer Science, University of Illinois at Chicago,
Chicago, IL 60607–7045, USA

djb@cr.yp.to
2 Least Authority, 3450 Emerson Ave. Boulder, CO 80305–6452 USA

daira@leastauthority.com, zooko@leastauthority.com
3 Department of Mathematics and Computer Science, Technische Universiteit

Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
tanja@hyperelliptic.org, ruben@polycephaly.org,

andreas.huelsing@googlemail.com
4 Radboud University Nijmegen, Digital Security Group,

P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
louiza@cryptologio.org, peter@cryptojedi.org

Abstract. This paper introduces a high-security post-quantum stateless
hash-based signature scheme that signs hundreds of messages per second
on a modern 4-core 3.5GHz Intel CPU. Signatures are 41 KB, public
keys are 1 KB, and private keys are 1 KB. The signature scheme is de-
signed to provide long-term 2128 security even against attackers equipped
with quantum computers. Unlike most hash-based designs, this signature
scheme is stateless, allowing it to be a drop-in replacement for current
signature schemes.

Keywords: post-quantum cryptography, one-time signatures, few-time
signatures, hypertrees, vectorized implementation

1 Introduction

It is not at all clear how to securely sign operating-system updates, web-site
certificates, etc. once an attacker has constructed a large quantum computer:

– RSA and ECC are perceived today as being small and fast, but they are
broken in polynomial time by Shor’s algorithm. The polynomial is so small
that scaling up to secure parameters seems impossible.

This work was supported by the National Science Foundation under grant 1018836
and by the Netherlands Organisation for Scientific Research (NWO) under grant
639.073.005 and Veni 2013 project 13114 and by the European Commission through
the ICT program under contract INFSO-ICT-284833 (PUFFIN). Permanent ID of
this document: 5c2820cfddf4e259cc7ea1eda384c9f9. Date: 2015.01.30.

– Lattice-based signature schemes are reasonably fast and provide reasonably
small signatures and keys for proposed parameters. However, their quanti-
tative security levels are highly unclear. It is unsurprising for a lattice-based
scheme to promise “100-bit” security for a parameter set in 2012 and to
correct this promise to only “75-80 bits” in 2013 (see [19, footnote 2]). Fur-
thermore, both of these promises are only against pre-quantum attacks, and
it seems likely that the same parameters will be breakable in practice by
quantum computers.

– Multivariate-quadratic signature schemes have extremely short signatures,
are reasonably fast, and in some cases have public keys short enough for
typical applications. However, the long-term security of these schemes is
even less clear than the security of lattice-based schemes.

– Code-based signature schemes provide short signatures, and in some cases
have been studied enough to support quantitative security conjectures. How-
ever, the schemes that have attracted the most security analysis have keys
of many megabytes, and would need even larger keys to be secure against
quantum computers.

Hash-based signature schemes are perhaps the most attractive answer. Every
signature scheme uses a cryptographic hash function; hash-based signatures use
nothing else. Many hash-based signature schemes offer security proofs relative to
comprehensible, and plausible, properties of the hash function, properties that
have not been broken even when the hash function is MD5. (We do not mean to
suggest that MD5 is a good choice of hash function; it is easy to make, and we
recommend, much more conservative parameter choices.) A recent result by Song
[35] shows that these proofs are still valid for quantum adversaries; this is not
known to be the case for many other post-quantum signature proposals. Hash-
based signing is reasonably fast, even without hardware acceleration; verification
is faster; signatures and keys are reasonably small.

However, every practical hash-based signature scheme in the literature is
stateful. Signing reads a secret key and a message and generates a signature but
also generates an updated secret key. This does not fit standard APIs; it does
not even fit the standard definition of signatures in cryptography. If the update
fails (for example, if a key is copied from one device to another, or backed up
and later restored) then security disintegrates.

It has been known for many years that, as a theoretical matter, one can build
hash-based signature schemes without a state. What we show in this paper is that
high-security post-quantum stateless hash-based signature systems are practical,
and in particular that they can sign hundreds of messages per second on a
modern 4-core 3.5GHz Intel CPU using parameters that provide 2128 security
against quantum attacks. In particular, we

– introduce SPHINCS, a new method to do randomized tree-based stateless
signatures;

– introduce HORS with trees (HORST), an improvement of the HORS few-
time signature scheme;

2

– propose SPHINCS-256, an efficient high-security instantiation of SPHINCS;
and

– describe a fast vectorized implementation of SPHINCS-256.

SPHINCS is carefully designed so that its security can be based on weak standard-
model assumptions, avoiding collision resistance and the random-oracle model.

Hash-based Signatures. The idea of hash-based signatures goes back to a pro-
posal from 1979 by Lamport [30]. In Lamport’s scheme, the public key consists
of two hash outputs for secret inputs; to sign bit 0, reveal the preimage of the
first output; to sign bit 1, reveal the preimage of the second output. Obviously
the secret key in this scheme can be used only once: signing a total of T bits of
messages requires a sequence of T public keys and is therefore highly impractical.

To allow a short public key to sign many messages, Merkle [32] proposed
what are now called Merkle trees. Merkle starts with a one-time signature scheme
(OTS), i.e. a signature scheme where a key pair is used only once. To construct
a many-time signature scheme, Merkle authenticates 2h OTS key pairs using a
binary hash tree of height h. The leaves of this tree are the hashes of the OTS
public keys. The OTS secret keys become the secret key of the new scheme and
the root of the tree the public key. A key pair can be used to sign 2h messages.

A signature of the many-time signature scheme is also called a full signature
if necessary to distinguish it from other kinds of signatures. A full signature
contains the index of the used OTS key pair in the tree; the OTS public key; the
OTS signature; and the authentication path, i.e., the set of sibling nodes on the
path from the OTS public key to the root. (If a Winternitz-style OTS is used,
the OTS public key can be computed from the OTS signature. Hence, the OTS
public key can be omitted in the full signature in that case.) To guarantee that
each OTS key pair is used only once, the OTS key pairs are used in a predefined
order, using the leaves of the tree from left to right. To verify the signature,
one verifies the OTS signature on the message, and verifies the authenticity of
the OTS key pair by checking whether the public key is consistent with the
authentication path and the hash of the OTS public key.

This approach generates small signatures, small secret keys (using pseudo-
random generation of the OTS secret keys), and small public keys. However,
key generation and signature time are exponential in h as the whole tree has to
be built in the key generation. Recent practical hash-based signature systems
[27,15,18,16,17] solve these two performance problems. First, key generation time
is significantly reduced using a hyper-tree of several layers of trees, i.e. a certifi-
cation tree where a single hash tree of height h1 is used to sign the public keys of
2h1 hash-based key pairs and so on. During key generation only one tree on each
layer has to be generated. Using d layers of trees with height h/d reduces the
key-generation time from O(2h) to O(d2h/d). Second, signing time is reduced
from O(2h) to O(h) using stateful algorithms that exploit the ordered use of the
OTS key pairs. When combined with hyper-trees, the ordered use of the trees
reduces the signing time even further to O(h/d).
From Stateful to Stateless. Goldreich [23] (elaborating upon [22]) proposed
a stateless hash-based signature scheme, using a binary certification tree built

3

out of one-time signature keys. In Goldreich’s system, each OTS key pair corre-
sponding to a non-leaf node is used to sign the hash of the public keys of its two
child nodes. The leaf OTS key pairs are used to sign the messages. The OTS
public key of the root becomes the overall public key. The secret key is a seed
value that is used to pseudorandomly generate all the OTS key pairs of the tree.

It is important to ensure that a single OTS key pair is never used to sign two
different messages. One approach is to sign message M using a tree of height n
as follows: compute an n-bit hash of M , view the hash as an integer h between
0 and 2n − 1, and use the leaf at index h to sign. The full signature contains
all the OTS public keys in the path from leaf h to the root, all the public keys
of the sibling nodes on this path, and the one-time signatures on the message
and on the public keys in the path. Security obviously cannot be better than the
collision resistance of the hash function, at most 2n/2.

For this scheme, key generation requires a single OTS key generation. Sign-
ing takes 2n OTS key generations and n OTS signatures. This can be done in
reasonable time for secure parameters. Keys are also very short: one OTS public
key (O(n2)) for the public key and a single seed value (O(n)) for the secret key.
However, the signature size is cubic in the security parameter. Consider, for ex-
ample, the Winternitz OTS construction from [26], which has small signatures
for a hash-based OTS; taking n = 256 as we do for SPHINCS-256, and applying
some straightforward optimizations, produces a Goldreich signature size that is
still above 1 MB.

One way to evaluate the real-world impact of particular signature sizes is to
compare those sizes to the sizes of messages being signed. For example, in the
Debian operating system (September 2014 Wheezy distribution), the average
package size is 1.2 MB and the median package size is just 0.08 MB. Debian
is designed for frequent updates, typically upgrading just one package or a few
packages at a time, and of course each upgrade has to check at least one new
signature. As another example, the size of an average web page in the Alexa Top
1000000 is 1.8 MB, and HTTPS typically sends multiple signatures per page;
the exact number depends on how many HTTPS sites cooperate to produce the
page, how many certificates are sent, etc. A signature size above 1 MB would
often dominate the traffic in these applications and would also add user-visible
latency on typical network connections.

Goldreich also proposes randomized leaf selection: instead of applying a pub-
lic hash function to the message to determine the index of the OTS key pair,
select an index randomly. It is then safe for the total tree height h to be somewhat
smaller than the hash output length n: the hash output length protects against
offline computations by the attacker, while the tree height protects against ac-
cidental collisions in indices chosen by the signer. For example, choosing h as
128 instead of 256 saves a factor of 2 in signature size and signing speed, if it is
acceptable to have probability roughly 2−30 of OTS reuse (presumably breaking
the system) within 250 signatures.

The SPHINCS Approach. SPHINCS introduces two new ideas that together
drastically reduce signature size. First, to increase the security level of random-

4

ized index selection, SPHINCS replaces the leaf OTS with a hash-based few-time
signature scheme (FTS). An FTS is, as the name suggests, a signature scheme
designed to sign a few messages; in the context of SPHINCS this allows a few
index collisions, which in turn allows a smaller tree height for the same security
level. For our FTS (see below) the probability of a forgery after γ signatures
gradually increases with γ, while the probability that the signer uses the same
FTS key γ times gradually decreases with γ; we choose parameters to make sure
that the product of these probabilities is sufficiently small for all γ ∈ N. For
example, SPHINCS-256 reduces the total tree height from 256 to just 60 while
maintaining 2128 security against quantum attackers.

Second, SPHINCS views Goldreich’s construction as a hyper-tree construc-
tion with h layers of trees of height 1, and generalizes to a hyper-tree with d layers
of trees of height h/d. This introduces a tradeoff between signature size and time
controlled by the number of layers d. The signature size is |σ| ≈ d|σOTS| + hn
assuming a hash function with n-bit outputs. Recall that the size of a one-time
signature |σOTS| is roughly O(n2), so by decreasing the number of layers we get
smaller full signatures. The tradeoff is that signing time increases exponentially
in the decrease of layers: signing takes d2h/d OTS key generations and d2h/d−d
hash computations. For example, in SPHINCS-256, with h = 60, we reduce d
from 60 to 12, increasing d2h/d from 120 to 384.

We accompany our construction with an exact security reduction to some
standard-model properties of hash functions. For parameter selection, we analyze
the costs of generic attacks against these properties when the attacker has access
to a large-scale quantum computer. For SPHINCS-256 we select parameters
that provide 128 bits of security against quantum attackers and keep a balance
between signature size and time.

HORS and HORST. HORS [34] is a fast hash-based FTS. For message hashes
of length m, HORS uses two parameters t = 2τ for τ ∈ N and k ∈ N such that
m = k log t = kτ . For practical secure parameters t � k. HORS uses a secret
key consisting of t random values. The public key consists of the t hashes of
these values. A signature consists of k secret key elements, with indices selected
as public functions of the message being signed.

In the context of SPHINCS, each full signature has to include not just an
FTS signature but also an FTS public key. The problem with HORS is that it
has large public keys. Of course, one can replace the public key in any signature
system by a short hash of the original public key, but then the original public
key needs to be included in the signature; this does not improve the total length
of key and signature.

As a better FTS for SPHINCS we introduce HORS with trees (HORST).
Compared to HORS, HORST sacrifices runtime to reduce the public key size
and the combined size of a signature and a public key. A HORST public key is
the root node of a binary hash tree of height log t, where the leaves are the public
key elements of a HORS key. This reduces the public key size to a single hash
value. For this to work, a HORST signature contains not only the k secret key
elements but also one authentication path per secret key element. Now the public

5

key can be computed given a signature. A full hash-based signature thus includes
just k log t hash values for HORST, compared to t hash values for HORS. We
also introduce some optimizations that further compress signatures.

For the SPHINCS-256 parameters, switching from HORS to HORST reduces
the FTS part of the full signature from 216 hash values to fewer than 16 ·32 = 29

hash values, i.e., from 2 MB to just 16 KB.
The same idea applies in more generality. For example, HORS++ [33] is a

variant of HORS that gives stronger security guarantees but that has bigger
keys; the changes from HORS to HORST can easily be adapted to HORS++,
producing HORST++.

Vectorized Software Implementation. We also present an optimized im-
plementation of SPHINCS-256. Almost all hash computations in SPHINCS are
highly parallel and we make extensive use of vector instructions. On an Intel
Xeon E3-1275 (Haswell) CPU, our hashing throughput is about 1.6 cycles/byte.
Signing a short message with SPHINCS-256 takes 51 636 372 cycles on a single
core; simultaneous signing on all 4 cores of the 3.5 GHz CPU has a throughput
of more than 200 signatures per second, fast enough for most applications. Ver-
ification takes only 1 451 004 cycles; key-pair generation takes 3 237 260 cycles.

We placed the software described in this paper into the public domain to
maximize reusability of our results. We submitted the software to eBACS [10]
for independent benchmarking; the software is also available online at http:
//cryptojedi.org/crypto/#sphincs.

Notation. We always use the logarithm with base 2 and hence write log instead
of log2. We write [x] for the set {0, 1, . . . , x}. Given a bit string x we write x(i)
for the ith bit of x and x(i, j) for the j-bit substring of x that starts with the
ith bit.

2 The SPHINCS Construction

In this section we describe our main construction. We begin by listing the param-
eters used in the construction, reviewing the one-time signature scheme WOTS+,
and reviewing binary hash trees. In Section 2.1 we present our few-time signature
scheme HORST, and in Section 2.2 we present our many-time signature scheme
SPHINCS.

Parameters. SPHINCS uses several parameters and several functions. The
main security parameter is n ∈ N. The functions include two short-input cryp-
tographic hash functions F : {0, 1}n → {0, 1}n and H : {0, 1}2n → {0, 1}n; one
arbitrary-input randomized hash function H : {0, 1}n × {0, 1}∗ → {0, 1}m, for
m = poly(n); a family of pseudorandom generators Gλ : {0, 1}n → {0, 1}λn
for different values of λ; an ensemble of pseudorandom function families Fλ :
{0, 1}λ × {0, 1}n → {0, 1}n; and a pseudorandom function family F : {0, 1}∗ ×
{0, 1}n → {0, 1}2n that supports arbitrary input lengths. Of course, these func-
tions can all be built from a single cryptographic hash function, but it is more
natural to separate the functions according to their roles.

6

http://cryptojedi.org/crypto/#sphincs
http://cryptojedi.org/crypto/#sphincs

SPHINCS uses a hyper-tree (a tree of trees) of total height h ∈ N, where h
is a multiple of d and the hyper-tree consists of d layers of trees, each having
height h/d. The components of SPHINCS have additional parameters which
influence performance and size of the signature and keys: the Winternitz one-time
signature WOTS naturally allows for a space-time tradeoff using the Winternitz
parameter w ∈ N, w > 1; the tree-based few-time signature scheme HORST has
a space-time tradeoff which is controlled by two parameters k ∈ N and t = 2τ

with τ ∈ N and kτ = m.
As a running example we present concrete numbers for SPHINCS-256; the

choices are explained in Section 4. For SPHINCS-256 we use n = 256,m =
512, h = 60, d = 12, w = 16, t = 216, k = 32.

WOTS+. We now describe the Winternitz one-time signature (WOTS+) from
[26]. We deviate slightly from the description in [26] to describe the algorithms as
they are used in SPHINCS. Specifically, we include pseudorandom key generation
and fix the message length to be n, meaning that a seed value takes the place of
a secret key in our description. Given n and w, we define

`1 =

⌈
n

log(w)

⌉
, `2 =

⌊
log(`1(w − 1))

log(w)

⌋
+ 1, ` = `1 + `2.

For the SPHINCS-256 parameters this leads to ` = 67. WOTS+ uses the function
F to construct the following chaining function.

Chaining function ci(x, r): On input of value x ∈ {0, 1}n, iteration counter i ∈ N,
and bitmasks r = (r1, . . . , rj) ∈ {0, 1}n×j with j ≥ i, the chaining function works
the following way. In case i = 0, c returns x, i.e., c0(x, r) = x. For i > 0 we define
c recursively as

ci(x, r) = F(ci−1(x, r)⊕ ri),

i.e. in every round, the function first takes the bitwise xor of the previous value
ci−1(x, r) and bitmask ri and evaluates F on the result. We write ra,b for the
substring (ra, . . . , rb) of r. In case b < a we define ra,b to be the empty string.
Now we describe the three algorithms of WOTS+.

Key Generation Algorithm (sk, pk ← WOTS.kg(S, r)): On input of seed S ∈
{0, 1}n and bitmasks r ∈ {0, 1}n×(w−1) the key generation algorithm computes
the internal secret key as sk = (sk1, . . . , sk`) ← G`(S), i.e., the n bit seed is
expanded to ` values of n bits. The public key pk is computed as

pk = (pk1, . . . , pk`) = (cw−1(sk1, r), . . . , c
w−1(sk`, r)).

Note that S requires less storage than sk; thus we generate sk and pk on the fly
when necessary.

Signature Algorithm (σ ←WOTS.sign(M,S, r)): On input of an n-bit message
M , seed S and the bitmasks r, the signature algorithm first computes a base-
w representation of M : M = (M1 . . .M`1), Mi ∈ {0, . . . , w − 1}. That is, M

7

Fig. 1. The binary hash tree construction

is treated as the binary representation of a natural number x and then the
w-ary representation of x is computed. Next it computes the checksum C =∑`1
i=1(w− 1−Mi) and its base w representation C = (C1, . . . , C`2). The length

of the base w representation of C is at most `2 since C ≤ `1(w − 1). We set
B = (b1, . . . , b`) = M ‖ C, the concatenation of the base w representations of
M and C. Then the internal secret key is generated using G`(S) the same way
as during key generation. The signature is computed as

σ = (σ1, . . . , σ`) = (cb1(sk1, r), . . . , c
b`(sk`, r)).

Verification Algorithm (pk′ ←WOTS.vf(M,σ, r)): On input of an n-bit message
M , a signature σ, and bitmasks r, the verification algorithm first computes the
bi, 1 ≤ i ≤ ` as described above. Then it returns:

pk′ = (pk′1, . . . , pk
′
`) = (cw−1−b1(σ1, rb1+1,w−1), . . . , c

w−1−b`(σ`, rb`+1,w−1)).

A formally correct verification algorithm would compare pk′ to a given public key
and output true on equality and false otherwise. In SPHINCS this comparison is
delegated to the overall verification algorithm.

Binary Hash Trees. The central elements of our construction are full binary
hash trees. We use the construction proposed in [18] shown in Figure 1.

In SPHINCS, a binary hash tree of height h always has 2h leaves which are
n bit strings Li, i ∈ [2h − 1]. Each node Ni,j , for 0 < j ≤ h, 0 ≤ i < 2h−j , of
the tree stores an n-bit string. To construct the tree, h bit masks Qj ∈ {0, 1}2n,
0 < j ≤ h, are used. For the leaf nodes define Ni,0 = Li. The values of the
internal nodes Ni,j are computed as

Ni,j = H((N2i,j−1||N2i+1,j−1)⊕Qj).

We also denote the root as Root = N0,h.
An important notion is the authentication path Authi = (A0, . . . ,Ah−1) of a

leaf Li shown in Figure 2. Authi consists of all the sibling nodes of the nodes
contained in the path from Li to the root. For a discussion on how to compute
authentication paths, see Section 5. Given a leaf Li together with its authenti-
cation path Authi, the root of the tree can be computed using Algorithm 1.

8

Input: Leaf index i, leaf Li, authentication path Authi = (A0, . . . ,Ah−1) for Li.
Output: Root node Root of the tree that contains Li.

Set P0 ← Li;
for j ← 1 up to h do

Pj =

{
H((Pj−1||Aj−1)⊕Qj), if

⌊
i/2j−1

⌋
≡ 0 mod 2;

H((Aj−1||Pj−1)⊕Qj), if
⌊
i/2j−1

⌋
≡ 1 mod 2;

end
return Ph

Algorithm 1: Root Computation

L-Tree. In addition to the full binary trees above, we also use unbalanced binary
trees called L-Trees as in [18]. These are exclusively used to hash WOTS+ public
keys. The ` leaves of an L-Tree are the elements of a WOTS+ public key and
the tree is constructed as described above but with one difference: A left node
that has no right sibling is lifted to a higher level of the L-Tree until it becomes
the right sibling of another node. Apart from this the computations work the
same as for binary trees. The L-Trees have height dlog `e and hence need dlog `e
bitmasks.

2.1 HORST

HORST signs messages of length m and uses parameters k and t = 2τ with
kτ = m (typical values as used in SPHINCS-256 are t = 216, k = 32). HORST
improves HORS [34] using a binary hash-tree to reduce the public key size from
tn bits to n bits5 and the combined signature and public key size from tn bits to
(k(τ − x+ 1) + 2x)n bits for some x ∈ N\{0}. The value x is determined based
on t and k such that k(τ − x + 1) + 2x is minimal. It might happen that the
expression takes its minimum for two successive values. In this case the greater
value is used. For SPHINCS-256 this results in x = 6.

In contrast to a one-time signature scheme like WOTS, HORST can be used
to sign more than one message with the same key pair. However, with each
signature the security decreases. See Section 3 for more details. Like for WOTS+

our description includes pseudorandom key generation. We now describe the
algorithms for HORST:

Key Generation Algorithm (pk ← HORST.kg(S,Q)): On input of seed S ∈
{0, 1}n and bitmasks Q ∈ {0, 1}2n×log t the key generation algorithm first com-
putes the internal secret key sk = (sk1, . . . , skt)← Gt(S). The leaves of the tree
are computed as Li = F(ski) for i ∈ [t − 1] and the tree is constructed using
bitmasks Q. The public key pk is computed as the root node of a binary tree of
height log t.

5 Here we assume that the used bitmasks are given as they are used for several key
pairs. Otherwise, public key size is (2τ + 1)n bit including bitmasks, which is still
less than tn bits.

9

Fig. 2. The authentication path for leaf Li

Signature Algorithm ((σ, pk)← HORST.sign(M,S,Q)): On input of a message
M ∈ {0, 1}m, seed S ∈ {0, 1}n, and bitmasks Q ∈ {0, 1}2n×log t first the internal
secret key sk is computed as described above. Then, let M = (M0, . . . ,Mk−1)
denote the k numbers obtained by splitting M into k strings of length log t
bits each and interpreting each as an unsigned integer. The signature σ =
(σ0, . . . , σk−1, σk) consists of k blocks σi = (skMi

,AuthMi
) for i ∈ [k−1] contain-

ing theMith secret key element and the lower τ−x elements of the authentication
path of the corresponding leaf (A0, . . . ,Aτ−1−x). The block σk contains all the
2x nodes of the binary tree on level τ − x (N0,τ−x, . . . , N2x−1,τ−x). In addition
to the signature, HORST.sign also outputs the public key.

Verification Algorithm (pk′ ← HORST.vf(M,σ,Q)): On input of message M ∈
{0, 1}m, a signature σ, and bitmasksQ ∈ {0, 1}2n×log t, the verification algorithm
first computes theMi, as described above. Then, for i ∈ [k−1], yi = bMi/2

τ − xc
it computes N ′yi,τ−x using Algorithm 1 with index Mi, LMi

= F(σ1
i), and

AuthMi
= σ2

i . It then checks that ∀i ∈ [k − 1] : N ′yi,τ−x = Nyi,τ−x, i.e., that the
computed nodes match those in σk. If all comparisons hold it uses σk to compute
and then return Root0, otherwise it returns fail.

Theoretical Performance. In the following we give rough theoretical perfor-
mance values for HORST when used in a many-time signature scheme. We ignore
the space needed for bitmasks, assuming they are provided. For runtimes we only
count PRG calls and the number of hash evaluations without distinguishing the
different hash functions.

Sizes: A HORST secret key consists of a single n bit seed. The public key
contains a single n bit hash. A signature contains k secret key elements and
authentication paths of length (log t) − x (Recall t = 2τ is a power of two). In
addition it contains 2x nodes in σk, adding up to a total of (k((log t)−x+1)+2x)n
bits.

Runtimes: Key generation needs one evaluation of Gt and t hashes to compute
the leaf values and t− 1 hashes to compute the public key, leading to a total of
2t− 1. Signing takes the same time as we require the root is part of the output.
Verification takes k times one hash to compute a leaf value plus (log t)−x hashes

10

to compute the node on level (log t)−x. In addition, 2x−1 hashes are needed to
compute the root from σk. Together these are k((log t)− x+1)+ 2x− 1 hashes.

2.2 SPHINCS

Given all of the above we can finally describe the algorithms of the SPHINCS
construction. A SPHINCS keypair completely defines a “virtual” structure which
we explain first. SPHINCS works on a hyper-tree of height h that consists of d
layers of trees of height h/d. Each of these trees looks as follows. The leaves
of a tree are 2h/d L-Tree root nodes that each compress the public key of a
WOTS+ key pair. Hence, a tree can be viewed as a key pair that can be used
to sign 2h/d messages. The hyper-tree is structured into d layers. On layer d− 1
it has a single tree. On layer d − 2 it has 2h/d trees. The roots of these trees
are signed using the WOTS+ key pairs of the tree on layer d − 1. In general,
layer i consists of 2(d−1−i)(h/d) trees and the roots of these trees are signed
using the WOTS+ key pairs of the trees on layer i+ 1. Finally, on layer 0 each
WOTS+ key pair is used to sign a HORST public key. We talk about a “virtual”
structure as all values within are determined choosing a seed and the bitmasks,
and as the full structure is never computed. The seed is part of the secret key
and used for pseudorandom key generation. To support easier understanding,
Figure 3 shows the virtual structure of a SPHINCS signature, i.e. of one path
inside the hyper-tree. It contains d trees Treei i ∈ [d − 1] (each consisting of
a binary hash tree that authenticates the root nodes of 2h/d L-Trees which in
turn each have the public key nodes of one WOTS+ keypair as leaves). Each tree
authenticates the tree below using a WOTS+ signature σW,i. The only exception
is Tree0 which authenticates a HORST public key using a WOTS+ signature.
Finally, the HORST key pair is used to sign the message. Which trees inside the
hyper-tree are used (which in turn determines the WOTS+ key pairs used for
the signature) and which HORST key pair is determined by the pseudorandomly
generated index not shown here.

We use a simple addressing scheme for pseudorandom key generation. An
address is a bit string of length a = dlog(d + 1)e + (d − 1)(h/d) + (h/d) =
dlog(d+1)e+h. The address of a WOTS+ key pair is obtained by encoding the
layer of the tree it belongs to as a log(d+1)-bit string (using d−1 for the top layer
with a single tree). Then, appending the index of the tree in the layer encoded
as a (d − 1)(h/d)-bit string (we number the trees from left to right, starting
with 0 for the left-most tree). Finally, appending the index of the WOTS+ key
pair within the tree encoded as a (h/d)-bit string (again numbering from left to
right, starting with 0). The address of the HORST key pair is obtained using
the address of the WOTS+ key pair used to sign its public key and placing d as
the layer value in the address string, encoded as dlog(d+ 1)e bit string. To give
an example: In SPHINCS-256, an address needs 64 bits.

Key Generation Algorithm ((SK,PK)← kg(1n)): The key generation algorithm
first samples two secret key values (SK1,SK2) ∈ {0, 1}n×{0, 1}n. The value SK1

is used for pseudorandom key generation. The value SK2 is used to generate an

11

TREEd-1

σW,d-1

h/d

TREEd-2

σW,d-2

TREE0

σW,0

HORST

σH

h/d

h/d

log t

Fig. 3. Virtual structure of a SPHINCS signature

unpredictable index in sign and pseudorandom values to randomize the message
hash in sign. Also, p uniformly random n-bit values Q $← {0, 1}p×n are sampled
as bitmasks where p = max{w−1, 2(h+dlog `e), 2 log t}. These bitmasks are used
for all WOTS+ and HORST instances as well as for the trees. In the following
we use QWOTS+ for the first w− 1 bitmasks (of length n) in Q, QHORST for the
first 2 log t, QL−Tree for the first 2dlog `e, and QTree for the 2h strings of length
n in Q that follow QL−Tree.

The remaining part of kg consists of generating the root node of the tree on
layer d− 1. Towards this end the WOTS+ key pairs for the single tree on layer
d − 1 are generated. The seed for the key pair with address A = (d − 1||0||i)
where i ∈ [2h/d − 1] is computed as SA ← Fa(A,SK1), evaluating the PRF on
input A with key SK1. In general, the seed for a WOTS+ key pair with address
A is computed as SA ← Fa(A,SK1) and we will assume from now on that these
seeds are known to any algorithm that knows SK1. The WOTS+ public key is
computed as pkA ←WOTS.kg(SA,QWOTS+). The ith leaf Li of the tree is the
root of an L-Tree that compresses pkA using bit masks QL−Tree. Finally, a binary
hash tree is built using the constructed leaves and its root node becomes PK1.

The SPHINCS secret key is SK = (SK1,SK2,Q), the public key is PK =
(PK1,Q). kg returns the key pair ((SK1,SK2,Q), (PK1,Q)).

Signature Algorithm (Σ ← sign(M, SK)): On input of a messageM ∈ {0, 1}∗ and
secret key SK = (SK1,SK2,Q), sign computes a randomized message digest D ∈
{0, 1}m: First, a pseudorandom R = (R1, R2) ∈ {0, 1}n×{0, 1}n is computed as
R← F(M,SK2). Then, D ← H(R1,M) is computed as the randomized hash of
M using the first n bits of R as randomness. The latter n bits of R are used to
select a HORST keypair, computing an h bit index i← Chop(R2, h) as the first

12

h bits of R2. Note, that signing is deterministic, i.e. we need no real randomness
as all required ’randomness’ is pseudorandomly generated using PRF F .

Given index i, the HORST key pair with address AHORST = (d||i(0, (d −
1)h/d)||i((d − 1)h/d, h/d)) is used to sign the message digest D, i.e., the first
(d− 1)h/d bits of i are used as tree index and the remaining bits for the index
within the tree. The HORST signature and public key (σH, pkH)← (D,SAHORST ,
QHORST) are computed using the HORST bitmasks and the seed SAHORST ←
Fa(AHORST,SK1).

The SPHINCS signatureΣ = (i, R1, σH, σW,0,AuthA0 , . . . , σW,d−1,AuthAd−1
)

contains besides index i, randomness R1 and HORST signature σH also one
WOTS+ signature and one authentication path σW,i,AuthAi

, i ∈ [d−2] per layer.
These are computed as follows: The WOTS+ key pair with address A0 is used
to sign pkH, where A0 is the address obtained taking AHORST and setting the
first dlog(d+1)e bits to zero. This is done running σW,1 ← (pkH,SA0 ,QWOTS+)
using the WOTS+ bitmasks. Then the authentication path Authi((d−1)h/d,h/d))
of the used WOTS+ key pair is computed. Next, the WOTS+ public key pkW,0

is computed running pkW,0 ← WOTS.vf(pkH, σW,0,QWOTS+). The root node
Root0 of the tree is computed by first compressing pkW,0 using an L-Tree.
Then Algorithm 1 is applied using the index of the WOTS+ key pair within the
tree, the root of the L-Tree and Authi((d−1)h/d,h/d)).

This procedure gets repeated for layers 1 to d − 1 with the following two
differences. On layer 1 ≤ j < d, WOTS+ is used to sign Rootj−1, the root
computed at the end of the previous iteration. The address of the WOTS+ key
pair used on layer j is computed as Aj = (j||i(0, (d − 1 − j)h/d)||i((d − 1 −
j)h/d, h/d)), i.e. on each layer the last (h/d) bits of the tree address become the
new leaf address and the remaining bits of the former tree address become the
new tree address.

Finally, sign outputs Σ = (i, R1, σH, σW,0,AuthA0
, . . . , σW,d−1,AuthAd−1

).

Verification Algorithm (b← vf(M,Σ,PK)): On input of a message M ∈ {0, 1}∗,
a signature Σ, and a public key PK, the algorithm computes the message digest
D ← H(R1,M) using the randomness R1 contained in the signature. The mes-
sage digest D and the HORST bitmasks QHORST from PK are used to compute
the HORST public key pkH ← HORST.vf(D,σH,QHORST) from the HORST
signature. If HORST.vf returns fail, verification returns false. The HORST pub-
lic key in turn is used together with the WOTS+ bit masks and the WOTS+

signature to compute the first WOTS+ public key pkW,0 ←WOTS.vf(pkH, σW,0,
QWOTS+). An L-Tree is used to compute Li((d−1)h/d,h/d), the leaf corresponding
to pkW,0. Then, the root Root0 of the respective tree is computed using Algo-
rithm 1 with index i((d − 1)h/d, h/d), leaf Li((d−1)h/d,h/d) and authentication
path Auth0.

Then, this procedure gets repeated for layers 1 to d − 1 with the following
two differences. First, on layer 1 ≤ j < d the root of the previously processed
tree Rootj−1 is used to compute the WOTS+ public key pkW,j . Second, the
leaf computed from pkW,j using an L-Tree is Li((d−1−j)h/d,h/d), i.e., the index of

13

the leaf within the tree can be computed cutting off the last j(h/d) bits of i and
then using the last (h/d) bits of the resulting bit string.

The result of the final repetition on layer d − 1 is a value Rootd−1 for the
root node of the single tree on the top layer. This value is compared to the first
element of the public key, i.e., PK1

?
= Rootd−1. If the comparison holds, vf

returns true, otherwise it returns false.

Theoretical Performance. In the following we give rough theoretical perfor-
mance values. We count runtimes counting the number of PRF, PRG and hash
evaluations without distinguishing the different PRFs, PRGs, and hashes.

Sizes: A SPHINCS secret key consists of two n bit seeds and the p = max{w −
1, 2(h+ dlog `e), 2 log t} n bit bitmasks, summing up to (2+ p)n bits. The public
key contains a single n bit hash and the bitmasks: (1 + p)n bits. A signature
contains one h bit index and n bits of randomness. Moreover, it contains a
HORST signature ((k((log t)− x+ 1) + 2x)n bits), d WOTS signatures (`n bits
each), and a total of h authentication path nodes (n bits each). This gives a
signature size of ((k((log t)− x+ 1) + 2x) + d`+ h+ 1)n+ h bits.

Runtimes: SPHINCS key generation consists of building the top tree. This takes
for leaf generation 2h/d times the following: One PRF call, one PRG call, one
WOTS+ key generation (`w hashes), and one L-Tree (` − 1 hashes). Building
the tree adds another 2h/d − 1 hashes. Together these are 2h/d PRF and PRG
calls and (`(w + 1))2h/d − 1 hashes. Signing requires one PRF call to generate
the index and the randomness for the message hash as well as the message hash
itself. Then one PRF call to generate a HORST seed and a HORST signature.
In addition, d trees have to be built, adding d times the time for key generation.
The WOTS+ signatures can be extracted while running WOTS+ key generation,
hence they add no extra cost. This sums up to d2h/d + 2 PRF calls, d2h/d + 1
PRG calls, and 2t + d((`(w + 1))2h/d − 1) hashes. Finally, verification needs
the message hash, one HORST verification, and d times a WOTS+ verification
(< `w hashes), computing an L-Tree, and h/d − 1 hashes to compute the root.
This leads to a total of k((log t)− x+ 1) + 2x + d(`(w + 1)− 2) + h hashes.

3 Security Analysis

We now discuss the security of SPHINCS. We first give a reduction from standard
hash function properties. Afterwards we discuss the best generic attacks on these
properties using quantum computers. Definitions of the used properties can be
found in Appendix A. For our security analysis we group the message hash and
the mapping used within HORST to a function Hk,t that maps bit strings of
arbitrary length to a subset of {0, ..., t− 1} with at most k elements.

3.1 Security Reduction

We will now prove our main theorem which states that SPHINCS is secure as
long as the used function (families) provide certain standard security proper-

14

ties. These properties are fulfilled by secure cryptographic hash functions, even
against quantum attacks. For the exact statement in the proof we use the no-
tion of insecurity functions. An insecurity function InSecp (s; t, q) describes the
maximum success probability of any adversary against property p of primitive s,
running in time ≤ t, and (if given oracle access, e.g. to a signing oracle) making
no more than q queries. To avoid the non-constructive high-probability attacks
discussed in [11], we measure time with the AT metric rather than the RAM
metric. Properties are one-wayness (ow), second-preimage resistance (spr), un-
detectability (ud), secure pseudorandom generator (prg), secure pseudorandom
function family (prf), and γ-subset resilience (γ-sr).

Theorem 1. SPHINCS is existentially unforgeable under qs-adaptive chosen
message attacks if

– F is a second-preimage resistant, undetectable one-way function,
– H is a second-preimage resistant hash function,
– Gλ is a secure pseudorandom generator for values λ ∈ {`, t},
– Fλ is a pseudorandom function family for λ = a,
– F is a pseudorandom function family, and
– for the subset-resilience of Hk,t it holds that

∞∑
γ=1

min
{
2γ(log qs−h)+h, 1

}
· Succγ-srHk,t

(A) = negl(n)

for any probabilistic polynomial-time adversary A, where Succγ-srHk,t
(A) de-

notes the success probability of A against the γ-subset resilience of Hk,t.

More specifically, the insecurity function InSecEU-CMA (SPHINCS; ξ, qs) de-
scribing the maximum success probability of all adversaries against the existen-
tial unforgeability under qs-adaptive chosen message attacks, running in time
≤ ξ, is bounded by

InSeceu-cma (SPHINCS; ξ, qs)

≤ InSecprf (F ; ξ, qs) + InSecprf (Fa; ξ,#fts +#ots)

+ #ots · InSecprg (G`; ξ) + #fts · InSecprg (Gt; ξ)

+ #tree · 2h/d+dlog `e · InSecspr (H; ξ)

+ #ots · (`w2 · InSecud (F; ξ) + `w · InSecow (F; ξ) + `w2 · InSecspr (F; ξ))
+ #fts · 2t · InSecspr (H; ξ) + #fts · t · InSecow (F; ξ)

+

∞∑
γ=1

min
{
2γ(log qs−h)+h, 1

}
· InSecγ-sr (Hk,t; ξ) ,

where #ots = min
{∑d

i=1 2
ih/d, dqs

}
denotes the maximum number of WOTS+

key pairs, #fts = min
{
2h, qs

}
denotes the maximum number of HORST key

pairs, and #tree = min
{∑d−1

i=1 2ih/d, (d− 1)qs

}
denotes the maximum number

of subtrees used answering qs signature queries.

15

Before we give the proof, note that although there is a bunch of factors within
the exact security statement, the reduction is tight. All the factors are constant /
independent of the security parameter. They arise as all the primitives are used
many times. E.g., the pseudorandom generator G` is used for every WOTS+

key pair and an adversary can forge a signature if it can distinguish the output
for one out of the #ots applications of G` from a random bit string. Similar
explanations exist for the other factors.

Proof. In the following we first show that the success probability of any prob-
abilistic polynomial-time adversary A that attacks the EU-CMA security of
SPHINCS is negligible in the security parameter. Afterwards, we analyze the
exact success probability of A and show that it indeed fulfills the claimed bound.
First consider the following six games:

Game 1 is the original EU-CMA game against SPHINCS.
Game 2 differs from Game 1 in that the value R used to randomize the message

hash and to choose the index i is chosen uniformly at random instead of using
F .

Game 3 is similar to Game 2 but this time all used WOTS+ and HORST seeds
are generated uniformly at random and stored in some list for reuse instead
of generating them using Fa.

Game 4 is similar to Game 3 but this time no pseudorandom key generation is
used inside WOTS+. Instead, all WOTS+ secret key elements are generated
uniformly at random and stored in some list for reuse.

Game 5 is similar to Game 4 but this time no pseudorandom key generation
is used at all. Instead, also all HORST secret key elements are generated
uniformly at random and stored in some list for reuse.

The difference in the success probability of A between playing Game 1 and
Game 2 must be negligible. Otherwise we could use A as an distinguisher against
the pseudorandomness of F . Similarly, the difference in the success probability
of A between playing Game 2 and Game 3 must be negligible. Otherwise, we
could use A as an distinguisher against the pseudorandomness of Fa. Also the
difference in the success probability of A between playing Game 3 and Game 4
and playing Game 4 and Game 5 must be negligible. Otherwise, A could be used
to distinguish the outputs of the PRG G` (resp. Gt) from uniformly random bit
strings.

It remains to limit the success probability of A running in Game 5. Assume
that A makes qs queries to the signing oracle before outputting a valid forgery

M∗, Σ∗ = (i∗, R∗, σ∗H, σ
∗
W,0,Auth

∗
A0
, . . . , σ∗W,d−1,Auth

∗
Ad−1

).

The index i∗ was used to sign at least one of the query messages with overwhelm-
ing probability. Otherwise, A could be turned into a (second-)preimage finder for
H that succeeds with non-negligible probability. Hence, we assume from now on
i∗ was used before. While running vf(M∗, Σ∗,PK) we can extract the computed
HORST public key pk∗H as well as the computed WOTS+ public keys pk∗W,j and

16

the root nodes of the trees containing these WOTS+ public keys Root∗j for
all levels j ∈ [d − 1]. In addition, we compute the respective values pkH, pkW,j

and Rootj using the list of secret key elements. All required elements must be
contained in the lists as i∗ was used before.

Next we compare these values in reverse order of computation, i.e., starting
with pkW,d−1

?
= pk∗W,d−1, then Rootd−2

?
= Root∗d−2, and so forth. Then one of

the following four mutually exclusive cases must appear:

Case 1: The first occurrence of a difference happens for a WOTS+ public key.
As shown in [18] this can only happen with negligible probability. Otherwise,
we can use A to compute second-preimages for H with non-negligible success
probability.

Case 2: The first difference occurs for two root nodes Rootj 6= Root∗j . This
implies a forgery for the WOTS+ key pair used to sign Rootj . As shown
in [26] this can only happen with negligible advantage. Otherwise, we could
use A to either break the one-wayness, the second-preimage resistance, or
the undetectability of F with non-negligible success probability.

Case 3: The first spotted difference is two different HORST public keys. As
for Case 2, this implies a WOTS+ forgery and can hence only appear with
negligible probability.

Case 4: All the public keys and root nodes are equal, i.e. no difference occurs.

We excluded all cases but Case 4 which we analyze now. The analysis consists
of a sequence of mutually exclusive cases. Recall that the secret key elements
for this HORST key pair are already fixed and contained in the secret value
list as i∗ was used in the query phase. First, we compare the values of all leaf
nodes that can be derived from σ∗H with the respective values derived from the
list entries. These are the hashes of the secret key elements in the signature and
the authentication path nodes for level 0. The case that there exists a difference
can only appear with negligible probability, as otherwise A could be used to
compute second-preimages for H with non-negligible probability following the
proof in [18]. Hence, we assume from now on all of these are equal.

Second, the indices of the secret key values contained in σ∗H have either all
been published as parts of query signatures or at least one index has not been
published before. The latter case can only appear with negligible probability.
Otherwise,A could be turned into a preimage finder for F that has non-negligible
success probability. Finally, we can limit the probability that all indices have been
published as parts of previous signatures.

Recall, when computing the signatures on the query messages, the indices
were chosen uniformly at random. Hence, the probability that a given index
reoccurs γ times, i.e., is used for γ signatures, is equal to the probability of the
event C(2h, qs, γ) that after qs samples from a set of size 2h at least one value
was sampled γ times. This probability can in turn be bound by

Pr[C(2h, qs, γ)] ≤
1

2h(γ−1)

(
qs
γ

)
≤ qγs

2h(γ−1)
= 2γ(log qs−h)+h (1)

17

as shown in [36]. Using Equation (1), the probability for this last case can be
written as

∞∑
γ=1

min
{
2γ(log qs−h)+h, 1

}
· Succγ-srHk,t

(A) ,

i.e. the sum over the probabilities that there exists at least one index that was
used γ times multiplied by A’s success probability against the γ-subset resilience
of Hk,t. This sum is negligible per assumption. Hence the success probability of
A is negligible which concludes the asymptotic proof.

Probabilities. Now we take a look at the exact success probability ε =
Succeu-cma

sphincs (A) of an adversary A that runs in time ξ and makes qs signature
queries. Per definition, A’s probability of winning Game 1 is ε. In what fol-
lows let #ots = min

{∑d
i=1 2

ih/d, dqs

}
denote the maximum number of WOTS+

key pairs, #fts = min
{
2h, qs

}
the maximum number of HORST key pairs,

and #tree = min
{∑d−1

i=1 2ih/d, (d− 1)qs

}
the maximum number of subtrees

used while answering signature queries. Now, from the definition of the inse-
curity functions we get that the differences in the success probabilities of A
playing two neighboring games from the above series of games are bounded
by InSecprf (F ; ξ, qs), InSecprf (Fa; ξ,#fts +#ots), #ots · InSecprg (G`; ξ), #fts ·
InSecprg (Gt; ξ), respectively. Hence, ε is bounded by A’s probability of winning
Game 5 plus the sum of the above bounds.

It remains to limit A’s success probability in Game 5. A more detailed anal-
ysis shows that the case that i∗ was not used before is also covered by the
following cases. (The reason is that at some point the path from the message to
the root must meet a path which was used in the response to a query before.) So
we only have to consider the four cases. The probability that A succeeds with
a Case 1 forgery is limited by #tree · 2h/d+dlog `e · InSecspr (H; ξ). This bound
can be obtained by first guessing a tree and then following the proof in [18].
The combined probability that A succeeds with a Case 2 or Case 3 forgery is
limited by #ots · InSeceu-cma (WOTS+; t, 1

)
≤ #ots · (`w2 · InSecud (F; ξ) + `w ·

InSecow (F; ξ) + `w2 · InSecspr (F; ξ)). Similarly to the last case, this bound can
be obtained by first guessing the WOTS+ key pair A will forge a signature for
and then following the proof from [26]6.

Case 4 consists of another three mutually exclusive cases. The probability
that A succeeds by inserting new leaves into the HORST tree can be bounded by
#fts ·2t·InSecspr (H; ξ). This can be seen, first guessing the HORST key pair and
then following again the proof in [18]. The probability that A succeeds by provid-
ing a valid value for an index not included in previous signatures can be bounded
by #fts ·t ·InSecow (F; ξ). This can be shown, first guessing the HORST key pair
and afterwards, guessing the index. Finally, the probability that A succeeds find-
ing a message for which it already knows the values to be opened from previous
signatures can be bounded by

∑∞
γ=1 min

{
2γ(log qs−h)+h, 1

}
· InSecγ-sr (Hk,t; ξ).

6 The used bound is actually an improved bound from [25].

18

As the three cases are mutually exclusive, the probability that A succeeds
with a Case 4 forgery is bound by the sum of the three probabilities above.
Similarly, the probability of A winning Game 5 is bound by the sum of the
probabilities of A succeeding in Case 1 - 4. This finally leads the claimed bound.

ut

3.2 Generic attacks

As a complement to the above reduction, we now analyze the concrete complexity
of various attacks, both pre-quantum and post-quantum. Recall that Hk,t(R,M)
applied to message M ∈ {0, 1}∗ and randomness R ∈ {0, 1}n works as follows.
First, the message digest is computed as M ′ = H(R,M) ∈ {0, 1}m. Then, M ′ is
split into k bit strings, each of length log t. Finally, each of these bit strings is
interpreted as an unsigned integer. Thus, the output of Hk,t is an ordered subset
of k values out of the set [t− 1] (possibly with repetitions).

Subset-Resilience. The main attack vector against SPHINCS is targeting
subset-resilience. The obvious first attack is to simply replace (R,M) in a valid
signature with (R′,M ′), hoping that Hk,t(R,M) = Hk,t(R′,M ′). This violates
strong unforgeability if (R,M) 6= (R′,M ′), and it violates existential unforge-
ability if M 6= M ′. Finding a second preimage of (R,M) under Hk,t costs 2m

pre-quantum but only 2m/2 post-quantum (Grover’s algorithm). To reach success
probability p takes time √p2m/2.

The attacker does succeed in reusing Hk,t(R,M) if Hk,t(R′,M ′) contains
the same indices as Hk,t(R,M), because then he can permute the HORST sig-
nature for (R,M) accordingly to obtain the HORST signature for (R′,M ′). If
k2 is considerably smaller than t then the k indices in a hash are unlikely to
contain any collisions, so there are about 2m/k! equivalence classes of hashes
under permutations. It is easy to map each hash to a numerical representative
of its equivalence class, effectively reducing the pre-quantum second-preimage
cost from 2m to 2m/k!, and the post-quantum second-preimage cost from 2m/2

to
√
2m/k!.

More generally, when γ valid signatures use the same HORST key, the at-
tacker can mix and match the HORST signatures. All the attacker needs is to
break γ-subset-resilience: i.e., find Hk,t(R′,M ′) so that the set of k indices in it
is a subset of the union of the indices in the γ valid signatures. The union has
size about γk (at most γk, and usually close to γk if γk is not very large com-
pared to t), so a uniform random number has probability about γk/t of being
in the union, and if the k indices were independent uniform random numbers
then they would have probability about (γk)k/tk of all being in the union. The
expected cost of a pre-quantum attack is about tk/(γk)k, and the expected cost
of a post-quantum attack is about tk/2/(γk)k/2.

Of course, this attack cannot start unless the signer in fact produced γ
valid signatures using the same HORST key. After a total of q signatures, the
probability of any particular HORST key being used exactly γ times is exactly(
q
γ

)
(1 − 1/2h)q−γ(1/2h)γ . This probability is bounded above by (q/2h)γ in the

19

above proof; a much tighter approximation is (q/2h)γ exp(−q/2h)/γ!. If the ra-
tio ρ = q/2h is significantly smaller than 1 then there will be approximately q
keys used once, approximately ρq/2 keys used twice, approximately ρ2q/6 keys
used three times, and so on. The chance that some key will be used γ times, for
γ = h/ log(1/ρ) + δ, is approximately ρδ/γ!.

For example, consider t = 216, k = 32, h = 60, and q = 250. There is a
noticeable chance, approximately 2−9.5, that some HORST key is used 6 times.
For γ = 6 the expected cost of a pre-quantum attack is 2269 and the expected
cost of a post-quantum attack is 2134. Increasing γ to 9 reduces the post-quantum
cost below 2128, specifically to 2125.3, but the probability of a HORST key being
used 9 times is below 2−48. Increasing γ to 10, 11, 12, 13, 14, 15 reduces the cost to
2122.8, 2120.6, 2118.6, 2116.8, 2115.1, 2113.5 respectively, but reduces the probability
to 2−61, 2−75, 2−88, 2−102, 2−116, 2−130 respectively.

Security degrades as q grows closer to 2h. For example, for q = 260 the
attacker finds γ = 26 with probability above 2−30, and then a post-quantum
attack costs only about 2100. Of course, the signer is in control of the number
of messages signed: for example, even if the signer’s key is shared across enough
devices to continuously sign 220 messages per second, signing 250 messages would
take more than 30 years.

One-Wayness. The attacker can also try to work backwards from a hash output
to an n-bit hash input that was not revealed by the signer (or a n-bit half of
a 2n-bit hash input where the other half was revealed by the signer). If the
hash inputs were independent uniform random n-bit strings then this would be
a standard preimage problem; generic pre-quantum preimage search costs 2n,
and generic post-quantum preimage search (again Grover) costs 2n/2.

The attacker can also merge preimage searches for n-bit-to-n-bit hashes. (For
2n-bit-to-n-bit hashes the known n input bits have negligible chance of repeat-
ing.) For pre-quantum attacks the cost of generic T -target preimage attacks is
well known to drop by a factor of T ; here T is bounded by approximately 2h (the
exact bound depends on q), for a total attack cost of approximately 2n−h. For
post-quantum attacks, it is well known that 2n/2/

√
T quantum queries are nec-

essary and sufficient for generic T -target preimage attacks (assuming T < 2n/3),
but there is overhead beyond the queries. An analysis of this overhead by Bern-
stein [8] concludes that all known post-quantum collision-finding algorithms cost
at least 2n/2, implying that the post-quantum cost of multi-target preimage at-
tacks is also 2n/2. For example, for n = 256 and T = 256 the best post-quantum
attacks use only 2100 queries but still cost 2128.

Second-Preimage Resistance. As for the message hash, finding a second
preimage of either a message M ∈ {0, 1}n under F or a message M ∈ {0, 1}2n
under H costs 2n pre-quantum and 2n/2 post-quantum (Grover’s algorithm).

PRF, PRG, and Undetectability. The hash inputs are actually obtained
from a chain of PRF outputs, PRG outputs, and lower-level hash outputs. The
attacker can try to find patterns in these inputs, for example by guessing the
PRF key, the PRG seed, or an input to F that ends up at a target value after

20

a number of rounds of the chaining function. All generic attacks again cost 2n

pre-quantum and 2n/2 post-quantum.

4 SPHINCS-256

In addition to the general construction of SPHINCS, we propose a specific in-
stantiation called SPHINCS-256. The parameters, functions, and resulting key
and signature sizes of SPHINCS-256 are summarized in Table 1. This section
describes how these parameters and functions were chosen.

Parameters. The parameters for SPHINCS-256 were selected with two goals
in mind: (1) long-term 2128 security against attackers with access to quantum
computers; (2) a good tradeoff between speed and signature size. The first goal
determined the security parameter n = 256, which in turn determined the name
SPHINCS-256. Optimizing the remaining parameters required deciding on the
relative importance of speed and signature size. After searching a large parameter
space we settled on the parameters m = 512, h = 60, d = 12, w = 16, t = 216,
and k = 32, implying ` = 67, x = 6, and a = 64. These choices are small enough
and fast enough for a wide range of applications. Of course, one can also define
different SPHINCS instantiations, changing the remaining parameters in favor
of either speed or signature size.

Security of SPHINCS-256. SPHINCS-256 uses n = 256,m = 512, h =
60, d = 12, w = 16, t = 216, k = 32 as parameters. Hence, considering attackers
that have access to a large scale quantum computer this means the following.
Assuming the best attacks against the used hash functions are generic attacks as
described in the last section, Hk,t provides security above 2128 regarding subset-
resilience, F and H provide 2128 security against preimage, second-preimage and
in case of F undetectability attacks. Similarly, the used PRFs and PRGs pro-
vide security 2128. Summing up, SPHINCS-256 provides 2128 security against
post-quantum attackers under the assumptions above.

Fast Fixed-Size Hashing. The primary cost metric in the literature on cryp-
tographic hash functions, for example in the recently concluded SHA-3 com-
petition, is performance for long inputs. However, what is most important for
SPHINCS and hash-based signatures in general is performance for short inputs.
The hashing in SPHINCS consists primarily of applying F to n-bit inputs and
secondarily of applying H to 2n-bit inputs.

Short-input performance was emphasized in a recent MAC/PRF design [1]
from Aumasson and Bernstein. We propose short-input performance as a simi-
larly interesting target for hash-function designers.

Designing a new hash function is not within the scope of this paper: we
limit ourselves to evaluating the short-input performance of previously designed
components that appear to have received adequate study. Below we explain our
selection of specific functions F : {0, 1}n → {0, 1}n and H : {0, 1}2n → {0, 1}n
for n = 256.

21

Parameter Value Meaning
n 256 bitlength of hashes in HORST and WOTS
m 512 bitlength of the message hash
h 60 height of the hyper-tree
d 12 layers of the hyper-tree
w 16 Winternitz parameter used for WOTS signatures
t 216 number of secret-key elements of HORST
k 32 number of revealed secret-key elements per HORST sig.

Functions
Hash H: H(R,M) = BLAKE-512(R‖M)

PRF Fa: Fa(A,K) = BLAKE-256(K‖A)
PRF F : F(M,K) = BLAKE-512(K‖M)

PRG Gλ: Gλ(Seed) = ChaCha12Seed(0)0,...,λ−1

Hash F: F(M1) = Chop(πChaCha(M1‖C), 256)

Hash H: H(M1‖M2) = Chop
(
πChaCha

(
πChaCha (M1‖C)⊕

(
M2‖0256

))
, 256

)
Sizes

Signature size: 41000 bytes
Public-key size: 1056 bytes
Private-key size: 1088 bytes

Table 1. SPHINCS-256 parameters and functions for the 128-bit post-quantum secu-
rity level and resulting signature and key sizes.

Review of Permutation-Based Cryptography. Rivest suggested strength-
ening the DES cipher by “whitening” the input and output: i.e., encrypting a
block M under key (K,K1,K2) as EK(M ⊕K1) ⊕K2, where EK means DES
using key K. Even and Mansour [21] suggested eliminating the original key K:
i.e., encrypting a block M under key (K1,K2) as E(M ⊕K1)⊕K2, where E is
an unkeyed public permutation. Kilian and Rogaway [28, Section 4] suggested
taking K1 = K2.

Combining all of these suggestions means encrypting M under key K as
E(M ⊕K)⊕K; see, e.g., [29], [7], and [20]. Trivial 0-padding or, more generally,
padding with a constant allows M and K to be shorter than the block length of
E: for example, the “Salsa20” cipher from [7] actually produces E(K,M,C) +
(K,M,C), where C is a constant. The PRF security of Salsa20 is tightly equiva-
lent to the PRF security of E(K,M,C)+(K, 0, 0), which in turn implies the PRF
security of the “HSalsa20” stream cipher [9] obtained by truncating E(K,M,C).

Bertoni, Daemen, Peeters, and Van Assche [12] proposed building crypto-
graphic hash functions from unkeyed permutations, and later proposed a specific
“Keccak” hash function. The “sponge” construction used in [12], and in Keccak,
hashes a (b−c)-bit messageK1 to a (b−c)-bit truncation of E(K1, C), where C is
a c-bit constant; hashes a 2(b−c)-bit message (K1,K2) to a (b−c)-bit truncation
of E(E(K1, C) ⊕ (K2, 0)); etc. Sponges have been reused in many subsequent
designs and studied in many papers. We ended up selecting the sponge structure
for both F and H.

22

Note that the single-block hash here, a truncation of E(K1, C), is the same
as an encryption of a constant nonce using a truncated-E(K1,M,C) cipher. Of
course, there is no logical connection between the PRF security of this cipher
and (e.g.) second-preimage resistance, but designers use the same techniques
to build E for either context: consider, for example, the reuse of the Salsa20
permutation in the “Rumba20” [5] compression function, the reuse of a tweaked
version of the “ChaCha20” permutation [6] in the “BLAKE” and “BLAKE2” [4]
hash functions, and the reuse of the Keccak permutation in the “Keyak” [14]
authenticated-encryption scheme.

Many other hash-function designs use input blocks as cipher keys, but in
most cases the underlying ciphers use complicated “key schedules” rather than
wrapping simple key addition around an unkeyed permutation. Both [7] and [13]
state reasons to believe that unkeyed permutations provide the best performance-
security tradeoff. Performance obviously played a large role in the selection of
Salsa20/12 (Salsa20 reduced to 12 rounds) for the eSTREAM portfolio, the
deployment of ChaCha20 in TLS [31], and the selection of Keccak as SHA-3.
We did not find any non-permutation-based hash-function software competitive
in performance with the permutation that we selected.

Choice of Permutation for n = 256. A sponge function using a b-bit permu-
tation E and a c-bit “capacity” takes b− c bits in each input block and produces
b− c bits of output. We require b− c ≥ 256 so that a single call to E hashes 256
bits to 256 bits (and two calls to E hash 512 bits to 256 bits). The attacker can
compute preimages by guessing the c missing bits and applying E−1, so we also
require c ≥ 256.

We considered using the Keccak permutation, which has b = 1600, but this
is overkill: it takes as long to hash a 256-bit block as it does to hash a 1000-bit
block. There is a scaled-down version of Keccak with b = 800, but this is not
part of SHA-3, and we do not know how intensively it has been analyzed.

After considering various other permutations we settled on ChaCha, which
has b = 512. ChaCha is a slightly modified version of Salsa, advertising faster dif-
fusion and at the same time better performance. The best key-recovery attacks
known are from Aumasson, Fischer, Khazaei, Meier, and Rechberger [2] and are
slightly faster than 2256 operations against 8 rounds of Salsa and 7 rounds of
ChaCha, supporting the security advertisement. The eSTREAM portfolio rec-
ommends 12 rounds of Salsa20 as having a “comfortable margin for security” so
we selected 12 rounds of ChaCha (ChaCha12). The Salsa and ChaCha permu-
tations are not designed to simulate ideal permutations: they are designed to
simulate ideal permutations with certain symmetries, i.e., ideal permutations of
the orbits of the state space under these symmetries. The Salsa and ChaCha
stream ciphers add their inputs to only part of the block and specify the rest
of the block as asymmetric constants, guaranteeing that different inputs lie in
different orbits. For the same reason we specify an asymmetric constant for C.

Specifically, let πChaCha : {0, 1}512 → {0, 1}512 denote the ChaCha12 per-
mutation, let C be the bytes of the ASCII representation of “expand 32-byte to
64-byte state!” and let Chop(M, i) be the function that returns the first i bits

23

of the string M . Then we define

F(M1) = Chop (πChaCha (M1‖C) , 256) , and
H(M1‖M2) = Chop

(
πChaCha

(
πChaCha (M1‖C)⊕

(
M2‖0256

))
, 256

)
.

for any 256-bit strings M1,M2.

Other functions. We also use ChaCha12 directly for the PRG Gλ. Specifically,
we define Gλ(Seed) = ChaCha12Seed(0)0,...,λ−1, i.e., we run ChaCha12 with key
Seed and initialization vector 0 and take the first λ output bits.

For message hashing we use BLAKE, whose security was extensively studied
as part of the SHA-3 competition. We also use BLAKE for the n-bit-output
PRF and for the 2n-bit-output PRF: We define H(R,M) = BLAKE-512(R‖M);
Fa(A,K) = BLAKE-256(K‖A); and F(M,K) = BLAKE-512(K‖M).

5 Fast software implementation

The fastest arithmetic units of most modern microprocessors are vector units.
Instead of performing a certain arithmetic operation on scalar inputs, they per-
form the same operation in parallel on multiple values kept in vector registers.
Not surprisingly, many speed records for cryptographic algorithms are held by
implementations that make efficient use of these vector units. Also not surpris-
ingly, many modern cryptographic primitives are designed with vectorizability
in mind. In this section we describe how to efficiently implement SPHINCS-256
using vector instructions, more specifically the AVX2 vector instructions in In-
tel Haswell processors. All cycle counts reported in this section are measured
on one core of an Intel Xeon E3-1275 CPU running at 3.5 GHz. We followed
the standard practice of turning off Turbo Boost and hyperthreading for our
benchmarks.

The AVX2 Instruction Set. The Advanced Vector Extensions (AVX) were
introduced by Intel in 2011 with the Sandy Bridge microarchitecture. The ex-
tensions feature 16 vector registers of size 256 bits. In AVX, those registers can
only be used as vectors of 8 single-precision floating-point values or vectors of 4
double-precision floating-point values. This functionality was extended in AVX2,
introduced with the Haswell microarchitecture, to also support arithmetic on
256-bit vectors of integers of various sizes. We use these AVX2 instructions for
8-way parallel computations on 32-bit integers.

Vectorizing Hash Computations. The two low-level operations in SPHINCS
that account for most of the computations are the fixed-input-size hash functions
F and H. The SPHINCS-256 instantiation of F and H internally uses the ChaCha
permutation. We now discuss vectorized computation of this permutation.

An obvious approach is to use the same parallelism exploited in [3, Section
3.1.3], which notes that the core operations in ChaCha and BLAKE “can be com-
puted in four parallel branches”. Most high-speed implementations of BLAKE
use this internal 4-way parallelism for vector computations.

24

However, it is much more efficient to vectorize across multiple independent
computations of F or H. The most obvious reason is that the ChaCha permu-
tation operates on 32-bit integers which means that 4-way-parallel computation
can only make use of half of the 256-bit AVX vector registers. A second reason is
that internal vectorization of ChaCha requires relatively frequent shuffling of val-
ues in vector registers. Those shuffles do not incur a serious performance penalty,
but they are noticeable. A third reason is that vectorization is not the only way
that modern microprocessors exploit parallelism. Instruction-level parallelism is
used on pipelined processors to hide latencies and superscalar CPUs can even
execute multiple independent instruction in the same cycle. A non-vectorized
implementation of ChaCha has 4-way instruction-level parallelism which makes
very good use of pipelining and superscalar execution. A vectorized implemen-
tation of ChaCha has almost no instruction-level parallelism and suffers from
serious instruction-latency penalties.

Our 8-way parallel implementation of F takes 420 cycles to hash 8 indepen-
dent 256-bit inputs to 8 256-bit outputs. Our 8-way parallel implementation of
H takes 836 cycles to hash 8 independent 512-bit inputs to 8 256-bit outputs.
These speeds assume that the inputs are interleaved in memory. Interleaving and
de-interleaving data means transposing an 8× 8 32-bit-word matrix.

This vectorization across 8 simultaneous hash computations is suitable for the
two main components in the SPHINCS signature generation, namely HORST
signing and WOTS authentication-path computations, as described below. The
same approach also generalizes to other instantiations of F and H, although for
some functions it is more natural to use 64-bit words.

HORST Signing. The first step in HORST signature generation is to expand
the secret seed into a stream of t · n = 16 777 216 bits (or 2 MB). This pseudo-
random stream forms the 216 secret keys of HORST. We use ChaCha12 for this
seed expansion, more specifically Andrew Moon’s implementation of ChaCha12,
which SUPERCOP identifies as the fastest implementation for Haswell CPUs.
The seed expansion costs about 1 814 424 cycles.

The costly part of HORST signing is to first evaluate F(ski) for i = 0, . . . , t−
1, and then build the binary hash tree on top of the F(ski) and extract nodes
which are required for the 32 authentication paths. SPHINCS-256 uses t = 216 so
we need a total of 65 536 evaluations of F and 65 535 evaluations of H. A stream-
lined vectorized implementation treats the HORST binary tree up to level 13
(the level with 8 nodes) as 8 independent sub-trees and vectorizes computations
across these sub-trees. Data needs to be interleaved only once at the beginning
(the HORST secret keys ski) and de-interleaved at the very end (the 8 nodes on
level 13 of the HORST tree). All computations in between are streamlined 8-
way parallel computations of F and H on interleaved data. The final tree hashing
from level 13 to the HORST root at level 16 needs only 7 evaluations of H. This
is a negligible cost, even when using a slower non-vectorized implementation of
H.

Note that, strictly speaking, we do not have to interleave input at all; we can
simply treat the 2 MB output of ChaCha12 as already interleaved random data.

25

However, this complicates compatible non-vectorized or differently vectorized
implementations on other platforms.

WOTS Authentication Paths. Computing a WOTS authentication path con-
sists of 32 WOTS key generations, each followed by an L-Tree computation. This
produces 32 WOTS public keys, which form the leaves of a binary tree. Com-
puting this binary tree and extracting the nodes required for the authentication
path finishes this computation. The costly part of this operation is the compu-
tation of 32 WOTS public keys (32 · 15 · 67 = 32 160 evaluations of F) and of
32 L-Tree computations (32 · 66 = 2 112 evaluations of H). For comparison, the
binary tree at the end costs only 31 computations of H. Efficient vectorization
parallelizes across 8 independent WOTS public-key computations with subse-
quent L-Tree computations. Data needs to be interleaved only once at the very
beginning (the WOTS secret key) and de-interleaved once at the very end (the
roots of the L-Trees). Again, all computations in between are streamlined 8-way
parallel computations of F and H on interleaved data.

SPHINCS Signing Performance. Our software still uses some more trans-
positions of data than the almost perfectly streamlined implementation de-
scribed above. With these transpositions and some additional overhead to xor
hash inputs with masks, update pointers and indices etc., HORST signing takes
15 033 564 cycles. The lower bound from 65 536 evaluations of F and 65 535 eval-
uations of H is 10 289 047 cycles. The computation of one WOTS authentication
path takes 2 586 784 cycles. The lower bound from 32 160 evaluations of F and
2 143 evaluations of H is 1 912 343 cycles. The complete SPHINCS-256 signing
takes 51 636 372 cycles; almost all of these cycles are explained by one HORST
signature and 12 WOTS authentication paths.

SPHINCS Key Generation and Verification. The by far most costly op-
eration in SPHINCS is signing so we focused our optimization efforts on this
operation. Some easily vectorizable parts of key generation and verification also
use our high-speed 8-way vectorized implementations of F and H, but other
parts still use relatively slow non-vectorized versions based on the ChaCha12
reference implementation in eBACS [10]. Our implementation of key genera-
tion takes 3 237 260 cycles. Our implementation of signature verification takes
1 451 004 cycles.

RAM Usage and Size. Our implementation is optimized for speed on large
Intel processors where size and memory usage are typically only a minor concern.
Consequently, we did not optimize for those parameters. For example, we keep
the complete HORST tree in memory and then extract the hashes that are
needed in the 32 authentication paths. This approach keeps the software simple,
but if we wanted to save memory, we would instead use treehash [32] to construct
the tree and extract and store required authentication-path entries on the fly.
Although the software is not optimized for memory usage, we do not need any
dynamic memory allocations; all temporary data fits into the Linux default stack
limit of 8 MB. The size of the complete signing software, including BLAKE for
message hashing, is 104 KB.

26

Acknowledgement Thanks to Christian Rechberger and Andrew Miller for
helpful discussions on the topic.

References

1. Jean-Philippe Aumasson and Daniel J. Bernstein. SipHash: A fast short-input
PRF. In Steven D. Galbraith and Mridul Nandi, editors, Progress in Cryptology –
INDOCRYPT 2012, volume 7668 of LNCS, pages 489–508. Springer, 2012.

2. Jean-Philippe Aumasson, Simon Fischer, Shahram Khazaei, Willi Meier, and
Christian Rechberger. New features of Latin dances: Analysis of Salsa, ChaCha,
and Rumba. In Kaisa Nyberg, editor, Fast Software Encryption, volume 5086 of
LNCS, pages 470–488. Springer, 2008.

3. Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Raphael C.-W. Phan.
SHA-3 proposal BLAKE. Submission to NIST, 2008. http://131002.net/blake/
blake.pdf.

4. Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O’Hearn, and Christian
Winnerlein. BLAKE2: Simpler, smaller, fast as MD5. In Michael J. Jacobson
Jr., Michael E. Locasto, Payman Mohassel, and Reihaneh Safavi-Naini, editors,
Applied Cryptography and Network Security, volume 7954 of LNCS, pages 119–
135. Springer, 2013.

5. Daniel J. Bernstein. What output size resists collisions in a xor of independent
expansions? ECRYPT Hash Workshop, 2007.

6. Daniel J. Bernstein. ChaCha, a variant of Salsa20. SASC 2008: The State of the
Art of Stream Ciphers, 2008.

7. Daniel J. Bernstein. The Salsa20 family of stream ciphers. In Matthew J. B.
Robshaw and Olivier Billet, editors, New Stream Cipher Designs - The eSTREAM
Finalists, volume 4986 of LNCS, pages 84–97. Springer, 2008.

8. Daniel J. Bernstein. Cost analysis of hash collisions: Will quantum computers make
SHARCS obsolete? Workshop Record of SHARCS’09: Special-purpose Hardware
for Attacking Cryptographic Systems, 2009.

9. Daniel J. Bernstein. Extending the Salsa20 nonce. Symmetric Key Encryption
Workshop 2011, 2011.

10. Daniel J. Bernstein and Tanja Lange. eBACS: ECRYPT benchmarking of crypto-
graphic systems. http://bench.cr.yp.to (accessed 2014-05-25).

11. Daniel J. Bernstein and Tanja Lange. Non-uniform cracks in the concrete: the
power of free precomputation. In Kazue Sako and Palash Sarkar, editors, Ad-
vances in Cryptology – ASIACRYPT 2013, volume 8270 of LNCS, pages 321–340.
Springer, 2013.

12. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge
functions. ECRYPT Hash Workshop, 2007.

13. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. The road
from Panama to Keccak via RadioGatún. Dagstuhl Seminar Proceedings, 2009.

14. Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, and Ronny Van
Keer. CAESAR submission: Keyak v1, 2014.

15. Johannes Buchmann, Erik Dahmen, and Andreas Hülsing. XMSS - a practical
forward secure signature scheme based on minimal security assumptions. In Bo-Yin
Yang, editor, Post-Quantum Cryptography, volume 7071 of LNCS, pages 117–129.
Springer, 2011.

27

http://131002.net/blake/blake.pdf
http://131002.net/blake/blake.pdf
http://bench.cr.yp.to

16. Johannes Buchmann, Erik Dahmen, Elena Klintsevich, Katsuyuki Okeya, and
Camille Vuillaume. Merkle signatures with virtually unlimited signature capac-
ity. In Jonathan Katz and Moti Yung, editors, Applied Cryptography and Network
Security, volume 4521 of LNCS, pages 31–45. Springer, 2007.

17. Johannes Buchmann, L. C. Coronado García, Erik Dahmen, Martin Döring, and
Elena Klintsevich. CMSS - an improved Merkle signature scheme. In Rana Barua
and Tanja Lange, editors, Progress in Cryptology – INDOCRYPT 2006, volume
4329 of LNCS, pages 349–363. Springer, 2006.

18. Erik Dahmen, Katsuyuki Okeya, Tsuyoshi Takagi, and Camille Vuillaume. Digital
signatures out of second-preimage resistant hash functions. In Johannes Buchmann
and Jintai Ding, editors, Post-Quantum Cryptography, volume 5299 of LNCS, pages
109–123. Springer, 2008.

19. Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice
signatures and bimodal gaussians. In Ran Canetti and Juan A. Garay, editors,
Advances in Cryptology – CRYPTO 2013, volume 8042 of LNCS, pages 40–56.
Springer, 2013.

20. Orr Dunkelman, Nathan Keller, and Adi Shamir. Minimalism in cryptography: The
Even-Mansour scheme revisited. In David Pointcheval and Thomas Johansson,
editors, Advances in Cryptology – EUROCRYPT 2012, volume 7237 of LNCS,
pages 336–354. Springer, 2012.

21. Shimon Even and Yishay Mansour. A construction of a cipher from a single pseu-
dorandom permutation. Journal of Cryptology, 10(3):151–161, 1997.

22. Oded Goldreich. Two remarks concerning the goldwasser-micali-rivest signature
scheme. In Andrew M. Odlyzko, editor, Advances in Cryptology - CRYPTO ’86,
volume 263 of LNCS, pages 104–110. Springer, 1987.

23. Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applications.
Cambridge University Press, Cambridge, UK, 2004.

24. Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM Journal on Computing,
17(2):281–308, 1988.

25. Andreas Hülsing. Practical Forward Secure Signatures using Minimal Security
Assumptions. PhD thesis, TU Darmstadt, 2013.

26. Andreas Hülsing. W-OTS+ – shorter signatures for hash-based signature schemes.
In Amr Youssef, Abderrahmane Nitaj, and Aboul-Ella Hassanien, editors, Progress
in Cryptology – AFRICACRYPT 2013, volume 7918 of LNCS, pages 173–188.
Springer, 2013.

27. Andreas Hülsing, Lea Rausch, and Johannes Buchmann. Optimal parameters for
XMSSMT . In Alfredo Cuzzocrea, Christian Kittl, Dimitris E. Simos, Edgar Weippl,
and Lida Xu, editors, Security Engineering and Intelligence Informatics, volume
8128 of LNCS, pages 194–208. Springer, 2013.

28. Joe Kilian and Phillip Rogaway. How to protect DES against exhaustive key search
(an analysis of DESX). Journal of Cryptology, 14(1):17–35, 2001.

29. Kaoru Kurosawa. Power of a public random permutation and its application to
authenticated-encryption. Cryptology ePrint Archive, Report 2002/127, 2002.

30. Leslie Lamport. Constructing digital signatures from a one way function. Technical
Report SRI-CSL-98, SRI International Computer Science Laboratory, 1979.

31. Adam Langley. TLS symmetric crypto, 2014. https://www.imperialviolet.org/
2014/02/27/tlssymmetriccrypto.html.

32. Ralph Merkle. A certified digital signature. In Gilles Brassard, editor, Advances in
Cryptology – CRYPTO ’89, volume 435 of LNCS, pages 218–238. Springer, 1990.

28

https://www.imperialviolet.org/2014/02/27/tlssymmetriccrypto.html
https://www.imperialviolet.org/2014/02/27/tlssymmetriccrypto.html

33. Josef Pieprzyk, Huaxiong Wang, and Chaoping Xing. Multiple-time signature
schemes against adaptive chosen message attacks. In Mitsuru Matsui and Robert
Zuccherato, editors, Selected Areas in Cryptography, volume 3006 of LNCS, pages
88–100. Springer, 2004.

34. Leonid Reyzin and Natan Reyzin. Better than BiBa: Short one-time signatures
with fast signing and verifying. In Lynn Batten and Jennifer Seberry, editors, In-
formation Security and Privacy 2002, volume 2384 of LNCS, pages 1–47. Springer,
2002.

35. Fang Song. A note on quantum security for post-quantum cryptography. In Michele
Mosca, editor, Post-Quantum Cryptography, volume 8772 of LNCS, pages 246–265.
Springer, 2014.

36. Kazuhiro Suzuki, Dongvu Tonien, Kaoru Kurosawa, and Koji Toyota. Birthday
paradox for multi-collisions. In Min Rhee and Byoungcheon Lee, editors, Informa-
tion Security and Cryptology – ICISC 2006, volume 4296 of LNCS, pages 29–40.
Springer, 2006.

A Security Properties

In this appendix we give the basic definitions for security properties we use.

Existential Unforgeability under Adaptive Chosen Message Attacks.
The standard security notion for digital signature schemes is existential unforge-
ability under adaptive chosen message attacks (EU-CMA) [24] which is defined
using the following experiment. By Dss(1n) we denote a signature scheme with
security parameter n.

Experiment ExpEU-CMA
Dss(1n) (A)

(sk, pk)← kg(1n)
(M?, σ?)← Asign(sk,·)(pk)
Let {(Mi, σi)}q1 be the query-answer pairs of sign(sk, ·).
Return 1 iff vf(pk,M?, σ?) = 1 and M? 6∈ {Mi}q1.

A signature scheme is called existentially unforgeable under a q adaptive cho-
sen message attack if any PPT adversary making at most q queries, has only
negligible success probability in winning the above game.

An EU-CMA secure one-time signature scheme (OTS) is a signature scheme
that is existentially unforgeable under a 1-adaptively chosen message attack.

Hash Function Families.We now provide definitions of the security properties
of hash function families that we use, namely one-wayness, second-preimage
resistance, undetectability and pseudorandomness. In the following let n ∈ N be
the security parameter, m, k = poly(n) , Hn = {HK : {0, 1}m → {0, 1}n |K ∈
{0, 1}k} a family of functions. (In the description of SPHINCS we actually omit
the key K in many cases for readability.)

We define the security properties in terms of the success probability of an
adversary A against the respective property. A function family Hn is said to
provide a property if the success probability of any probabilistic polynomial-
time adversary against this property is negligible. We begin with the success

29

probability of an adversary A against the one-wayness (ow) of a function family
Hn.

SuccowHn
(A) = Pr [K

$← {0, 1}k;M $← {0, 1}m, Y ← HK(M),

M ′ ← A(K,Y) : Y = HK(M ′)] .

We next define the success probability of an adversaryA against second-preimage
resistance (spr).

SuccsprHn
(A) =Pr [K

$← {0, 1}k;M $← {0, 1}m,M ′ ← A(K,M) :

(M 6=M ′) ∧ (HK(M) = HK(M ′))] .

To define undetectability, assume the following two distributions over {0, 1}n ×
{0, 1}k. A sample (U,K) from the first distributionDud,U is obtained by sampling

U
$← {0, 1}n andK $← {0, 1}k uniformly at random from the respective domains.

A sample (U,K) from the second distribution Dud,H is obtained by sampling

K
$← {0, 1}k and then evaluating HK on a uniformly random bit string, i.e.,

Um
$← {0, 1}m, U ← HK(Um). The success probability of an adversary A against

the undetectability of Hn is defined as:

SuccudHn
(A) =

∣∣Pr[ADud,U = 1]− Pr[ADud,H = 1]
∣∣ ,

where Adist denotes that A has oracle access to some oracle that outputs samples
from distribution dist.

The fourth notion we use is pseudorandomness of a function family (prf). In
the definition of the success probability of an adversary against pseudorandom-
ness the adversary gets black-box access to an oracle Box. Box is either initialized
with a function from Hn or a function from the set G(m,n) of all functions with
domain {0, 1}m and range {0, 1}n. The goal of the adversary is to distinguish
both cases:

SuccprfHn
(A) =

∣∣∣Pr[Box $← Hn : ABox(·) = 1]− Pr[Box
$← G(m,n) : ABox(·) = 1]

∣∣∣ .
Subset-Resilient Functions. We now recall the definition of subset resilience
from [34]. Let H = {Hi,t,k} be a family of functions, where Hi,t,k maps a bit
string of arbitrary length to an subset of size at most k of the set [t− 1]. (As for
hash functions in the description of SPHINCS we omit the key and assume the
used function is randomly selected from a family using the uniform distribution.)
Moreover, assume that there is a polynomial-time algorithm that, given i, 1t, 1k
and M , computes Hi,t,k(M). Then H is called γ-subset resilient if the following
success probability is negligible for any probabilistic polynomial-time adversary
A:

Succγ-srH (A) = Pri
[
(M1,M2, . . . ,Mγ+1)← A(i, 1t, 1k)

s.t. Hi,t,k(Mγ+1) ⊆
γ⋃
j=1

Hi,t,k(Mj)
]

30

	SPHINCS: practical stateless hash-based signatures

