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Abstract. Gentry’s bootstrapping technique is still the only known
method of obtaining fully homomorphic encryption where the system’s
parameters do not depend on the complexity of the evaluated functions.
Bootstrapping involves a recryption procedure where the scheme’s de-
cryption algorithm is evaluated homomorphically. So far, there have been
precious few implementations of recryption, and fewer still that can han-
dle “packed ciphertexts” that encrypt vectors of elements.

In the current work, we report on an implementation of recryp-
tion of fully-packed ciphertexts using the HElib library for somewhat-
homomorphic encryption. This implementation required extending the
recryption algorithms from the literature, as well as many aspects of the
HElib library. Our implementation supports bootstrapping of packed ci-
phertexts over many extension fields/rings. One example that we tested
involves ciphertexts that encrypt vectors of 1024 elements from GF(216).
In that setting, the recryption procedure takes under 5.5 minutes (at
security-level ≈ 76) on a single core, and allows a depth-9 computation
before the next recryption is needed.

1 Introduction

Homomorphic Encryption (HE) [26, 11] enables computation of arbitrary func-
tions on encrypted data without knowing the secret key. All current HE schemes
follow Gentry’s outline from [11], where fresh ciphertexts are “noisy” to ensure
security and this noise grows with every operation until it overwhelms the signal
and causes decryption errors. This yields a “somewhat homomorphic” scheme
(SWHE) that can only evaluate low-depth circuits, which can then be converted
to a “fully homomorphic” scheme (FHE) using bootstrapping. Gentry described
a recryption operation, where the decryption procedure of the scheme is run
homomorphically, using an encryption of the secret key that can be found in the
public key, resulting in a new ciphertext that encrypts the same plaintext but
has smaller noise.

The last few years saw a large body of work improving many aspects of
homomorphic encryption in general (e.g., [4, 14, 7, 21, 3, 17, 5]) and recryption in
particular [16, 1, 2, 24, 10]. However, so far, only a few implementations of SWHE
have been reported, and even fewer support recryption. Prior to the current
work, we are aware of only three reported implementations of recryption: the
implementation by Gentry and Halevi [12] of Gentry’s original cryptosystem [11],



the implementation of Coron, Lepoint, and Tibouchi [7, 6, 8] of van Dijk, Gentry,
Halevi and Vaikuntanathan’s (DGHV) scheme over the integers [9], and the
implementation by Rohloff and Cousins [27] of the NTRU-based cryptosystem
[20, 21].

In this paper we report on our new implementation of recryption for the cryp-
tosystem of Brakerski, Gentry and Vaikuntanathan (BGV) [4]. We implemented
recryption on top of the open-source library HElib [19, 18], which implements
the ring-LWE variant of BGV. Our implementation includes both new algorith-
mic designs as well as re-engineering of some aspects of HElib. As noted in [18],
the choice of homomorphic primitives in HElib was guided to a large extent
by the desire to support recryption, but nonetheless in the course of our im-
plementation we had to extend the implementation of some of these primitives
(e.g., matrix-vector multiplication), and also implement a few new ones (e.g.,
polynomial evaluation).

The HElib library is “focused on effective use of the Smart-Vercauteren ci-
phertext packing techniques [29] and the Gentry-Halevi-Smart optimizations
[14],” so in particular we implemented recryption for “fully-packed” ciphertexts.
Specifically, our implementation supports recryption of ciphertexts that encrypt
vectors of elements from extension fields (or rings). Importantly, our recryp-
tion procedure itself has rather low depth (usually 10-13 levels), so as to allow
significant processing between recryptions while keeping the lattice dimension
reasonable to maintain efficiency.

Our results are described in Section 6; some example settings include: en-
crypting vectors of 1024 elements from GF(216) with a security level of 76 bits,
where recryption takes 320 seconds and depth 12 (and allows additional compu-
tations of depth 9 between recryptions); and encrypting vectors of 960 elements
from GF(224) with a security level of 123 bits, where recryption takes 7–8 min-
utes and depth 13 (and allows additional computations of depth 10 between
recryptions).3

Compared to the previous recrypt implementations, ours offers several advan-
tages in both flexibility and speed. While the Gentry-Halevi and Rohloff-Cousins
implementations only encrypt one bit per ciphertext, and the Coron-Lepoint-
Tibouchi implementation allows many bits to be packed into a ciphertext, our
implementation supports packed ciphertexts that encrypt vectors from the more
general extension fields (and rings) already supported by HElib. Some exam-
ples that we tested include vectors over the fields GF(216), GF(225), GF(224),
GF(236), GF(1740), and GF(12736), as well as degree-21 and degree-30 exten-
sions of the ring Z256.

In terms of speed, the Gentry-Halevi implementation reportedly took 1/2-
hour on a single core to recrypt a single-bit ciphertext. The Rohloff-Cousins
implementation reported recryption time of 275 seconds on 20 cores for a single-
bit ciphertext with 64-bit security. The Coron-Lepoint-Tibouchi implementation
reports a recryption time of 172 seconds on 4 cores for a ciphertext with 513

3 We used the latter setting with our re-implementation of homomorphic AES, see the
long version of [15].



one-bit slots at a security level of 72. For similar setting, we clocked a single-core
recryption time of 320 seconds for a ciphertext with 1024 slots of elements of
GF(216) at a security level of 76. We note that the same parallelism that was
used by Rohloff and Cousins could in principle be applied to our implementation
too, but doing so involves several software-engineering challenges, and we have
not yet attempted it.

Concurrent work. Concurrently with out work, Ducas and Micciancio described
a new bootstrapping procedure [10]. This procedure is applied to Regev-like ci-
phertexts [25] that encrypt a single bit, using a secret key encrypted similarly to
the new cryptosystem of Gentry at al. [17]. They reported on an implementation
of their scheme, where they can perform a NAND operation followed by recryp-
tion in less than a second. Compared to our scheme, theirs has the advantage of
a much faster wall-clock time for recryption, but they do not support batching
or large plaintext spaces (hence our implementation has much better amortized
per-bit timing). It is a very interesting open problem to combine their techniques
with ours, achieving a “best of both worlds” implementation.

1.1 Algorithmic Aspects

Our recryption procedure follows the high-level structure introduced by Gentry
et al. [16], and uses the tensor decomposition of Alperin-Sheriff and Peikert
[1] for the linear transformations. However, those two works only dealt with
characteristic-2 plaintext spaces so we had to extend some of their algorithmic
components to deal with characteristics p > 2 (see Section 5).

Also, to get an efficient implementation, we had to make the decomposition
from [1] explicit, specialize it to cases that support very-small-depth circuits, and
align the different representations to reduce the required data-movement and
multiplication-by-constant operations. These aspects are described in Section 4.
One significant difference between our implementation and the procedure of
Alperin-Sheriff and Peikert [1] is that we do not use the ring-switching techniques
of Gentry et al. [13] (see discussion in Appendix B).

Organization. We describe our notations and give some background information
on the BGV cryptosystem and the HElib library in Section 2. In Section 3
we provide an overview of the high-level recryption procedure from [16] and
our variant of it. We then describe in detail our implementation of the linear
transformations in Section 4 and the non-linear parts in Section 5. In Section 5.4
we explain how all these parts are put together in our implementation, and in
Section 6 we discuss our performance results. We conclude with directions for
future work in Section 7. In Appendix A we describe our choice of parameters.

2 Notations and Background

For integer z, we denote by [z]q the reduction of z modulo q into the inter-
val [−q/2, q/2), except that for q = 2 we reduce to (−1, 1]. This notation ex-



tends to vectors and matrices coordinate-wise, and to elements of other algebraic
groups/rings/fields by reducing their coefficients in some convenient basis.

For an integer z (positive or negative) we consider the base-p representation
of z and denote its digits by z〈0〉p, z〈1〉p, · · · . When p is clear from the context
we omit the subscript and just write z〈0〉, z〈1〉, · · · . When p = 2 we consider
a 2’s-complement representation of signed integers (i.e., the top bit represent a
large negative number). For an odd p we consider balanced mod-p representation
where all the digits are in [−p−12 , p−12 ].

For indexes 0 ≤ i ≤ j we also denote by z〈j, . . . , i〉p the integer whose base-p
expansion is z〈j〉 · · · z〈i〉 (with z〈i〉 the least significant digit). Namely, for odd p

we have z〈j, . . . , i〉p =
∑j
k=i z〈k〉pk−i, and for p = 2 we have z〈j, . . . , i〉2 =

(
∑j−1
k=i z〈k〉2k−i)− z〈j〉2j−i. The properties of these representations that we use

in our procedures are the following:

– For any r ≥ 1 and any integer z we have z = z〈r − 1, . . . , 0〉 (mod pr).
– If the representation of z is dr−1, . . . , d0 then the representation of z · pr is
dr−1, . . . , d0, 0, · · · , 0 (with r zeros at the end).

– If p is odd and |z| < pe/2 then the digits in positions e and up in the
representation of z are all zero.

– If p = 2 and |z| < 2e−1, then the bits in positions e − 1 and up in the
representation of z, are either all zero if z ≥ 0 or all one if z < 0.

2.1 The BGV Cryptosystem

The BGV ring-LWE-based somewhat-homomorphic scheme [4] is defined over

a ring R
def
= Z[X]/(Φm(X)), where Φm(X) is the mth cyclotomic polynomial.

For an arbitrary integer modulus N (not necessarily prime) we denote the ring

RN
def
= R/NR. We often identify elements in R (or RN ) with their representation

is some convenient basis, e.g., their coefficient vectors as polynomials. When
dealing with RN , we assume that the coefficients are in [−N/2, N/2) (except for
R2 where the coefficients are in {0, 1}). We discuss these representations in some
more detail in Section 4.1. The norm of an element ‖a‖ is defined as its norm in
some convenient basis.4

As implemented in HElib, the native plaintext space of the BGV cryptosys-
tem is Rpr for a prime power pr. The scheme is parametrized by a sequence
of decreasing moduli qL � qL−1 � · · · � q0, and an “ith level ciphertext”
in the scheme is a vector ct ∈ (Rqi)

2. Secret keys are elements s ∈ R with
“small” coefficients (chosen in {0,±1} in HElib), and we view s as the sec-
ond element of the 2-vector sk = (1, s) ∈ R2. A level-i ciphertext ct = (c0, c1)
encrypts a plaintext element m ∈ Rpr with respect to sk = (1, s) if we have
[〈sk, ct〉]qi = [c0 + s · c1]qi = m + pr · e (in R) for some “small” error term,
pr · ‖e‖ � qi.

4 The difference between the norm in the different bases is not very important for the
current work.



The error term grows with homomorphic operations of the cryptosystem,
and switching from qi+1 to qi is used to decrease the error term roughly by
the ratio qi+1/qi. Once we have a level-0 ciphertext ct, we can no longer use
that technique to reduce the noise. To enable further computation, we need to
use Gentry’s bootstrapping technique [11], whereby we “recrypt” the ciphertext
ct, to obtain a new ciphertext ct∗ that encrypts the same element of Rpr with
respect to some level i > 0.

In Helib, each qi is a product of small (machine-word sized) primes. Elements
of the ring Rqi are typically represented in DoubleCRT format: as a vector a
polynomials modulo each small prime t, each of which itself is represented by
its evaluation at the primitive mth roots of unity in Zt. In DoubleCRT format,
elements of Rqi may be added and multiplied in linear time. Conversion between
DoubleCRT representation and the more natural coefficient representation may
be affected in quasi-linear time using the FFT.

2.2 Encoding Vectors in Plaintext Slots

As observed by Smart and Vercauteren [29], an element of the native plaintext
space α ∈ Rpr can be viewed as encoding a vector of “plaintext slots” containing
elements from some smaller ring extension of Zpr via Chinese remaindering. In
this way, a single arithmetic operation on α corresponds to the same operation
applied component-wise to all the slots.

Specifically, suppose the factorization of Φm(X) modulo pr is Φm(X) ≡
F1(X) · · ·Fk(X) (mod pr), where each Fi has the same degree d, which is equal
to the order of p modulo m. (This factorization can be obtained by factoring
Φm(X) modulo p and then Hensel lifting.) From the CRT for polynomials, we
have the isomorphism

Rpr ∼=
k⊕
i=1

(Z[X]/(pr, Fi(X)).

Let us now define E
def
= Z[X]/(pr, F1(X)), and let ζ be the residue class of

X in E, which is a principal mth root of unity, so that E = Z/(pr)[ζ]. The
rings Z[X]/(pr, Fi(X)) for i = 1, . . . , k are all isomorphic to E, and their direct
product is isomorphic to Rpr , so we get an isomorphism between Rpr and Ek.
HElib makes extensive use of this isomorphism, representing it explicitly as
follows. It maintains a set S ⊂ Z that forms a complete system of representatives
for the quotient group Z∗m/〈p〉, i.e., it contains exactly one element from every
residue class. Then we use a ring isomorphism

Rpr →
⊕
h∈S

E, α 7→ {α(ζh)}h∈S . (1)

Here, if α is the residue class a(X) + (pr, Φm(X)) for some a(X) ∈ Z[X], then
α(ζh) = a(ζh) ∈ E, which is independent of the representative a(X).



This representation allows HElib to effectively pack k
def
= |S| = |Z∗m/〈p〉| ele-

ments of E into different “slots” of a single plaintext. Addition and multiplication
of ciphertexts act on the slots of the corresponding plaintext in parallel.

2.3 Hypercube structure and one-dimensional rotations

Beyond addition and multiplications, we can also manipulate elements in Rpr

using a set of automorphisms on Rpr of the form a(X) 7→ a(Xj), or in more
detail

τj : Rpr → Rpr , a(X) + (pr, Φm(X)) 7→ a(Xj) + (pr, Φm(X)) (j ∈ Z∗m).

We can homomorphically apply these automorphisms by applying them to the
ciphertext elements and then preforming “key switching” (see [4, 14]). As dis-
cussed in [14], these automorphisms induce a hypercube structure on the plain-
text slots, where the hypercube structure depends on the structure of the group
Z∗m/〈p〉. Specifically, HElib keeps a hypercube basis g1, . . . , gn ∈ Zm with orders
`1, . . . , `n ∈ Z>0, and then defines the set S of representatives for Z∗m/〈p〉 (which
is used for slot mapping Eqn. (1)) as

S
def
= {ge11 · · · genn mod m : 0 ≤ ei < `i, i = 1, . . . , n}. (2)

This basis defines an n-dimensional hypercube structure on the plaintext slots,
where slots are indexed by tuples (e1, . . . , en) with 0 ≤ ei < `i. If we fix
e1, . . . , ei−1, ei+1, . . . , en, and let ei range over 0, . . . , `i − 1, we get a set of `i
slots, indexed by (e1, . . . , en), which we refer to as a hypercolumn in dimension i
(and there are k/`i such hypercolumns). Using automorphisms, we can efficiently
perform rotations in any dimension; a rotation by v in dimension i maps a slot in-
dexed by (e1, . . . , ei, . . . , en) to the slot indexed by (e1, . . . , ei+v mod `i, . . . , en).
Below we denote this operation by ρvi .

We can implement ρvi by applying either one automorphism or two: if the
order of gi in Z∗m is `i, then we get by with just a single automorphism, ρvi (α) =
τgvi (α). If the order of gi in Z∗m is different from `i then we need to implement this
rotation using two shifts: specifically, we use a constant “0-1 mask value” mask
that selects some slots and zeros-out the others, and use two automorphisms
with exponents e = gvi mod m and e′ = gv−`ii mod m, setting ρvi (α) = τe(mask ·
α) + τe′((1−mask) · α). In the first case (where one automorphism suffices) we
call i a “good dimension”, and otherwise we call i a “bad dimension”.

2.4 Frobenius and linearized polynomials

We define σ
def
= τp, which is the Frobenius map on Rpr . It acts on each slot

independently as the Frobenius map σE on E, which sends ζ to ζp and leaves
elements of Zpr fixed. (When r = 1, σ is the same as the pth power map on E.)
For any Zpr -linear transformation on E, denoted M , there exist unique con-

stants θ0, . . . , θd−1 ∈ E such that M(η) =
∑d−1
f=0 θfσ

f
E(η) for all η ∈ E. When



r = 1, this follows from the general theory of linearized polynomials (see, e.g.,
Theorem 10.4.4 on p. 237 of [28]), and these constants are readily computable
by solving a system of equations mod p; when r > 1, we may Hensel-lift these
mod-p solutions to a solution mod pr. In the special case where the image of
M is the sub-ring Zpr of E, the constants θf are obtained as θf = σfE(θ0) for
f = 1, . . . , d − 1; again, this is standard field theory if r = 1, and is easily
established for r > 1 as well.

Using linearized polynomials, we may effectively apply a fixed linear map to
each slot of a plaintext element α ∈ Rpr (either the same or different maps in each

slot) by computing
∑d−1
f=0 κfσ

f (α), where the κf ’s are Rpr -constants obtained
by embedding appropriate E-constants in the slots. Applying such linear Zpr -
linear transformation(s) homomorphically on an encryption of α takes d − 1
automorphisms and d constant-ciphertext multiplications, and can be done in
depth of one constant-ciphertext multiplication (since automorphisms consume
almost no depth).

3 Overview of the Recryption Procedure

Recall that the recryption procedure is given a BGV ciphertext ct = (c0, c1),
defined relative to secret-key sk = (1, s), modulus q, and plaintext space pr,
namely, we have [〈sk, ct〉]q ≡ m (mod pr) with m being the plaintext. Also we
have the guarantee that the noise is ct is still rather small, say ‖[〈sk, ct〉]q‖ <
q/100.

The goal of the recryption procedure is to produce another ciphertext ct∗

that encrypts the same plaintext element m relative to the same secret key,
but relative to a much larger modulus Q � q and with a much smaller rel-
ative noise. That is, we still want to get [〈sk, ct∗〉]Q = m (mod pr), but with
‖[〈sk, ct∗〉]Q‖ � Q.5 Our implementation uses roughly the same high-level struc-
ture for the recryption procedure as in [16, 1], below we briefly recall the structure
from [16] and then describe our variant of it.

3.1 The GHS Recryption Procedure

The recryption procedure from [16] (for plaintext space p = 2) begins by us-
ing modulus-switching to compute another ciphertext that encrypts the same
plaintext as ct, but relative to a specially chosen modulus q̃ = 2e + 1 (for some
integer e).

Denote the resulting ciphertext by ct′, the rest of the recryption proce-
dure consists of homomorphic implementation of the decryption formula m ←
[[〈sk, ct′〉]q̃]2, applied to an encryption of sk that can be found in the public key.
Note that in this formula we know ct′ = (c′0, c

′
1) explicitly, and it is sk that we

5 The relative noise after recryption is a design parameter. In our implementation we
tried to get the noise below Q/2250, to allow significant additional processing before
another recryption is needed.



process homomorphically. It was shown in [16] that for the special modulus q̃, the
decryption procedure can be evaluated (roughly) by computing u← [〈sk, ct′〉]2e+1

and then m← u〈e〉 ⊕ u〈0〉.6
To enable recryption, the public key is augmented with an encryption of the

secret key s, relative to a (much) larger modulus Q � q̃, and also relative to a
larger plaintext space 2e+1. Namely this is a ciphertext c̃t such that [〈sk, c̃t〉]Q = s
(mod 2e+1). Recalling that all the coefficients in ct′ = (c′0, c

′
1) are smaller than

q̃/2 < 2e+1/2, we consider c′0, c
′
1 as plaintext elements modulo 2e+1, and compute

homomorphically the inner-product u← c′1 · s + c′0 (mod 2e+1) by setting c̃t
′ ←

c′1 · c̃t + (c′0, 0). This means that c̃t
′

encrypts the desired u, and to complete the
recryption procedure we just need to extract and XOR the top and bottom bits
from all the coefficients in u, thus getting an encryption of (the coefficients of)
the plaintext m. This calculation is the most expensive part of recryption, and
it is done in three steps:

Linear transformation. First apply homomorphically a Z2e+1-linear transforma-
tion to c̃t

′
, converting it into ciphertexts that have the coefficients of u in the

plaintext slots.

Bit extraction. Next apply a homomorphic (non-linear) bit-extraction procedure,
computing two ciphertexts that contain the top and bottom bits (respectively)
of the integers stored in the slots. A side-effect of the bit-extraction computation
is that the plaintext space is reduced from mod-2e+1 to mod-2, so adding the two
ciphertexts we get a ciphertext whose slots contain the coefficients of m relative
to a mod-2 plaintext space.

Inverse linear transformation. Finally apply homomorphically the inverse linear
transformation (this time over Z2), obtaining a ciphertext ct∗ that encrypts the
plaintext element m.

An optimization. The deepest part of recryption is bit-extraction, and its com-
plexity — both time and depth — increases with the most-significant extracted
bit (i.e., with e). The parameter e can be made somewhat smaller by choosing a
smaller q̃ = 2e + 1, but for various reasons q̃ cannot be too small, so Gentry et
al. described in [16] an optimization for reducing the top extracted bit without
reducing q̃.

After modulus-switching to the ciphertext ct, we can add multiples of q̃ to the
coefficients of c′0, c

′
1 to make them divisible by 2e

′
for some moderate-size e′ < e.

Let ct′′ = (c′′0 , c
′′
1) be the resulting ciphertext, clearly [〈sk, ct′〉]q̃ = [〈sk, ct′′〉]q̃ so

ct′′ still encrypts the same plaintext m. Moreover, as long as the coefficients of ct′′

are sufficiently smaller than q̃2, we can still use the same simplified decryption
formula u′ ← [〈sk, ct′′〉]2e+1 and m← u′〈e〉 ⊕ u′〈0〉.

However, since ct′′ is divisible by 2e
′

then so is u′. For one thing this means
that u′〈0〉 = 0 so the decryption procedure can be simplified to m ← u′〈e〉.
6 This is a slight simplification, the actual formula for p = 2 is m← u〈e〉 ⊕ u〈e− 1〉 ⊕
u〈0〉, see Lemma 2.



But more importantly, we can divide ct′′ by 2e
′

and compute instead u′′ ←
[〈sk, ct′′/2e′〉]2e−e′+1 and m← u′〈e− e′〉. This means that the encryption of s in

the public key can be done relative to plaintext space 2e−e
′

and we only need to
extract e− e′ bits rather than e.

In this work we observe that we can do even slightly better by adding to ct′

multiples of q̃ and also multiples of 2 (or more generally multiples of q̃ and p
when recrypting a ciphertext with mod-p plaintext space). This lets us get a
value of e′ which is one larger than what we can get by adding only multiples
of q̃, so we can extract one less digit. See details in Section 5.2.

3.2 Our Recryption Procedure

We optimize the GHS recryption procedure and extend it to handle plaintext
spaces modulo arbitrary prime powers pr rather than just p = 2, r = 1. The
high-level structure of the procedure remains roughly the same.

To reduce the complexity as much as we can, we use a special recryption key
s̃k = (1, s̃), which is chosen as sparse as possible (subject to security require-
ments). As we elaborate in Appendix A, the number of nonzero coefficients in s̃
plays an extremely important role in the complexity of recryption.7

To enable recryption of mod-pr ciphertexts, we include in the public key a
ciphertext c̃t that encrypts the secret key s̃ relative to a large modulus Q and
plaintext space mod-pe+r for some e > r. Then given a mod-pr ciphertext ct to
recrypt, we perform the following steps:

Modulus-switching. Convert ct into another ct′ relative to the special modulus
q̃ = pe + 1. We prove in Lemma 2 that for the special modulus q̃, the decryption
procedure can be evaluated by computing u ← [〈sk, ct′〉]pe+r and then m ←
u〈r − 1, . . . , 0〉p − u〈e+ r − 1, . . . , e〉p (mod pr).

Optimization. Add multiples of q̃ and multiples of pr to the coefficients of
ct′, making them divisible by pe

′
for some r ≤ e′ < e without increasing

them too much and also without increasing the noise too much. This is de-
scribed in Section 5.2. The resulting ciphertext, which is divisible by pe

′
, is de-

noted ct′′ = (c′′0 , c
′′
1). It follows from the same reasoning as above that we can now

compute u′ ← [〈sk, ct′′/pe′〉]pe−e′+r and then m← −u′〈e− e′ + r − 1, . . . , e− e′〉p
(mod pr).

Multiply by encrypted key. Evaluate homomorphically the inner product (divided

by pe
′
), u′ ← (c′1 · s + c′0)/pe

′
(mod pe−e

′+r), by setting c̃t
′ ← (c′1/p

e′) · c̃t +

(c′0/p
e′ , 0). The plaintext space of the resulting c̃t

′
is modulo pe−e

′+r.
Note that since we only use plaintext space modulo pe−e

′+r, then we might
as well use the same plaintext space also for c̃t, rather than encrypting it relative
to plaintext space modulo pe+r as described above.

7 In our implementation we use a Hamming-weight-56 key, which is slightly smaller
than the default Hamming-weight-64-keys that are used elsewhere in HElib.



Linear transformation. Apply homomorphically a Zpe−e′+r -linear transforma-

tion to c̃t
′
, converting it into ciphertexts that have the coefficients of u′ in the

plaintext slots. This linear transformation, which is the most intricate part of
the implementation, is described in Section 4. It uses a tensor decomposition
similar to [1] to reduce complexity, but pays much closer attention to details
such as the mult-by-constant depth and data movements.

Digit extraction. Apply a homomorphic (non-linear) digit-extraction procedure,
computing r ciphertexts that contain the digits e− e′ + r − 1 through e− e′ of
the integers in the slots, respectively, relative to plaintext space mod-pr. This
requires that we generalize the bit-extraction procedure from [16] to a digit-
extraction procedure for any prime power pr ≥ 2, this is done in Section 5.3.
Once we extracted all these digits, we can combine them to get an encryption
of the coefficients of m in the slots relative to plaintext space modulo pr.

Inverse linear transformation. Finally apply homomorphically the inverse linear
transformation, this time over Zpr , converting the ciphertext into an encryption
ct∗ of the plaintext element m itself. This too is described in Section 4.

4 The Linear Transformations

In this section we describe the linear transformations that we apply during the
recryption procedure to map the plaintext coefficients into the slots and back.
Central to our implementation is imposing a hypercube structure on the plain-
text space Rpr = Zpr [X]/(Φm(X)) with one dimension per factor of m, and
implementing the second (inverse) transformation as a sequence of multi-point
polynomial-evaluation operations, one for each dimension of the hypercube. We
begin with some additional background.

4.1 Algebraic Background

Let m denote the parameter defining the underlying cyclotomic ring in
an instance of the BGV cryptosystem with native plaintext space Rpr =
Zpr [X]/(Φm(X)). Throughout this section, we consider a particular factoriza-
tion m = m1 · · ·mt, where the mi’s are pairwise co-prime positive integers. We
write CRT(h1, . . . , ht) for the unique solution h ∈ {0, . . . ,m− 1} to the system
of congruences h ≡ hi (mod mi) (i = 1, . . . , t), where hi ∈ {0, . . . ,mi − 1} for
all i = 1, . . . , t.

Lemma 1. Let p,m and the mi’s be as above, where p is a prime not dividing
any of the mi’s. Let d1 be the order of p modulo m1 and for i = 2, . . . , t let di be

the order of pd1···di−1 modulo mi. Then the order of p modulo m is d
def
= d1 · · · dt.

Moreover, suppose that S1, . . . , St are sets of integers such that each Si ⊆
{0, . . . ,mi − 1} forms a complete system of representatives for Z∗mi

/〈pd1···di−1〉.
Then the set S

def
= CRT(S1, . . . , St) forms a complete system of representatives

for Z∗m/〈p〉.



Proof. It suffices to prove the lemma for t = 2. The general case follows by
induction on t.

The fact that the order of p modulo m
def
= m1m2 is d

def
= d1d2 is clear by

definition. The cardinality of S1 is φ(m1)/d1 and of S2 is φ(m2)/d2, and so the
cardinality of S is φ(m1)φ(m2)/d1d2 = φ(m)/d = |Z∗m/〈p〉|. So it suffices to
show that distinct elements of S belong to distinct cosets of 〈p〉 in Z∗m.

To this end, let a, b ∈ S, and assume that pfa ≡ b (mod m) for some nonneg-
ative integer f . We want to show that a = b. Now, since the congruence pfa ≡ b
holds modulo m, it holds modulo m1 as well, and by the defining property of S1

and the construction of S, we must have a ≡ b (mod m1). So we may cancel a
and b from both sides of the congruence pfa ≡ b (mod m1), obtaining pf ≡ 1
(mod m1), and from the defining property of d1, we must have d1 | f . Again,
since the congruence pfa ≡ b holds modulo m, it holds modulo m2 as well, and
since d1 | f , by the defining property of S2 and the construction of S, we must
have a ≡ b (mod m2). It follows that a ≡ b (mod m), and hence a = b.

The powerful basis. The linear transformations in our recryption procedure make
use of the same tensor decomposition that was used by Alperin-Sheriff and Peik-
ert in [1], which in turn relies on the “powerful basis” representation of the
plaintext space, due to Lyubashevsky et al. [23, 22]. The “powerful basis” repre-
sentation is an isomorphism

Rpr = Z[X]/(pr, Φm(X)) ∼= R′pr
def
= Z[X1, . . . , Xt]/(p

r, Φm1
(X1), . . . , Φmt

(Xt)),

defined explicitly by the map PowToPoly : R′pr → Rpr that sends (the residue

class of) Xi to (the residue class of) Xm/mi .
Recall that we view an element in the native plaintext space Rpr as encoding

a vector of plaintext slots from E, where E is an extension ring of Zpr that

contains a principal mth root of unity ζ. Below let us define ζi
def
= ζm/mi for

i = 1, . . . , t. It follows from the definitions above that for h = CRT(h1, . . . , ht)
and α = PowToPoly(α′), we have α(ζh) = α′(ζh1

1 , . . . , ζht
t ).

Using Lemma 1, we can generalize the above to multi-point evaluation. Let
S1, . . . , St and S be sets as defined in the lemma. Then evaluating an element
α′ ∈ R′pr at all points (ζh1

1 , . . . , ζht
t ), where (h1, . . . , ht) ranges over S1×· · ·×St,

is equivalent to evaluating the corresponding element in α ∈ Rpr at all points
ζh, where h ranges over S.

4.2 The Evaluation Map

With the background above, we can now describe our implementation of the
linear transformations. Recall that these transformations are needed to map the
coefficients of the plaintext into the slots and back. Importantly, it is the powerful
basis coefficients that we put in the slots during the first linear transformation,
and take from the slots in the second transformation.

Since the two linear transformations are inverses of each other (except modulo
different powers of p), then once we have an implementation of one we also get



an implementation of the other. For didactic reasons we begin by describing in
detail the second transformation, and later we explain how to get from it also
the implementation of the first transformation.

The second transformation begins with a plaintext element β that contains
in its slots the powerful-basis coefficients of some other element α, and ends
with the element α itself. Important to our implementation is the view of this
transformation as multi-point evaluation of a polynomial. Namely, the second
transformation begins with an element β whose slots contain the coefficients of
the powerful basis α′ = PowToPoly(α), and ends with the element α that holds
in the slots the values α(ζh) = α′(ζh1

1 , . . . , ζht
t ), where the hi’s range over the

Si’s from Lemma 1 and correspondingly h range over S. Crucial to this view is
that the CRT set S from Lemma 1 is the same as the representative-set S from
Eqn. (2) that determines the plaintext slots.

Choosing the representatives. Our first order of business is therefore to match
up the sets S from Eqn. (2) and Lemma 1. To facilitate this (and also other
aspects of our implementation), we place some constraints on our choice of the
parameter m and its factorization.8 Recall that we consider the factorization
m = m1 · · ·mt, and denote by di the order of pd1···di−1 modulo mi.

I. In choosing m and the mi’s we restrict ourselves to the case where each
group Z∗mi

/〈pd1···di−1〉 is cyclic of order ki, and let its generator be denoted
by (the residue class of) g̃i ∈ {0, . . . ,mi − 1}. Then for i = 1, . . . , t, we set

Si
def
= {g̃ei mod mi : 0 ≤ e < ki}.

We define gi
def
= CRT(1, . . . , 1, g̃i, 1, . . . , 1) (with g̃i in the ith position), and

use the gi’s as our hypercube basis with the order of gi set to ki. In this
setting, the set S from Lemma 1 coincides with the set S in Eqn. (2); that
is, we have S =

{∏t
i=1g

ei
i mod m : 0 ≤ ei < ki

}
= CRT(S1, . . . , St).

II. We further restrict ourselves to only use factorizations m = m1 · · ·mt for
which d1 = d. (That is, the order of p is the same in Z∗m1

as in Z∗m.) With
this assumption, we have d2 = · · · = dt = 1, and moreover k1 = φ(m1)/d
and ki = φ(mi) for i = 2, . . . , t.

Note that with the above assumptions, the first dimension could be either
good or bad, but the other dimensions 2, . . . , t are always good. This is be-
cause pd1···di−1 ≡ 1 (mod m), so also pd1···di−1 ≡ 1 (mod mi), and therefore
Z∗mi

/〈pd1···di−1〉 = Z∗mi
, which means that the order of gi in Z∗m (which is the

same as the order of g̃i in Z∗mi
) equals ki.

Packing the coefficients. In designing the linear transformation, we have the
freedom to choose how we want the coefficients of α′ to be packed in the slots
of β. Let us denote these coefficients by cj1,...,jt where each index ji runs over

8 As we discuss in Section 6, there are still sufficiently many settings that satisfy these
requirements.



{0, . . . , φ(mi)− 1}, and each cj1,...,jt is in Zpr . That is, we have

α′(X1, . . . , Xt) =
∑

j1,j2,...,jt

cj1,...,jtX
j1
1 X

j2
2 · · ·X

jt
t =

∑
j2,...,jt

(∑
j1

cj1,...,jtX
j1
1

)
Xj2

2 · · ·X
jt
t .

Recall that we can pack d coefficients into a slot, so for fixed j2, . . . , jt, we can
pack the φ(m1) coefficients of the polynomial

∑
j1
cj1,...,jtX

j1
1 into k1 = φ(m1)/d

slots. In our implementation we pack these coefficients into the slots indexed
by (e1, j2, . . . , jt), for e1 = 0, . . . , k1 − 1. That is, we pack them into a single
hypercolumn in dimension 1.

The Eval Transformation The second (inverse) linear transformation of the
recryption procedure beings with the element β whose slots pack the coefficients
cj1,...,jt as above. The desired output from this transformation is the element
whose slots contain α(ζh) for all h ∈ S (namely the element α itself). Specifically,
we need each slot of α with hypercube index (e1, . . . , et) to hold the value

α′
(
ζ
g
e1
1

1 , . . . , ζ
g
et
t
t

)
= α

(
ζg

e1
1 ···g

et
t
)
.

Below we denote ζi,ei
def
= ζ

g
ei
i
i . We transform β into α in t stages, each of which

can be viewed as multi-point evaluation of polynomials along one dimension of
the hypercube.

Stage 1. This stage beings with the element β, in which each dimension-1 hy-
percolumn with index (?, j2, . . . , jt) contains the coefficients of the univariate

polynomial Pj2,...,jt(X1)
def
=
∑
j1
cj1,...,jtX

j1
1 . We transform β into β1 where

that hypercolumn contains the evaluation of the same polynomial in many
points. Specifically, the slot of β1 indexed by (e1, j2, . . . , jt) contains the value
Pj2,...,jt(ζ1,e1).

By definition, this stage consists of parallel application of a particular Zpr -
linear transformation M1 (namely a multi-point polynomial evaluation map)
to each of the k/k1 hypercolumns in dimension 1. In other words, M1 maps
(k1 ·d)-dimensional vectors over Zpr (each packed into k1 slots) to k1-dimensional
vectors over E. We elaborate on the efficient implementation of this stage later
in this section.

Stages 2, . . . , t. The element β1 from the previous stage holds in its slots the
coefficients of the k1 multivariate polynomials Ae1(·) (for e1 = 0, . . . , k1 − 1),

Ae1(X2, . . . , Xt)
def
= α′(ζ1,e1 , X2, . . . , Xt) =

∑
j2,...,jt

(∑
j1

cj1,...,jtζ
j1
1,e1

)
︸ ︷︷ ︸

slot (e1,j2,...,jt)=Pj2,...,jt (ζ1,e1 )

·Xj2
2 · · ·X

jt
t .

The goal in the remaining stages is to implement multi-point evaluation of these
polynomials at all the points Xi = ζi,ei for 0 ≤ ei < ki. Note that differently from



the polynomial α′ that we started with, the polynomials Ae1 have coefficients
from E (rather than from Zpr ), and these coefficients are encoded one per slot
(rather than d per slot). As we explain later, this makes it easier to implement
the desired multi-point evaluation. Separating out the second dimension we can
write

Ae1(X2, . . . , Xt) =
∑

j3,...,jt

(∑
j2

Pj2,...,jt(ζ1,e1)Xj2
2

)
Xj3

3 · · ·X
jt
t .

We note that each dimension-2 hypercolumn in β1 with index (e1, ?, j3, . . . , jt)

contains the E-coefficients of the univariate polynomial Qe1,j3,...,jt(X2)
def
=∑

j2
Pj2,...,jt(ζ1,e1)Xj2

2 . In Stage 2, we transform β1 into β2 where that hypercol-
umn contains the evaluation of the same polynomial in many points. Specifically,
the slot of β2 indexed by (e1, e2, j3 . . . , jt) contains the value

Qe1,j3,...,jt(ζ2,e2) =
∑
j2

Pj2,...,jt(ζ1,e1) · ζj22,e2 =
∑
j1,j2

cj1,...,jtζ
j1
1,e1

ζj22,e2 ,

and the following stages implement the multi-point evaluation of these polyno-
mials at all the points Xi = ζi,ei for 0 ≤ ei < ki.

Stages s = 3, . . . , t proceed analogously to Stage 2, each time eliminating a
single variable Xs via the parallel application of an E-linear map Ms to each of
the k/ks hypercolumns in dimension s. When all of these stages are completed,
we have in every slot with index (e1, . . . , et) the value α′(ζ1,e1 , . . . , ζt,et), as
needed.

Implementing stages 2, . . . , t. For s = 2, . . . , t, we obtain βs from βs−1 by apply-
ing the linear transformation Ms in parallel to each hypercolumn in dimension s.
We adapt for that purpose the HElib matrix-multiplication procedure [18], using
only rotations along dimension s. The procedure from [18] multiplies an n × n
matrix M by a n× 1 column vector v by computing

Mv = D0v0 + · · ·+Dn−1vn−1, (3)

where each vi is the vector obtained by rotating the entries of v by i positions,
and each Di is a diagonal matrix containing one diagonal of M . In our case, we
perform k/ks such computations in parallel, one on every hypercolumn along
the s dimension, implementing the rotations using the ρes maps. That is, we set

βs =

ks−1∑
e=0

κs,e · ρes(βs−1), (4)

where the κs,e’s are constants in Rpr obtained by embedding appropriate con-
stants in E in each slot. Eqn. (4) translates directly into a simple homomorphic
evaluation algorithm, just by applying the same operations to the ciphertexts.
The cost in time for stage s is ks− 1 automorphisms and ks constant-ciphertext
multiplications; the cost in depth is a single constant-ciphertext multiplication.



Implementing stage 1. Stage 1 is more challenging, because the map M1 is a Zpr -
linear map, rather than an E-linear map. Nevertheless, we can still use the same
diagonal decomposition as in Eqn. (3), except that the entries in the diagonal
matrices are no longer elements of E, but rather, Zpr -linear maps on E. These
maps may be encoded using linearized polynomials, as in Section 2.4, allowing
us to write

β1 =

k1−1∑
e=0

d−1∑
f=0

λe,f · σf
(
ρe1(β)

)
, (5)

where the λe,f ’s are constants in Rpr .

A naive homomorphic implementation of the formula from Eqn. (5) takes
O(dk1) automorphisms, but we can reduce this to O(d + k1) as follows. Since
σf is a ring automorphism, it commutes with addition and multiplication, so we
can rewrite Eqn. (5) as follows:

β1 =

d−1∑
f=0

k1−1∑
e=0

σf
(
σ−f (λe,f ) · ρe1(β)

)
=

d−1∑
f=0

σf

(
k1−1∑
e=0

σ−f (λe,f ) · ρe1(β)

)
. (6)

To evaluate Eqn. (6) homomorphically, we compute encryptions of ρe1(β) for
e = 0, . . . , k1 − 1, then take d different linear combinations of these values, ho-
momorphically computing

γf =

k1−1∑
e=0

σ−f (λe,f ) · ρe1(β) (f = 0, . . . , d− 1).

Finally, we can compute an encryption of β1 =
∑d−1
f=0 σ

f (γf ) by applying Frobe-
nius maps to the ciphertexts encrypting the γf ’s, and summing.

If dimension 1 is good, the homomorphic computation of the γf ’s takes the
time of k1 − 1 automorphisms and k1d constant-ciphertext multiplications, and
the depth of one constant-ciphertext multiplication. If dimension 1 is bad, we
can maintain the same depth by folding the multiplication by the constants
σ−f (λe,f ) into the masks used for rotation (see Section 2.3); the time increases
to 2(k1 − 1) automorphisms and (2k1 − 1)d constant-ciphertext multiplications.

The entire procedure to compute an encryption of β1 has depth of one
constant-ciphertext multiplication, and it takes time k1 + d − 2 + B(k1 − 1)
automorphisms and k1d+B(k1−1)d constant-ciphertext multiplications, where
B is a flag which is 1 if dimension 1 is bad and 0 if it is good.

Complexity of Eval. From the above, we get the following cost estimates for
computing the Eval map homomorphically. The depth is t constant-ciphertext
multiplications, and the time is at most

– (B + 1)φ(m1)/d+ d+ φ(m1) + · · ·φ(mt) automorphisms, and

– (B + 1)φ(m1) + φ(m2) + · · ·+ φ(mt) constant-ciphertext multiplications.



The Transformation Eval−1 The first linear transformation in the recryption
procedure is the inverse of Eval. This transformation can be implemented by
simply running the above stages in reverse order and using the inverse linear
maps M−1s in place of Ms. The complexity estimates are identical.

4.3 Unpacking and Repacking the Slots

In our recryption procedure we have the non-linear digit extraction routine
“sandwiched” between the linear evaluation map and its inverse. However the
evaluation map transformations from above maintain fully-packed ciphertexts,
where each slot contains an element of the extension ring E (of degree d), while
our digit extraction routine needs “sparsely packed” slots containing only inte-
gers from Zpr .

Therefore, before we can use the digit extraction procedure we need to “un-
pack” the slots, so as to get d ciphertexts in which each slot contains a sin-
gle coefficient in the constant term. Similarly, after digit extraction we have to
“repack” the slots, before running the second transformation.

Unpacking. Consider the unpacking procedure in terms of the element β ∈ Rpr .

Each slot of β contains an element of E which we write as
∑d−1
i=0 aiζ

i with the
ai’s in Zpr . We want to compute β(0), . . . , β(d−1), so that the corresponding slot
of each β(i) contains ai. To obtain β(i), we need to apply to each slot of β the
Zpr -linear map Li : E → Zpr that maps

∑d−1
i=0 aiζ

i to ai.
Using linearized polynomials, as discussed in Section 2.4, we may write β(i) =∑d−1
f=0 κi,fσ

f (β), for constants κi,f ∈ Rpr . Given an encryption of β, we can

compute encryptions of all of the σf (β)’s and then take linear combinations
of these to get encryptions of all of the β(i)’s. This takes the time of d − 1
automorphisms and d2 constant-ciphertext multiplications, and a depth of one
constant-ciphertext multiplication.

While the cost in time of constant-ciphertext multiplications is relatively
cheap, it cannot be ignored, especially as we have to compute d2 of them. In our
implementation, the cost is dominated the time it takes to convert an element
in Rpr to its corresponding DoubleCRT representation. It is possible, of course,
to precompute and store all d2 of these constants in DoubleCRT format, but
the space requirement is significant: for typical parameters, our implementation
takes about 4MB to store a single constant in DoubleCRT format, so for example
with d = 24, these constants take up almost 2.5GB of space.

This unappealing space/time trade-off can be improved considerably using
somewhat more sophisticated implementations. Suppose that in the first linear
transformation Eval−1, instead of packing the coefficients a0, . . . , ad−1 into a
slot as

∑
i aiζ

i, we pack them as
∑
i aiσ

i
E(θ), where θ ∈ E is a normal element.

Further, let L′0 : E → Zpr be the Zpr -linear map that sends η =
∑
i aiσ

i
E(θ) to

a0. Then we have L′0(σ−j(η)) = aj for j = 0, . . . , d− 1. If we realize the map L′0
with linearized polynomials, and if the plaintext γ has the coefficients packed
into slots via a normal element as above, then we have β(i) =

∑d−1
f=0 κf ·σf−i(γ),

where the κf ’s are constants in Rpr . So we have only d constants rather than d2.



To use this strategy, however, we must address the issue of how to modify
the Eval transformation so that Eval−1 will give us the plaintext element γ that
packs coefficients as

∑
i aiσ

i
E(θ). As it turns out, in our implementation this

modification is for free: recall that the unpacking transformation immediately
follows the last stage of the inverse evaluation map Eval−1, and that last stage
applies Zpr -linear maps to the slots; therefore, we simply fold into these maps
the Zpr -linear map that takes

∑
i aiζ

i to
∑
i aiσ

i
E(θ) in each slot.

It is possible to reduce the number of stored constants even further: since L′0
is a map from E to the base ring Zpr , then the κf ’s are related via κf = σf (κ0).
Therefore, we can obtain all of the DoubleCRTs for the κf ’s by computing
just one for κ0 and then applying the Frobenius automorphisms directly to
the DoubleCRT for κ0. We note, however, that applying these automorphisms
directly to DoubleCRTs leads to a slight increase in the noise of the homomorphic
computation. We did not use this last optimization in our implementation.

Repacking. Finally, we discuss the reverse transformation, which repacks the
slots, taking β(0), . . . , β(d−1) to β. This is quite straightforward: if ζ̄ is the plain-
text element with ζ in each slot, then β =

∑d−1
i=0 ζ̄

iβ(i). This formula can be
evaluated homomorphically with a cost in time of d constant-ciphertext multi-
plications, and a cost in depth one constant-ciphertext multiplication.

5 Recryption with Plaintext Space Modulo p > 2

Below we extend the treatment from [16, 1] to handle plaintext spaces modulo
p > 2. In Sections 5.1 through 5.3 we generalize the various lemmas to p > 2,
in Appendix A we discuss the choice of parameters, and then in Section 5.4 we
explain how these lemmas are put together in the recryption procedure.

5.1 Simpler Decryption Formula

We begin by extending the simplified decryption formula [16, Lemma 1] from
plaintext space mod-2 to any prime-power pr. Recall that we denote by [z]q
the mod-q reduction into [−q/2, q/2) (except when q = 2 we reduce to (−1, 1]).
Also z〈j, . . . , i〉p denotes the integer whose mod-p expansion consists of digits i
through j in the mod-p expansion of z (and we omit the p subscript if it is clear
from the context).

Lemma 2. Let p > 1, r ≥ 1, e ≥ r+ 2 and q = pe + 1 be integers, and also let z

be an integer such that |z| ≤ q2

4 − q and |[z]q| ≤ q
4 .

– If p is odd then [z]q = z〈r − 1, . . . , 0〉 − z〈e+ r − 1, . . . , e〉 (mod pr).
– If p = 2 then [z]q = z〈r − 1, . . . , 0〉−z〈e+ r − 1, . . . , e〉−z〈e− 1〉 (mod 2r).

Proof. We begin with the odd-p case. Denote z0 = [z]q, then z = z0 + kq for
some |k| ≤ q

4 − 1, and hence |z0 + k| ≤ q
4 + q

4 − 1 = (q − 2)/2 = (pe − 1)/2. We
can write

z = z0 + kq = z0 + k(pe + 1) = z0 + k + pek. (7)



This means in particular that z = z0 + k (mod pr), and also since the mod-p
representation of the sum w = z0 + k has only 0’s in positions e and up then
k〈r − 1, . . . , 0〉 = z〈e+ r − 1, . . . , e〉. It follows that

z0〈r − 1, . . . , 0〉 = z〈r − 1, . . . , 0〉 − k〈r − 1, . . . , 0〉
= z〈r − 1, . . . , 0〉 − z〈e+ r − 1, . . . , e〉 (mod pr).

The proof for the p = 2 case is similar, but we no longer have the guarantee that
the high-order bits of the sum w = z0 + k are all zero. Hence from Eqn. (7) we
can only deduce that

z〈e+ r − 1, . . . , e〉 = w〈e+ r − 1, . . . , e〉+ k〈r − 1, . . . , 0〉 (mod 2r),

and also that z〈e− 1〉 = w〈e− 1〉.
Since |w| ≤ |z0| + |k| < bq/2c = 2e−1, then the bits in positions e − 1 and

up in the representation of w are either all zero if w ≥ 0, or all one if w < 0. In
particular, this means that

w〈e+ r − 1, . . . , e〉 =

{
0 if w ≥ 0
−1 if w < 0

}
= −w〈e− 1〉 = −z〈e− 1〉 (mod 2r).

Concluding, we therefore have

z0〈r − 1, . . . , 0〉 = z〈r − 1, . . . , 0〉 − k〈r − 1, . . . , 0〉
= z〈r − 1, . . . , 0〉 −

(
z〈e+ r − 1, . . . , e〉 − w〈e+ r − 1, . . . , e〉

)
= z〈r − 1, . . . , 0〉 − z〈e+ r − 1, . . . , e〉 − z〈e− 1〉 (mod 2r).

5.2 Making an Integer Divisible By pe′

As sketched in Section 3, we use the following lemma to reduce to number of
digits that needs to be extracted, hence reducing the time and depth of the
digit-extraction step.

Lemma 3. Let z be an integer, and let p, q, r, e′ be positive integers s.t. e′ ≥ r
and q = 1 (mod pe

′
). Also let α be an arbitrary real number in [0, 1]. Then there

are integer coefficients u, v such that

z + u · pr + v · q = 0 (mod pe
′
)

and moreover u, v are small. Specifically |v| ≤ pr( 1
2 + b(1 − α)pe

′−1/2c) and

|u| ≤ dαpe′−1/2e.

Proof. Since q, p are co-prime then there exists v′ ∈ (−pr/2, pr/2] s.t. z′ =
z + v′q = 0 (mod pr). Let δ = −z′ · p−r mod pe

′−1, reduced into the interval

[−p
e′−1

2 , p
e′−1

2 ], so we have |δ| ≤ pe
′−1/2 and z′ + prδ = 0 (mod pe

′
). Denote

β = 1− α and consider the integer z′′
def
= z′ + dαδe · pr + bβδcpr · q.

On one hand, we have that z′′ = z+u·pr+v·q with |u| = |dαδe| ≤ |dαpe′−1/2e
and |v| = |v′ + prbβδc| ≤ pr( 1

2 + bβpe′−1/2c). On the other hand since q = 1

(mod pe
′
) then we also have z′′ = z′+pr(dαδe+bβδc) = z′+prδ = 0 (mod pe

′
).



Discussion. Recall that in our recryption procedure we have a ciphertext ct that
encrypts some m with respect to modulus q and plaintext space mod-pr, and we
use the lemma above to convert it into another ciphertext ct′ that encrypts the
same thing but is divisible by pe

′
, and by doing so we need to extract e′ fewer

digits in the digit-extraction step.

Considering the elements u← 〈sk, ct〉 and u′ ← 〈sk, ct′〉 (without any modular
reduction), since sk is integral then adding multiples of q to the coefficients of ct
does not change [u]q, and also as long as we do not wrap around q then adding
multiples of pr does not change [[u]q]pr . Hence as long as we only add small
multiples of pr then we have [[u]q]pr = [[u′]q]pr , so ct and ct′ still encrypt the same
plaintext. However in our recryption procedure we need more: to use our simpler
decryption formula from Lemma 2 we not only need the noise magnitude ‖[u′]q‖
to be smaller than q

4 , but the magnitude of u′ itself (before mod-q reduction)

must be smaller than q2

4 − q.
In essence, the two types of additive terms consume two types of “resources:”

adding multiples of q increases the magnitude of u′, and adding multiple of pr

increases the magnitude of [u′]q. The parameter α from Lemma 3 above lets
us trade-off these two resources: smaller α means slower increase in ‖[u′]q‖ but
faster increase in ‖u′‖, and vice versa for larger α. As we discuss in Appendix A,
the best trade-off is often obtained when α is just under 1

2 ; our implementation
tries to optimize this parameter, and for many settings it uses α ≈ 0.45.

5.3 Digit-Extraction for Plaintext Space Modulo pr

The bit-extraction procedure that was described by Gentry et al. in [16] and
further optimized by Alperin-Sheriff and Peikert in [1] is specific for the case
p = 2e. Namely, for an input ciphertext relative to mod-2e plaintext space,
encrypting some integer z (in one of the slots), this procedure computes the ith
top bit of z (in the same slot), relative to plaintext space mod-2e−i+1. Below
we show how to extend this bit-extraction procedure to a digit-extraction also
when p is an odd prime.

The main observation underlying the original bit-extraction procedure, is
that squaring an integer keeps the least-significant bit unchanged but inserts
zeros in the higher-order bits. Namely, if b is the least significant bit of the
integer z and moreover z = b (mod 2e), e ≥ 1, then squaring z we get z2 = b
(mod 2e+1). Therefore, z − z2 is divisible by 2e, and the LSB of (z − z2)/2e is
the eth bit of z.

Unfortunately the same does not hold when using a base p > 2. Instead, we
show below that for any exponent e there exists some degree-p polynomial Fe(·)
(but not necessarily Fe(X) = Xp) such that when z = z0 (mod pe) then Fe(z) =
z0 (mod pe+1). Hence z−Fe(z) is divisible by pe, and the least-significant digit
of (z − Fe(z))/pe is the eth digit of z. The existence of such polynomial Fe(X)
follows from the simple derivation below.



Lemma 4. For every prime p and exponent e ≥ 1, and every integer z of
the form z = z0 + pez1 (with z0, z1 integers, z0 ∈ [p]), it holds that zp = z0
(mod p), and zp = zp0 (mod pe+1).

Proof. The first equality is obvious, and the proof of the second equality is just
by the binomial expansion of (z0 + pez1)p.

Corollary 1. For every prime p there exist a sequence of integer polynomials
f1, f2, . . ., all of degree ≤ p−1, such that for every exponent e ≥ 1 and every inte-
ger z = z0 +pez1 (with z0, z1 integers, z0 ∈ [p]), we have zp = z0 +

∑e
i=1 fi(z0)pi

(mod pe+1).

Proof. From Lemma 4 we know that the mod-p digits of zp modulo-pe+1 depend
only on z0, so there exist some polynomials in z0 that describe them, fi(z0) =
zp〈i〉p. Since these fi’s are polynomials from Zp to itself, then they have degree
at most p− 1. Moreover, by the 1st equality in Lemma 4 we have that the first
digit is exactly z0.

Corollary 2. For every prime p and every e ≥ 1 there exist a degree-p polyno-
mial Fe, such that for every integers z0, z1 with z0 ∈ [p] and every 1 ≤ e′ ≤ e we
have Fe(z0 + pe

′
z1) = z0 (mod pe

′+1).

Proof. Denote z = z0 + pe
′
z1. Since z = z0 (mod pe

′
) then fi(z0) = fi(z)

(mod pe
′
). This implies that for all i ≥ 1 we have fi(z0)pi = fi(z)p

i (mod pe
′+1),

and of course also for i ≥ e′ + 1 we have fi(z)p
i = 0 (mod pe

′+1). Therefore,
setting Fe(X) = Xp −

∑e
i=1 fi(X)pi we get

Fe(z) = zp −
e∑
i=1

fi(z)p
i = zp −

e′∑
i=1

fi(z0)pi = z0 (mod pe
′+1).

We know that for p = 2 we have Fe(X) = X2 for all e. One can verify that
also for p = 3 we have Fe(X) = X3 for all e (when considering the balanced
mod-3 representation), but for larger primes we no longer have Fe(X) = Xp.

The digit-extraction procedure. Just like in the base-2 case, in the procedure
for extracting the eth base-p digit from the integer z =

∑
i zip

i proceeds by
computing integers wj,k (k ≥ j) such that the lowest digit in wj,k is zj , and the
next k−j digits are zeros. The code in Figure 1 is purposely written to be similar
to the code from [1, Appendix B], with the only difference being in Line 5 where
we use Fe(X) rather than X2.

In our implementation we compute the coefficients of the polynomial Fe once
and store them for future use. In the procedure itself, we apply a homomorphic
polynomial-evaluation procedure to compute Fe(wj,k) in Line 5. We note that
just as in [16, 1], the homomorphic division-by-p operation is done by multiplying
the ciphertext by the constant p−1 mod q, where q is the current modulus. Since
the encrypted values are guaranteed to be divisible by p, then this has the desired
effect and also it reduces the noise magnitude by a factor of p. Correctness of



Digit-Extractionp(z, e): // Extract eth digit in base-p representation of z

1. w0,0 ← z
2. For k = 0 to e− 1
3. y ← z
4. For j = 0 to k
5. wj,k+1 ← Fe(wj,k) // Fe from Corollary 2, for p = 2, 3 we have Fe(X) = Xp

6. y ← (y − wj,k+1)/p
7. wk+1,k+1 ← y

8. Return we,e

Fig. 1. The digit extraction procedure

the procedure from Figure 1 is proved exactly the same way as in [16, 1], the
proof is omitted here. In the full version we show that for p = 2 we can extract
r ≥ 2 consecutive bits using one level less than in the procedure above.

5.4 Putting Everything Together

Having described all separate parts of our recryption procedure, we now explain
how they are combined in our implementation.

Initialization and parameters. Given the ring parameter m (that specifies the
mth cyclotomic ring of integers R = Z[X]/(Φm(X))) and the plaintext space
pr, we compute the recryption parameters as explained in Appendix A. That
is, we use compute the Hamming weight of recryption secret key t ≥ 56, some
value of α (which is often α ≈ 0.45), and some values for e, e′ where e− e′− r ∈
{dlogp(t + 2)e − 1, dlogp(t + 2)e}. We also precompute some key-independent
tables for use in the linear transformations, with the first transformation using
plaintext space pe−e

′+r and the second transformation using plaintext space pr.

Key generation. During key generation we choose in addition to the “standard”
secret key sk also a separate secret recryption key s̃k = (1, s̃), with s̃ having
Hamming weight t. We include in the secret key both a key-switching matrix
from sk to s̃k, and a ciphertext c̃t that encrypts s̃ under key sk, relative to
plaintext space pe−e

′+r.

The recryption procedure itself. When we want to recrypt a mod-pr ciphertext ct
relative to the “standard” key sk, we first key-switch it to s̃k and modulus-switch
it to q̃ = pe + 1, then make its coefficients divisible by pe

′
using the procedure

from Lemma 3, thus getting a new ciphertext ct′ = (c′0, c
′
1). We then compute

the homomorphic inner-product divided by pe
′
, by setting ct′′ = (c′1/p

e′) · c̃t +
(0, c′0/p

e′).
Next we apply the first linear transformation (the map Eval−1 from Sec-

tion 4.2), moving to the slots the coefficients of the plaintext u′ that is encrypted
in ct′′. The result is a single ciphertext with fully packed slots, where each slot
holds d of the coefficients from u′. Before we can apply the digit-extraction pro-
cedure from Section 5.3, we therefore need to unpack the slots, so as to put each



coefficient in its own slot, which results in d “sparsely packed” ciphertexts (as
described in Section 4.3).

Next we apply the digit-extraction procedure from Section 5.3 to each one
of these d “sparsely packed” ciphertexts. For each one we extract the digits up
to e+ r − e′ and combine the top digits as per Lemma 2 to get in the slots the
coefficients of the plaintext polynomial m (one coefficient per slot). The resulting
ciphertexts all have plaintext space mod-pr.

Next we re-combine the d ciphertext into a single fully-packed ciphertext (as
described in Section 4.3) and finally apply the second linear transformation (the
map Eval described in Section 4.2). This completes the recryption procedure.

6 Implementation and Performance

As discussed in Section 4.2, our algorithms for the linear transformations rely
on the parameter m having a fairly special form. Luckily, there are quite a few
such m’s, which we found by brute-force search. We ran a simple program that
searches through a range of possible m’s (odd, not divisible by p, and not prime).
For each such m, we first compute the order d of p mod m. If this exceeds a
threshold (we chose a threshold of 100), we skip this m. Next, we compute the
factorization of m into prime powers as m = m1 · · ·mt. We then find all indexes
i such that p has order d mod mi and all pairs of indexes i, j such that p has
order d mod mimj . If we find none, we skip this m; otherwise, we choose one
such index, or pair of indexes, in such a way to balance the time and depth
complexity of the linear transformations (so mi or mimj becomes the new m1,
and the other prime power factors are ordered arbitrarily).

cyclotomic ring m 21845 18631 28679 35113
=257·5·17 =601·31 =241·17·7 =(73·13)·37

lattice dim. φ(m) 16384 18000 23040 31104

plaintext space GF(216) GF(225) GF(224) GF(236)

number of slots 1024 720 960 864

security level 76 110 96 159

before/after levels 22/10 20/10 24/11 24/12

initialization (sec) 177 248 224 694

linear transforms (sec) 127 131 123 325

digit extraction (sec) 193 293 342 1206

total recrypt (sec) 320 424 465 1531

space usage (GB) 3.4 3.5 3.5 8.2

Table 1. Experimental results with plaintext space GF(2d)

For example, with p = 2, we processed all potential m’s between 16,000 and
64,000. Among these, there were a total of 377 useful m’s with 15, 000 ≤ φ(m) ≤



cyclotomic ring m 45551 51319 42799 49981
=(41·11)·101 =(19·73)·37 = 337·127 =331·151

lattice dim. φ(m) 40000 46656 42336 49981

plaintext space GF(1740) GF(12736) R(256, 21) R(256, 30)

number of slots 1000 1296 2016 1650

security level 106 161 79 91

before/after levels 38/10 32/11 52/6 56/10

initialization (sec) 1148 2787 1202 1533

linear transforms (sec) 735 774 2265 2834

digit extraction (sec) 3135 1861 8542 14616

total recrypt (sec) 3870 2635 10807 17448

space usage (GB) 14.8 39.9 15.6 21.6

Table 2. Experimental results with other plaintext spaces

60, 016, with a fairly even spread (the largest gap between successive φ(m)’s was
less than 2,500, and there were no other gaps that exceeded 2,000). So while
such useful m’s are relatively rare, there are still plenty to choose from. We ran
this parameter-generation program to find potential settings for plaintext-space
modulo p = 2, p = 17, p = 127, and pr = 28, and manually chose a few of the
suggested values of m for our tests.

For each of these values of m, p, r, we then ran a test in which we chose
three random keys, and performed recryption three times per key (for each key
recrypting the same ciphertext over and over). These tests were run on a five-
year-old IBM BladeCenter HS22/7870, with two Intel X5570 (4-core) processors,
running at 2.93GHz. All of our programs are single-threaded, so only one core
was used in the computations. Tables 1 and 2 summarize the results form our
experiments.

In each table, the first row gives m and its factorization into prime powers.
The first factor (or pair of factors, if grouped by parentheses) shows the value
that was used in the role of m1 (as in Section 4.2). The second row gives φ(m).
The third row gives the plaintext space, i.e., the field/ring that is embedded in
each slot (here, R(pr, d) means a ring extension of degree d over Zpr ). The fourth
row gives the number of slots packed into a single ciphertext. The fifth row gives
the effective security level, computed using the formula that is used in HElib,
taken from [15, Eqn.(8)]. The sixth row gives the levels of ciphertext just before
recryption (i.e., the ciphertext which is included in the public key) and just after
the end of the recryption procedure. The difference accounts for the depth of
recryption, and the after-levels is roughly the circuit-depth that an application
can compute on the resulting ciphertext before having to recrypt again. We tried
to target 10 remaining levels, to allow nontrivial processing between recryptions.

The remaining rows show the resources used in performing a recryption. The
timing results reflect the average of the 9 runs for each setting, and the memory
usage is the top usage among all these runs. Row 7 gives a one-time initialization
cost (all times in seconds). Row 10 (in boldface) gives the total time for a single



recryption, while the previous two rows give a breakdown of that time (note that
the time for the linear transforms includes some trivial preprocessing time, as
well as the less trivial unpacking/repacking time). The last row gives the memory
used (in gigabytes).

7 Future work

Eventually, we would like to enhance our implementations to take advantage
of multicore computing environments. There are at least two levels at which
the implementation could be easily parallelized. At a low level, the conversions
between DoubleCRT and polynomial representation in HElib could be easily
parallelized, as the FFT’s for the different primes can be done in parallel (as
already observed in [27]). Our bootstrapping procedure could also be parallelized
at a higher level: the rotations in each stage of the linear transformation step
can be done in parallel, as can the d different digit extraction steps. Doing the
parallel steps at a higher level could possibly yield a better work/overhead ratio,
but this would have to be confirmed experimentally.

Another direction to explore is the possibility of speeding up the digit ex-
traction procedure in the special case where the values in the ciphertext slots
are constants in the base ring Zpr (or, more generally, lie in some sub-ring of the
ring E contained in each slot). Right now, our bootstrapping algorithm does not
exploit this: even in this special case, our digit extraction algorithm still has to
be applied to d ciphertexts. In principle, we should be able to reduce the number
of applications of the digit extraction significantly (from d to 1, if the values in
the slots are constants); however, it is not clear how to do this while maintaining
the structure (and therefore efficiency) of the linear transformations.

Another direction to explore is to try to find a better way to represent con-
stants. In HElib, the most compact way to store constants in Rpr is also the
most natural: as coefficient vectors of polynomials over Zpr . However, in this
representation, a surprisingly significant amount of time may be spent in homo-
morphic computations converting these constants to DoubleCRT format. One
could precompute and store these DoubleCRT representations, but this can be
quite wasteful of space, as DoubleCRT’s occupy much more space than the cor-
responding polynomials over Zpr . We may state as an open question: is there
a more compact representation of elements of Zpr [X] that can be converted to
DoubleCRT format in linear time?
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A Parameters for Digit Extraction

Here we explain our choice of parameters for the recryption procedure (e, e′, α,
etc.). These parameters depend on the cyclotomic ring Rm, plaintext space pr,
and the l1-norm of the recryption secret key s̃k (which we denote t).

We begin the recryption procedure with a noise-n ciphertext (c0, c1), relative
to plaintext space pr, a secret key s̃k = (1, s̃) with ‖s‖1 ≤ t, and modulus
q̃ = pe + 1. This means that for the element u ← 〈s̃k, ct〉 (without modular
reduction) we have ‖[u]q‖∞ < n and ‖u‖∞ < (t+ 1)q/2, and that the plaintext



element encrypted in ct is m ← [[u]q]pr . 9 We then make the coefficients of ct

divisible by pe
′

using Lemma 3, thus getting another ciphertext

ct′ = (c′0, c
′
1) = (c0 + pru0 + qv0, c1 + pru1 + qv1).

Consider the effect of this modification on the coefficients of u′ ← 〈s̃k, ct′〉 =
c′0+s̃·c1. Clearly we have increased both the noise (due to the added pr terms) and
the magnitude of the coefficients (mostly due to the added q terms). Specifically,
we now have

‖u′‖ ≤ ‖u‖+ (‖u0‖+ t‖u1‖)pr + (‖v0‖+ t‖v1‖)q

≤ (t+ 1)

(
q

2
+

⌈
αpr+e

′−1

2

⌉
︸ ︷︷ ︸

<q

+qpr
(1

2
+

⌊
(1− α

)
pe
′−1

2

⌋ ))

≤ (t+ 1)q
(
1 + (1− α)pr+e

′−1/2 + pr/2
)
,

‖[u′]q‖ ≤ ‖[u]q‖+ (‖u0‖+ t‖u1‖)pr ≤ n+ (t+ 1)dαpr+e
′−1/2e

≤ n+ (t+ 1)(1 + αpr+e
′−1/2).

To be able to still use Lemma 2 we need to have ‖[u′]q‖ < q/4 and ‖u′‖ < q2/4−q.
Namely we need both

n+(t+1)(1+αpr+e
′−1/2) < q/4 and (t+1)

(
1+(1−α)pr+e

′−1/2+pr/2
)
< q/4−1,

or in other words

q/4 ≥ max

{
(t+ 1)

(
1 + αpr+e′−1

2

)
+ n,

(t+ 1)
(
1 + (1−α)pr+e′−1

2

)
+ (t+1)pr

2 + 1

}
. (8)

To get good parameters we would like to set α, e′ such that these two constraints
are roughly equivalent. Ignoring for simplicity the +1 at the end of the bottom
constraint, we would want to set the parameters so that

(t+ 1)
(
1 +

αpr+e
′−1

2

)
+ n = (t+ 1)

(
1 +

(1− α)pr+e
′−1

2

)
+

(t+ 1)pr

2

⇔ α =
1

2
− n− (t+ 1)pr/2

(t+ 1)pr+e′−1
.

Note that with out parameters the noise n is much larger than (t+ 1)pr/2: The
noise after modulus-switching is at least as large as the modulus-switching added
factor (cf. [4, Lemma 4]), and the heuristic estimate for that added factor (taken
from the HElib design document) is pr ·

√
(t+ 1)φ(m)/12. Since we use Hamming

9 The term (t + 1)q/2 assumes no “ring constant”, i.e. ‖s · c1‖ ≤ ‖s‖1 · ‖c1‖. This is
not always true but it makes a reasonable heuristic, and we use it for most of this
section.



weight t� φ(m) for the secret key s̃, then
√

(t+ 1)φ(m)� (t+1), which means

that n ≈ pr ·
√

(t+ 1)φ(m)� pr · (t+ 1). Hence to get good parameters we need

α ≈ 1
2 − n/((t + 1)pr+e

′−1, and since we can only use α ∈ [0, 1] then it means
that we need to set e′ large enough in order to get α > 0, and α tends to 1/2 as
e′ grows.

To get a first estimate, we assume that we have e, e′ large enough to get
α ≈ 1/2, and we analyze how large must we make e− e′. With α ≈ 1/2 and the
two terms in Eqn. (8) roughly equal, we can simplify that equation to get

q/4 = (pe + 1)/4 > (t+ 1)
(
1 +

pr+e
′−1

4
+
pr

2

)
+ 1.

With e′ � 1 the most significant term on the right-hand side is (t+1)pr+e
′−1/4,

so we can simplify further to get pe/4 > (t + 1 + ε)pr+e
′−1/4 (with ε a small

quantity that captures all the low-order terms), or e−e′ > r−1+logp(t+1+ε). In
our implementation we therefore try to use the setting e−e′ = r−1+dlogp(t+2)e,
and failing that we use e− e′ = r + dlogp(t+ 2)e.

In more detail, on input m, p, r we set an initial value of t = 56, then set

γ
def
= (t+ 1)/pdlogp(t+2)e. Plugging e− e′ = r − 1 + dlogp(t+ 2)e in Eqn. (8) and

ignoring some ‘+1’ terms, we get

pe > max

{
4(t+ n)

1− 2αγ
,

2(t+ 1)pr

1− 2(1− α)γ

}
. (9)

For the noise n we substitute twice the modulus-switching added noise term,

n
def
= pr

√
(t+ 1)φ(m)/3, and then we solve for the value α ∈ [0, 1] that minimizes

the right-hand side of Eqn. (9). This gives us a lower-bond on pe.

Next we check that this lower-bound is not too big: recall that at the begin-
ning of the recryption process we multiply the ciphertext c̃t from the public key
by the “constant” c′1/p

e′ , whose entries can be as large as q2/(4pe
′
) ≈ p2e−e′−2.

Hence as we increase e we need to multiply by a larger constant, and the noise
grows accordingly. In the implementation we define “too big” (somewhat arbi-
trarily) to be anything more than half the ratio between two successive moduli
in our chain. If pe is “too big” then we reset e−e′ to be one larger, which means
re-solving the same system but this time using γ′ = γ/p instead of γ.

Once we computed the values e, e′, α, we finally check if it is possible to
increase our initial t = 56 (i.e., the recryption key weight) without violating
Eqn. (9). This gives us the final values for all of our constants. We summarize
the parameters that we used in our tests in Table 3.

Caveats. The BGV implementation in HElib relies on a myriad of parameters,
some of which are heuristically chosen, and so it takes some experimentation
to set them all so as to get a working implementation with good performance.
Some of the adjustments that we made in the course of our testing include the
following:



m pr e e′ α t B cm Comments

21854 2 15 9 0.45311 56 23 16.0
18631 2 15 9 0.45291 56 23 0.5
28679 2 15 9 0.45241 56 23 10.0
35115 2 13 6 0 59 25 4.0 “conservative” flag

45551 17 4 2 0 134 25 20.0
51319 127 3 2 0 56 25 2.0 forced t = 56
42799 28 23 10 0.45149 57 25 0.2 frequent mod-switching
49981 28 23 10 0.45125 57 25 1.0 frequent mod-switching

Table 3. Parameters in our different tests. B is the width (in bits) of levels in the
modulus-chain, and cm is the experimental “ring constant” that we used.

– HElib relies on a heuristic noise estimate in order to decide when to per-
form modulus-switching. One inaccuracy of that estimate is that it assumes
that ‖xy‖ ≤ ‖x‖ · ‖y‖, which does not quite hold for the bases that are
used in HElib for representing elements in the ring R = Z[X]/(Φm(X)).
To compensate, the library contains a “ring constant” cm which is set by
default to 1 but can be adjusted by the calling application, and then it sets
estimate(‖xy‖) := estimate(‖x‖) ·estimate(‖y‖) ·cm. In our tests we often had
to set that constant to a larger value to get accurate noise estimation — we
set the value experimentally so as to get good estimate for the noise at the
output of the recryption procedure.

– The same “ring constant” might also affect the setting of the parameters
e, e′, α from above. Rather than trying to incorporate it into the calculation,
our implementation just provides a flag that forces us to forgo the more
aggressive setting of e − e′ = r − 1 + dlogp(t + 2)e, and instead always use
the more conservative e−e′ = r+ dlogp(t+2)e. The effect is that we have to
extract one more digit during the digit extraction part, but it ensures that
we do not get recryption errors from the use of our simplified decryption
formula. In our tests we had to use this “conservative” flag for the tests at
m = 35113.

– Also, we sometimes had to manually set the Hamming weight of the recryp-
tion key to a lower value than what our automatic procedure suggests, to
avoid recryption errors. This happened for the setting p = 127,m = 51319,
where the automated procedure suggested to use t = 59 but we had to revert
back to t = 56 to avoid errors.

– The “width” of each level (i.e., the ratio qi+1/qi in the modulus chain) can
be adjusted in HElib. The trade-off is that wider levels give better noise
reduction, but also larger overall moduli (and hence lower levels of security).
The HElib implementation uses by default 23 bits per level, which seems to
work well for values of m < 30000 and pr = 2. For our tests, however, this
was sometime not enough, and we had to increase it to 25 bits per level.
For the tests with plaintext space modulo 28, even 25 bits per level were
not quite enough. However for various low-level reasons (having to do with



the NTL single-precision bounds), setting the bit length to 26 bits or more
is not a good option. Instead we changed some of the internals of HElib,
making it use modulus-switching a little more often than its default setting,
while keeping the level width at 25 bits. As a result, for that setting we used
many more levels than for all the other settings (an average of 1.5 levels per
squaring).

B Why We Didn’t Use Ring Switching

One difference between our implementation and the procedure described by
Alperin-Sheriff and Peikert [1] is that we do not use the ring-switching tech-
niques of Gentry et al. [13] to implement the tensor decomposition of our Eval
transformation and its inverse. There are several reasons why we believe that
an implementation based on ring switching is less appealing in our context, es-
pecially for the smaller parameter settings (say, φ(m) < 30000). The reasoning
behind this is as follows:

Rough factorization of m. Since the non-linear part of our recryption
procedure takes at least seven levels, and we target having around 10 levels
left at the end of recryption, it means that for our smaller examples we cannot
afford to spend too many levels for the linear transformations. Since every stage
of the linear transformation consumes at least half a level,10 then for such small
parameters we need very few stages. In other words, we have to consider fairly
coarse-grained factorization of m, where the factors have sizes mε for a significant
ε (as large as

√
m in some cases).

Using large rings. Recall that the first linear transformation during re-
cryption begins with the fresh ciphertext in the public key (after multiplying by
a constant). That ciphertext has very low noise, so we have to process it in a
large ring to ensure security.11 This means that we must switch up to a much
larger ring before we can afford to drop these rough factors of m. Hence we will
be spending most of our time on operations in very large rings, which defeats
the purpose of targeting these smaller sub-30000 rings in the first place.

We also note that in our tests, the recryption time is dominated by the
non-linear part, so our implantation seems close to optimal there. It is plausi-
ble that some gains can be made by using ring switching for the second linear
transformation, after the non-linear part, but we did not explore this option in
our implementation. And as we said above, there is not much to be gained by
optimizing the linear transformations.

10 Whether or not we use ring-switching, each stage of the linear transformation has
depth of at least one multiply-by-constant, which consumes at least half a level in
terms of added noise.

11 More specifically, the key-switching matrices that allow us to process it must be
defined in a large ring.


