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Abstract. Isolated qubits are a special class of quantum devices, which
can be used to implement tamper-resistant cryptographic hardware such
as one-time memories (OTM’s). Unfortunately, these OTM constructions
leak some information, and standard methods for privacy amplification
cannot be applied here, because the adversary has advance knowledge of
the hash function that the honest parties will use.
In this paper we show a stronger form of privacy amplification that solves
this problem, using a fixed hash function that is secure against all possi-
ble adversaries in the isolated qubits model. This allows us to construct
single-bit OTM’s which only leak an exponentially small amount of in-
formation.
We then study a natural generalization of the isolated qubits model,
where the adversary is allowed to perform a polynomially-bounded num-
ber of entangling gates, in addition to unbounded local operations and
classical communication (LOCC). We show that our technique for pri-
vacy amplification is also secure in this setting.

1 Introduction

Can one build tamper-resistant cryptographic hardware whose security
is based on the laws of quantum mechanics? This is a natural ques-
tion, as there are many unusual phenomena in quantum mechanics, such
as the impossibility of cloning an unknown quantum state, which seem
relevant to cryptography. However, despite these encouraging signs, it
turns out that many common cryptographic functionalities, such as bit
commitment and oblivious transfer (with information-theoretic security),
cannot be implemented in a quantum world [1,2,3,4].
Recently, there has been progress using a different approach to this prob-
lem, called the “isolated qubits model” [5,6]. Isolated qubits are qubits
with long coherence times, which can only be accessed using single-qubit
gates and measurements; entangling operations are forbidden. Thus, in
the isolated qubits model, one assumes an additional restriction on what
the adversary can do. Formally, the adversary is only allowed to perform
local operations and classical communication, or LOCC, where “local op-
erations” are operations on single qubits, and “classical communication”
refers to communication between the qubits. (Likewise, honest parties



are also restricted to LOCC. Furthermore, while the adversary can per-
form an unbounded number of operations, all honest parties must run
in polynomial time.) Isolated qubits can be viewed as special-purpose
quantum devices, which can implement functionalities such as oblivious
transfer that are not possible using quantum mechanics alone. Isolated
qubits could conceivably be implemented using solid-state nuclear spins,
such as quantum dots or nitrogen vacancy centers [7,8].
Using isolated qubits, there are natural candidate constructions that lead
to a variety of tamper-resistant cryptographic hardware. The first step
is to construct one-time memories (OTM’s) [5]. Intuitively, a one-time
memory is a device that does non-interactive oblivious transfer, i.e., Alice
programs the device with two messages s and t, then gives the device to
Bob, who can choose to read either s or t (but not both).
Using one-time memories, one can then construct one-time programs
[9,10,11,12], which are useful for program obfuscation, access control and
copy protection. A one-time program is a program that can be run only
once, and hides its internal state. More precisely, Alice chooses some
circuit C, compiles it into a one-time program, and gives it to Bob;
Bob then chooses an input x, runs the one-time program, and learns the
output of the computation C(x); but Bob learns nothing else, and cannot
run the program on another input.
Unfortunately it is not yet possible to prove the security of these one-
time programs in the isolated qubits model. This is because the proof
of security for the one-time memories in [5] is not strong enough —
it allows some extra information to leak to the adversary, which can
cause problems when the one-time memories are used as part of a larger
construction.
In this paper we address the issue of information leakage, by developing a
privacy amplification technique that works in the isolated qubits model.
By combining this privacy amplification technique with the leaky one-
time memories from [5], we obtain new one-time memories that only leak
an exponentially small amount of information. These new one-time mem-
ories store single bits rather than strings, but these can also be plugged
into known constructions for one-time programs [10]. This removes one of
the main obstacles to constructing provably-secure one-time programs.

1.1 Privacy Amplification

The candidate construction for one-time memories in [5] was proven to
satisfy a “leaky” definition of security, where up to a constant fraction
of the bits of the messages could be leaked to the adversary. This no-
tion of security was not as strong as one would have liked, but on the
positive side, the adversary’s uncertainty was expressed in terms of the
smoothed min-entropy, which suggested that the leakage problem might
be addressed using some kind of privacy amplification.
However, there is an obstacle to using privacy amplification with our
one-time memories. Usually, in privacy amplification, the adversary has
partial information about some string s (while the honest parties have
complete knowledge of s). Then the honest parties choose a random seed
q, and apply a hash function Fq to produce a shorter string Fq(s), which



will be almost completely unknown to the adversary. This works provided
that the random seed q is chosen independent of the adversary’s actions.

But in the case of our one-time memories, all the information needed to
decode the messages — including the random seed q — must be provided
at the beginning, before the adversary decides how to attack the OTM
(i.e., what measurement to perform on the qubits). Thus the adversary’s
attack can depend on q, and so standard methods of privacy amplification
may not be secure.

We show a variant of privacy amplification which uses a fixed hash func-
tion F (without a random seed), and is secure in the isolated qubits
model. Intuitively, this relies on two ideas. First, we use a stronger fam-
ily of hash functions, namely r-wise independent functions, where r grows
polynomially in the security parameter k. These r-wise independent func-
tions can be computed efficiently, but they behave more like truly ran-
dom functions, in that they satisfy large-deviation bounds, similar to
Hoeffding’s inequality [13,14,15].

Second, we exploit the fact that the only way for the adversary to learn
about s is by performing LOCC measurements on the qubits that encode
s. Rather than considering all possible LOCC measurement strategies,
which are represented by decision trees, we consider all possible LOCC
measurement outcomes, which are represented by POVM elements.1 Due
to the LOCC restriction, these POVM elements are tensor products of
single-qubit operators. So there are not too many of them. Say we dis-
cretize the set of possible measurement outcomes, with some fixed reso-
lution.2 Then the number of LOCC measurement outcomes grows expo-
nentially with the number of qubits; this is in contrast with the number
of entangled measurement outcomes, which grows doubly-exponentially
with the number of qubits. Hence we can use a union bound over the set
of all LOCC measurement outcomes.

We do privacy amplification as follows. We first choose a hash function
F from an r-wise independent family. We then fix F permanently, and
announce it to the adversary. We claim that, with high probability over
the choice of F , this privacy amplification scheme will be secure against
all possible LOCC adversaries, i.e., every adversary who uses LOCC
measurements and gains at most partial information about the string s,
will still have very little information about F (s).

The proof uses a covering argument over the set of all LOCC measure-
ment outcomes. First, fix some particular LOCC measurement outcome
M . Let S be the random variable representing the string s, and suppose
the hash function F outputs a single bit F (S). One can calculate the bias
of the bit F (S), conditioned on having observed outcome M , as follows:

ES((−1)F (S) |M) =
∑
s

(−1)F (s) Pr(S = s |M). (1)

(Here ES denotes the expectation value obtained by averaging over S.)

1 POVM elements are defined in Section 2.2, but we do not require these formal
definitions here.

2 Formally, we consider an ε-net, as defined in Section 2.1.



We want to show that ES((−1)F (S) |M) is small. Note that ES((−1)F (S) |M)
is a linear combination of terms (−1)F (s), where each F (s) is a random
variable describing the initial choice of the hash function F . We can use
Hoeffding-like inequalities to show that, with high probability over the
choice of F , ES((−1)F (S) |M) is sharply concentrated around 0. This will
work provided that

∑
s Pr(S = s |M)2 is small, which follows since the

Renyi entropy H2(S|M) (or the smoothed min-entropy Hε
∞(S|M)) are

large, which holds since the adversary has at most partial information
about S. Thus, one can conclude that, for a fixed LOCC measurement
outcome M , with high probability over the choice of F , ES((−1)F (S) |M)
is small, i.e., privacy amplification succeeds.
Finally, one uses the union bound over all LOCC measurement outcomes
M . This shows that, with high probability over the choice of F , for all
LOCC measurement outcomes M , privacy amplification succeeds. This
completes the proof.
The above sketch shows privacy amplification for a single string s, but
a similar technique can be applied to an OTM that stores two strings
s and t. Here one applies two hash functions F and G, which output
a pair of bits F (s) and G(t). Now there is an additional complication,
since the adversary has the possibility of learning information about the
correlations between F (s) and G(t). To address this issue, one needs to
bound the quantity

EST ((−1)F (S)+G(T ) |M)

=
∑
st

(−1)F (s)(−1)G(t) Pr(S = s, T = t |M). (2)

This is a quadratic function of the random variables (−1)F (s) and (−1)G(t),
describing the initial choices of the hash functions F and G. This can be
bounded using the Hanson-Wright inequality [17,18], adapted for r-wise
independent variables using the techniques of [14,15].
Formally, this shows a reduction from an almost-perfect single-bit OTM
to a leaky string-OTM. (That is, given an OTM that stores two strings
and leaks a constant fraction of the information, one can construct an
OTM that stores two bits and leaks an exponentially small amount of
information.) By combining with the results of [5], we get almost-perfect
single-bit OTM’s in the isolated qubits model.

1.2 Beyond the Isolated Qubits Model

Next, we study a generalization of the isolated qubits model, where the
adversary is allowed to perform a polynomially-bounded number of 2-
qubit entangling gates, in addition to unbounded LOCC operations.
More precisely, this model is specified by a constant c ≥ 0, and a “depth”
parameter d, which can grow with the security parameter k, as long as
d ≤ kc; then this model allows the adversary to apply quantum circuits
of depth d containing 2-qubit gates combined with unbounded LOCC op-
erations. (Honest parties are still restricted to polynomial-time LOCC.)
This model may be a more accurate description of real solid-state qubits,



where one can perform noisy entangling gates, but the accumulation of
noise makes it difficult to entangle large numbers of qubits at once.
It is an interesting open problem to construct OTM’s that are secure in
this model. We show that our reduction from almost-perfect single-bit
OTM’s to leaky string-OTM’s still works in this setting. More precisely,
for any constant c ≥ 0, and any depth d ≤ kc, we show a variant of our
reduction, whose efficiency is polynomial in d, that remains secure in this
depth-d model. The proof uses the same ideas as before.
Unfortunately, the leaky string-OTM’s from [5] are not known to be
secure in this setting. Nonetheless we believe it should be possible to
construct leaky string-OTM’s in this depth-d model, for at least some
super-constant values of d, for the following intuitive reason: in order
to break the leaky string-OTM’s from [5], one has to break a particu-
lar version of Wiesner’s conjugate coding scheme [19], and this requires
running a classical decoding algorithm on a quantum superposition of in-
puts, which requires applying a quantum circuit with a certain minimum
number of entangling gates.

1.3 Discussion

Related Work: This paper builds on recent work on non-interactive
one-time memories in the isolated qubits model [5,6]. Some similar ideas
have been investigated in connection with other cryptographic tasks, such
as bit commitment, quantum money and password-based identification
[20,21,22]. There is also a related line of work on LOCC state discrim-
ination, involving “nonlocality without entanglement” and data-hiding
states [23,24,25,26].
Deterministic privacy amplification has also been studied for other cryp-
tographic tasks, such as secret key distribution based on causality con-
straints [27]. Our results can also be compared to earlier work on de-
terministic extractors for special classes of random sources, as well as
exposure-resilient cryptography and leakage-resilient cryptography [28,29,30],
[31,32]. However, these earlier works considered classical adversaries,
with various kinds of restrictions; our result, with a quantum adversary
restricted to (unbounded) LOCC operations, seems to be new.
Open Problems: The overall goal of this work is to construct one-time
programs whose security is based on the properties of realistic physical
devices. One-time memories and the isolated qubits model are useful
steps along the way to achieving this goal, but there remain several open
problems.
First, can one prove that these one-time memories satisfy a sufficiently
strong notion of security, so that they can be composed to build one-
time programs? Privacy amplification is helpful, but there may be other
issues that affect the security of more complicated protocols, such as
the adversary’s ability to wait until later stages of the protocol before
performing any measurements.
Second, can one modify the isolated qubits model so that it matches more
closely the properties of real solid-state qubits, e.g., by allowing a limited
number of entangling operations? Our model involving bounded-depth
quantum circuits is one step in this direction.



2 Preliminaries

2.1 Notation, ε-nets

For any two matrices A and B, we write A � B if and only if B − A is
positive semidefinite. We let ‖A‖ denote the operator norm, ‖A‖tr denote
the trace norm, and ‖A‖F denote the Frobenius norm. For any vector v,
we let ‖v‖p denote the `p norm of v. For any two probability densities P
and Q, we let ‖P −Q‖1 denote the `1 distance between them.
We write Pr[E ] to denote the probability of an event E . We write E[X]
to denote the expectation value of a random variable X. In some cases
we write PrX [·] or EX [·] to emphasize that we are considering prob-
abilities associated with a random variable X. We write PX|Y to de-
note a probability density function PX|Y (x|y) = Pr[X = x |Y = y].
In some cases we abuse this notation, e.g., if E is an event, we write
PEX|Y (x|y) = Pr[E , X = x |Y = y]. Also, if E is an event, we let 1E be
the indicator random variable for E , which equals 1 when the event E
happens, and equals 0 otherwise.
Suppose E is a subset of some normed space, with norm ‖·‖. Let ε > 0.
We say that Ẽ is an ε-net for E if Ẽ ⊂ E, and for every x ∈ E, there
exists some y ∈ Ẽ such that ‖x− y‖ ≤ ε.

2.2 Quantum Measurements

A quantum state is described by a density matrix ρ ∈ Cd×d with ρ � 0
and tr(ρ) = 1. A quantum measurement can be described by a completely-
positive trace-preserving map E : Cd×d → Cd×d, which can be written in
the form E(ρ) =

∑
iKiρK

†
i , where the Ki ∈ Cd×d are called Kraus oper-

ators and
∑
iK
†
iKi = I. Given a state ρ, the measurement returns out-

come i with probability tr(KiρK
†
i ), in which case the post-measurement

state is given by KiρK
†
i / tr(KiρK

†
i ).

A measurement outcome can also be described by a POVM element,3

that is, a matrix M ∈ Cd×d with 0 � M � I. Given a state ρ, the
probability that a measurement returns outcome M is given by tr(Mρ).
(In the example in the previous paragraph, the outcome i is described
by the POVM element K†iKi.)

2.3 LOCC and Separable Measurements

In the isolated qubits model, qubits are only accessible via local op-
erations and classical communication (LOCC), that is, one can perform
single-qubit quantum operations, and use classical information (obtained
by measuring one qubit) to choose what operation to perform on another
qubit. LOCC strategies can thus be represented by decision trees, where
each vertex corresponds to a single-qubit operation, and each edge cor-
responds to a possible (classical) outcome of that operation [5,?].

3 POVM refers to positive operator-valued measure, though we will not need to use
this concept here.



A measurement on m qubits is called separable if it can be written in the
form E : ρ 7→

∑
iKiρK

†
i , where each operator Ki is a tensor product of

m single-qubit operators, Ki = Ki,1⊗Ki,2⊗ · · · ⊗Ki,m. It is easy to see
that any LOCC measurement is separable [34].

2.4 Smoothed Min-entropy

We recall the definition of the smoothed conditional min-entropy:

Hε
∞(X|Y ) = max

E: Pr(E)≥1−ε
min
x,y

[
− lg

[
PEX|Y (x|y)

]]
, (3)

where the maximization is over all events E (defined by the conditional
probabilities PE|XY ) such that Pr(E) ≥ 1 − ε. Note that a lower-bound
of the form Hε

∞(X|Y ) ≥ h implies that there exists an event E with
Pr(E) ≥ 1− ε such that, for all x and y, Pr[E , X = x|Y = y] ≤ 2−h.
We will need the following “entropy splitting lemma,” which appeared in
[33]. Intuitively, this says that if X0 and X1 together have min-entropy
at least α, then at least one of them (indicated by the random variable
C) must have min-entropy at least α/2.

Proposition 2.1. Let ε ≥ 0, and let X0, X1 and Z be random variables
(which may be over different alphabets) such that Hε

∞(X0, X1 |Z) ≥ α.
Then there exists a random variable C taking values in {0, 1} such that

Hε+ε′
∞ (X1−C |Z,C) ≥ 1

2
α− 1− lg( 1

ε′ ) (for any ε′ > 0). (4)

2.5 Leaky String-OTM’s

The main result from [5] was a construction of a leaky string-OTM (which
stores two strings, and leaks at most a constant fraction of the informa-
tion) in the isolated qubits model. Here we state this result using slightly
different language — in particular, we state the result in terms of “δ-non-
negligible” measurement outcomes, whereas in [5] this terminology was
used in the proof but not in the statement of the theorem.

Definition 2.1. For any quantum state ρ ∈ Cd×d, and any δ > 0, we
say that a measurement outcome (POVM element) M ∈ Cd×d is δ-non-
negligible if tr(Mρ) ≥ δ tr(M)/d.

Intuitively, these are the only measurement outcomes we need to con-
sider in our security proof, as the total probability contributed by all the
other “δ-negligible” measurement outcomes is never more than δ. To see
this, consider any measurement, which can be described by a collection
of POVM elements {Mz | z = 1, 2, . . .} such that

∑
zMz = I. Say we

perform this measurement on some state ρ, and let Z be the random
variable representing the outcome of the measurement (so Z takes val-
ues M1,M2, . . .). Then the total probability of observing a δ-negligible
measurement outcome is at most δ:

Pr[outcome Z is δ-negligible]

=
∑

z : Mz is δ-negl.

tr(Mzρ) <
∑

z : Mz is δ-negl.

δ tr(Mz)/d ≤ δ. (5)

We now restate the main result from [5]:



Theorem 2.1. For any k ≥ 2, and for any small constant 0 < µ � 1,
there exists an OTM construction that stores two messages s, t ∈ {0, 1}`,
where ` = Θ(k2), and has the following properties:

1. Correctness and efficiency: there are honest strategies for program-
ming the OTM with messages s and t, and for reading either s or t,
using only LOCC operations, and time polynomial in k.

2. “Leaky” security: Let δ0 > 0 be any constant, and set δ = 2−δ0k. Sup-
pose the messages s and t are chosen independently and uniformly
at random in {0, 1}`. For any LOCC adversary, and any separa-
ble4 measurement outcome M that is δ-non-negligible, we have the
following security bound:

Hε
∞(S, T |Z = M) ≥ ( 1

2
− µ) `− δ0k. (6)

Here S and T are the random variables describing the two messages,
Z is the random variable representing the adversary’s measurement
outcome, and we have ε ≤ exp(−Ω(k)).

2.6 Ideal Bit-OTM’s

We now define security for an “ideal” OTM that stores two bits a0, a1 ∈
{0, 1}. Note that there is a subtle point with defining security: while the
OTM should hide at least one of the messages (a0, a1), which one remains
hidden may depend on the adversary’s actions in a complicated way.
Our definition of security asserts that, conditioned on the adversary’s
measurement outcome, there exists a binary random variable C that
indicates which of the two messages remains hidden. (For example, C
appears naturally when one uses the entropy splitting lemma, Prop. 2.1.)
Formally, we let A0 and A1 be random variables representing the two
messages. Our security definition asserts that the message AC is nearly
uniformly distributed, even given knowledge of the other message A1−C ,
the value of C, and the adversary’s measurement outcome.

Definition 2.2. We say that a single-bit OTM construction is secure
if the following holds: Let k ≥ 1 be a security parameter. Suppose the
OTM is programmed with two messages a0, a1 ∈ {0, 1} chosen uniformly
at random. Consider any LOCC adversary, and let Z be the random
variable representing the results of the adversary’s measurements. Then
there exists a random variable C, which takes values in {0, 1}, such that:

‖PACA1−CCZ − UAC × PA1−CCZ‖1 ≤ 2−Ω(k), (7)

where PACA1−CCZ denotes the probability density on the random vari-
ables (AC , A1−C , C, Z), PA1−CCZ denotes the marginal probability den-
sity on (A1−C , C, Z), and U denotes the uniform distribution on {0, 1}.

We remark that this security guarantee involves the adversary’s measure-
ment outcome Z, which is classical rather than quantum information.

4 Note that this includes LOCC measurement outcomes as a special case.



While this may seem like an artificial restriction on the adversary, we ar-
gue that it is simply a natural consequence of the isolated qubits model.
By definition, the adversary is unable to perform any entangling oper-
ations on the isolated qubits contained in the OTM; thus the only way
the adversary can access those qubits is by performing a measurement,
and converting the quantum state into a classical measurement outcome.

2.7 t-wise Independent Hash Functions

Let H be a collection of functions h that map {1, . . . , N} to {1, . . . ,M}.
Let t ≥ 1 be an integer. Let H be a function chosen uniformly at random
from H; then this defines a collection of random variables {H(x) | x =
1, . . . , N}. We say that H is t-wise independent if for all subsets S ⊂
{1, . . . , N} of size |S| ≤ t, the random variables {H(x) |x ∈ S} are inde-
pendent and uniformly distributed in {1, . . . ,M}.
We will use the fact that there exist efficient constructions for t-wise
independent hash functions, which run in time polynomial in t, logN
and logM ; see [13] for details.

Proposition 2.2. For all integers n ≥ 1, m ≥ 1 and t ≥ 1, there exist
families of t-wise independent functions H = {h : {0, 1}n → {0, 1}m},
such that sampling a random function in H takes t ·max {n,m} random
bits, and evaluating a function in H takes time poly(n,m, t).

We will use the following large-deviation bound for sums of t-wise inde-
pendent random variables. This is a slight variant of results in [14] (see
also [15]); we sketch the proof in the full version of the paper [16].

Proposition 2.3. Let t ≥ 2 be an even integer, and let H be a fam-
ily of t-wise independent functions that map {1, . . . , N} to {0, 1}. Fix
some constants a1, . . . , aN ∈ R. Let H be a function chosen uniformly at
random from H, and define the random variable

Y =

N∑
x=1

(−1)H(x)ax. (8)

Then EY = 0, and we have the following large-deviation bound: for any
λ > 0,

Pr(|Y | ≥ λ) ≤ 2e1/(6t)
√
πt

(
vt

eλ2

)t/2
, (9)

where v =
∑N
x=1 a

2
x.

We will also use a large-deviation bound for quadratic functions of 2t-
wise independent random variables. This is based on the Hanson-Wright
inequality [17] (see also [18] for a more modern, slightly stronger result),
partially derandomized using the techniques of [14] (see also [15]). We
sketch the proof in the full version of the paper [16].

Proposition 2.4. Let t ≥ 2 be an even integer, and let H be a family
of 2t-wise independent functions that map {1, . . . , N} to {0, 1}. Let A ∈



RN×N be a symmetric matrix, AT = A. Let H be a function chosen
uniformly at random from H, and define the random variable

S =

N∑
x,y=1

Axy
(
(−1)H(x)(−1)H(y) − δxy

)
, (10)

where δxy equals 1 if x = y, and equals 0 otherwise.
Then ES = 0, and we have the following large-deviation bound: for any
λ > 0,

Pr(|S| ≥ λ) ≤ 4e1/(6t)
√
πt

(
4‖Ã‖

2

F t

eλ2

)t/2
+ 4e1/(12t)

√
2πt

(
8‖Ã‖t
eλ

)t
,

(11)

where Ã ∈ RN×N is the entry-wise absolute value of A, that is, Ãxy =
|Axy|.

3 Privacy Amplification for One-Time
Memories using Isolated Qubits

Our main result is a reduction from “ideal” one-time memories to “leaky”
one-time memories, in the isolated qubits model. More precisely, we as-
sume the existence of a “leaky” one-time memory D that stores two
strings s, t ∈ {0, 1}`, and leaks any constant fraction of the bits of (s, t).
(Such leaky OTM’s were constructed previously in [5].) We then con-
struct an “ideal” one-time memory D′ that stores two bits a0, a1 ∈ {0, 1},
and leaks an exponentially small amount of information about either a0
or a1 (so that at least one of the bits (a0, a1) remains almost completely
hidden).
Our construction makes use of two functions F,G : {0, 1}` → {0, 1},
which are chosen from an r-wise independent random ensemble. (We
will specify the value of r later, in the statement of Theorem 3.1.) Once
the functions F and G have been chosen, they are fixed permanently,
and they become part of the public description of the one-time memory
D′. (In particular, the adversary may attack D′ using LOCC strategies
that depend on F and G. We show that with high probability over the
choice of F and G, D′ is secure against all such attacks.)
We define the “ideal” one-time memory D′ to have the following behav-
ior. First, one can program D′ with two messages a0, a1 ∈ {0, 1}. D′
implements this functionality in the following way:
1. Choose s ∈ F−1(a0) and t ∈ G−1(a1) uniformly at random, e.g.,

using rejection sampling.5

2. Program a “leaky” one-time memory D with the messages s and t,
and return D.

Given the device D′, an honest user can retrieve either a0 or a1 as follows:
1. Read either s or t from the device D, as appropriate.
2. Compute either a0 = F (s) or a1 = G(t), as appropriate.

5 Choose s, t ∈ {0, 1}` uniformly at random, and repeat until one gets s and t that
satisfy F (s) = a0 and G(t) = a1.



We now prove the correctness and security of these “ideal” one-time
memories D′.

Theorem 3.1. Fix some constants k0 ≥ 1, θ ≥ 1, δ0 > 0, α > 0 and
ε0 > 0.

Suppose we have a family of devices D = {Dk | k ≥ k0}, indexed by a
security parameter k ≥ k0. Suppose these devices Dk are “leaky” string-
OTM’s in the isolated qubits model, in the sense of Theorem 2.1. More
precisely, suppose that for all k ≥ k0,
1. The device Dk stores two messages s, t ∈ {0, 1}`, where ` ≥ k.
2. The device Dk uses m qubits, where k ≤ m ≤ kθ.
3. Correctness and efficiency: there are honest strategies for program-

ming the device Dk with messages s and t, and for reading either s
or t, using only LOCC operations, and time polynomial in k.

4. “Leaky” security: Suppose the device Dk is programmed with two
messages (s, t) chosen uniformly at random. Consider any LOCC
adversary, and let Z be the random variable representing the result of
the adversary’s measurement. Let M be any separable measurement
outcome that is δ-non-negligible, where δ = 2−δ0k. Then we have:

Hε
∞(S, T |Z = M) ≥ αk, (12)

where ε ≤ 2−ε0k.

Now let D′ = {D′k | k ≥ k0} be the family of devices constructed above,
using r-wise independent random functions F and G, with

r = 4(γ + 1)k2θ. (13)

(This choice of r is motivated by the union bound, see equation (33).
Here γ is some universal constant, see equation (29).)

Then these devices D′k are “ideal” OTM’s in the isolated qubits model, in
the sense of Definition 2.2. More precisely, for all k ≥ k0, with probability

≥ 1 − e−Ω(k2θ) (over the choice of F and G), the following statements
hold:
1. The device D′k stores two messages a0, a1 ∈ {0, 1}.
2. The device D′k uses m qubits, where k ≤ m ≤ kθ.
3. Correctness and efficiency: there are honest strategies for program-

ming the device D′k with messages a0 and a1, and for reading either
a0 or a1, using only LOCC operations, and time polynomial in k.

4. “Ideal” security: Suppose the device D′k is programmed with two mes-
sages (a0, a1) chosen uniformly at random. Consider any LOCC ad-
versary, and let Z be the random variable representing the results of
the adversary’s measurements. Then there exists a random variable
C, which takes values in {0, 1}, such that:

‖PACA1−CCZ − UAC × PA1−CCZ‖1
≤ 4 · 2−δ0k + 2 · 2−ε0k + 2 · 2−(α/8)k + 4(r + 1) · 2−(α/6)k

≤ 2−Ω(k),

(14)



where PACA1−CCZ denotes the probability density on the random
variables (AC , A1−C , C, Z), PA1−CCZ denotes the marginal probabil-
ity density on (A1−C , C, Z), and U denotes the uniform distribution
on {0, 1}.

By taking the leaky string-OTM’s constructed in [5] (see Theorem 2.1),
and applying the above reduction, we obtain ideal OTM’s in the isolated
qubits model:

Corollary 3.1. There exist ideal OTM’s in the isolated qubits model, in
the sense of Definition 2.2.

3.1 Overview of the Proof

We now prove Theorem 3.1. It is easy to see that the devices D′k behave
correctly. To prove that the devices D′k are secure, we will use a covering
argument over the set of all separable measurement outcomes that can
be observed by an LOCC adversary.
We emphasize that we will be covering the set of all measurement out-
comes, which are represented by POVM elements M , and not the set
of all LOCC adversaries, which are represented by the random variables
Z. To see why this is sufficient to prove security, note that for any two
adversaries (represented by random variables Z and Z′) that can observe
the same measurement outcome M , the events Z = M and Z′ = M are
identically distributed.
In the following argument, whenever we consider a particular measure-
ment outcome M , we will also implicitly fix some adversary (represented
by a random variable Z) that is capable of observing that outcome M .
We say that the scheme is “secure at M” if the scheme is secure when
the adversary observes outcome M (i.e., when the event Z = M occurs).
First, we will show that for any (fixed) separable measurement outcome
M , with high probability (over the choice of the random functions F
and G used to construct D′k), the scheme is secure at M . Next, we will

construct an ε-net W̃ for the set of all separable measurement outcomes,
and show that with high probability (over F and G), the scheme is secure

at all points M̃ ∈ W̃ simultaneously. Finally, we will show that any sepa-
rable measurement outcome M can be approximated by a measurement
outcome M̃ ∈ W̃ , such that security at M̃ implies security at M .
We set the parameters in the following way: the last part of the argument
(approximating M by M̃ ∈ W̃ ) determines how small we must choose

ε when constructing the ε-net W̃ ; this determines the cardinality of W̃ ,
which affects the union bound; this determines how large we must choose
r when choosing the r-wise independent random functions F and G.
We now show the details:
Part 1: We begin with the following lemma, which describes what hap-
pens when we fix a particular measurement outcome M . We assume that
M is separable and δ-non-negligible; then the security guarantee for the
leaky string-OTM (equation (12)) implies that:

Hε
∞(S, T |Z = M) ≥ αk. (15)



The lemma introduces a random variable C that indicates which of the
two messagesA0 andA1 remains unknown to the adversary; call this mes-
sage AC . In addition, the lemma introduces an event E that “smooths”
the distribution, by excluding some low-probability failure events. We
then define a quantity Qc(M) that measures the bias of the message
AC , smoothed by E and conditioned on C = c and Z = M . Similarly,
we define a quantity Rc(M) that measures the correlations between the
messages A0 and A1, smoothed by E and conditioned on C = c and
Z = M . The lemma shows that, with high probability (over F and G),
Qc(M) and Rc(M) are small.

Lemma 3.1. Fix any measurement outcome M such that Hε
∞(S, T |Z =

M) ≥ αk. Define η = 2−η0k where η0 = α/8. Then there exists a random
variable C, taking values in {0, 1}, and there exists an event E, occur-
ring with probability Pr(E|Z = M) ≥ 1 − ε − η, such that the following
statement holds: Say we define, for all c ∈ {0, 1},

Qc(M) = E(1E · (−1)AC |C = c, Z = M)

= Pr(E , AC = 0 |C = c, Z = M)− Pr(E , AC = 1 |C = c, Z = M),

(16)

which is a random variable depending on F and G. Then for all c ∈
{0, 1}, and all λ > 0,

Pr
FG

(|Qc(M)| ≥ λ) ≤ 2e1/(6r)
√
πr

(
2−(α/3)kr

eλ2

)r/2
. (17)

In addition, say we define, for all c ∈ {0, 1},

Rc(M) = E(1E · (−1)A0+A1 |C = c, Z = M), (18)

which is a random variable depending on F and G. Then for all c ∈
{0, 1}, and all λ > 0,

Pr
FG

(|Rc(M)| ≥ λ) ≤ 8e1/(3r)
√
πr

(
8 · 2−(α/3)kr2

e2λ2

)r/4
. (19)

We will prove this lemma in Section 3.2. This lemma is useful for the
following reason: when Qc(M) and Rc(M) are small, this implies security
of the devices D′k in the case where the adversary observes measurement
outcome M . We now state this observation more precisely:

Lemma 3.2. Fix any measurement outcome M , and any c ∈ {0, 1}.
Suppose that |Qc(M)| ≤ ε1 and |Rc(M)| ≤ ε2. Then

‖PACA1−CE|C=c,Z=M − UAC × PA1−CE|C=c,Z=M‖1 ≤ ε1 + ε2, (20)

where PACA1−CE|C=c,Z=M is the probability density

PACA1−CE|C=c,Z=M (a, a′) = Pr(AC = a, A1−C = a′, E |C = c, Z = M),
(21)

and U denotes the uniform distribution on {0, 1}.



We now prove Lemma 3.2. We can represent the probability density
PACA1−CE|C=c,Z=M as a vector p ∈ R2 ⊗R2, whose entries are given by

paa′ = PACA1−CE|C=c,Z=M (a, a′). Now define vectors u = 1
2
(1, 1) and

d = 1
2
(1,−1), which form an orthogonal basis for R2. Then we can write

p in this basis:

p = α00u⊗ u + α01u⊗ d + α10d⊗ u + α11d⊗ d, (22)

for some coefficients α00, α01, α10, α11 ∈ R. We can write Qc(M) and
Rc(M) as follows:

Qc(M) = 4(d⊗ u)Tp = α10, (23)

Rc(M) = 4(d⊗ d)Tp = α11, (24)

hence we know that |α10| ≤ ε1 and |α11| ≤ ε2. Finally, note that the
probability density UAC ×PA1−CE|C=c,Z=M is represented by the follow-
ing vector (call it q):

q = u⊗
(
2(uT ⊗ I)p

)
= α00u⊗ u + α01u⊗ d. (25)

We can combine these facts to bound the `1 distance between p and q:

‖p− q‖1 ≤ |α10|‖d⊗ u‖1 + |α11|‖d⊗ d‖1 ≤ ε1 + ε2. (26)

This proves Lemma 3.2.

Part 2: We let W denote the set of all separable measurement outcomes,
and we construct an ε-net W̃ for W . Specifically, we define W as follows:

W = {M ∈ (C2×2)⊗m |M =

m⊗
i=1

Mi, 0 �Mi � I}. (27)

Lemma 3.3. For any 0 < µ ≤ 1, there exists a set W̃ ⊂ W , of cardi-
nality |W̃ | ≤ ( 9m

µ
)4m, which is a µ-net for W with respect to the operator

norm ‖·‖.

We will prove this lemma in Section 3.3. Now, we will use the union
bound to show that, with high probability, for all M̃ ∈ W̃ , Qc(M̃) is
small simultaneously. First, we use Lemma 3.3, and we set

µ = 2−(α/6)k · δ
4

4m
(28)

(this choice is motivated by equation (37) below — we choose µ small
enough that the µ-net gives a good approximation of any measurement
outcome). Also, recall that k ≤ m ≤ kθ. Then the cardinality of W̃ is
bounded by

|W̃ | ≤
(

9m · 2(α/6)k · 4m

δ4

)4m

= (9m · 2(α/6)k+4δ0k+2m)4m

≤ 2γk
2θ

,

(29)



for all sufficiently large k; here γ is some universal constant. Next, we
use Lemma 3.1, and we set

λ = 2−(α/6)k · 2r; (30)

then we have that

Pr
FG

(|Qc(M)| ≥ λ) ≤ 2e1/(6r)
√
πr(4er)−r/2, (31)

Pr
FG

(|Rc(M)| ≥ λ) ≤ 8e1/(3r)
√
πr(e2/2)−r/4. (32)

Finally, we use the union bound, and we set r sufficiently large (see
equation (13)); then we have that

Pr
FG

(
∃M̃ ∈ W̃ , ∃c ∈ {0, 1}, s.t. M̃ is δ-non-negligible, and

max {|Qc(M̃)|, |Rc(M̃)|} ≥ λ
)

≤ 2 · 2γk
2θ

·
(

2e1/(6r)
√
πr(4er)−r/2 + 8e1/(3r)

√
πr(e2/2)−r/4

)
≤ e−Ω(k2θ).

(33)

Hence, with high probability (over F and G), we have that:

∀M̃ ∈ W̃ , ∀c ∈ {0, 1}, (M̃ is δ-non-negligible)⇒

max {|Qc(M̃)|, |Rc(M̃)|} ≤ λ. (34)

Also, note that λ ≤ 2−Ω(k). Via Lemma 3.2, this implies that the de-
vice D′k is secure in the case where the adversary observes any of the
measurement outcomes in the set W̃ .

Part 3: We state two lemmas that describe how an arbitrary measure-
ment outcome M can be approximated by another measurement outcome
M̃ . (Implicitly, we fix some adversary that is capable of observing out-

come M , and some other adversary that is capable of observing M̃ . We
let these adversaries be represented by random variables Z and Z̃.)
Roughly speaking, the first lemma shows that if M is 2δ-non-negligible,
then M̃ is δ-non-negligible.

Lemma 3.4. Suppose that M, M̃ ∈ (C2×2)⊗m, and 0 � M � I, and

0 � M̃ � I. Suppose that M is 2δ-non-negligible, where 0 < δ ≤ 1
2

, and

tr(M) ≥ 1. Suppose that M̃ satisfies ‖M − M̃‖ ≤ µ, where µ ≤ 2
3
δ ·2−m.

Then M̃ is δ-non-negligible.

The second lemma shows that, if the quantities Qc(M̃) and Rc(M̃) are

defined in terms of a random variable C̃ and an event Ẽ (as in equations
(16) and (18)), then we can also define the quantities Qc(M) and Rc(M)

(by choosing C and E in an appropriate way), so that Qc(M) ≈ Qc(M̃)

and Rc(M) ≈ Rc(M̃).



Lemma 3.5. Suppose that M, M̃ ∈ (C2×2)⊗m, and 0 � M � I, and

0 � M̃ � I. Suppose that M is 2δ-non-negligible, where 0 < δ ≤ 1
2

, and

‖M‖ = 1. Suppose that M̃ satisfies ‖M − M̃‖ ≤ µ, where µ ≤ 1
2

, and M̃
is δ-non-negligible.

Suppose there exists a random variable C̃, taking values in {0, 1}, and

there exists an event Ẽ, occurring with probability Pr(Ẽ |Z̃ = M̃); and let

Qc(M̃) and Rc(M̃) be defined in terms of C̃ and Ẽ, as shown in equations
(16) and (18).

Let 0 < τ ≤ 1
2

. Then there exists a random variable C, taking values in
{0, 1}, and there exists an event E, occurring with probability Pr(E|Z =

M) ≥ Pr(Ẽ |Z̃ = M̃) − τ , such that if Qc(M) and Rc(M) are defined in
terms of C and E, then the following statements hold:

1. For every c ∈ {0, 1}, either Qc(M) = 0, or we have:

|Qc(M)−Qc(M̃)| ≤ 2µ

(
2m

τδ

)2

. (35)

2. For every c ∈ {0, 1}, either Rc(M) = 0, or we have:

|Rc(M)−Rc(M̃)| ≤ 2µ

(
2m

τδ

)2

. (36)

We will prove these two lemmas in Section 3.4. Using these lemmas, we
now show that the device D′k is secure, when the adversary observes any
separable measurement outcome M ∈W that is 2δ-non-negligible.

Without loss of generality, suppose that ‖M‖ = 1. (To see this, note
that without loss of generality, we can assume M 6= 0. We can then
multiply M by a scalar factor, as long as 0 � M � I, without changing
the distributions of the other variables conditioned on Z = M . Also
note that the δ-non-negligibility of M is invariant under this scaling, see
Definition 2.1.) Note that this implies tr(M) ≥ 1.

Let M̃ ∈ W̃ be the nearest point in the µ-net W̃ ; so we have ‖M − M̃‖ ≤
µ, where µ is set according to equation (28). By Lemma 3.4, M̃ is δ-non-

negligible. By equation (34), we get that for all c ∈ {0, 1}, |Qc(M̃)| ≤ λ

and |Rc(M̃)| ≤ λ, where λ = 2−(α/6)k · 2r.
Using Lemma 3.5, and setting τ = δ, we get that for every c ∈ {0, 1},
either Qc(M) = 0, or

|Qc(M)−Qc(M̃)| ≤ 2µ · 4m

δ4
= 2 · 2−(α/6)k, (37)

and likewise, either Rc(M) = 0, or |Rc(M)−Rc(M̃)| ≤ 2 · 2−(α/6)k. So
we conclude that for all c ∈ {0, 1},

|Qc(M)| ≤ 2−(α/6)k · 2(r + 1), (38)

|Rc(M)| ≤ 2−(α/6)k · 2(r + 1). (39)

Using Lemma 3.2, we get that the device D′k is secure, for all separable
2δ-non-negligible measurement outcomes M ∈ W that the adversary



may observe:

‖PACA1−CE|C=c,Z=M − UAC × PA1−CE|C=c,Z=M‖1
≤ 2−(α/6)k · 4(r + 1) ≤ 2−Ω(k). (40)

We can write this security guarantee in a more convenient form. Consider
any LOCC adversary, and let Z be the random variable representing the
results of the adversary’s measurements. We can write:6

‖PACA1−CCZ − UAC × PA1−CCZ‖1
≤
∑
M

Pr(Z = M) ‖PACA1−CC|Z=M − UAC × PA1−CC|Z=M‖1

≤ 4δ +
∑

M : M is 2δ-non-negl.

Pr(Z = M) ·

‖PACA1−CC|Z=M − UAC × PA1−CC|Z=M‖1
≤ 4δ +

∑
M : M is 2δ-non-negl.

Pr(Z = M) ·

(
2(ε+ η) + ‖PEACA1−CC|Z=M − UAC × PEA1−CC|Z=M‖1

)
≤ 4δ + 2(ε+ η) +

∑
M : M is 2δ-non-negl.

Pr(Z = M)
∑
c

Pr(C = c|Z = M) ·

‖PEACA1−C |C=c,Z=M − UAC × PEA1−C |C=c,Z=M‖1
≤ 4δ + 2(ε+ η) + 2−(α/6)k · 4(r + 1)

≤ 4 · 2−δ0k + 2 · 2−ε0k + 2 · 2−(α/8)k + 4(r + 1) · 2−(α/6)k

≤ 2−Ω(k),

(41)

where we used the fact that
∑
M : M is 2δ-negl. Pr(Z = M) ≤ 2δ (see

equation (5)), the fact that Pr(¬E|Z = M) ≤ ε + η (see Lemma 3.1),
the security bound from equation (40), and finally the definitions of δ,
ε and η (see Theorem 3.1 and Lemma 3.1). This completes the proof of
Theorem 3.1. �

3.2 Security at a Single Point M

We now prove Lemma 3.1. We are given that Hε
∞(S, T |Z = M) ≥ αk.

We will use the entropy splitting lemma (Prop. 2.1). For notational con-
venience, we define σc to be a function that takes two arguments, and
returns the first argument if c = 0 and the second argument if c = 1,
that is,

σc(s, t) =

{
s if c = 0,

t if c = 1.
(42)

6 There is a minor technicality involving the definition of the random variable C.
We have already defined C whenever Z = M , for any δ-non-negligible separable
measurement outcome M . We now need to define C in cases where Z = M and M
is δ-negligible. In these cases we simply define C in an arbitrary way.



Setting η = 2−η0k and η0 = α/8, we get that there exists a random
variable C, taking values in {0, 1}, such that:

Hε+η
∞ (σC(S, T ) |C,Z = M) ≥ (α/2)k − 1− η0k ≥ (α/3)k. (43)

Using the definition of the smoothed conditional min-entropy, we get
that there exists an event E , occurring with probability Pr(E |Z = M) ≥
1−ε−η, such that for all c ∈ {0, 1}, and all s ∈ {0, 1}`, Pr(E , σc(S, T ) =
s |C = c, Z = M) ≤ 2−(α/3)k. In particular, this implies that

∑
s∈{0,1}`

Pr(E , σc(S, T ) = s |C = c, Z = M)2 ≤ 2−(α/3)k. (44)

We now proceed to bound the quantity Qc(M). We consider the case
where c = 0 (the c = 1 case is similar). In this case, we can write

Q0(M) =
∑

s∈{0,1}`
(−1)F (s) Pr(E , S = s |C = 0, Z = M). (45)

Since F is an r-wise independent random function, we can apply the
large deviation bound in Prop. 2.3 (making use of equation (44)). This
proves equation (17).

Finally, we will bound the quantity Rc(M). We consider the case where
c = 0 (the c = 1 case is similar). In this case, we can write

R0(M) =
∑

s,t∈{0,1}`
(−1)F (s)+G(t) Pr(E , S = s, T = t |C = 0, Z = M).

(46)
We will bound this using Prop. 2.4. To this end, we define a function
H : {0, 1} × {0, 1}` → {0, 1}, which returns the following values:

H(i, s) =

{
F (s) if i = 0

G(s) if i = 1.
(47)

We define a matrix A ∈ R(2·2`)×(2·2`), whose entries are indexed by
{0, 1} × {0, 1}`, and have the following values:

A(i,s),(j,t) =


1
2

Pr(E , S = s, T = t |C = 0, Z = M) if (i, j) = (0, 1)
1
2

Pr(E , S = t, T = s |C = 0, Z = M) if (i, j) = (1, 0)

0 otherwise.

(48)
A straightforward calculation then shows that R0(M) can be written in
the form

R0(M) =
∑

(i,s),(j,t)

A(i,s),(j,t)

(
(−1)H(i,s)(−1)H(j,t) − δ(i,s),(j,t)

)
. (49)



Since F and G are r-wise independent random functions, we can apply
Prop. 2.4, setting t = r/2.7 We will use the following bounds on Ã:

‖Ã‖
2
≤ ‖Ã‖

2

F =
∑

(i,s),(j,t)

A2
(i,s),(j,t)

= 1
2

∑
s,t

Pr(E , S = s, T = t |C = 0, Z = M)2

≤ 1
2

∑
s

(∑
t

Pr(E , S = s, T = t |C = 0, Z = M)

)2

= 1
2

∑
s

Pr(E , S = s |C = 0, Z = M)2

≤ 1
2
· 2−(α/3)k,

(50)

where in the last line we used equation (44). We substitute into Prop.
2.4; this proves equation (19). This completes the proof of Lemma 3.1.
�

3.3 Constructing an ε-net

We now prove Lemma 3.3. First, consider the set

V = {X ∈ C2×2 | ‖X‖`∞ ≤
√

2, X† = X}, (51)

where ‖·‖`∞ denotes the `∞ norm, viewing each 2 × 2 matrix as a 4-
dimensional vector. Let δ > 0 (we will choose a specific value for δ

later). It is easy to see that there exists a δ-net Ṽ for V , with respect

to the `∞ norm, with cardinality |Ṽ | ≤ ( 2
δ

+ 1)4. (For instance, one can
describe each point in V using 4 real parameters, and choose a grid with
spacing δ

√
2.)

Next, consider the set of single-qubit POVM elements:

U = {X ∈ C2×2 | 0 � X � I}. (52)

Note that U ⊂ V , since ‖X‖`∞ ≤ ‖X‖F ≤
√

2‖X‖. We will construct a

4δ-net Ũ for U , by “rounding” each point in Ṽ into U . Define a function
r : V → U that maps each point in V to the nearest point in U with
respect to the `∞ norm, that is,

r(X) = arg min
Y ∈U
‖X − Y ‖`∞ . (53)

Let Ũ be the image of Ṽ under this map, that is, Ũ = {r(X) | X ∈ Ṽ }.
Note that |Ũ | ≤ |Ṽ |.
It is easy to see that Ũ is a 2δ-net for U , with respect to the `∞ norm.
(This follows because, for any X ∈ U , there exists some Y ∈ Ṽ such that

7 The careful reader will notice that one can actually use Prop. 2.4 with t = r, and
thereby prove a stronger bound. The argument of Prop. 2.4 still goes through, be-
cause R0(M) is bilinear in the random variables F (s) and G(t), and these two groups
of random variables are chosen independently of each other.



‖X − Y ‖`∞ ≤ δ, and we know that r(Y ) ∈ Ũ and ‖Y − r(Y )‖`∞ ≤ δ.)

This implies that Ũ is a 4δ-net for U , with respect to the operator norm
‖·‖. (This follows because ‖X‖ ≤ ‖X‖F ≤ 2‖X‖`∞ .)
We are now ready to consider the set W . We can write W in the form

W = {M |M =

m⊗
i=1

Mi, Mi ∈ U}. (54)

We then define W̃ = {M |M =
⊗m

i=1Mi, Mi ∈ Ũ}. Note that W̃ has

cardinality |W̃ | ≤ |Ũ |
m

.

We claim that W̃ is a 4mδ-net for W , with respect to the operator norm
‖·‖. To see this, consider any M ∈W , and construct some M̃ ∈ W̃ that
approximates it, as follows. M can be written in the form M =

⊗m
i=1Mi.

For each Mi, there is a point M̃i ∈ Ũ within distance ‖Mi − M̃i‖ ≤ 4δ.

We then let M̃ =
⊗m

i=1 M̃i.

We upper-bound the distance ‖M − M̃‖ as follows, by defining a se-
quence of intermediate steps, and using the triangle inequality. For all
s = 0, 1, 2, . . . ,m, define M (s) = (M̃1 ⊗ · · · ⊗ M̃s)⊗ (Ms+1 ⊗ · · · ⊗Mm).

Then we have that M = M (0), M̃ = M (m), and

‖M − M̃‖ ≤
m−1∑
s=0

‖M (s) −M (s+1)‖

=

m−1∑
s=0

∥∥(M̃1 ⊗ · · · ⊗ M̃s)⊗ (Ms+1 − M̃s+1)

⊗ (Ms+2 ⊗ · · · ⊗Mm)
∥∥

≤ 4mδ,

(55)

where we used the fact that ‖A⊗B‖ = ‖A‖ ‖B‖.
Finally, we set δ = µ/(4m). Then W̃ is a µ-net for W , with respect

to the operator norm ‖·‖. The cardinality of W̃ is |W̃ | ≤ ( 2
δ

+ 1)4m =
( 8m
µ

+ 1)4m ≤ ( 9m
µ

)4m, provided that µ ≤ 1. This proves Lemma 3.3. �

3.4 Continuity Arguments

We now prove Lemma 3.4. Since M is 2δ-non-negligible (with respect
to some quantum state ρ), we have Pr(M) = tr(Mρ) ≥ 2δ · 2−m tr(M).

Since ‖M − M̃‖ ≤ µ, and tr(M) ≥ 1, we can write

Pr(M̃) = tr(M̃ρ) ≥ tr(Mρ)− µ

≥ 2δ · 2−m tr(M)− µ

≥ δ · 2−m tr(M) + δ · 2−m − µ

≥ δ · 2−m tr(M̃)− δ · µ+ δ · 2−m − µ

= δ · 2−m tr(M̃) + δ · 2−m − (1 + δ)µ.

(56)

Since µ ≤ 2
3
δ · 2−m, and δ ≤ 1

2
, we have (1 + δ)µ ≤ δ · 2−m. By plugging

into the above equation, we see that M̃ is δ-non-negligible. This proves
Lemma 3.4. �



We now prove Lemma 3.5. By assumption, there is a random variable C̃,
which is defined by the probabilities Pr(C̃ = c | Z̃ = M̃, S = s, T = t);

and there is an event Ẽ , which is defined by the probabilities Pr(Ẽ | C̃ =

c, Z̃ = M̃, S = s, T = t). Also, let ρst be the quantum state used to
encode messages (s, t), i.e., this is the state of the one-time memory,
conditioned on S = s and T = t.
We start by writing Qc(M̃) and Rc(M̃) in a more explicit form. First

consider Q0(M̃), and note that A0 = F (S). We can write Q0(M̃) in the
form:

Q0(M̃) =

(
1

Pr(C̃ = 0, Z̃ = M̃)

)
·∑

s,t∈{0,1}`
(−1)F (s) Pr(Ẽ , S = s, T = t, C̃ = 0, Z̃ = M̃)

=

(
1

Pr(C̃ = 0, Z̃ = M̃)

)
·∑

s,t∈{0,1}`
(−1)F (s) Pr(Ẽ , C̃ = 0 | Z̃ = M̃, S = s, T = t) tr(M̃ρst) 4−`

=

(
1

Pr(C̃ = 0, Z̃ = M̃)

)
tr(M̃ν0),

(57)

where we define the matrix ν0 ∈ (C2×2)⊗m as follows:

ν0 = 4−`
∑

s,t∈{0,1}`
(−1)F (s) Pr(Ẽ , C̃ = 0 | Z̃ = M̃, S = s, T = t) ρst.

(58)

Note that ‖ν0‖tr ≤ 1. In addition, we can write Pr(C̃ = 0, Z̃ = M̃) in
the form:

Pr(C̃ = 0, Z̃ = M̃)

=
∑

s,t∈{0,1}`
Pr(C̃ = 0, Z̃ = M̃, S = s, T = t)

=
∑

s,t∈{0,1}`
Pr(C̃ = 0 | Z̃ = M̃, S = s, T = t) tr(M̃ρst) 4−`

= tr(M̃ξ0),

(59)

where we define the matrix ξ0 ∈ (C2×2)⊗m as follows:

ξ0 = 4−`
∑

s,t∈{0,1}`
Pr(C̃ = 0 | Z̃ = M̃, S = s, T = t) ρst. (60)

Also, note that ‖ξ0‖tr ≤ 1. We can also write similar expressions for

Q1(M̃), R0(M̃) and R1(M̃). We can summarize this as follows:

Qc(M̃) =
tr(M̃νc)

tr(M̃ξc)
, Rc(M̃) =

tr(M̃θc)

tr(M̃ξc)
, (61)



where νc, θc, ξc ∈ (C2×2)⊗m satisfy ‖νc‖tr ≤ 1, ‖θc‖tr ≤ 1 and ‖ξc‖tr ≤ 1.

We now consider the measurement outcome M . We will construct a
random variable C and an event E , which will allow us to define the
quantities Qc(M) and Rc(M). Roughly speaking, C and E (conditioned

on Z = M) will behave similarly to C̃ and Ẽ (conditioned on Z̃ =

M̃). However, if there exists some c ∈ {0, 1} for which the probability
Pr(C = c |Z = M) is unusually small, then we will define E to exclude
this event, in order to avoid situations where Qc(M) “blows up” because
the denominator is very small.

Formally, we construct the random variable C and the event E by spec-
ifying the following probabilities (for all c ∈ {0, 1} and s, t ∈ {0, 1}`):

Pr(C = c |Z = M, S = s, T = t)

= Pr(C̃ = c | Z̃ = M̃, S = s, T = t),
(62)

Pr(E |C = c, Z = M, S = s, T = t)

=

{
0 if Pr(C = c |Z = M) < τ,

Pr(Ẽ | C̃ = c, Z̃ = M̃, S = s, T = t) otherwise.

(63)

We now show that Pr(E |Z = M) ≥ Pr(Ẽ | Z̃ = M̃)− τ . Let us say that
c ∈ {0, 1} is “bad” if Pr(C = c |Z = M) < τ . There are two possible
values, 0 and 1, and at most one of them can be bad. If neither one is
bad, then Pr(E |Z = M) = Pr(Ẽ | Z̃ = M̃). If one particular value (say
0) is bad, then we have:

Pr(E |Z = M)

≥ Pr(E |C = 1, Z = M) Pr(C = 1 |Z = M)

= Pr(Ẽ | C̃ = 1, Z̃ = M̃) Pr(C̃ = 1 | Z̃ = M̃)

= Pr(Ẽ | Z̃ = M̃)− Pr(Ẽ | C̃ = 0, Z̃ = M̃) Pr(C̃ = 0 | Z̃ = M̃)

> Pr(Ẽ | Z̃ = M̃)− τ.

(64)

We now defineQc(M) in terms of C and E , using equation (16). Note that
if c is bad, then Pr(E |C = c, Z = M) = 0, which implies Qc(M) = 0.

We will show that if c is not bad, then Qc(M) ≈ Qc(M̃). When c is not
bad, the events C = c and E (conditioned on the events Z = M , S = s

and T = t) have exactly the same probabilities as the events C̃ = c and

Ẽ (conditioned on the events Z̃ = M̃ , S = s and T = t). So we can write
Qc(M) in the form

Qc(M) =
tr(Mνc)

tr(Mξc)
, (65)



where νc and ξc are the same matrices used to express Qc(M̃) in equation

(61). In addition, we can lower-bound tr(Mξc) and tr(M̃ξc) as follows:

tr(Mξc) = Pr(C = c, M) ≥ τ Pr(M) (66)

≥ τ · 2δ · 2−m tr(M) ≥ τ · 2δ · 2−m‖M‖ (67)

≥ τ · 2δ · 2−m, (68)

tr(M̃ξc) = Pr(C̃ = c, M̃) ≥ τ Pr(M̃) (69)

≥ τδ · 2−m tr(M̃) ≥ τδ · 2−m‖M̃‖ (70)

≥ τδ · 2−m(1− µ) ≥ τδ · 2−m · 1
2
. (71)

Now we can write Qc(M)−Qc(M̃) as follows:

Qc(M)−Qc(M̃) =
tr((M − M̃)νc)

tr(Mξc)
+ tr(M̃νc)

tr((M̃ −M)ξc)

tr(Mξc) tr(M̃ξc)
. (72)

We can then upper-bound this quantity:

|Qc(M)−Qc(M̃)|

≤ µ

τ · 2δ · 2−m + (1 + µ)
µ

τ · 2δ · 2−m · τδ · 2−m · 1
2

=
µ

τ · 2δ · 2−m

(
1 +

(1 + µ)

τδ · 2−m · 1
2

)
≤ 2µ

(
2m

τδ

)2

.

(73)

Similarly, we define Rc(M) in terms of C and E , using equation (18).
Using the same argument as above, we see that if c is bad, then Rc(M) =

0, and if c is not bad, then Rc(M) ≈ Rc(M̃). This completes the proof
of Lemma 3.5. �

4 Beyond the Isolated Qubits Model

We now describe a class of adversaries who can perform a polynomial
number of 2-qubit entangling operations, in addition to unbounded LOCC.
In particular, we will choose some “depth” parameter d (which may grow
polynomially with the security parameter k), and we will consider ad-
versaries who can apply quantum circuits whose depth is bounded by d.
These kinds of attacks may be feasible in real physical systems, where
one can perform noisy entangling gates. Intuitively, one may expect that
the noise will accumulate when the adversary applies a long sequence
of entangling gates; so it is easier for the adversary to apply shallow
(low-depth) quantum circuits.
We will then show that our privacy amplification result for one-time
memories (Theorem 3.1) still holds against these depth-d adversaries,
where d can grow polynomially in k, and the privacy amplification tech-
nique now runs in time polynomial in d.



First, we will need a few definitions. Let E : ρ 7→
∑
iKiρK

†
i be a gener-

alized quantum measurement. We say that E is 2-local if every Kraus op-
erator Ki can be written as a tensor product of 2-qubit operators (where
different Kraus operators Ki may arrange the qubits into pairs in dif-
ferent ways). As a simple example, if E1, E2, . . . , E` are 2-qubit quantum
measurements, then E1⊗E2⊗· · ·⊗E` is a 2-local quantum measurement
on 2` qubits.
Note that 2-local measurements can be viewed as a generalization of
separable measurements, in the following sense. First, if E is separable,
then E is 2-local. Also, if E1 and E2 are separable, and F is 2-local,
then E2 ◦ F ◦ E1 is 2-local. Thus any 2-local measurement can include a
separable measurement (and in particular, an LOCC measurement) “for
free.”
We say that an adversary is 2-local with depth d if it performs a mea-
surement of the form E = Ed ◦ Ed−1 ◦ · · · ◦ E1, where E1, E2, . . . , Ed are
2-local measurements. That is, the adversary first performs the measure-
ment E1, obtains a classical measurement outcome i1, then performs the
measurement E2, obtains a classical measurement outcome i2, and so on;
after the final measurement Ed, the post-measurement quantum state is
discarded.
We say that the corresponding POVM element Mi1,i2,...,id is 2-local with
depth d. We can write it in the following form:

Mi1,i2,...,id = (K†1,i1K
†
2,i2
· · ·K†d,id) (Kd,id · · ·K2,i2K1,i1), (74)

where the Ka,ia denote the Kraus operators of the measurement Ea, that
is, Ea(ρ) =

∑
ia
Ka,iaρK

†
a,ia

, and each Ka,ia can be written as a tensor
product of 2-qubit operators.
We now extend our privacy amplification result for one-time memories
(Theorem 3.1) to the case of 2-local depth-d adversaries.

Theorem 4.1. Fix some constant ϕ ≥ 0.
Suppose that D is a family of “leaky” string-OTM’s, as described in The-
orem 3.1, but with a stronger security guarantee, which holds for all mea-
surement outcomes that are 2-local with depth d ≤ kϕ (rather than for
all separable measurement outcomes).
Now construct a new family of devices D′, as described in Theorem 3.1,
but where we set the parameter r (for the r-wise independent random
functions F and G) as follows:

r = 4(γ + 1)k2θ+ϕ. (75)

Then these devices D′ are “ideal” OTM’s, as described in Theorem 3.1,
but again with a stronger security guarantee, which holds for all mea-
surement outcomes that are 2-local with depth d ≤ kϕ (rather than for
all separable measurement outcomes).

Thus, if one could construct “leaky” string-OTM’s that were secure
against 2-local depth-d adversaries, then one would immediately get
“ideal” bit-OTM’s in this setting. Unfortunately, the leaky string-OTM’s
from [5] are not known to be secure in this setting, and so we leave this
as an open problem.



4.1 Overview of the Proof

We prove Theorem 4.1 using the same approach as for Theorem 3.1.
Most of the argument is unchanged; the key difference is in Lemma 3.3,
where we now want to construct an ε-net for the set of all 2-local depth-d
measurement outcomes (rather than the set of all separable measurement
outcomes).
Let Λ be the set of all 2-local depth-d measurement outcomes:

Λ = {M ∈ (C2×2)⊗m |M = (K†1 · · ·K
†
d) (Kd · · ·K1),

where K1, . . . ,Kd ∈ L},
(76)

where L is the set of all operators K ∈ (C2×2)⊗m that can be written
as tensor products of 2-qubit operators having operator norm at most 1.
We will construct an ε-net for Λ, using the following lemma:

Lemma 4.1. For any 0 < µ ≤ 1, there exists a set Λ̃ ⊂ Λ, of cardinality

|Λ̃| ≤
(
24dm17/16

µ

)16md
, which is a µ-net for Λ with respect to the operator

norm ‖·‖.

We will prove this lemma in Section 4.2. Now, we set

µ = 2−(α/6)k · δ
4

4m
(77)

(the same as in the proof of Theorem 3.1). Also, recall that k ≤ m ≤ kθ,
and d ≤ kϕ. Then the cardinality of Λ̃ is bounded by

|Λ̃| ≤
(

24dm17/16 · 2(α/6)k · 4m

δ4

)16md

=
(
24dm17/16 · 2(α/6)k+4δ0k+2m)16md

≤ 2γk
2θ+ϕ

,

(78)

for all sufficiently large k; here γ is some universal constant. This bound
plays the role of equation (29) in the proof of Theorem 3.1.
One then continues with the same argument as in Theorem 3.1: one uses
the union bound over the set Λ̃, while setting the parameter r sufficiently
large (see equation (75)). This gives a result similar to equation (33).
The rest of the proof is the same as for Theorem 3.1. This completes the
proof of Theorem 4.1. �

4.2 Constructing an ε-net

We now prove Lemma 4.1. First, consider the set

V = {X ∈ C4×4 | ‖X‖`∞ ≤ 2}. (79)

Let δ > 0 (we will choose a specific value for δ later). It is easy to see

that there exists a δ-net Ṽ for V , with respect to the `∞ norm, with

cardinality |Ṽ | ≤ ( 2
√
2
δ

+ 1)32. (For instance, one can describe each point

in V with 32 real parameters, and choose a grid with spacing δ
√

2.)



Next, consider the set of 2-qubit Kraus operators:

U = {X ∈ C4×4 | ‖X‖ ≤ 1}. (80)

Note that U ⊂ V , since ‖X‖`∞ ≤ ‖X‖F ≤ 2‖X‖. We will construct an

8δ-net Ũ for U , by taking the points in Ṽ and “rounding” them into U .
Define a function r : V → U that maps each point in V to the nearest
point in U with respect to the `∞ norm, that is,

r(X) = arg min
Y ∈U
‖X − Y ‖`∞ . (81)

Let Ũ be the image of Ṽ under this map, that is, Ũ = {r(X) | X ∈ Ṽ }.
Note that |Ũ | ≤ |Ṽ |.
It is easy to see that Ũ is a 2δ-net for U , with respect to the `∞ norm.
(This follows because, for any X ∈ U , there exists some Y ∈ Ṽ such that

‖X − Y ‖`∞ ≤ δ, and we know that r(Y ) ∈ Ũ and ‖Y − r(Y )‖`∞ ≤ δ.)

This implies that Ũ is an 8δ-net for U , with respect to the operator norm
‖·‖. (This follows because ‖X‖ ≤ ‖X‖F ≤ 4‖X‖`∞ .)

Next, we let L be the set of all operators K ∈ (C2×2)⊗m that can be
written as tensor products of 2-qubit operators in U . We then define
L̃ to be the set of all operators K ∈ (C2×2)⊗m that can be written as

tensor products of 2-qubit operators in Ũ . Note that L̃ has cardinality

|L̃| ≤ m! |Ũ |
m/2

, since every operator K ∈ L̃ can be written in the form⊗m/2
j=1 Kj (where Kj ∈ Ũ) conjugated with a permutation of the qubits.

(For simplicity, let us assume that m is even.)

We claim that L̃ is a 4mδ-net for L, with respect to the operator norm
‖·‖. To see this, consider any K ∈ L, and construct some K̃ ∈ L̃ that
approximates it as follows. First, relabel the qubits so that K can be
written in the form K =

⊗m/2
j=1 Kj (where Kj ∈ U). For each Kj , there

is a point K̃j ∈ Ũ within distance ‖Kj − K̃j‖ ≤ 8δ. We then define

K̃ =
⊗m/2

j=1 K̃j .

We upper-bound the distance ‖K − K̃‖ as follows, by defining a se-
quence of intermediate steps, and using the triangle inequality. For all
s = 0, 1, 2, . . . ,m/2, define K(s) = (K̃1⊗· · ·⊗K̃s)⊗(Ks+1⊗· · ·⊗Km/2).

Then we have that K = K(0), K̃ = K(m/2), and

‖K − K̃‖ ≤
m/2−1∑
s=0

‖K(s) −K(s+1)‖

=

m/2−1∑
s=0

∥∥(K̃1 ⊗ · · · ⊗ K̃s)⊗ (Ks+1 − K̃s+1)

⊗ (Ks+2 ⊗ · · · ⊗Km/2)
∥∥

≤ (m/2) 8δ = 4mδ,

(82)

where we used the fact that ‖A⊗B‖ = ‖A‖ ‖B‖.
Finally, we consider the set Λ of all 2-local depth-d measurement out-
comes:

Λ = {M ∈ (C2×2)⊗m |M = (K†1 · · ·K
†
d) (Kd · · ·K1),

where K1, . . . ,Kd ∈ L}.
(83)



We then define the set Λ̃ as follows:

Λ̃ = {M ∈ (C2×2)⊗m |M = (K†1 · · ·K
†
d) (Kd · · ·K1),

where K1, . . . ,Kd ∈ L̃}.
(84)

Note that Λ̃ has cardinality |Λ̃| ≤ |L̃|
d
.

We claim that Λ̃ is an 8dmδ-net for Λ, with respect to the opera-
tor norm ‖·‖. To see this, consider any M ∈ Λ, and construct some

M̃ ∈ Λ̃ that approximates it as follows. M can be written in the form
M = (K†1 · · ·K

†
d) (Kd · · ·K1) (where Kj ∈ L). For each Kj , there is a

point K̃j ∈ L̃ within distance ‖Kj − K̃j‖ ≤ 4mδ. We then let M̃ =

(K̃†1 · · · K̃
†
d) (K̃d · · · K̃1).

We upper-bound the distance ‖M − M̃‖ as follows, by defining a se-
quence of intermediate steps, and using the triangle inequality. For all
s = 0, 1, 2, . . . , 2d, define M (s) to be an operator of the form (K†1 · · ·K

†
d)·

(Kd · · ·K1), where the first s factors (reading from left to right) have
tilde’s, and the remaining 2d − s factors do not have tilde’s. Then we
have that M = M (0), M̃ = M (2d), and

‖M − M̃‖ ≤
2d−1∑
s=0

‖M (s) −M (s+1)‖

=

d−1∑
s=0

∥∥(K̃†1 · · · K̃
†
s)(K†s+1 − K̃

†
s+1)(K†s+2 · · ·K

†
d) (Kd · · ·K1)

∥∥
+

2d−1∑
s=d

∥∥(K̃†1 · · · K̃
†
d) (K̃d · · · K̃2d−s+1)(K2d−s − K̃2d−s)·

(K2d−s−1 · · ·K1)
∥∥

≤ 2d · 4mδ = 8dmδ,

(85)

where we used the fact that ‖AB‖ ≤ ‖A‖ ‖B‖.
Finally, we set δ = µ/(8dm). Then Λ̃ is a µ-net for Λ, with respect to

the operator norm ‖·‖. The cardinality of Λ̃ is

|Λ̃| ≤ |L̃|
d
≤ (m!)d |Ũ |

md/2

≤ (m!)d
(
2
√

2
δ

+ 1
)16md

≤ mmd ( 16√2dm
µ

+ 1
)16md

≤
(
24dm17/16

µ

)16md
,

(86)

provided that µ ≤ 1. This proves Lemma 4.1. �
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