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Abstract. The well-known classical constructions of garbled circuits use four
ciphertexts per gate, although various methods have been proposed to reduce this
cost. The best previously known methods for optimizing AND gates (two ci-
phertexts; Pinkas et al., ASIACRYPT 2009) and XOR gates (zero ciphertexts;
Kolesnikov and Schneider, ICALP 2008) were incompatible, so most implemen-
tations used the best known method compatible with free-XOR gates (three ci-
phertexts; Kolesnikov and Schneider, ICALP 2008). In this work we show how
to simultaneously garble AND gates using two ciphertexts and XOR gates using
zero ciphertexts, resulting in smaller garbled circuits than any prior scheme. The
main idea behind our construction is to break an AND gate into two half-gates —
AND gates for which one party knows one input. Each half-gate can be garbled
with a single ciphertext, so our construction uses two ciphertexts for each AND
gate while being compatible with free-XOR gates. The price for the reduction in
size is that the evaluator must perform two cryptographic operations per AND
gate, rather than one as in previous schemes. We experimentally demonstrate that
our garbling scheme leads to an overall decrease in time (up to 25%), bandwidth
(up to 33%), and energy use (up to 20%) over several benchmark applications.
We show that our construction is optimal for a large class of garbling schemes
encompassing all known practical garbling techniques.

1 Introduction

Yao’s garbled circuit technique remains one of the most promising and actively studied
methods for secure multi-party computation. The first implementation of secure two-
party computation (2PC) [26] used Yao’s basic garbled circuit approach, and it remains
the primary (but not only) paradigm for the many 2PC implementations that have been
developed over the past ten years [25, 28, 10, 14, 21, 12]. Because the generation and
execution of gates benefits from advances in processor speed (in particular, hardware
support for cryptographic operations) as well as the increasing availability of large num-
bers of cores, the computation time and cost for garbled circuit protocols has dropped
dramatically. Thus, the main bottleneck for 2PC protocols is network bandwidth which
is predominantly due to the transmission of garbled gates. Many optimizations in 2PC
have focused on reducing the size of the garbled circuits themselves [27, 20, 19] and
reducing the number of circuits required (in the case of malicious security) [24, 29, 22,
15, 6]. Our work reduces the overall size of garbled circuits by reducing the amount of
data that needs to be transferred for each garbled gate.



1.1 Background

We assume some familiarity with garbled circuit constructions (for a comprehensive
treatment of Yao’s classical construction see Lindell and Pinkas [23]). In a garbled gate,
each wire of the (Boolean) circuit is associated with two random strings/keys called
wire labels which encode TRUE and FALSE. In the “classical” construction of garbled
circuits, the sender provides a garbled truth table for each gate, where each combination
of input wire labels is used to encrypt the appropriate output wire label. Hence, there
are four “ciphertexts” per gate — one for each input combination to the gate — and the
evaluator who only knows one label for each input wire can only open one of them. In
general, we will measure the size of a garbled gate in units of such “ciphertexts.”

We now give a brief history of work reducing the data needed to transmit a garbled
gate, summarized in Table 1. In the point-and-permute optimization, introduced by
Beaver, Micali and Rogaway [3], a select bit is appended to each wire label, so that
the two labels on each wire have opposite select bits. The association between select
bits and logical truth values is random and secret, but the garbled truth table can be
arranged by these public select bits. While the result is still four ciphertexts per gate,
the ciphertexts no longer need to be from a CPA-secure encryption scheme (and this
indeed leads to a reduction in concrete size). Rather, they can be of the formH(A‖B)⊕
C, where A, B, and C are wire labels, and H is a hash function or key-derivation
function. Further, instead of trying all four ciphertexts, the evaluator can simply select
the appropriate one based on the select bits of visible wire labels.

Naor, Pinkas and Sumner introduced garbled row-reduction as a way to reduce
the number of ciphertexts per gate [27]. Instead of choosing random wire labels for
each wire, one of the wire labels is chosen as H(A‖B), where A and B are labels of
the input wires. Thus, one of the four ciphertexts in each gate (say, the first one) will
always be the all-zeroes string and does not need to be sent. We call this method GRR3
since only three ciphertexts need to be transmitted for each gate. Going even further,
Pinkas et al. [28] describe a way, which we denote GRR2, to further reduce each gate
to 2 ciphertexts, applying a polynomial interpolation at each gate.

size per gate calls to H per gate

generator evaluator

technique XOR AND XOR AND XOR AND

classical [31] 4 4 4 4 4 4
point-permute [3] 4 4 4 4 1 1
row reduction (GRR3) [27] 3 3 4 4 1 1
row reduction (GRR2) [28] 2 2 4 4 1 1
free XOR + GRR3 [20] 0 3 0 4 0 1
fleXOR [19] {0, 1, 2} 2 {0, 2, 4} 4 {0, 1, 2} 1

half gates [this work] 0 2 0 4 0 2

Table 1. Optimizations of garbled circuits. Size is number of “ciphertexts” (multiples of k bits).



Kolesnikov and Schneider [20] introduced the free-XOR technique. The idea is to
choose all wire labels of the form (A,A ⊕ R), where R is secret and common to all
wires. An evaluator who has one of (A,A⊕R) and one of (B,B⊕R), can perform the
XOR operation simply by XORing the two wire labels. The result will be either C or
C⊕R (where C = A⊕B), which correctly represents the result. Hence, no ciphertexts
are required at all for an XOR gate. This technique is compatible with GRR3 for AND
gates, but not GRR2. The reason is that the GRR2 technique chooses both output wire
labels of a gate as fixed pseudorandom functions of the input wire labels. Hence, it is
not possible to guarantee that the output wire labels are of the form (C,C ⊕ R) for
some pre-specified R.

Kolesnikov, Mohassel, and Rosulek [19] proposed a generalization of free-XOR
caled fleXOR. In fleXOR, an XOR gate can be garbled using 0, 1, or 2 ciphertexts, de-
pending on structural and combinatorial properties of the circuit. However, fleXOR can
be made compatible with GRR2 applied to the AND gates. For circuits with many AND
gates, this method results in smaller circuits than with free-XOR (while the construction
can actually collapse to free-XOR in other cases).

1.2 Our Contributions

Half-gates. We present a method for garbling AND gates that requires only two cipher-
texts. However, unlike the GRR2 method, our method is compatible with free-XOR.
That is, our method can guarantee that the output wires of an AND gate are indeed of
the form (C,C ⊕R), when the input wires are also of this form.

The main insight is to employ what we call half-gates: AND gates for which one
party knows one of the inputs. We show how to garble generator half-gates and evalua-
tor half-gates using one ciphertext each, in a way that is compatible with free-XOR. We
then show how an AND gate can be written as a combination of XORs and two half-
gates of opposite orientations. Hence, the resulting AND gate uses only two ciphertexts
in combination with free-XOR. We prove the security of our scheme in Section 4.

For all circuits, our half-gate technique leads to smaller garbled circuits than all
previous methods (i.e., our row of Table 1 dominates all other rows). For many circuits
(i.e., those for which free-XOR previously gave the smallest garbled circuits), our work
gives a 33% reduction in garbled circuit size (and thus a similar reduction in cost for
most protocols that rely on garbled circuits). This leads to reductions in overall latency
(up to 25% in our benchmarks), as well as energy (which is the primary concern for
data centers as well as mobile devices) since the extra computation required to compute
the hash function twice is more than offset by the energy savings of reduced bandwidth.
We provide experimental results in Section 5.

Privacy-free garbling. Frederiksen, Nielsen, and Orlandi [8] showed that garbling
schemes that satisfy only the authenticity security property (i.e., not the privacy prop-
erty) can be significantly smaller than their fully-secure counterparts. These privacy-
free schemes are useful in settings where the evaluator knows the entire (cleartext)
input to the garbled circuit, as in the highly efficient zero-knowledge proof protocol of
Jawurek, Kerschbaum and Orlandi [18].



size per gate calls to H per gate

sender receiver

technique XOR AND XOR AND XOR AND

row reduction (GRR1) 1 1 0 3 0 1
free XOR + GRR2 0 2 0 3 0 1
fleXOR {0, 1, 2} 1 0 3 0 1

half gates [this work] 0 1 0 2 0 1

Table 2. Optimizations of privacy-free garbled circuits. Size is number of ciphertexts (multiples
of k bits). The three prior schemes are from Frederiksen, Nielsen, and Orlandi [8].

Table 2 summarizes the three privacy-free garbling schemes introduced by Fred-
eriksen, Nielsen, and Orlandi [8], which are adaptations of fully-secure schemes. Their
GRR1 construction garbles all gates at a cost of one ciphertext each. Their free-XOR
adaptation garbles AND gates at a cost of two ciphertexts each (with XOR gates free).
Their fleXOR adaptation garbles AND gates using one ciphertext each, with XOR gates
costing 0, 1, or 2 ciphertexts each.

In Section 6, we show that our approach with half-gates also gives a similar im-
provement in this setting. We can simply garble all AND gates using our evaluator
half-gate. In this setting, the evaluator knows both inputs to all gates, but we only need
to take advantage of its knowledge of one of the inputs to reduce the size of garbled
AND gates to one ciphertext. Overall, we achieve a privacy-free garbled circuit con-
taining one ciphertext per AND gate, and no ciphertexts for XOR gates. As for standard
grabled circuits, our half-gates approach is strictly better than all previous constructions.
For example, we reduce the size of a privacy-free garbled circuit for AES by 50%.

Optimality. For prior garbling schemes that we described above, it was always possible
to reduce the size of garbled AND gates by one ciphertext by sacrificing compatibility
with free-XOR. Given that we can now garble AND gates with two ciphertexts in a way
that is compatible with free-XOR, one might wonder whether it is possible to garble an
AND gate with just one ciphertext, in a way that is incompatible with free-XOR.

In Section 7, we show that in a reasonable model that captures all existing tech-
niques, it is not possible to garble an AND gate (with privacy) using just one cipher-
text, even if compatibility with free-XOR is sacrificed. Hence, our construction gives
optimally-sized garbled circuits, among garbling schemes whose gate-by-gate opera-
tions fall within our model.

To show optimality, we introduce a new methodology for stating and proving such
quantitative lower bounds on the size of garbled gates. We observe that all existing
techniques for practical garbling (including our own) are linear in a certain sense. We
formalize these techniques in a linear class of garbling schemes, and show that these
schemes require two ciphertexts for a single AND gate. These lower bounds suggest
that any practical improvement over our scheme will require a dramatically different
approach to garbled circuits in general.



2 Preliminaries

We use the garbling schemes abstraction introduced by Bellare, Hoang, and Rogaway [5].
Roughly speaking, a garbling scheme consist of the following algorithms:1

Gb: On input 1k and a boolean circuit f , outputs (F, e, d), where F is a garbled cir-
cuit, e is encoding information, and d is decoding information.

En: On input (e, x), where e is as above and x is an input suitable for f , outputs a
garbled input X .

Ev: On input (F,X) as above, outputs a garbled output Y .
De: On input (d, Y ) as above, outputs a plain output y.

The correctness property is that, if (F, e, d)← Gb(1k, f) then for all x:

De(d,Ev(F,En(e, x))) = f(x)

Additionally, several security properties are described:

Privacy (prv.simS ): Intuitively, the collection (F,X, d) should not reveal any more
information about x than f(x). More concretely, there must exist a simulator S
that takes input (1k, f, f(x)) and whose output is indistinguishable from (F,X, d)
generated the usual way.

Obliviousness (obv.simS ): Intuitively, (F,X) should reveal no information about x.
More concretely, there must exist a simulator S that takes input (1k, f) and whose
output is indistinguishable from (F,X) generated the usual way.

Authenticity (aut): Given input (F,X) alone, no adversary should be able to produce
Ỹ 6= Ev(F,X) such that De(d, Ỹ ) 6= ⊥, except with negligible probability.

A garbling scheme may satisfy any combination of these security properties. See Bel-
lare, Hoang, and Rogaway [5] for the complete treatment of garbling schemes and fur-
ther relations among the security properties.

3 Half-Gates Garbling Scheme

First, we give a high-level and self-contained overview of our construction of half-gates,
which form the basis of our improved garbling schemes. Then, we present the details
more formally.

3.1 Approach

Recall that a half-gate is a garbled AND gate for which one of the parties knows one of
the inputs (in the clear). Let’s say we want to compute the gate c = a∧ b. We are in the
free-XOR setting, so let (A,A⊕R) and (B,B⊕R) denote the input wire labels to this
gate, and (C,C ⊕ R) denote the output wire labels, with A, B, and C each encoding
FALSE. R is the free-XOR offset common to all wires. Finally, H will denote a hash (or
key derivation) function.

We describe how to construct half-gates for two cases: when the garbled-circuit
generator knows one of the inputs, and when the evaluator knows one of the inputs.

1 The formalization of [5] allows for garbling of any form of computation. Here we specialize
the notation for garbling circuits, as this is all that is required in our work.



Generator half-gate. We consider the case of an AND gate c = a∧b, where a and b are
intermediate wires in the circuit and the generator somehow knows in advance what the
value a will be. Conceptually, when a = 0, the generator will garble a unary gate that
always outputs false; when a = 1, the generator will garble a unary identity gate. This
idea was also used implicitly by Kolesnikov and Schneider [20, Fig. 2], in the context
of programming components of a universal circuit.

Hence, the generator produces the two ciphertexts:

H(B)⊕ C
H(B ⊕R)⊕ C ⊕ aR

These are then suitably permuted according to the select bits ofB. The evaluator takes a
hash of its wire label for B and decrypts the appropriate ciphertext. If a = 0, it obtains
output wire label C in both values of b. If a = 1, the evaluator obtains either C or
C ⊕ R, depending on the bit b. Intuitively, the evaluator will never know both B and
B ⊕R, hence the other ciphertext appears completely random.

Next, we eliminate one of the ciphertexts by applying a standard idea of garbled
row-reduction [27]. Instead of choosing C uniformly, we choose C so that the first of
the two ciphertexts is the all-zeroes ciphertext (we choose C as H(B), H(B ⊕ R),
or H(B ⊕ R) ⊕ R, depending on the select bits and the value a). As such, the first
ciphertext does not actually need to be sent; in the case where the evaluator would have
decrypted the first ciphertext, it infers it to be the all-zeroes string. Overall, this garbled
half-gate consists of one ciphertext (k bits). The generator calls H twice; the evaluator
calls H once.

Evaluator half-gate. We now consider the case of an AND gate c = a∧ b, where a and
b are intermediate wires in the circuit and the evaluator will somehow already know the
value of a at the time of evaluation.

We exploit the fact that the evaluator can behave differently based on the truth value
of a. Intuitively, when a = 0 the evaluator should always obtain output wire label C;
when a = 1, it is enough for the evaluator to obtain ∆ = C ⊕ B. It can then XOR ∆
with the other wire label (either B or B⊕R) to obtain either C or C⊕R appropriately.

Hence, the generator provides the two ciphertexts:

H(A)⊕ C
H(A⊕R)⊕ C ⊕B

The ciphertexts do not have to be permuted here. They can be arranged according to
the truth value of a as shown here, since the evaluator already knows a. If a = 0, the
evaluator uses wire label A to decrypt the first ciphertext. If a = 1, the evaluator uses
wire label A ⊕ R to decrypt the second ciphertext and XORs the result with the wire
label for b.

Again, we can remove the first ciphertext using garbled row-reduction. We choose
C = H(A) so that the first ciphertext becomes all-zeroes and is not sent. Overall, the
cost of this garbled half-gate is the same as above: it consists of one ciphertext (k bits).
The generator calls H twice; the evaluator calls H once.



Two halves make a whole. Now consider the case where we want to garble an AND
gate c = a ∧ b where both inputs are secret. Consider:

c = a ∧ b
= a ∧ (r ⊕ r ⊕ b)
= (a ∧ r)⊕ (a ∧ (r ⊕ b))

Suppose the generator chooses a uniformly random bit r. In that case, the first AND
gate (a ∧ r) can be garbled with a generator-half-gate. If we further arrange for the
evaluator to learn the value r ⊕ b, then the second AND gate (a ∧ (r ⊕ b)) can be
garbled with an evaluator-half-gate. Leaking this extra bit r⊕ b to the evaluator is safe,
as it carries no information about the sensitive value b. The remaining XOR is free, and
the total cost is two ciphertexts.

We can actually convey r ⊕ b to the evaluator without any overhead. The generator
will choose r to be the select bit of the false wire label on wire b. For security, select
bits of wires are chosen (pseudo)randomly already. Then when a particular value b is
on that wire, the evaluator will hold a wire label whose select bit is b⊕ r.

Thus, we garble a (full) AND gate with two ciphertexts, taking the XOR of two
half-gates. The generator calls H four times; the evaluator calls H twice.

3.2 Details of Our Scheme

We now give a formal description of our garbling scheme, following the basic approach
outlined above.

Notation and concepts. For a boolean circuit f , we associate each wire in the circuit
with a numeric index. We let Inputs(f), Outputs(f), and XorGates(f) denote the set
of wire indices of the input wires, output wires, xor gate output wires, respectively, in f .
We abuse notation slightly and extend these functions as Inputs(F̂ ),Outputs(F̂ ) and
XorGates(F̂ ), where F̂ is a garbled version of f . We use vi to denote the single-bit
plaintext value of the ith wire in a circuit, when the input is understood from context.
For non-input wires, we also refer to the ith gate to mean the logic gate whose output
wire has index i.

Our garbling scheme follows standard paradigms of the free-XOR & point-and-
permute optimizations. We use W 0

i ,W
1
i ∈ {0, 1}k to denote the wire labels for FALSE

and TRUE, respectively, on the ith wire. Here, and throughout the paper, k denotes the
scheme’s security parameter. For each wire label W , its least significant bit lsbW is
reserved as a select bit that is used as in the point-and-permute technique. For the ith
wire, define pi = lsbW 0

i . This value, which we call the permute bit of the wire, is a
secret known only to the generator. Intuitively, when the evaulator holds a wire label
for wire i whose select bit is si, that wire label is W si⊕pi

i , corresponding to truth value
vi = si ⊕ pi. In the context of evaluating a garbled circuit, we typically omit the
superscript from the wire label notation and write just Wi to indicate the fact that the
evaluator indeed does not know vi.

The value R ∈ {0, 1}k−11 is a circuit-global, randomly chosen free-XOR offset;
hence, W 0

i ⊕ W 1
i = R holds for each i in the circuit. We have lsbR = 1 so that

lsbW 0
i 6= lsbW 1

i and complementary wires have opposite select bits.



Computes: fG(va, pb) :=
(va ⊕ αa)(pb ⊕ αb)⊕ αc

Before GRR and permutation:
H(W 0

a )⊕ fG(0, pb)R⊕W 0
Gc

H(W 1
a )⊕ fG(1, pb)R⊕W 0

Gc

After GRR and permutation:
TGc ← H(W 0

a )⊕H(W 1
a )⊕ (pb ⊕ αb)R

W 0
Gc ← H(W pa

a )⊕ fG(pa, pb)R

Generator sends TGc

(a) Generator half-gate: va known to generator.

Computes: fE(va, vb ⊕ pb) :=
(va ⊕ αa)(vb ⊕ pb)

Before GRR:
H(W

pb
b )⊕W 0

Ec

H(W
pb⊕1
b )⊕W 0

Ec ⊕Wαa
a

After GRR (permutation not needed):
TEc ← H(W 0

b )⊕H(W 1
b )⊕Wαa

a

W 0
Ec ← H(W

pb
b )

Generator sends TEc

(b) Evaluator half-gate: vb ⊕ pb known
to evaluator.

Fig. 1. The construction of a non-free binary gate for computing (va, vb) 7→ (va ⊕ αa)(vb ⊕
αb)⊕αc, where αa, αb, αc determines the type of the gate. After the two half-gates are evaluated,
output label is obtained by computing Wc =WGc ⊕WEc

Frequently, we will omit ∧ and just juxtapose two symbols to indicate logical AND.
So ab = a ∧ b. When a is a single bit and R is a long string, we write aR to mean R
when a = 1 and 0|R| when a = 0. We write sequences or tuples with a ‘hat’; for
example, F̂ = (F1, F2, . . .) or X̂ = (X1, X2, . . .).

Finally, we will use H : {0, 1}k ×Z 7→ {0, 1}k to indicate a hash-function suitable
for use in garbled circuits (see Section 4 for suitability criteria). In informal discussions,
we will often shorten H(W b

i , j) to just H(W b
i ), and it will be implicitly understood

that we are using unique, but public, j for different groups of calls to H . In the formal
descriptions, the value of j is always explicit.

Arbitrary gates. The approach just described can be used to garble any gate whose
truth table contains an odd number of ones (e.g., AND, NAND, OR, NOR, etc.). All
such gates can be expressed as the form

(va, vb) 7→ (αa ⊕ va) ∧ (αb ⊕ vb)⊕ αc

for constants αa, αb, αc. For example, setting all to 0 results in an AND gate; setting all
to 1 results in an OR gate. These α values need not (but can) be secret. We describe the
general construction of these gates in Figure 1. We note that the evaluator’s logic does
not depend on the α values.

Following the description in Section 3.1, we garble each gate using a composition of
two half-gates. Conceptually, W b

Gi and W b
Ei denote the output wire labels for these two

half-gates (generator-side and evaluator-side, respectively) that comprise the ith gate.
The final logical output wire label for the ith gate is then set to be W 0

i = W 0
Gi ⊕W 0

Ei.
Similarly, we use TGi and TEi to denote the single garbled row transmitted for each
half gate used in the ith gate.

The first rows of Figure 1 show the function being computed by each half gate. In
(a), generator knows pb while in (b) the evaluator knows vb ⊕ pb = lsbWb. The second



rows show the two ciphertexts of each half-gate, before they are permuted according to
their select bits (in case of (a)) and before garbled row reduction (GRR) is applied. Here,
we have expanded W f(x,pb)

Gc to W 0
Gc ⊕ f(x, pb)R to make the row reduction clearer in

the next step. The third rows show the final result.

The complete scheme. The full garbling procedure for an entire circuit is shown in
Figure 2. The scheme works for any binary gate, but for simplicity of discussion and
proof we assume all gates are either AND or XOR.

procedure Gb(1k, f):
R� {0, 1}k−11
for i ∈ Inputs(f) do
W 0
i � {0, 1}k

W 1
i ←W 0

i ⊕R
ei ←W 0

i

for i /∈ Inputs(f) {in topo. order} do
{a, b} ← GateInputs(f, i)
if i ∈ XorGates(f) then
W 0
i ←W 0

a ⊕W 0
b

else
(W 0

i , TGi, TEi)← GbAnd(W 0
a ,W

0
b )

Fi ← (TGi, TEi)
end if
W 1
i ←W 0

i ⊕R
for i ∈ Outputs(f) do
di ← lsb(W 0

i )

return (F̂ , ê, d̂)

private procedure GbAnd(W 0
a ,W

0
b ):

pa ← lsbW 0
a ; pb ← lsbW 0

b

j ← NextIndex(); j′ ← NextIndex()
{First half gate}
TG ← H(W 0

a , j)⊕H(W 1
a , j)⊕ pbR

W 0
G ← H(W 0

a , j)⊕ paTG
{Second half gate}
TE ← H(W 0

b , j
′)⊕H(W 1

b , j
′)⊕W 0

a

W 0
E ← H(W 0

b , j
′)⊕ pb(TE ⊕W 0

a )
{Combine halves}
W 0 ←W 0

G ⊕W 0
E

return (W 0, TG, TE)

procedure En(ê, x̂):
for ei ∈ ê do
Xi ← ei ⊕ xiR

return X̂

procedure De(d̂, Ŷ ):
for di ∈ d̂ do
yi ← di ⊕ lsbYi

return ŷ

procedure Ev(F̂ , X̂):
for i ∈ Inputs(F̂ ) do
Wi ← Xi

for i /∈ Inputs(F̂ ) {in topo. order} do
{a, b} ← GateInputs(F̂ , i)

if i ∈ XorGates(F̂ ) then
Wi ←Wa ⊕Wb

else
sa ← lsbWa; sb ← lsbWb

j ← NextIndex(); j′ ← NextIndex()
(TGi, TEi)← Fi
WGi ← H(Wa, j)⊕ saTGi
WEi ← H(Wb, j

′)⊕ sb(TEi ⊕Wa)
Wi ←WGi ⊕WEi

end if
for i ∈ Outputs(F̂ ) do
Yi ←Wi

return Ŷ

Fig. 2. Our complete garbling scheme. NextIndex is a stateful procedure that simply increments
an internal counter.



4 Security

We now prove the security of our scheme, using the prv.simS and obv.simS security
definitions of Bellare, Hoang, and Rogaway [5]. The scheme shown in Figure 2 does
not provide authenticity, simply because authenticity is not required in many use cases
including semi-honest Yao’s circuits. However, there are well-known, standard modi-
fications to the decoding procedure that can add authenticity, which we describe sepa-
rately in Section 4.3. Finally, since we only consider circuits with just AND and XOR
gates, everything about the function f is public and we do not define a separate function
Φ(f) to extract public information about f .

4.1 Circular Correlation Robustness for Naturally Derived Keys

We first describe the security property required of the hash/key-derivation function H .
Roughly speaking, we can use either a circular-correlation-robust hash function, as de-
fined by Choi et al. [7], or a Davis-Meyer construction in the ideal random permutation
model [4]. Note that a result of using half gates is we need arguably simpler single-
key functions instead of the previously proposed dual-key ones. So, we first present the
single-key analogs of these two definitions. Then we define a weaker notion of security
that is satisfied by both these classes of hash functions. Functions satisfying this new
notion of security will be said to have circular correlation robustness for naturally de-
rived keys. Finally we show that our garbling scheme is secure given any hash function
that satisfies this new, weaker notion of security.

Circular correlation robustness. We revisit the definition of circular correlation robust-
ness. The definition is the same as the one introduced in [7], except that we are able to
simplify the notation for H that takes only one wire label / key. Given a hash function
H , we define two oracles:

– CircR(x, i, b) = H(x⊕R, i)⊕ bR, where R ∈ {0, 1}k−11
– Rand(x, i, b): random function with k-bit output.

Definition 1. Say that a sequence of oracle queries of the form (x, i, b) is legal if the
same value of (x, i) is never queried with different values of b. Then H is circular
correlation robust if, for all all polynomial-time adversaries A making legal queries,∣∣∣∣PrR [ACircR(1k) = 1]− Pr

Rand
[ARand(1k) = 1]

∣∣∣∣ is negligible.

The restriction to legal queries prevents the adversary from trivially findingR. Note
that for the single-key version here we do not need an extra parameter a to produce
values of the form H(x ⊕ aR, i) ⊕ bR, since the definitions in Choi et al. [7] would
have made it illegal to use a = 0 anyway.

Finally, we emphasize that the adversary is allowed unrestricted access to H . Thus,
modeling H as a random oracle, the adversary has oracle access to H in addition to
the oracle in the experiment. In the standard model, the adversary is allowed to depend
arbitrarily on H .



Constructions from ideal permutations. Bellare et al. [4] construct a gate-level cipher in
the ideal random permutation model. In this model, all parties have access to a randomly
chosen permutation π : {0, 1}k → {0, 1}k and its inverse π−1. This is meant to model
a setting where a garbling scheme is based on AES with a (public) fixed key, which can
be implemented very efficiently with AES-NI instructions.

Bellare et al. [4] do not abstract a concrete security property that their hash function
must satisfy. Instead, they describe how to construct their hash function, and prove
security of the entire garbling scheme directly from the underlying assumption of a
random permutation. Our ultimate abstraction (robustness for naturally derived keys)
can be seen as a formalization of the properties of H actually used in their proofs.

We first describe the hash function of [4], altered for our single-key setting:

Definition 2. For a random permutation π : {0, 1}k 7→ {0, 1}k, we define the hash
function Hπ(x, i) to be π(K)⊕K where K = 2x⊕ i.

For concreteness, 2x refers to doubling in GF(2k). However, there are many alternative
ways of constructing Hπ from π, which do not affect our proof. We refer the reader to
Bellare et al. [4] for these alternate constructions and how they affect the exact constants
on the security bounds. We also point out that in the following, the adversary is assumed
to have access to π and π−1.

Our abstraction. We now define a security notion that is satisfied by both of the above
constructions.

Definition 3. Say that a sequence of queries of the form (x, i, b) to an oracle O are
natural if they satisfy the following:

– for the qth query, we have i = q.
– b ∈ {0, 1}
– x is naturally derived, meaning that it is obtained from one of these operations:
• x� {0, 1}k
• x← x1 ⊕ x2, where x1 and x2 are naturally derived
• x← H(x1, i), where x1 is naturally derived and i ∈ Z
• x← O(x1, i, b) where x1 is naturally derived.

Then H is circular correlation robust for natural keys if, for all all polynomial-time
adversaries A making natural queries,∣∣∣∣PrR [ACircR(1k) = 1]− Pr

Rand
[ARand(1k) = 1]

∣∣∣∣ is negligible.

Note that these restrictions only apply when querying O — the adversary is still
allowed to make unrestricted queries to H directly (and π, π−1 in the ideal permutation
model). While it is a weak notion of security (since the adversary is very restricted), it
turns out to be enough to prove security of our garbling scheme (Section 4.2).



Achieving the definition. While it is evident that circular correlation robustness against
naturally derived keys is a restricted version of circular correlation robustness defined
in Definition 1, it may not be as obvious that the Hπ ideal permutation construction
satisfies this notion.

Intuitively, the purpose of the naturally-derived restrictions is to make it unlikely
that the adversary can ever query O with both (x, i, b) and (x′, i′, b′) where 2x ⊕ i =
2x′ ⊕ i′ even though (x, i) 6= (x′, i′). That would have created a problem in the case
where O uses Hπ . This would in turn invoke π(2x ⊕ 2R ⊕ i) = π(2x′ ⊕ 2R ⊕ i′). If
the adversary uses b 6= b′ then the responses to these queries reveal R.

The proof that the Hπ construction achieves our definition in the ideal permutation
model basically follows directly from the security proofs in Bellare et al. [4]. There, the
bulk of the proofs are devoted to bounding the probability of the adversary making a
query of the above form. They use only the fact that wire labels in their constructions
are naturally derived, in our terminology (or, at least, the obvious generalization of
naturally-derived to the two-key setting).

Following their proofs, one can work out the advantage of an adversary that makes
q queries to the oracle O and Q queries to π, π−1, in our security game. The advantage
comes out to be O((qQ + q2)/2k). The quadratic terms in that expression come from
the birthday bounds of hash functions with k-bit output. We did not derive the exact
constants since, in practice, much larger constants are likely to arise when π is replaced
by a concrete function (e.g. AES). In any case, it is negligible in k, and therefore satisfies
our notion of security.

4.2 Proof of Privacy and Obliviousness

The first thing to note is that we can easily rewrite the scheme in Figure 2 such that it
only uses R through the oracle CircR. In particular, we can rewrite the assignments to
TGi and TEi as:

TGi ← H(W 0
a , j)⊕ CircR(W

0
a , j, pb)

TEi ← H(W 0
b , j
′)⊕ CircR(W

0
b , j
′, 0)⊕W 0

a

Moreover, observe that we are only ever invoking CircR with naturally derived keys,
assuming NextIndex returns sequential integers. This is partly why we did not write the
assignments toW 0

Gi andW 0
Ei in Figure 2 more naturally using if statements conditioned

on pa and pb — we did not want to repeat j values between oracle calls. Second, we no
longer need to explicitly use R anywhere in Gb outside of the oracle (W 1

i values are no
longer needed).

Theorem 1. Our scheme satisfies the security notion of obv.simS and prv.simS with
any H that has correlation robustness for naturally derived keys.

Proof. The proof for obv.simS is identical to that of prv.simS , except that the simulator
does not receive ŷ and does not need to compute d̂. So we will only provide the proof
for prv.simS . To prove indistinguishability between the simulator (Figure 3) and the
real protocol (Figure 1) we use the following chain of hybrids:



procedure S(1k, f, ŷ):
for i ∈ Inputs(f) do
W 0

i � {0, 1}k

Xi ← W 0
i

for i /∈ Inputs(f) {in topo. order} do
{a, b} ← GateInputs(f, i)
if i ∈ XorGates(f) then
W 0

i ← W 0
a ⊕W

0
b

else
(W 0

i , TGi, TEi)← SimAnd(W 0
a ,W

0
b )

Fi ← (TGi, TEi)
end if

for i ∈ Outputs(f) do
di ← lsb (W 0

i )⊕ yi
return (F̂ , X̂, d̂)

private procedure SimAnd(W 0
a ,W

0
b ):

pa ← lsbW 0
a ; pb ← lsbW 0

b

j ← NextIndex(); j′ ← NextIndex()

TG ← H(W 0
a , j)⊕ Rand(W 0

a , j, pb)

W 0
G ← H(W 0

a , j)⊕ paTG

TE ← H(W 0
b , j
′)⊕ Rand(W 0

b , j
′, 0)⊕W 0

a

W 0
E ← H(W 0

b , j
′)⊕ pb(TE ⊕W 0

a )

W 0 ← W 0
G ⊕W

0
E

return (W 0, TG, TE)

procedure GO1 (1k, f, x̂): // GCircR
2

v̂ ← evalWires(f, x̂)
for i ∈ Inputs(f) do

W
vi
i � {0, 1}k; W

vi
i ← W

vi
i ⊕ R

Xi ← W
vi
i

for i /∈ Inputs(f) {in topo. order} do
{a, b} ← GateInputs(f, i)
if i ∈ XorGates(f) then
W

vi
i ← Wva

a ⊕Wvb
b

else
(W

vi
i , TGi, TEi)← SimAndO1 (Wva

a ,W
vb
b , va, vb)

Fi ← (TGi, TEi)
end if

W
vi
i ← W

vi
i ⊕ R

for i ∈ Outputs(f) do
di ← lsb (W

vi
i )⊕ vi

return (F̂ , X̂, d̂)

private procedure SimAndO1 (Wva
a ,W

vb
b , va, vb):

sa ← lsbWva
a ; sb ← lsbW

vb
b

j ← NextIndex(); j′ ← NextIndex()
TG ← H(Wva

a , j)⊕O(Wva
a , j, vb ⊕ sb)

W
va(vb⊕sb)

G ← H(Wva
a , j)⊕ saTG

TE ← H(W
vb
b , j′)⊕O(W

vb
b , j′, va)⊕Wva

a

W
vasb
E ← H(W

vb
b , j′)⊕ sb(TE ⊕Wva

a )

Wvavb ← W
va(vb⊕sb)

G ⊕Wvasb
E

return (Wvavb , TG, TE)

private procedure evalWires(f, x̂):
for i ∈ Inputs(f) do vi ← xi

for i 6∈ Inputs(f) do
{a, b} ← GateInputs(f, i)
if i ∈ XorGates(f) then
vi ← va ⊕ vb

else vi ← va ∧ vb
return v̂

procedure G3(1k, f, x̂):
R � {0, 1}k−11
for i ∈ Inputs(f) do
W 0

i � {0, 1}k

W 1
i ← W 0

i ⊕ R
Xi ← W

xi
i

for i /∈ Inputs(f) {in topo. order} do
{a, b} ← GateInputs(f, i)
if i ∈ XorGates(f) then
W 0

i ← W 0
a ⊕W

0
b

else
(W 0

i , TGi, TEi)← SimAnd3(W
0
a ,W

0
b )

Fi ← (TGi, TEi)
end if
W 1

i ← W 0
i ⊕ R

for i ∈ Outputs(f) do
di ← lsb (W 0

i )

return (F̂ , X̂, d̂)

private procedure SimAnd3(W
0
a ,W

0
b ):

pa ← lsbW 0
a ; pb ← lsbW 0

b

j ← NextIndex(); j′ ← NextIndex()

TG ← H(W 0
a , j)⊕H(W 1

a , j)⊕ pbR
W 0

G ← H(W 0
a , j)⊕ paTG

TE ← H(W 0
b , j
′)⊕H(W 1

b , j
′)⊕W 0

a

W 0
E ← H(W 0

b , j
′)⊕ pb(TE ⊕W 0

a )

W 0 ← W 0
G ⊕W

0
E

return (W 0, TG, TE)

Fig. 3. The simulator for prv.simS security, and the hybrids used in the proof.



1. S ≡ GRand1 : Both generate uniformly random values for each of the components in
(F̂ , X̂, d̂), and are therefore identically distributed. More concretely, G1 uses x̂ to
determine a truth value vi on each wire (via evalWires). Yet these truth values v̂ are
used only as a superscript for W v

i . We could have obtained the same result if we
had named these variables W 0

i for all i instead of W vi
i . In Figure 3, G1 does not

include the boxed statements.
2. GRand1 ≈ GCircR1 : We have just changed the oracleO from Rand to CircR. These two

hybrids are indistinguishable simply by our assumption about the hash function.
3. GCircR1 ≡ GCircR2 : In Figure 3, we obtain G2 by adding the boxed statements to G1.

We let the variable R in G2 refer to the R of the oracle CircR.
The only difference between these two is that G2 computes some extra values that
are never used (they will be used in G3). We couldn’t compute these earlier since
we couldn’t use R while performing the previous step of the hybrid.

4. GCircR2 ≡ G3: G3 induces identical distributions on all of the variables (W 0
i , W 1

i ,
TGi, and TEi), but does so without explicitly having to compute vi for non-input
wires. For example, instead of randomly sampling W vi

i and then setting W vi
i ←

W vi
i ⊕R, G3 randomly samples W 0

i and then sets W 1
i ←W 0

i ⊕R. The algebraic
relationships between each variable are still unchanged. We have also expanded the
oracle calls in SimAnd3 to correspond to O = CircR.

Finally, G3 computes (F̂ , X̂, d̂) as (F̂ , ê, d̂) ← Gb(1k, f); X̂ ← En(ê, x). This is
precisely how these values are computed in the real interaction in the prv.simS game.
This completes our proof.

4.3 Obtaining Authenticity

In the aut security game defined by Bellare et al. [5], an adversary is given (F̂ , X̂).
It is necessary to show that the adversary cannot produce Ỹ 6= Ev(F̂ , X̂) such that
De(d̂, Ỹ ) 6= ⊥, except with negligible probability. This is clearly not the case for the
scheme as we present it in Figure 2; in fact, De never returns ⊥.

To achieve authenticity, we modify the scheme as described in Figure 4.

Theorem 2. Our modified scheme (Figure 4) satisfies the security notion of aut with
any H that has correlation robustness for naturally derived keys.

{modify final loop of Gb:}
for i ∈ Outputs(f) do
j ← NextIndex()

di ← (H(W 0
i , j), H(W 1

i , j))

procedure De(d̂, Ŷ ):
for di ∈ d̂ do
j ← NextIndex()
parse (h0, h1)← di
if H(Yi, j) = h0 then yi ← 0
else if H(Yi, j) = h1 then yi ← 1
else return ⊥

return ŷ

{modify final loop of S:}
for i ∈ Outputs(f) do
j ← NextIndex(); h � {0, 1}k
if yi = 0

then di ← (H(W 0
i , j), h)

else di ← (h,H(W 0
i , j))

Fig. 4. Changes to our scheme required to achieve authenticity.



Proof (Proof Sketch). Consider an interaction in which we run the prv.sim-simulator S
(with the change described in Figure 4) to generate (F̂ , X̂, d̂). We give (F̂ , X̂) to the
adversary and use d̂ to run De and check whether the adversary succeeded in violating
authenticity. In order to do so, the adversary would have to guess a value h that was
chosen in the final loop of S. But these values are independent of the adversary’s view,
so this can happen with probability at most 1/2k. The rest of the proof follows an iden-
tical sequence of hybrids as the proof of Theorem 1. Eventually, we reach an interaction
that is identical to the aut game played against the adversary. By the indistinguishabil-
ity of the hybrids, the adversary’s success probability must be negligible. Note that the
changes we have made to the scheme and simulator still allow the steps in the proof to
retain naturally derived accesses to the oracles.

5 Performance Comparison

We evaluate the performance of our scheme in comparison to previous garbling schemes
using both analytical and experimental measurements.

Table 3 shows computations of the raw garbled circuit size in our scheme, calculated
for several circuit designs. The table is derived from the one provided with fleXOR [19];
the circuits were obtained from [30, 11]. Our technique outperforms all previous gar-
bling schemes in this metric, achieving the expected maximum of 33% gain for most
circuits. There are some AND-intensive circuits (e.g., the DES circuit used here) for
which the previous fleXOR technique already does well, but we manage to improve a
little upon that as well.

We selected a smaller, well-studied set of benchmark circuits for experimental eval-
uation. The aim here was to understand the cost tradeoffs for our scheme more clearly,
in the context of a secure two-party computation protocol. In our scheme the evaluator
performs one extra hash operation per gate while reducing network usage. Therefore,
it is possible that we end up paying more in terms of computational resources, such as
energy used.

Table 4 shows our measurements. Details of our experimental setup are provided
below. We see that our scheme significantly reduces the total time and energy used

circuit GRR2 [28] free-XOR [20] fleXOR [19] this work ↓%

DES 2.0 2.79 1.89 1.86 1%
AES 2.0 0.64 0.72 0.42 33%

SHA-1 2.0 1.82 1.39 1.21 12%
SHA-256 2.0 2.05 1.56 1.37 12%

Hamming distance 2.0 0.50 0.50 0.33 33%
minimum in set 2.0 0.87 0.87 0.58 33%

32 × 32 fast mult 2.0 0.90 0.94 0.60 33%
1024-bit millionaires 2.0 1.00 1.00 0.67 33%

Table 3. Comparison of garbled circuit size, for selected circuits of interest. Size measured in
average number of ciphertexts per gate.



Time (s) Bandwidth (MB) Energy (kJ)

Benchmark Whole Half ↓% Whole Half ↓% Whole Half ↓%

Edit distance [14] 17.8 13.2 25.7% 200.4 133.6 33.3% 1.13 0.89 21.0%
AES [14] 18.2 17.0 7.0% 115.6 77.1 33.3% 1.25 1.18 5.3%
Set intersection [13] 37.0 29.7 19.7% 324.5 219.9 32.2% 2.41 2.03 15.5%

Table 4. Resource usage for three common programs. Edit distance refers to the Levenstein dis-
tance between two 200-byte strings. AES refers to 1 block of encryption and key expansion,
iterated 10 times. Set intersection is performed on set of 1024, 32-bit integers, iterated 10 times.
Each of these 3 jobs were in turn executed 5 times and measured separately, and the numbers are
averages over these 5 runs. Whole denotes experimental setup using free-XOR with GRR2, while
Half denotes a setup using our half-gates construction.

by the evaluator in every test of the protocol. In our tests, we found that our scheme
actually increased the power usage (i.e., higher wattage), but the increase was more
than offset by the reduced runtime (i.e., lower total energy). It is conceivable that a very
slow evaluator connected to a very fast LAN may not enjoy the same reduction in energy
usage, but we did not have the equipment to run such a test and such a scenario seems
unlikely to occur in practice. If the two parties have symmetric computational power,
however, our protocol should always be better since the computational bottleneck would
be the generator, who is performing four calls to H per AND gate in all schemes.

Experimental Setup. The experiments were performed using the Obliv-C system [32],
where we hooked into the protocol execution to implement our own garbling scheme.
This allowed us to easily reuse the exact same benchmark programs for both schemes.
We executed Yao’s standard semi-honest protocol for 2PC, with a security of 80-bit
keys, and compared our scheme to Free-XOR with GRR3 AND gates. In both experi-
mental setups, we used pipelining optimizations [14] and instantiated the H hash func-
tion in the garbling scheme using the fixed-key AES construction of [4] (described
in Section 4). All measurements (time, network and energy) include the time for per-
forming oblivious transfers and output sharing (which are not affected by the garbling
scheme), hence the overall reductions support the argument that bulk of the bandwidth
and computation is due to the garbled circuit execution.

The compilation was done using GCC 4.8.2, linked with libgcrypt 1.6.1 (older ver-
sions are much slower). We executed the protocol between an Intel Core i7-2600S at
2.8 GHz, running Ubuntu 14.04, and an i7-2600 at 3.4 GHz running Ubuntu 13.10,
connected over a LAN. Energy consumption was measured by using an electrical meter
plugged in to the wall power outlet for one of the machines — the power meter had an
USB interface that allowed us to measure power only for the duration of the job. For all
jobs we report the average (time/energy) measurement over five runs, which was more
than enough for obtaining statistically significant results (at p < 0.05).



6 Privacy-Free Garbling

Jawurek, Kerschbaum, and Orlandi [18] described an elegant and practical zero-knowledge
protocol based on garbled circuits. It allows a prover to prove statements of the form
“∃x : C(x) = 1”, at a cost of just one garbled circuit for C.

In their protocol, the garbled circuit is evaluated by a prover who knows the en-
tire input to the garbled circuit and the truth value along each wire. Hence, only the
authenticity property of garbled circuits is required, and not the privacy property (in
the terminology of Bellare et al. [5]). We call a garbling scheme privacy-free if it only
satisfies the authenticity property. Frederiksen, Nielsen, and Orlandi [8] showed that
privacy-free garbled circuits can be significantly smaller than their full-fledged counter-
parts.

Very roughly speaking, removing the privacy requirement saves one ciphertext per
gate. Frederiksen et al. [8] adapt three garbling schemes to the privacy-free setting:
GRR2, free-XOR, and fleXOR. Mirroring the situation with full-fledged garbled cir-
cuits, they showed how to garble an AND gate using just one ciphertext (i.e., GRR1),
but in a way that is incompatible with free-XOR. When using free-XOR, it was neces-
sary to garble AND gates using two ciphertexts.

Our approach using half-gates can also give a direct improvement in this privacy-
free setting. Namely, one can garble a circuit with free-XOR gates, and garble AND
gates using our evaluator-half-gate construction. In this setting, the evaluator knows
both inputs to every AND gate, though our half-gate only takes advantage of the evalu-
ator’s knowledge of one input. Overall, we can perform privacy-free garbling at a cost
of only one ciphertext per AND gate, and no cost for XOR gates. Interestingly, our
construction of privacy-free garbling also results in less overall computation than the
previous schemes — only two calls to H instead of three.

A summary of our results for privacy-free garbling is given in Table 5. As before,
our best improvements in this setting are on circuits for which free-XOR was previously
the best approach. Here, the relative improvement is more dramatic: we cut the size of
the garbled circuit in half. Concretely, using the protocol of Jawurek, Kerschbaum,
and Orlandi [18], it is possible to prove in zero knowledge a statement of the form “I
know k such that AES(k,m) = c” (for public m, c) by sending only 108 kilobytes of
garbled circuit (using 128-bit wire labels; for 80-bit wire labels, the garbled circuit is
68 kilobytes).

circuit GRR1 free-XOR fleXOR this work ↓%

DES 1.0 1.86 0.96 0.93 3%
AES 1.0 0.43 0.51 0.21 50%

SHA-1 1.0 1.21 0.78 0.61 22%
SHA-256 1.0 1.37 0.87 0.68 22%

Table 5. Comparison of privacy-free garbled circuit size, for selected circuits of interest. Previ-
ous constructions and their statistics are from Frederiksen, Nielsen, and Orlandi [8]. Size mea-
sured in average number of ciphertexts per gate.



7 Lower Bounds on Garbled Circuits

This section introduces a methodology for reasoning about lower bounds on the size
of garbled gates and shows that our construction is size-optimal for a large class of
garbling schemes, which encompasses all known practical techniques.

When thinking about the size of garbled gates, instead of thinking about free-XOR
compatibility, it turns out to be more instructive to think about the degrees of freedom
available for choosing a gate’s output wire labels. In the classical scheme that uses four
ciphertexts, both output wire labels can be arbitrary; there are two degrees of freedom.
In the GRR3 scheme that uses three ciphertexts, one of the output wire labels is fixed
as soon as the input wire labels are fixed (since one output wire label is a hash of
some input wire labels). Hence there is just one degree of freedom, for choosing the
other wire label, and this is typically exploited to ensure free-XOR compatibility. In
the GRR2 scheme that uses two ciphertexts, both output wire labels are fixed as soon
as the input wire labels are fixed; there are no degrees of freedom. In our construction
also, there are no degrees of freedom on the output wire labels. One is chosen as a hash
of input wire labels, and, furthermore, the two output wire labels must have the same
offset as one of the input wires.

7.1 Basic Methodology

There are many techniques that fall under the category of garbling schemes. We wish
to focus on techniques based on (fast, practical) symmetric-key primitives only. Hence,
in this section we model parties as computationally unbounded entities that can make
polynomially many queries to a random oracle. This is the standard setting (initiated by
Impagliazzo and Rudich [17]) for proving lower bounds about Minicrypt.2

We wish to prove lower bounds relating to concrete efficiency; for example, prove
that it is possible to garble an AND-gate with 2k bits of ciphertext but not with k bits.
We say that a garbling scheme has ideal security if no adversary of the above form
(computationally unbounded, with bounded queries to a random oracle) has advantage
better than poly(k)/2k (rather than negligible) in the security games, where k is the
security parameter and output length of the random oracle.

To see why it makes sense to restrict to ideal security in our setting, consider a
garbling scheme where, with security parameter k, we apply our “two-ciphertext” con-
struction for AND gates but with a k/2-bit random oracle. The resulting garbled gate
is then only k bits, and indeed, no adversary has better than negligible advantage in the
appropriate security games. However, it is possible to achieve advantage poly(k)/2k/2.

Intuitively, a random oracle with security parameter (output length) k is an object
that gives security poly(k)/2k. We wish to consider only garbling schemes which do
not “cheat” the size of the garbled gates by artificially degrading the security parameter
of the random oracle relative to the security parameter of the garbling scheme.

2 Minicrypt is one of Impagliazzo’s hypothetical worlds [16] in which one-way functions exist
but no stronger cryptography (in particular, public-key cryptography) exists. Since a random
oracle models an ideal one-way function, we can model a world without cryptography beyond
one-way functions as a world with computationally-unbounded entities that have access to a
random oracle.



Still, consider a garbling scheme that on security parameter k instantiates an ideally
secure garbling scheme on security parameter k − O(log k). The result yields secu-
rity poly(k)/2k−O(log k) = poly(k)/2k, satisfying our ideal security definition as well.
Hence, even with our model one cannot prove a clean lower bound of the form “2k bits
are required for an AND gate.” Rather, one must prove something like “2k − O(log k)
bits are required for an AND gate.”3 The special case we consider below, however, is
already restricted to schemes whose gates are an integer multiple of k bits.

7.2 Linear Garbling Schemes

We first observe that, to the best of our knowledge, all techniques for practical garbling
schemes share certain features. Roughly speaking, the Gb and Ev procedures use only
linear operations apart from queries to the random oracle (in this setting, we assume
a random-oracle instantiation of the scheme), and choosing which linear operation to
apply based on select bits of given wire labels (in the case of Ev) or on the association
of select bits to TRUE/FALSE (in the case of Gb).

For example:

– In the classical garbling scheme, ciphertexts that comprise the garbled gate are
all formed by taking an XOR of oracle responses with wire labels. Similarly, in
most other schemes the garbled gate consists of values of the form H(A‖B) ⊕ C,
H(A) ⊕ C, where A, B, and C are wire labels. The select bits and permute bits
are used to decide which linear operations to apply (which ciphertext to decrypt in
Ev).

– When using GRR3 row-reduction, one output wire label is chosen as H(A‖B),
hence linearly in the sense described above. Then behavior in Ev depends on the
select bits of the given wire labels (i.e., whether to decrypt a ciphertext or simply
take a hash of the input wire labels as the output), but in each case the resulting
behavior is linear.

– In the GRR2 construction [28], generating and evaluating a gate involves interpo-
lating polynomials that pass through points of the form (t,H(A‖B)). Since the
values t are fixed, interpolation is a linear operation on outputs of H . Both the gar-
bled gate itself and the output wire labels are the result of such interpolation. In
Gb, the choice of which points to interpolate (hence, the choice of which linear
operation to perform) depends on the assocation of select bits to TRUE/FALSE.

– In our scheme, Ev performs an additional XOR depending on the select bits of wire
labels.

– When using free-XOR, wire labels are chosen subject to a linear relationA0⊕A1 =
B0 ⊕B1.

We also observe the following properties common to existing garbling techniques:

– When garbling a circuit, the gates are processed in topological order. At the time
a gate is processed, the labels of its input wires have already been determined, but
the output wire labels may be determined as a result of garbling this gate.

3 Indeed, constructions that use the point-and-permute optimization degrade (by just one bit) the
security of the underlying block cipher / hash function by using the least significant bit in a
structured way.



– When restricted to operate on a single gate, the queries to the random oracle are
made statically. That is, neither Ev nor Gb ever use the result of an oracle query to
determine a future oracle query. For many schemes, this property is not true when
garbling a larger circuit (an oracle query is used to determine an output wire label,
which is then used to determine another oracle query in a downstream gate).

We argue that restrictions of this form capture all existing practical approaches
for garbled circuits. Of course, we exclude techniques based on specific algebraic
assumptions (e.g., [1, 2]) or more exotic tools like multilinear maps (e.g., [9]) which are
arguably impractical and already ruled out by restricting our focus to Minicrypt.

The model. We formalize the observations above as follows. We restrict our focus to
garbling schemes that garble a single AND gate. We say that a garbling scheme is linear
if its procedures have the following form:

Gb: Parameterized by integers m, r, q and vectors A0, A1, B0, B1, {Ca,b,0 | a, b ∈
{0, 1}}, {Ca,b,1 | a, b ∈ {0, 1}}, and {G(i)

a,b | a, b ∈ {0, 1}, i ∈ [m]}. Each vector
is of length r + q, with entries in GF (2k).
1. For i ∈ [r], choose Ri ← GF (2k).
2. Make q distinct queries to the random oracle (which can be chosen as a de-

terministic function of the Ri values). Let Q1, . . . , Qq denote the responses to
these queries. Define S = (R1, . . . , Rr, Q1, . . . , Qq). These are the values on
which the algorithm acts linearly.

3. Choose random permute bits a, b← {0, 1} for the two input wires.
4. For i ∈ {0, 1}, compute Ai = 〈Ai,S〉; Bi = 〈Bi,S〉; Ci = 〈Ca,b,i,S〉.

Then (A0‖0, A1‖1) and (B0‖0, B1‖1) are taken as the input wire labels to the
gate (i.e., the subscripts denote the public select bits), with Aa and Bb corre-
sponding to FALSE. (C0, C1) are the output wire labels with C1 corresponding
to TRUE.

5. For i ∈ [m], compute Gi = 〈G(i)
a,b,S〉. The values G1, . . . , Gm comprise the

garbled circuit.
En: On input xa, xb ∈ {0, 1}, set α = xa ⊕ a and β = xb ⊕ b, where a and b are the

permute bits chosen above. Output Aα‖α and Bβ‖β.
Ev: Parameterized by integer q and vectors {V α,β | α, β ∈ {0, 1}}, where each vector

is of length q +m+ 2.
1. The input are wire labels Aα‖α,Bβ‖β, tagged with their corresponding select

bits, and the garbled circuit G1, . . . , Gm.
2. Make q distinct queries to the random oracle (which can be chosen as a de-

terministic function of the input wire labels). Let Q′1, . . . , Q
′
q denote the re-

sponses to these queries, and define T = (Aα, Bβ , Q
′
1, . . . , Q

′
q, G1, . . . , Gm).

These are the values on which Ev acts linearly.
3. Output the inner product 〈V α,β ,T 〉.

In Appendix A we show how well-known previous practical garbling schemes are
linear in the above sense.



Limitations. We emphasize that our linear model of garbling schemes is most mean-
ingful when garbling a single atomic gate. This is due to the issue regarding adaptive
queries to the random oracle that happen when combining several garbled gates in a
larger circuit.

For example, the best known way to garble an N -input AND gate is to garble it as a
circuit ofN−1, 2-input AND gates, for a total cost of 2N−2 ciphertexts. But garbling
in this way results in adaptive oracle queries, and the resulting scheme is not covered
by our current model.

We suspect that it may be possible to augment our proof techniques for larger gar-
bled circuits while accounting for adaptive oracle queries, but we leave this investigation
to future work.

7.3 Lower Bound

Theorem 3. Every ideally secure garbling scheme for AND gates that is linear in the
above sense must have m ≥ 2. That is, the garbled gate consists of at least 2k bits.

Proof. From the correctness of the scheme, we must have C(a⊕α)∧(b⊕β) = 〈V α,β ,T 〉.
Let us divide the vector T into a public and private part:

– The public part T pub of T consists of the wire labels and oracle responses. Without
loss of generality, the oracle queries made by Ev are a subset of the queries made
by Gb. Any query made by Ev but not Gb will have an answer that is independent
of all the activity of Gb. As such, correctness is violated if this oracle response
is actually used in the evaluator’s inner product. Hence the public portion of T is
linear function of S, and that linear function depends only on α, β, and not the
secret permute bits a, b. We write T pub = Mα,β × S>.

– The private part T prv of T consists of the garbled circuit componentsGi. These are
a linear function of S that can depend on the secret permute bits a, b. In particular,
let Ga,b denote the matrix whose rows are G

(1)
a,b, . . . ,G

(m)
a,b . Then T prv = Ga,b ×

S>. Our goal is to show that Ga,b must have at least 2 rows.

Let us also divide V α,β into a public and private portion, in an analogous way. We
may thus rewrite the correctness condition as follows:

〈Ca,b,(a⊕α)∧(b⊕β),S〉 = C(a⊕α)∧(b⊕β) = 〈V α,β ,T 〉

= 〈V pub
α,β ,T

pub〉+ 〈V prv
α,β ,T

prv〉

= 〈V pub
α,β ,Mα,β × S>〉+ 〈V prv

α,β ,Ga,b × S>〉
= 〈Zα,β ,S〉+ 〈V prv

α,β ×Ga,b,S〉

where Zα,β = V pub
α,β ×Mα,β is a vector that depends only on α, β.

Now, the vector S is uniformly distributed. For this correctness probability to hold
with probability 1 (or even noticeable probability) over the choice of S, we must have
the following equality of vectors:

Ca,b,(a⊕α)∧(b⊕β) = Zα,β + V prv
α,β ×Ga,b



Claim: Matrices {Ga,b | a, b ∈ {0, 1}} are all distinct. Fix some permute bits a, b,
then by the correctness condition, the values {Zα,β+V prv

α,β×Ga,b} form a multi-set in
which one element has multiplicity 3 and the other element has multiplicity 1. The ele-
ment of multiplicity 1 is associated with a unique pair α, β. Changing the permute bits
(and thus changing Ga,b) must change which α, β is associated with the multiplicity-1
element. Hence the matrices Ga,b must be distinct.

Claim: Vectors {Zα,β | α, β ∈ {0, 1}} are pairwise linearly independent. To see
why, suppose to the contrary that (by symmetry) Z0,1 = σZ0,0 for some scalar σ. Then
consider an adversary given input wire labels corresponding to α = β = 0. Instead of
computing 〈V 0,0,T 〉 as instructed, she can compute σ·〈V pub

0,0 ,T
pub〉+〈V prv

0,1 ,T
prv〉 =

〈V 0,1,T 〉. The result will reveal what the output of the garbled circuit would be if she
had instead had input wires α = 0, β = 1. For an AND gate, this is a violation of the
privacy property (the output changes if and only if Aα encodes true).4

Claim: Vectors {V prv
α,β | α, β ∈ {0, 1}} are all distinct. To see why, consider the

example of V prv
0,0 and V prv

0,1 . With select bits either (0, 0) or (0, 1), and permute bits
(0, 0), the garbled gate should evaluate to false. Hence:

Z0,0 + V prv
0,0 ×G0,0 = C0,0,0

Z0,1 + V prv
0,1 ×G0,0 = C0,0,0

=⇒ (Z0,0 −Z0,1) + (V prv
0,0 − V prv

0,1 )G0,0 = 0

Since Z0,0 − Z0,1 is nonzero, V prv
0,0 − V prv

0,1 must also be nonzero. More generally,
for any two elements of {V prv

α,β | α, β ∈ {0, 1}}, one can choose permute bits a, b that
cause those two input combinations to give the same output to the garbled gate.5

We now prove the theorem. Consider two choices of select bits (α, β) ∈ {(0, 0),
(0, 1)}, and two choices of permute bits (a, b) ∈ {(0, 0), (0, 1)}. For all such combina-
tions, the garbled gate must evaluate to false. Hence, we have:

C0,0,0 = Z0,0 + V prv
0,0 ×G0,0 (a)

C0,0,0 = Z0,1 + V prv
0,1 ×G0,0 (b)

C0,1,0 = Z0,0 + V prv
0,0 ×G0,1 (c)

C0,1,0 = Z0,1 + V prv
0,1 ×G0,1 (d)

If we combine these four equations as (a)-(b)-(c)+(d), we obtain:

0 = 0+ (V prv
0,0 − V prv

0,1 )×G0,0 − (V prv
0,0 − V prv

0,1 )×G0,1

= (V prv
0,0 − V prv

0,1 )× (G0,0 −G0,1)

We see that V prv
0,0 − V prv

0,1 is a nonzero vector in the left kernel of the nonzero matrix
G0,0−G0,1. This implies that G0,0−G0,1 must have at least 2 rows. Hence, each Ga,b
has at least 2 rows, and garbled gates consist of at least 2k bits, as desired.

4 Note that this scenario does not violate security for an XOR gate. No matter what inputs the
evaluator holds, she already knows that flipping one input bit always flips the output.

5 This is another step of the proof that does not apply to XOR gates. Consider input wires with
select bits (0, 0) or (0, 1). There is no choice of permute bits that could cause an XOR gate to
give the same output for both.



Discussion. Let us define the parity of a binary boolean gate as the number of 1s in its
truth table. XOR, for instance, has even parity, while AND has odd parity. The proof of
Theorem 3 applies to any odd-parity gate. We frequently used the facts that (a) the gate
has one output with multiplicity 3 and another with multiplicity 1, and (b) depending
on the permute bits, the output with multiplicity 1 could be associated with any of the
4 possible input combinations.

We are currently unable to prove a lower bound for completely arbitrary garbling
schemes. As such, we cannot rule out the possibility of garbling an AND gate with only
k bits. Yet, our lower bound shows that if such a method exists, then it must use (expen-
sive) public-key primitives or be significantly non-linear in how it uses wire labels and
outputs from the random oracle. Any non-linearity outside our model would represent
an entirely new technical approach for garbled circuits.

What about the privacy-free setting? In arguing that the Ga,b matrices were distinct,
we did not use the privacy property of the scheme. Privacy was only used to establish
the other claims. Hence, for privacy-free garbled circuits we still have that the Ga,b
matrices are distinct. As such, these cannot all be the empty matrix; they must contain
at least one row. So for privacy-free garbling on an AND gate, we must have m ≥ 1 (as
in our construction); in other words, the garbled gate must contain at least k bits.

Availability

The source code for our half gates implementation and the benchmarks used in this
paper is available under an open source license at http://MightBeEvil.com/halfgates.
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A Linear Garbling Schemes

In this section we show that all existing garbling schemes are linear in the sense of
Section 7.2. We show only the garbling procedure for AND gates, and use the notation
of Section 7: (A0, A1) and (B0, B1) are the input wire labels, and (C0, C1) are the
output wire labels. Bits a and b are secret so that Aa and Bb encode false. C0 always
encodes false.

Classical garbling: In a “classical” garbled circuit (with point-and-permute) optimiza-
tion, the four ciphertexts comprising a garbled gate have the form H(A‖B)⊕C, where
the choice of C0 or C1 depends on the association between select bits and truth values.
Below is an example of the linear operation of the scheme’s operations. Highlighted
entries are the positions that will vary based on a, b in Gb, or α, β in Ev.

Gb :



A0

A1

B0

B1

C0

C1

G1

G2

G3

G4


=



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 1 0 0 0
0 0 0 0 1 0 0 1 0 0
0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0 0 1





A0

A1

B0

B1

C0

C1

H(A0‖B0)
H(A0‖B1)
H(A1‖B0)
H(A1‖B1)


for a = b = 0

Ev : C =
[
0 0 1 0 1 0 0

]


Aα
Bβ

H(Aα‖Bβ)
G1

G2

G3

G4


for α = 0, β = 1

Row-reduction (GRR3). The row-reduction optimization of [27] sets one of the out-
put wire labels to be H(A‖B), so that one of the ciphertexts is no longer required (it



becomes the all-zeroes string). Modifying the example from above, we have:

Gb :



A0

A1

B0

B1

C0

C1

G2

G3

G4


=



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 1 0 0 0 1





A0

A1

B0

B1

C
H(A0‖B0)
H(A0‖B1)
H(A1‖B0)
H(A1‖B1)


for a = b = 0

Ev : C =
[
0 0 1 1 0 0

]


Aα
Bβ

H(Aα‖Bβ)
G2

G3

G4

 for α = 0, β = 1

Ev : C =
[
0 0 1 0 0 0

]


Aα
Bβ

H(Aα‖Bβ)
G2

G3

G4

 for α = β = 0

In this example, output wire label C0 is chosen as H(A0‖B0) because input combina-
tionA0, B0 should lead to the false wire label in this case (a = b = 0). The other output
wire label C1 is chosen randomly. In the case that a = b = 1, the two darkly shaded
rows would be exchanged (and the three rows below would be changed accordingly).

In Ev, we compute the output wire label as H(Aα‖Bβ) directly, when α = β = 0.
In other cases, we compute H(Aβ‖Bβ) and use it to unmask one of the 3 ciphertexts.

Free-XOR + GRR3. In the free-XOR optimization [20], all wire label pairs are chosen
as (X,X ⊕R), where R is common to all wires. To achieve this, Gb is modified (from
the previous example) as follows:

Gb :



A0

A1

B0

B1

C0

C1

G2

G3

G4


=



1 0 0 0 0 0 0
1 0 1 0 0 0 0
0 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 0 1 0 0 0
0 0 1 1 0 0 0
0 0 0 1 1 0 0
0 0 0 1 0 1 0
0 0 1 1 0 0 1





A0

B0

R
H(A0‖B0)
H(A0‖B1)
H(A1‖B0)
H(A1‖B1)


for a = b = 0



Advanced row-reduction (GRR2). The garbled row-reduction optimization of [28] re-
sults in only 2 ciphertexts per AND gate. The idea is the following. For simplicity, as-
sume a = b = 0, so thatA0, B0 represent false. Then the evaluator should be able to ob-
tain C0 if he obtains any of {K1 = H(A0‖B0),K2 = H(A0‖B1),K3 = H(A1‖B0)},
and obtain C1 if he obtains K4 = H(A1‖B1).

We let P denote the unique degree-3 polynomial (over GF (2k)) passing through
points {(1,K1), (2,K2), (3,K3)}. We then let Q denote the unique degree-3 polyno-
mial passing through points {(4,K4), (5, P (5)), (6, P (6))}. We give out values P (5)
and P (6). Then if the evaluator who has input wire labels Aα, Bβ interpolates a poly-
nomial through {(2α+β+1, H(Aα‖Bβ)), (5, P (5)), (6, P (6))}, she will obtain either
P or Q depending on the logic of the AND gate. Hence, we can set output wire labels
C0 = P (0) and C1 = Q(0).

Let Vx,y,z denote the 3×3 Vandermonde matrix that evaluates a polynomial-coefficient
vector on points x, y, and z. Then V −1x,y,z is the matrix that interpolates a polynomial’s
coefficients given its value at points x, y, and z. Hence, we have:

Gb :

C0

P5

P6

 = V0,5,6 × V −11,2,3 ×

H(A0‖B0)
H(A0‖B1)
H(A1‖B0)

 for a = b = 0

[
C1

]
=
[
1 0 0

]
× V −14,5,6 ×

H(A1‖B1)
P5

P6


Ev : C =

[
1 0 0

]
× V −12α+β+1,5,6 ×

H(Aα‖Bβ)
P5

P6



For different choices of a, b, different corresponding Vandermonde matrices are used in
Gb.

For simplicity in Gb, we have written C1 as a linear function of P5, P6. Clearly the
linear operations compose, but we have not written out the tedious full expression for
C1 in terms of the H(Aα‖Bβ) values.

Our scheme. In our scheme, the output wires of an AND gate will be H(A0)⊕H(B0)
andH(A0)⊕H(B0)⊕R. The first (sender)half-gate is garbled asH(A0)⊕H(A1)⊕bR.
The second (receiver)half-gate is garbled as H(B0)⊕H(B1)⊕A0 ⊕ aR.



Gb :



A0

A1

B0

B1

C0

C1

G1

G2


=



1 0 0 0 0 0 0
1 0 1 0 0 0 0
0 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 ab 1 0 1 0
0 0 1− ab 1 0 1 0
0 0 b 1 1 0 0
1 0 a 0 0 1 1





A0

B0

R
H(A0)
H(A1)
H(B0)
H(B1)



Ev : C =
[
β 0 1 1 α β

]


Aα
Bβ

H(Aα)
H(Bβ)
G1

G2


We can show the correctness of the scheme as follows. Recall that the result of evalua-
tion should be γ = (α⊕ a) ∧ (β ⊕ b). Since we are working in a field of characteristic
2, we have:

[
β 0 1 1 α β

]


Aα
Bβ

H(Aα)
H(Bβ)
G1

G2

 =


β [1 0 α 0 0 0 0]

+ [0 0 0 1− α α 0 0]
+ [0 0 0 0 0 1− β β]
+ α [0 0 b 1 1 0 0]
+ β [1 0 a 0 0 1 1]





A0

B0

R
H(A0)
H(A1)
H(B0)
H(B1)



=
[
0 0 αβ + αb+ βa 1 0 1 0

]


A0

B0

R
H(A0)
H(A1)
H(B0)
H(B1)



=

[
0 0 (α+ a)(β + b)︸ ︷︷ ︸

γ

+ab 1 0 1 0
]


A0

B0

R
H(A0)
H(A1)
H(B0)
H(B1)


= Cγ


