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Abstract. Deciding “greater-than” relations among data items just given
their encryptions is at the heart of search algorithms on encrypted data,
most notably, non-interactive binary search on encrypted data. Order-
preserving encryption provides one solution, but provably provides only
limited security guarantees. Two-input functional encryption is another
approach, but requires the full power of obfuscation machinery and is
currently not implementable.
We construct the first implementable encryption system supporting greater-
than comparisons on encrypted data that provides the “best-possible” se-
mantic security. In our scheme there is a public algorithm that given two
ciphertexts as input, reveals the order of the corresponding plaintexts and
nothing else. Our constructions are inspired by obfuscation techniques,
but do not use obfuscation. For example, to compare two 16-bit encrypted
values (e.g., salaries or age) we only need a 9-way multilinear map. More
generally, comparing k-bit values requires only a (k/2 + 1)-way multilin-
ear map. The required degree of multilinearity can be further reduced, but
at the cost of increasing ciphertext size.
Beyond comparisons, our results give an implementable secret-key multi-
input functional encryption scheme for functionalities that can be ex-
pressed as (generalized) branching programs of polynomial length and
width. Comparisons are a special case of this class, where for k-bit inputs
the branching program is of length k + 1 and width 4.

1 Introduction

Functional encryption [BSW11] is a public-key encryption system that supports “partial”
decryption keys: decrypting a ciphertext c = E(pk,m) using a key skf reveals f(m)
and nothing else. Multi-input functional encryption [GGG+14] is a generalization of
functional encryption where the key skf acts on ` ciphertexts c1 = E(pk,m1), . . . , c` =
E(pk,m`) to reveal f(m1, . . . ,m`) and nothing else. Existing constructions for general
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multi-input functional encryption are based on obfuscation and thus are not currently
feasible to implement, even for simple functionalities.

In this paper we present a construction for secret-key multi-input functional encryp-
tion from multilinear maps. By restricting our attention to the secret-key setting, we
are able to achieve a much more efficient construction, without the full machinery of
obfuscation and NIZK proofs.

For concreteness, in the introduction we present our results as they apply to a specific
application called order-revealing encryption [AKS+04, BCL+09, BCO11]. The paper
body presents the results in their full generality, namely as a secret-key multi-input
functional encryption scheme.

1.1 Order-revealing encryption

Definition. A secret-key encryption scheme is order-revealing4 [BCO11] if there is a
public procedure that takes two encrypted plaintexts as input and reports their lexico-
graphic ordering. This procedure, which we call the order-revealing algorithm, requires
no secrets and can be evaluated by anyone. More precisely, an order-revealing scheme is
a tuple (G,E,D) of algorithms. Algorithm G outputs a pair (sk, comp) where sk is a
secret encryption key and comp(·, ·) is an efficient deterministic algorithm that takes two
ciphertexts as input and outputs either ‘<’ or ‘≥’. Algorithms E(sk,m) and D(sk, c)
are standard encryption/decryption algorithms where m ∈ {0, . . . , B} for some B. In
addition to the standard correctness of decryption we also require that for all (sk, comp)
output by G and for all plaintexts m0,m1 we have:

m0 < m1 =⇒ Pr[comp( E(sk,m0) , E(sk,m1) ) =
′<′] = 1

m0 ≥ m1 =⇒ Pr[comp( E(sk,m0) , E(sk,m1) ) =
′≥′] = 1

An order-revealing encryption scheme is secure if a ciphertext reveals nothing about
the corresponding plaintext beyond its lexicographic relation relative to other ciphertexts.
This is defined using a simple variant of the standard semantic security game [GM82]:
the adversary is given algorithm comp(·, ·) and access to a “left-right-oracle”O(·, ·) that
on input (m0,m1) returns E(sk,mb) for some b ∈ {0, 1} chosen at the beginning of the
game. After adaptively querying the oracle O the adversary outputs a guess b′ and wins
the game if b = b′. Let (m(0)

0 ,m
(0)
1 ), . . . , (m

(q)
0 ,m

(q)
1 ) be the adversary’s queries to O.

To ensure that the adversary cannot use algorithm comp(·, ·) to trivially win the game
we require that the relative ordering of messages on the left is the same as the relative
ordering on the right, namely for all 0 ≤ i, j ≤ q:

m
(i)
0 < m

(j)
0 ⇐⇒ m

(i)
1 < m

(j)
1

The scheme is secure if the adversary cannot win this game with non-negligible advan-
tage. We refer to this notion as best-possible semantic security. We give a complete (and
more general) definition in Section 3.

Note that a public-key order-revealing encryption scheme is impossible: if an ad-
versary has unrestricted access to the encryption algorithm, he can use the encryption

4 In [BCO11] order revealing encryption was called “efficiently-orderable encryption.”
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algorithm and the order-revealing algorithm comp(·, ·) to decrypt any ciphertext using
binary search without the secret key.

Applications. Order-revealing encryption (ORE) is motivated by the problem of an-
swering range queries on a remote encrypted database [AKS+04, BCL+09]. Consider a
remote database holding encrypted pairs (name, salary). The data owner wishes to re-
trieve all records with a salary greater than t. If salaries are encrypted using an ORE then
the database can sort all records on its own from lowest salary to highest. This sorting
can be done even when records are inserted sequentially into the database (perhaps by
multiple users who share the secret encryption key) and requires no interaction with
the data owner(s). To issue the range query the data owner sends the encryption of t
under the ORE key. In response, the database first uses binary search on the encrypted
salaries to locate the smallest encrypted record R with a salary greater then t and then
simply sends all records to the “right” of R back to the user. Thus, for a database of n
records, the database’s work is O(log n) and requires only one round of interaction with
the client, as in the case of a cleartext database. Security of the ORE ensures that the
database learns nothing beyond the relative ordering of records and queries.

Alternate approaches. Before describing our construction we briefly survey a few
alternate constructions for answering range queries on a remote encrypted database.

Boldyreva et al. [BCL+09, BCO11] describe an elegant primitive called Order Pre-
serving Encryption (OPE) where encryption preserves the relative ordering of plaintexts.
Comparing encrypted data is then done by simply comparing the corresponding ci-
phertexts. However, OPE leaks information about the relative distances of plaintexts.
Recent work of Malkin et al. [MTY13] constructs an OPE scheme with a partial security
guarantee, hiding the low-order bits of plaintexts, but still does not achieve best-possible
semantic security. Indeed, Boldyreva et al. [BCL+09] prove that no OPE scheme can
possibly achieve best-possible semantic security. In ORE, unlike OPE, comparisons are
done with a dedicated algorithm comp(·, ·) which is the reason best-possible semantic
security can be achieved.

A very different approach to answering range queries on encrypted data uses garbled
RAMs [LO13, GHL+14]. With garbled RAMs the database can answer range queries
without learning any information about the data, but answering the range queries requires
more rounds of interaction per query and the database’s work is higher than with ORE.

Other approaches to answering range queries are based on public-key predicate
encryption [BW07, SBC+07, KSW08] and require a linear scan through the database.
With ORE, range queries can be answered in logarithmic time in the size of the database.
We also mention a result of Popa et al. [PLZ13] who describe an interactive protocol for
answering range queries. Interaction is used to maintain a sorted data structure at the
database by offloading some comparisons to the client. Finally, we note that ORE is a
special case of secret-key two-input functional encryption [GGG+14].

1.2 Order revealing encryption: our construction

Our construction begins with a simple automaton for the comparison function on two
inputs that we represent as a low-width matrix branching program. We encrypt cipher-
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texts in a way such that given two independently-created ciphertexts, anyone can run the
comparison branching program to reveal the relative ordering of the corresponding plain-
texts. While our encryption scheme applies to any multi-input functionality expressed
as a matrix branching program (see Section 2.2), for the rest of this section we use the
two-input comparison automaton and its branching program as a concrete example to
illustrate the construction.

The comparison automaton and branching program. Figure 1 shows a five-state
automaton A that computes the ordering of two inputs x = x1x2 · · ·xn and y =
y1y2 . . . yn in {0, 1}n when the input is processed in an interleaved order (of the form
x1y1x2y2 · · ·xnyn). From this automaton we derive four 5×5 matrices X0,X1,Y0,Y1,
where each is the adjacency matrix of a subgraph of A: for b ∈ {0, 1}, the matrix Xb is
the adjacency matrix of the subgraph consisting only of the b-transitions used by input
bits of x, and the matrix Yb is the adjacency matrix of the subgraph consisting only
of the b-transitions used by input bits of y. Note that these matrices are not invertible
because of the sink states in the automaton. This introduces additional challenges in the
security proof; however, we are able to handle branching programs with non-invertible
matrices using recent results of Sahai and Zhandry [SZ14].

Let ei be the 5-vector containing 1 in position i and zero elsewhere. Then the product
eᵀ1 ·

∏n
i=1 (Xxi

Yyi) results in a vector with a single “1” in three possible locations
(corresponding to either the “x > y”, “x < y”, or “=” final states), and the location of
the “1” determines the result of the comparison operation on x and y. Hence, the matrices
X0,X1,Y0,Y1 form a matrix branching program for the two-input comparison function.
In the full version we show that a simple re-ordering of the inputs reduces the matrix
program length to only n+ 1 matrices each of dimension 4× 4, but for simplicity we
ignore this optimization here.

x>y$x<y$ 0$ 1$=$xi=0$yi=1$ xi=1$ yi=0$

yi=1$yi=0$
0,1$ 0,1$

Fig. 1: The 5-state comparison automaton on inputs x, y ∈ {0, 1}n where
‘=’ is the start state. Input bits are processed in an interleaved order
x1 y1 x2 y2 . . .

The ORE encryption scheme. Fix a prime q. The setup algorithm G uniformly sam-
ples 2n− 1 invertible matrices R1, . . . ,R2n−1 from GL5(Zq). These matrices form the
secret encryption key sk. During encryption these matrices will be used to randomize
the matrices of the comparison branching program using Kilian’s randomization tech-
nique [Kil88]. We define two additional vectors R0 := eᵀ1 and R2n := e5. The secret
key also contains the parameters for an asymmetric multilinear map [GGH13a] with 2n
indices (i.e., of degree 2n). We divide the 2n indices into two disjoint size-n sets U1 and
U2.
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The encryption algorithm encrypts a plaintext x = x1x2 · · ·xn ∈ {0, 1}n as follows.
It first samples a partition (S1, . . . , Sn) of U1 and a partition (T1, . . . , Tn) of U2. These
partitions are sampled at random from a family of partitions we call an “exclusive
partition family.” They must satisfy a specific combinatorial property needed to prevent
certain “mix-and-match” attacks where the attacker tries to run the comparison algorithm
on improperly formed ciphertexts. We define and construct these partition families
in Section 2.5. They are a generalization of the “straddling sets” used in Barak et
al. [BGK+14].

Next, the encryption algorithm samples random scalars α1, . . . , α2n ∈ Z∗q and
constructs the 5× 5 matrices

X̂i = αi · (R2i−2 Xxi
R−12i−1) and Ŷi = αn+i · (R2i−1 Yxi

R−12i )

for i ∈ [n] where we define R−12n := e5. Recall that the matrices Ri are taken from
the secret key and the matrices X0,X1 and Y0,Y1 are the matrices in the comparison
branching program. Because R0 and R2n are vectors, so are X̂0 and Ŷn. All other
ciphertext components are square matrices.

Finally, for i ∈ [n] the encryption algorithm encodes the entries of X̂i under the
index set Si of the multilinear map, and encodes the entries of Ŷi under the index set
Ti. The resulting 2n encoded 5 × 5 matrices ({X̂i}ni=1, {Ŷj}nj=1) are output as the
encryption of x ∈ {0, 1}n.

A1# D1# A2# D2# A3# D3#

cx#=#E(sk,##x1#x2#x3)#

cy#=#E(sk,##y1#y2#y3)#

⟶###z#

Fig. 2: The order-revealing algorithm applied to encryptions of x1x2x3 and
y1y2y3.

The order-revealing algorithm. Given two independently-created ciphertexts cx and
cy corresponding to plaintexts x and y, the order-revealing algorithm computes the
interleaved product of the matrices in the left half of cx with the matrices in the right half
of cy . In other words, if cx = ({Ai}ni=1, {Bj}nj=1) and cy = ({Ci}ni=1, {Dj}nj=1) then
z = A1D1A2D2 · · ·AnDn, as shown in Figure 2. We compute z using the multilinear
map and the result is a single group element (a scalar) because A1 and Dn are vectors.
Finally, the algorithm zero-tests z and the outcome reveals the ordering of x and y.
Zero-testing this z is possible because it is an encoding of an element under the full 2n
index set, by the structure of the partitions.
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To verify that the final zero-test correctly reveals the ordering of x and y, observe
that the scalar z expands to the quantity(

eᵀ1 Xx1
R−11

) (
R1Yy1R

−1
2

)
· · ·
(
R2n−2Xxn

R−12n−1
)
(R2n−1Yyne5) (1)

Hence, z takes on a non-zero value if and only if the comparison automaton terminates
in the state “x < y”. Note that we omitted the scalars αi in the expansion (1) for ease of
exposition. Their presence causes z to be either 0 or non-zero, as opposed to 0 or 1.

Security. We prove the security of a generalization of this construction in the generic
multilinear map model [GGH+13b, BR14, BGK+14]. The use of Kilian’s randomization
technique in the encryption key restricts the adversary’s ability to manipulate ciphertext
components in an elementary manner, such as by computing products of matrices out
of order. Also, the use of the random scalars α1, . . . , α2n prevents the adversary from
correlating multiple encryptions of plaintexts which share the same bit pattern. However,
there is still a large domain of attacks that the adversary could potentially take advantage
of. For example, an adversary can combine components from multiple ciphertexts to
look for relations, or he can compare the results of partial evaluations of the branching
program on different inputs.

In order to handle these types of attacks, we use the combinatorial structure provided
by our exclusive partition families. Intuitively, the use of a random partition from an
exclusive partition family for each ciphertext ensures that if the adversary computes a
partial evaluation of the branching program, or tries to mix components from multiple
ciphertexts, he will not be able to obtain a group element which is encoded in the index
set for the zero-tester, as required by the generic multilinear map model. In fact, it turns
out that the use of these exclusive partition families is indeed sufficient to prove security
of the construction in the generic model.

Performance. Our basic construction requires a (2n + 2)-way multilinear map to
evaluate comparisons on n-bit numbers. However, simple optimizations, including re-
ordering of the matrices in the branching program, enables us to shrink the total length
of the comparison branching program to only (n+ 1) matrices each of dimension 4× 4
(see Section 2.2 for details). Consequently, we only need an (n + 1)-way multilinear
map to evaluate comparisons on n-bit numbers. The secret encryption key contains
16n elements in Zq, and each ciphertext is 16n − 8 encoded group elements. We can
further reduce the required degree of multilinearity by a factor of log2B by representing
messages in base-B (instead of base-2) and modifying the comparison automaton to
compare one base-B digit per step. This shortens the length of the branching program
(and therefore the degree of multilinearity) by a factor of log2B, but at the cost of
increasing the number of states in the automaton by a factor of B and consequently
increasing the number of group elements in the ciphertext by a factor of approximately
B2/ log2B. For example, moving to base B = 4 gives multilinearity (n/2 + 1), with
ciphertexts requiring 18n− 24 group elements.

Concretely, for n = 16 bits, we can use a 9-linear map giving ciphertexts of 264
group elements. While this scheme is still too inefficient for practical use, the construction
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can be implemented and provides an important step towards more realistic ORE schemes.
This is in contrast to the immense number of levels of multilinearity required to obtain
ORE from obfuscation-based constructions.

Generalizing to multi-input functional encryption. While we used order-revealing
encryption (ORE) as an example application, our construction is more general: it gives a
secret-key multi-input functional encryption where the degree of multilinearity needed
for decrypting with a key skf depends on the length of the branching program represent-
ing f . In fact, every matrix in the branching program can depend on all the bits of one of
the inputs to f and this can be used to shrink the length of the branching program. We
refer to these as generalized branching programs and define them precisely in the next
section.

Our base multi-input functional encryption scheme supports a single function f
(such as comparison) fixed a-priori during initial key generation. This function f defines
the branching program relative to which all encryptions are computed. This apparent
single-function limitation is easily removed using universal circuits: the functionality
fixed a-priori is a universal circuit U that takes as input the description of a function f
and its inputs x1, . . . , xn and outputs f(x1, . . . , xn). Now, a functional encryption “key”
skf for a function f is simply the encryption of f under our encryption scheme. Given
skf and the encryptions of x1, . . . , xn the functionality for the universal circuit U can be
used to compute f(x1, . . . , xn) in the clear.

1.3 Other related work

Multi-input functional encryption was introduced by Goldwasser et al. [GGG+14], who
gave constructions based on indistinguishability obfuscation [BGI+01, GGH+13b] and
differing-inputs obfuscation [BGI+01, BCP14, ABG+13].

Our construction of multi-input functional encryption is inspired by obfuscation
techniques [GGH+13b, BBC+14, AGI+14], but does not use obfuscation. Instead we
build multi-input functional encryption directly from multilinear maps. Several other
results use obfuscation techniques to obtain more efficient constructions directly from
multilinear maps. Zhandry [Zha14] showed how to construct n-way Diffie-Hellman
key exchange without trusted setup, a result that was previously known only using
obfuscation [BZ14]. Concurrently with this work, Garg et al. [GGH+14] showed how to
construct single-input functional encryption from multilinear maps; however, their moti-
vation was to obtain security proofs from concrete assumptions, rather than efficiency.
The constructions in this paper are considerably more efficient (we make use of a much
smaller number of matrices), but our security proof is in the generic multilinear map
model.

Single-input functional encryption [BSW11] has been traditionally defined in the
public-key settings and studied extensively [O’N10, GVW12, AGV+13, BO13, CIJ+13,
GGH+13b, GKP+13, BCP14]. In this paper, however, we focus on secret-key (multi-
input) functional encryption, which is sufficient for data processing on a remote encrypted
database, including order-revealing encryption. Focusing on the secret-key setting en-
ables us to give a simple construction from multilinear maps. Single-input secret-key
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functional encryption was previously explored for the inner-product functionality by
Shen et al. [SSW09] and more generally by Goldwasser et al. [GKP+13]. Brakerski
and Segev [BS14] recently showed how to convert any secret-key functional encryption
scheme into one where secret keys do not reveal their functionality.

2 Preliminaries

2.1 Conventions

For an integer n, we write [n] to denote the set {1, . . . , n}. For a finite set S, we write
Uniform(S) to denote the probability distribution that is uniform over the elements of
S. When working with vectors in Zn for some integer n, for each i ∈ [n] we write ei
to denote the ith unit column vector, i.e., the vector (x1, x2, . . . , xn)

ᵀ such that xi = 1
and, for all i′ 6= i ∈ [n], we have xi′ = 0. We write GLw(Zq) to represent the set of all
w × w invertible matrices over Zq .

2.2 Matrix Branching Programs (MBPs)

In this section, we define a variant of matrix branching programs for which our main
construction applies. These generalized matrix branching programs are a sequence of
efficiently computable Boolean circuits that turn a given multi-variate input into a matrix.

Definition 2.1 (Generalized Matrix Branching Program). Let X ⊂ {0, 1}∗ be a
set of possible input strings, and let f : Xm → {0, 1} be a multi-input function. A
generalized matrix branching program P of length ` and width w, over Zq for a prime q,
is a tuple of the form

P = ( q, m, d, inp, (M1, . . . , M`) ) ,

where for each j ∈ [`], the functionMj : X → Zw×wq is computable by an efficient
deterministic algorithm. The value inp is a lookup table of the form

inp = (inp(1), . . . , inp(`)),

where for each j ∈ [`], we have inp(j) ∈ [m]. The branching program takes m inputs
and we say that at step j it inspects input number inp(j) ∈ [m]. To simplify notation, we
require the branching program to inspect each of its m input variables exactly d times5

(so that the length of the program, `, is precisely md). We also introduce the following
shorthand notations:

5 We note that this assumption is without loss of generality, since given any program of length
` that does not satisfy this condition, we can construct a new program whose value of d is
the original program’s value of `, and pad the program with dummy matrix functions that
always return the identity matrix regardless of their input string. (Alternatively, for practical
applications, it is also easy to adapt the techniques we describe to the general case, albeit at the
expense of cumbersome notation.)
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– For a branching program step j ∈ [`], input slot i ∈ [m], and sub-index h ∈ [d], we
write j = inp.j(i, h) to signify that j is the step in which the program inspects input
slot i for the hth time.

– For a branching program step j ∈ [`] and sub-index h ∈ [d], we write h = inp.h(j)
to signify that j is the step in which the program inspects the corresponding input
slot inp(j) for the hth time.

We say that P computes the function f if, for all inputs x = (x(1), . . . , x(m)) ∈ Xm,∏
j∈[`]

Mj(x
(inp(j)))

 [1, 1] = 0 ⇐⇒ f(x) = 1.

Since every program P computes a unique function f , we also write P (x) to denote
f(x).

Following Sahai and Zhandry [SZ14], we also define the notion of a non-shortcutting
matrix branching program.

Definition 2.2 (Shortcuts in Matrix Branching Programs [SZ14]). A branching pro-
gram has a shortcut on input x = (x(1), . . . , x(m)) ∈ Xm if either:∏
j∈[`]

Mj(x
(inp(j)))

 · e1 = 0w×1 or eᵀ1 ·

∏
j∈[`]

Mj(x
(inp(j)))

 = 01×w

In such a case, it is possible to determine that f(x) = 1 without carrying out the entire
matrix product. We say that a branching program is non-shortcutting if, for all inputs x,
it has no shortcuts on x. We require that every generalized matrix branching program is
non-shortcutting.

We note that there are multiple ways to obtain a generalized matrix branching
program from a circuit, or from a time-bounded Turing machine or RAM. Barrington’s
theorem [Bar86] shows how to convert a Boolean circuit of depth d into a matrix
branching program of length O(4d) and width 5. The work of Ananth, Gupta, Ishai, and
Sahai [AGI+14] takes a different approach to obtain MBPs for Boolean formulas that
avoids the complexity of Barrington’s construction. They construct a layered automaton
for any Boolean formula which consists of several states including a starting state and an
accepting state together with edges denoting the transitions between states based on the
input bit values. Given such an automaton representation, a formula can be evaluated by
counting the number of paths between the starting and the accepting state. Ananth et al.
show that a Boolean formula of size s can be converted into a layered graph-based
branching program with O(s) layers with matrices of size O(s2). Thus, the size of
the resulting MBP is O(s3). Subsequently, Sahai and Zhandry [SZ14] improve the
conversion, giving MBP’s of length O(s) and size O(s(log2 s)

2). Our approach follows
the general method of computing automata with generalized MBPs, but we observe
that for some problems such as comparing two-bit strings, we can directly construct
extremely efficient automata that do not use the general translation from formulas to
automata.

For more details, we refer the reader to the full version.
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2.3 Randomized Matrix Branching Programs

In our construction, as in obfuscation constructions that use MBPs [GGH+13b, BGK+14,
BR14, AGI+14], we must make sure that the adversary always evaluates the MBP
by multiplying together one matrix selection for each step j ∈ [`]. In particular, we
must ensure that partial matrix products, which omit some steps, will not reveal any
information about the program.

The main ingredient we need here is the MBP randomization technique of Kil-
ian [Kil88], in which we pre- and post-multiply each matrix in the MBP by matching,
invertible random “blinding” matrices R0, . . . ,R`. Intuitively, the resulting randomized
MBP fixes the order in which the randomized MBP matrices can be multiplied, i.e., re-
quiring one matrix for each step in the original MBP. Any other product will also contain
at least one random “blinding” matrix, rendering the result useless to the adversary.

In addition, we combine Kilian’s randomization technique with “bookend vectors”
ŝ, t̂, as introduced in [GGH+13b], which further restrict the adversary to projecting a
single scalar entry of the matrix product resulting from the MBP evaluation (namely,
the entry at position [1, 1]). Testing whether this scalar is zero suffices to determine
the Boolean output of the program, while preventing the adversary from learning extra
information by testing other matrix entries.

We now present the details of the randomized MBP construction.

Definition 2.3 (Randomized MBPs ([Kil88], adapted)). We define an efficient ran-
domized procedure MBPRand, such that, for a given generalized matrix branching
program

P = ( q, m, d, inp, (M1, . . . , M`) ) ,

the procedure MBPRand(P ) outputs a tuple P̂ of the form

P̂ =
(
q, m, d, inp, (M̂1, . . . , M̂`), ŝ, t̂

)
,

where, for each j ∈ [`], the function M̂j : X → Zw×wq is represented, likeMj , as a
Boolean circuit; and ŝ and t̂ are vectors in Zwq .

The procedure MBPRand operates as follows. It samples (`+ 1) invertible matrices
R0, . . . ,R` uniformly at random from GLw(Zq). It computes the values

ŝ = eᵀ1 R
−1
0 and t̂ = R` e1,

and, for each j ∈ [`], the function M̂j defined as

M̂j(x) = R−1j−1Mj(x)Rj .

Finally, it outputs the tuple

P̂ =
(
q, m, d, inp, (M̂1, . . . , M̂`), ŝ, t̂

)
.

To evaluate a randomized MBP P̂ on an input x = (x(1), . . . , x(m)), we run each
(randomized) matrix function M̂j on the indicated input string x(inp(j)), producing a
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randomized matrix Mj . We write MBPSelect(P̂ ,x) to denote the sequence of random-
ized matrices and bookend vectors (ŝ,M1, . . . ,M`, t̂), and to evaluate the program, we
multiply all of these randomized matrices and vectors together. Formally, we define the
following procedures.

Definition 2.4 (Evaluation for Randomized MBPs ([Kil88], adapted)). Fix a gener-
alized matrix branching program P and a vector of inputs x = (x(1), . . . , x(m)) ∈ Xm,
and suppose that

P̂ =
(
q, m, d, inp, (M̂1, . . . , M̂`), ŝ, t̂

)
← MBPRand(P ).

For each j ∈ [`], we define M̂j = M̂j(x
(inp(j))), and we define

MBPSelect(P̂ ,x) =
(
ŝᵀ, M̂1, . . . , M̂`, t̂

)
.

Finally, we define

MBPEval
(
ŝᵀ, M̂1, . . . , M̂`, t̂

)
= ŝᵀ

∏
j∈`

M̂j

 t̂.

Given the above definitions, the proof of the following lemma follows immediately.

Lemma 2.5 (Correctness for Randomized MBPs). Fix a generalized matrix branch-
ing program P , and a vector of inputs x = (x(1), . . . , x(m)) ∈ Xm. Then,

MBPEval(MBPSelect(P̂ ,x)) = 0 ⇐⇒ f(x) = 1.

Ordinarily, for MBPs derived from Barrington’s theorem [Bar86], we would also be
able to state a simulation theorem, showing that the output distribution MBPSelect(P̂ ,x)
depends only the output of the original program, P (x). In our construction, however,
we obtain much more efficient programs by other techniques , and the matricesMj(x)
in these programs do not always have full rank. Indeed, the kernel of each matrix may
depend on the input vector x, and as a result, the output distributions MBPSelect(P̂ , ·)
may be noticeably different for different inputs x0,x1, even if the outputs of the program,
P (x0) = P (x1), are ultimately identical.

Instead of constructing a simulator, we rely on a weaker property that is still strong
enough to prove security of our main construction. Specifically, we show that even
though the distributions MBPSelect(P̂ ,x0) and MBPSelect(P̂ ,x1) may differ, they
cannot be distinguished by a certain weak family of tests; in our construction (Section 4),
we will show that these are the only tests an adversary can possibly perform in our
security model. To define such a family of tests, we refer to the following definition of
Sahai and Zhandry [SZ14].

Definition 2.6 (Allowable Tests [SZ14]). Let p : Z2w+w2`
q → Zq be a multilinear

(multivariate) polynomial over the entries of ŝ, t̂ ∈ Zwq and M̂1, . . . , M̂` ∈ Zw×wq (as
formal variables). We say p is an allowable test polynomial if each monomial in the
expansion of p contains at most one entry of each vector ŝ, t̂ and matrix M̂1, . . . , M̂`.
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Lemma 2.7 (Security for Randomized MBPs). Fix a non-shortcutting generalized
matrix branching program P (over Zq, for q > 2λ), two input vectors x0,x1 such that
P (x0) = P (x1), and an allowable test polynomial p (Def. 2.6). Then either

Pr
[
P̂ ← MBPRand(P ) ; p(MBPSelect(P̂ ,xb)) = 0

]
= 1

for both bits b ∈ {0, 1}, or,

Pr
[
P̂ ← MBPRand(P ) ; p(MBPSelect(P̂ ,xb)) = 0

]
< negl(λ)

for both bits b ∈ {0, 1}.

Lemma 2.7 follows immediately from the results of Sahai and Zhandry [SZ14]; we defer
the formal treatment to the full version.

2.4 Multilinear Maps

Multilinear maps [BS03], also known as graded encodings, or graded multilinear
maps [GGH13a, CLT13], are a generalization of bilinear maps such as pairings over
elliptic curves [Mil04, MOV93, Jou00, BF01]. Roughly speaking, a multilinear map
lets us take a scalar x ∈ Fq and produce an encoded version, x̂ = [x]S , where S ⊆ U
is a finite set, called an index set, that indicates the level of the encoding x̂ in a given
hierarchy (namely, the subsets of U ordered by inclusion).6

By convention, we will say that these index sets are made up of formal symbols,
denoted by capital letters (A,B,C), which serve the same role as formal variables in
polynomials. To be fully precise, we state the following definitions.

Definition 2.8 (Formal Symbol). A formal symbol is a bit string in {0, 1}∗, and distinct
variables denote distinct bit strings. A fresh formal symbol is any bit string in {0, 1}∗
that has not already been assigned to another formal symbol.

Definition 2.9 (Index Sets). An index set is a set of formal symbols called indices. By
convention, for index sets we use set notation and product notation interchangeably, so
that ABC represents {A,B,C}, and ABC ∪D = ABCD.

Definition 2.10 (Multilinear Map ([BS03, GGH13a, CLT13])). A multilinear map
over prime-order finite fields supports the following operations. Each of the operations
(MM.Setup, MM.Add, MM.Mult, MM.ZeroTest, MM.Encode) is implemented by an
efficient randomized algorithm.

– The setup procedure receives as input an index set U (Definition 2.9), which we
refer to as the “top-level index set”, as well as the security parameter λ (in unary).
It produces public parameters pp (which include an O(λ)-bit prime q), and secret
evaluation parameters sk:

MM.Setup(U , 1λ) → (pp, sk)

6 We describe here the case of asymmetric multilinear maps, since this is the one relevant to our
constructions in this work.
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– For each index set S ⊆ U , and each scalar x ∈ Zq, there is a set of strings
[x]S ⊆ {0, 1}∗, i.e., the set of all valid encodings of x at index set S. 7 From here
on, we will abuse notation to write [x]S to stand for any element of [x]S (i.e., any
valid encoding of x at the index set S).

– Elements at the same index set S ⊆ U can be added, with the result also encoded at
S:

MM.Add(pp, [x]S , [y]S) → [x+ y]S

– Elements at two index sets S1,S2 can be multiplied, with the result encoded at the
union of the two sets, as long as their union is still contained in U :

MM.Mult(pp, [x]S1 , [y]S2) →

{
[xy]S1∪S2 if S1 ∪ S2 ⊆ U
⊥ otherwise

– Elements at the top level U can be zero-tested:

MM.ZeroTest(pp, [x]S) →

{
“zero” if S = U and x = 0 ∈ Zq
“nonzero” otherwise

– Using the secret parameters, one can generate a representation of a given scalar
x ∈ Zq at any index set S ⊆ U :

MM.Encode(sp, x, S) → [x]S

– For the trivial index set S = ∅, we specify that the only valid encoding of [x]∅ is
just the scalar x ∈ Fq. (So, for instance, we can perform subtraction via MM.Add,
by scalar multiplication with −1.)

By convention, we refer to the cardinality of U as the degree of multilinearity of
the map.8 Technically, known instantiations of multilinear maps [GGH13a, CLT13] are
only approximate, and have a “noise” term that restricts the degree of multilinearity to
a pre-specified polynomial in the security parameter. However, this restriction will not
affect our results in this work, and to keep the presentation simple we do not model the
restriction formally.

When the context is clear, we also abuse notation to write, for encoded elements
â, b̂, the expression â + b̂ to mean MM.Add(MM.pp, â, b̂); the expression âb̂ to mean
MM.Mult(MM.pp, â, b̂); and likewise for other arithmetic expressions.

7 To be more precise, we define [x]S = {χ ∈ {0, 1}∗ : MM.IsEncoding(pp, χ, x,S)}, where
the predicate MM.IsEncoding is specified by the concrete instantiation of the multilinear map.
In general, the predicate MM.IsEncoding is not necessarily efficiently decidable—and indeed,
for the security of the multilinear map, it should not be.

8 In some cases, when we optimize a construction that uses multilinear maps, we find that we
never need to encode elements of a given singleton index set. Thus in general, for constructions
that are optimized in this way, we relax the definition of multilinearity degree to refer to the
total number of sequential multiplications that must be performed on any encoded elements in
the construction.
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The generic multilinear map model. To define security, we will operate in the generic
multilinear map model (also known as the generic graded encoding model [GGH+13b,
BR14, BGK+14]). This model is very similar to the generic group model [Sho97]—
intuitively, in this model, the only operations an adversary can use with encoded elements
are the operations of the multilinear map. More precisely, we say a scheme that uses
multilinear maps is secure in the generic multilinear map model if, for any concrete
adversary breaking the real scheme, there is an ideal adversary breaking a modified
scheme in which each concrete encoded element is replaced by a “handle” (concretely, a
fresh nonce), mapped to the actual encoded scalar in a table unavailable to the adversary.
Each multilinear map operation is replaced by an oracle query that takes two handles
and returns another fresh handle (creating a new table entry), except for the zero-test
oracle query, which, when given a handle, returns “zero” if the corresponding scalar in
the table is zero, and “nonzero” otherwise. We defer the formal definitions to the full
version.

2.5 Exclusive Partition Families

Even though the randomized MBPs of Section 2.3 impose certain restrictions on how
their matrices can be multiplied together to remove the randomizing factors, this alone
does not prevent an adversary from learning more information than just the outputs of
honest evaluations on the MBP. The issue is that the adversary may execute “mix-and-
match” attacks, using encoded matrices from multiple ciphertexts in the same evaluation.
Our construction will use the multilinear map’s index sets to enforce constraints on
the adversary’s evaluation, ruling out this kind of attack. As with the “straddling sets”
technique of Barak et al. [BGK+14], in order to use index sets to enforce this restriction,
we need to design these index sets with some combinatorial properties in mind.

In more detail, suppose U is the top-level index set in the multilinear map, and F is
some family of partitions of U . Intuitively, whenever we intend terms to be multiplied
together (e.g., because they are matrix elements from a consistent choice of ciphertexts),
the index sets of those terms will partition U , so that the product of the encoded elements
can legally be zero-tested. We will design the partition family F so that our intended
partitions (those in F) are the only partitions of U that the adversary can possibly
construct given the index sets of the terms we provide, thereby ruling out “mix-and-
match” attacks.

Formally, we define the following:

Definition 2.11 (Partition). The collection of sets P = {S1, . . . , Sd} is a partition of
a set U if S1 ∪ · · · ∪ Sd = U ; each Si is a nonempty subset of U ; and Si ∩ Sj = ∅ for
each i 6= j.

Definition 2.12 (Exclusive Partition Family). Fix a set U , and a familyF of partitions
of U , where we write the N partitions in the family F as the rows of the matrix: S1,1 S1,2 · · · S1,d

...
...

. . .
...

SN,1 SN,2 · · · SN,d
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We say that F is an (N , d)-exclusive partition family of U if the only partitions of U
that can be formed from sets in F are precisely the rows of the matrix. (Formally: for
all (i1, j1), . . . , (im, jm) ∈ [N ] × [d], the collection P = {Si1,j1 , . . . , Sim,jm} is a
partition of U if and only if i1 = . . . = im and {j1, . . . , jm} = [d].)

We say that an exclusive partition family F is explicit if there is an efficient deterministic
algorithm which, when given i ∈ [N ], j ∈ [d], outputs the elements of Si,j (i.e., outputs
the index of each element in some canonical ordering of the elements of U ). We note that
if F is explicit, then it is also easy to sample a partition (Si,1, . . . , Si,d) uniformly over
all of the partitions in F , simply by choosing uniform i ← [N ]. To simplify notation,

we write this sampling procedure as (Si,1, . . . , Si,d)
$← F .

Construction 2.13 ((2λ, d)-Exclusive Partition Families). Let d, λ > 0 be integers,
and let U be a set of size (1 + (d− 1)(λ+ 1)). Denote the elements of U as

U = { a1, a2, . . . , ad, b2,1, . . . , b2,λ, . . . , bd,1, . . . , bd,λ } ,

and identify an index i ∈ [2λ] with the string ρ(i) ∈ {0, 1}λ that forms the binary
representation of (i− 1). Define

Si,1 = {a1} ∪
⋃

j∈{2,...,d}

{bj,k : ρ(i)k = 1}

and for each j ∈ {2, . . . , d}, define

Si,j = {aj} ∪ {bj,k : ρ(i)k = 0}.

Finally, define the family F(d, λ) = ((S1,1, . . . , S1,d), . . . , (SN,1, . . . , SN,d)).

Lemma 2.14 ((2λ, d)-Exclusive Partition Families). For integers d, λ > 0, the family
F(d, λ) defined by Construction 2.13 is an explicit (2λ, d)-exclusive partition family.

Proof. By construction, each (Si,1, . . . , Si,d) is a partition of U consisting of d sets, and
the elements of each set are efficiently computable. Now, suppose that for some choice
of sets (i1, j1), . . . , (im, jm) ∈ [N ]× [d], the collection P = {Si1,j1 , . . . , Sim,jm} is a
partition of U . Then there exists some r∗ ∈ [m] such that the set Sir∗ ,jr∗ contains a1.
The only such sets are of the form:

Sir∗ ,jr∗ = Sir∗ ,1 = {a1} ∪
⋃

j∈{2,...,d}

{bj,k : ρ(ir∗)k = 1}

Assume for sake of contradiction that for some r ∈ [m], ir 6= ir∗ . We cannot have
jr = 1, since this would cover the element a1 twice: once by Sir∗ ,jr∗ , and once by
Sir,jr . Thus jr ∈ {2, . . . , d}, and the set Sir,jr is of the form:

Sir,jr = {ajr} ∪ {bjr,k : ρ(ir)k = 0}

But for each k ∈ [λ], the only sets that contain bjr,k also contain either a1 or ajr , and
we already have a1 ∈ Si∗,1 and ajr ∈ Sir,jr covered by the putative partition P . Hence
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the only elements bjr,k that are covered by P are those of the form {bj,k : ρ(ir∗)k = 1}
and {bj,k : ρ(ir)k = 0}. Since by assumption ir 6= ir∗ , the strings ρ(ir), ρ(ir∗) differ
on some bit k∗ ∈ [λ]. If ρ(ir∗)k∗ = 0 and ρ(ir)k = 1, then P fails to cover bjr,k∗ , while
if ρ(ir∗)k∗ = 1 and ρ(ir)k = 0, then P covers bjr,k∗ twice. In either case P is not a
partition of U , contradicting our assumption. So we conclude that ir∗ = i1 = . . . = im,
and thus F is an explicit (2λ, d)-exclusive partition family.

We also observe that our definition of exclusive partition families generalizes the
straddling set systems of Barak et al. [BGK+14]. Indeed, for any integer d > 0, a
straddling set system Sd (as defined in [BGK+14]) is a (2, d)-exclusive partition family.

3 Secret-Key Multi-Input Functional Encryption (SK-MIFE)

We now discuss the definition of secret-key multi-input functional encryption (SK-
MIFE), which is a special case of the definition of multi-input functional encryption
(MIFE) in [GGG+14].

In fact we will specialize this definition further, to the case of SK-MIFE with a single
function evaluation key (1SK-MIFE). We note that it is straightforward to construct
ordinary SK-MIFE (enabling multiple function keys) from 1SK-MIFE, as follows. We
can set the single functionality in 1SK-MIFE to be a universal branching program,
U(f, x1, . . . , xn), which takes as one of its inputs the function f to be evaluated. In this
SK-MIFE scheme, the key to evaluate a particular function f will be the 1SK-MIFE
encryption 1SK-MIFE.Enc(sk, 1, f) (for input slot 1 in the universal program U).

We also note that 1SK-MIFE already covers the application of order-revealing
encryption (ORE), since here we only want to enable a single function on MIFE cipher-
texts: namely, the comparison function. As we will see below, working with 1SK-MIFE
enables us to achieve a much more efficient construction. Thus, we will restrict our
attention to 1SK-MIFE here.

3.1 Definitions

A single-key, secret-key multi-input functional encryption (1SK-MIFE) scheme

Π = (1SK-MIFE.Setup, 1SK-MIFE.Enc, 1SK-MIFE.Dec)

supports the following operations. Each operation is implemented by a randomized
algorithm, which (with all but negligible probability) runs in time polynomial in its input
length and the security parameter λ.

– The setup procedure takes as input a security parameter λ and a program P , given as
an m-input matrix branching program (Section 2.2) over Zq for some prime q > 2λ.
The setup procedure outputs an evaluation key ek and a secret key sk.

1SK-MIFE.Setup(λ, P ) → (ek, sk)

– The encryption procedure takes as input a secret key sk, an input variable index
i ∈ [m], and an input x ∈ X , and outputs a ciphertext ct.

1SK-MIFE.Enc(sk, i, x) → ct
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– The decryption procedure takes as input an evaluation key ek and ciphertexts
ct(1), . . . , ct(m), and outputs a computation result b ∈ {0, 1}.

1SK-MIFE.Dec(ek, ct(1), . . . , ct(m)) → b

Definition 3.1 (1SK-MIFE Correctness). A 1SK-MIFE scheme Π is correct if for any
uniform multi-input matrix branching program P , and any inputs x(1), . . . , x(m) ∈ X ,
if (ek, sk) ← 1SK-MIFE.Setup(λ, P ) and for each i ∈ [m] it is the case that ct(i) ←
1SK-MIFE.Enc(sk, i, x(i)), then,

1SK-MIFE.Dec(ek, ct(1), . . . , ct(m)) → P (x(1), . . . , x(m)).

Security. It is clearly impossible to achieve (standard) semantic security for 1SK-MIFE,
since by design, our scheme must leak some information about the plaintexts—namely,
the result of evaluating the 1SK-MIFE program P on every possible choice of query
plaintext tuple. Our goal, then, is best-possible semantic security, in which we leak
only this information. In this respect, our security definition is similar to IND-OCPA
in the special case of order-preserving (or order-revealing) encryption [BCL+09], but
of course we must generalize it for 1SK-MIFE. Our definition is also similar to the
indistinguishability-based definitions of (general) multi-input functional encryption
given by Goldwasser et al. [GGG+14]. We now present the formal details.

Definition 3.2 (1SK-MIFE Security Game). Fix a generalized matrix branching pro-
gram P (to be used in the 1SK-MIFE scheme). For an adversaryA, and for each “world”
bit b ∈ {0, 1}, we define the experiment Expt1SK-MIFE

P,Q,b (A), parameterized over a number
of queries Q:

Experiment Expt1SK-MIFE
P,Q,b (A):

1. A receives an evaluation key ek, where (ek, sk)← 1SK-MIFE.Setup(λ, P ).
2. A makes Q adaptive queries to a left-or-right encryption oracle, as follows.

For each t ∈ [Q], the adversary sends queryt = (it, xt,0, xt,1), and is given
a ciphertext ctt ← 1SK-MIFE.Enc(sk, it, xt,b).

3. A outputs a bit b′ ∈ {0, 1}, which is the output of the experiment.

Definition 3.3 (Input-Consistent Queries). In an execution trace of the experiment
Expt1SK-MIFE

P,Q,b (A) (Definition 3.2), let t1, . . . , tm ∈ [Q] be time steps in the adversary’s
query sequence, such that for every input slot index i ∈ [m], we have queryti [1] = i
(i.e., at time t1, the adversary queried for input slot 1; at time t2, the adversary queried
for input slot 2; and so on). Then we say the query time sequence τ = (t1, . . . , tm)
is input-consistent. Furthermore, for each world bit b ∈ {0, 1}, we say that such an
input-consistent sequence τ selects the vector of inputs xτ,b = (xt1,b, . . . , xtm,b).

Definition 3.4 (Execution Trace). Fix an adversary A in the generic multilinear map
model. We define the execution trace of the experiment Expt1SK-MIFE

P,Q,b (A) to be the
sequence of all oracle query-response pairs, both between A and the challenger and
between A and the multilinear map oracle.



18 Dan Boneh et al.

Definition 3.5 (Admissibility of Execution Traces). An execution trace of the exper-
iment Expt1SK-MIFE

P,Q,b (A) is admissible if the Q adaptive queries made by the adver-
sary satisfy the following condition: for every input-consistent query time sequence
τ ∈ [Q]m, letting xτ,b denote the vector of inputs selected by τ in world b, we have
P (xτ,0) = P (xτ,1).

We note that admissibility can be checked, for any given execution trace, in time
O([Q]m) · poly(λ, |P |)), simply by testing the condition every possible sequence τ .
Thus, if m is a constant—e.g., for order-revealing encryption, where the arity of the
comparison program is m = 2—then admissibility can be checked in polynomial time.
For general programs P , the arity m may be ω(1), in which case admissibility may not
be efficiently checkable. Nevertheless, we can still define IND-security the same way.

Definition 3.6 (IND-security for 1SK-MIFE). A 1SK-MIFE scheme Π is Q-IND-
secure if, for all generalized matrix branching programs P , and all efficient adversaries
A, the quantity

Adv1SK-MIFE
P,Q (A) = |W0 −W1|

is negligible, where for each world bit b ∈ {0, 1} we define

Wb = Pr
[
Expt1SK-MIFE

P,Q,b (A) outputs 1 and yields an admissible execution trace
]
.

Application to order-revealing encryption. Our motivating application of 1SK-MIFE
is order-revealing encryption (ORE). In this case, the program P is a matrix branching
program for the comparison function, which takes two bit strings x, y ∈ {0, 1}n repre-
senting numbers in binary, and returns 1 if x ≤ y. The 1SK-MIFE evaluation key ek
then fills the role of the comparison algorithm in ORE.

Strictly speaking, in addition to the comparison algorithm, ORE requires that some-
one who holds the secret key can also decrypt each ciphertext, revealing the original
string x ∈ {0, 1}n. We can accomplish this by including, along with the 1SK-MIFE
ciphertext, another encryption of x under an ordinary (semantically-secure) symmetric
encryption scheme, and including this scheme’s secret key as part of the key in ORE.

4 Our 1SK-MIFE Construction

Consider an m-input generalized matrix branching program (MBP) of length `. We
construct a 1SK-MIFE for the function computed by this MBP. To encrypt an input x ∈
X we construct the set of matrices obtained by considering the input (x, . . . , x) ∈ Xm
to the MBP. We randomize each matrix in the branching program as in Section 2.3 by
using a randomizing matrix taken from the secret key. These randomizing matrices Ri

are fixed at key generation time and used for all encryptions. The encryption procedure
then chooses random scalars α1, . . . , α` and, more importantly, chooses random index
sets for a multilinear map with which to encode each of the matrices (these index sets
are chosen from an exclusive partition family which, as we will see, have the properties
needed for correctness and security). The encryptor encodes each randomized matrix
using its assigned index set and outputs the set of encoded matrices as the encryption of
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x. Now, to compute the MBP function given m independently-created ciphertexts we
can select appropriate encoded matrices from each ciphertext and compute their product
using the multilinear map, as done in the ORE example in Section 1. We then zero-test
the result to learn the output of the function in the clear.

The challenge with this approach is to guarantee that any meaningful evaluation has
to use all of the matrices in a set of m ciphertexts and no other elements. In other words,
the difficulty in the security proof lies in preventing attacks that evaluate the decryption
function by mixing matrices from different encryptions for the same input position. We
resolve this issue by relying on exclusive partition families from Definition 2.12. For
each input position i that determines d matrices in the generalized MBP, we construct
a (2λ, d)-exclusive partition family F (i). To encrypt a message for that position, we
sample at random a partition (S

(i)
1 , . . . , S

(i)
d ) from the family F (i) and use the sets

from the partition as the index sets for encoded matrices included in the encryption.
The properties of the exclusive partition families guarantee that MBP evaluations using
matrices from ciphertexts generated by sampling different partitions from F (i) will fail
because the result will not be encoded with respect to the index set for the zero-tester.

We now describe the formal construction for the above intuition.

Construction 4.1 (1SK-MIFE). The 1SK-MIFE construction consists of the following
procedures:

– 1SK-MIFE.Setup(λ, P ):
The setup procedure receives as input a security parameter λ and a generalized
matrix branching program P : Xm → {0, 1} of the form

P = ( q, m, d, inp, (M1, . . . , M`) ) ,

as described in Section 2.2, where X ⊂ {0, 1}∗ is a space of possible input strings,
eachMj : X → GLw(Zq) is expressed as a Boolean circuit, and ` = md.
For each input variable index i ∈ [m], let F (i) be a (2λ, d)-exclusive partition
family (Lemma 2.14) over a set Ui of O(dλ) fresh formal indices (Section 2.4),
and let As, At also be fresh formal indices. The setup procedure forms a top-level
universe of indices

U = AsAt
∏
i∈[m]

Ui,

and generates corresponding parameters for a multilinear map

(MM.pp, MM.sp)← MM.Setup(U , q).

Then, it randomizes P via the method of Definition 2.3, producing a randomized
program P̂ as

P̂ = MBPRand(P ) =
(
q, m, n, inp, (M̂1, . . . , M̂`), ŝ, t̂

)
.

Finally, it outputs the evaluation key ek and the secret key sk:

ek =
(
MM.pp, P, [ŝ]As

,
[
t̂
]
At

)
sk = (MM.sp, P̂ )
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(using MM.Encode(MM.sp, ·, ·) to generate fresh encoded elements [ŝ]As
,
[
t̂
]
At

).

– 1SK-MIFE.Enc(sk, i, x):
The encryption procedure receives as input the secret key sk = (MM.sp, P̂ ), an
input variable index i ∈ [m], and a plaintext x ∈ X (to be encrypted to the ith input
slot of the branching program).
Let F (i) be a (2λ, d)-exclusive partition family (Lemma 2.14) over Ui, as defined in
1SK-MIFE.Setup above. The encryption procedure samples a partition uniformly at
random from the family F (i) of the form(

S
(i)
1 , . . . , S

(i)
d

)
$← F (i).

The procedure also chooses scalars α1, . . . , αd ← Z∗q uniformly at random. Finally,
for each h ∈ [d], the procedure generates the following fresh encoded elements
(using MM.Encode(MM.sp, ·, ·)):

cth :=
[
αh M̂inp.j(i,h)(x)

]
S

(i)
h

,

and outputs the ciphertext ct = (ct1, . . . , ctd).

– 1SK-MIFE.Dec(ek, ct(1), . . . , ct(m)): The decryption procedure receives as input
the public parameters ek = (MM.pp, P, [ŝ]As

,
[
t̂
]
At
), along with m ciphertexts

ct(1), . . . , ct(m). Each ciphertext is parsed as

ct(i) = (ct
(i)
1 , . . . , ct

(i)
d ) =

(
Ĉ

(i)
1 , . . . Ĉ

(i)
d

)
,

where the entries of the matrices Ĉ(i)
h are encoded elements in the multilinear map.

Then, using the multilinear map operations (MM.Add, MM.Mult), it computes

z = [ŝ]As
·

∏
j∈[`]

Ĉ
(inp(j))
inp.h(j)

 · [t̂]
At
.

Using the operation MM.ZeroTest, the procedure tests whether z encodes zero in
Fq , and outputs 1 if so, and 0 otherwise.

Functional correctness follows from the definition of Construction 4.1, along with
the correctness of the multilinear map procedures. Formally, we state the following
theorem.

Theorem 4.2. Construction 4.1 is correct (Definition 3.1).

To prove Theorem 4.2, we first show that for a given evaluation on m honestly-
generated ciphertexts, all of the index sets “match up” for each i ∈ [m], so that the
result z is a valid zero-test query; this follows from the properties of exclusive partition
families (Definition 2.12). Then, we show that the actual value of z corresponds to the
execution of the original program; this follows by correctness of the randomization
procedure MBPRand (Definition 2.3).
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Proof. Fix a multi-input matrix branching program P , a security parameter λ, and a
tuple of plaintext inputs x = (x(1), . . . , x(m)). Let (ek, sk)← 1SK-MIFE.Setup(λ, P ),
and suppose that for each i ∈ [m], we have ct(i) ← 1SK-MIFE.Enc(sk, i, x(i)). Then
we claim that 1SK-MIFE.Dec(sk, x(1), . . . , x(m))→ P (x).

To begin, we write:
ct(i) = (M̂

(i)
1 , . . . , M̂

(i)
d ),

where the entries of the each matrix M̂
(i)
h are encoded elements in the multilinear

map. Note that 1SK-MIFE.Dec outputs the result of zero-testing the following encoded
element:

z = [ŝ]As
·

∏
j∈[`]

M̂
(inp(j))
inp.h(j)

 · [t̂]
At

Hence, for correctness, it suffices to show that for honestly constructed ciphertexts, z is
a valid (non-⊥) encoded element at the top-level index set U , and that z’s value in Zq is
zero precisely when P evaluates to 1 on x.

By definition, for any j ∈ [`], we have j = inp.j(inp(j), inp.h(j)) (Section 2.2).
Thus by construction of 1SK-MIFE.Enc:

z = [ŝ]As
·

∏
j∈[`]

[
α′j M̂j(x

(inp(j)))
]
S

(inp(j))

inp.h(j)

 · [t̂]
At
,

for some α′j ∈ Z∗q chosen by 1SK-MIFE.Enc on some input. Now, note that{
S
(inp(j))
inp.h(j) : j ∈ [`]

}
=
{
S
(i)
h : i ∈ [m], h ∈ [d]

}
. (2)

Since for each i ∈ [m], the tuple (S
(inp(j))
h )h∈[d] is a partition of Ui (Lemma 2.14), we

conclude that the right-hand side of (2) is a partition of (U \(As∪At)), and thus so is the
left-hand side. Hence each MM.Mult operation performed by the functional decryption
procedure is valid, and the result z is an element of Zq encoded at the top-level universe
U .

It only remains to establish that z encodes zero precisely when the program evaluates
to 1 on the corresponding inputs. We have that

z =

∏
j∈[`]

α′j

 ŝ ·

∏
j∈[`]

M̂j(x
(inp(j)))

 · t̂

U

,

and hence, by the correctness of the randomized encoding (Lemma 2.5),

z =

∏
j∈[`]

α′j

 ·
∏
j∈[`]

Mj(x
(inp(j)))

 [1, 1]


U

.

Since each α′j ∈ Z∗q is invertible, z encodes zero if and only if∏
j∈[`]

Mj(x
(inp(j)))

 [1, 1] = 0,



22 Dan Boneh et al.

so by the definition of the branching program, we conclude that

z = 0 ⇐⇒ P (x) = 1.

Remark 4.3. As written, Construction 4.1 requires an (` + 2)-way multilinear map
to support the computation of z in 1SK-MIFE.Dec. However, we note that we could
optimize the construction so that 1SK-MIFE.Enc pre-multiplies the vectors ŝ and t̂ with
the first and last matrices, respectively, Ĉ(inp(1))

inp.h(1), Ĉ
(inp(`))
inp.h(`), · · · . This would enable us

to reduce the degree of the computation from (` + 2) to ` (and hence obtain better
parameters for the multilinear map); in the special case of order-revealing encryption,
we have ` = k + 1, and thus we reduce the degree required from (k + 3) to (k + 1). For
simplicity, however, we present the construction without this optimization.

Remark 4.4 (Multi-Bit Output). For simplicity, we present our SK-MIFE construction
only for functions that output a single bit. However, the construction can easily be
extended to functions with multi-bit output in a number of ways. First, if a given
generalized branching program already outputs k bits9, then we can output the same
k bits via the techniques of Sahai and Zhandry, replacing the bookend vectors ŝ, t̂
by randomized diagonal matrices as described in [SZ14]. This transformation yields
multi-bit output at essentially no additional performance cost. Alternatively, for arbitrary
programs (not represented efficiently as multi-bit branching programs a priori), we can
also simply run k copies of our scheme in parallel, supporting multi-bit output at the
cost of a factor k loss in efficiency.

4.1 Security proof

Our main theorem states that the construction above indeed yields a secure 1SK-MIFE
scheme.

Theorem 4.5 (1SK-MIFE Security). The 1SK-MIFE construction of Section 4 is
poly(λ)-IND-secure in the generic multilinear map model.

Before proving Theorem 4.5, we first give a few relevant definitions and lemmas.
Our proof techniques in this section are similar to those in related works that use the
generic multilinear map model [BR14, BGK+14].

Remark 4.6 (Queries Referring to Formal Polynomials). Formally, the generic mul-
tilinear map model is defined in terms of oracle queries on “handles” (nonces). In any
particular security game, however, it is usually more intuitive to regard each oracle query
as a formal polynomial. The formal variables are specified in terms of the expressions
initially supplied to the MM.Encode procedure (as appropriate to the security game),
and the adversary can construct new polynomials by making oracle queries for the
generic-model ring operations MM.Add, MM.Mult. Rather than operating on a handle,

9 In such a branching program, the output is determined by the upper left k1 × k2 submatrix
(k = k1k2) of the final matrix product, as opposed to just the upper left entry. The output of the
program is the k1 × k2 Boolean matrix indicating which entries in the submatrix are 0.
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then, we can think of each valid MM.ZeroTest query as referring to a formal polynomial
encoded at the top-level universe U . The result of the query is “zero” precisely if the
given polynomial evaluates to zero, when its variables are instantiated with the real joint
distribution over their values in Zq , generated as in the actual security game. For precise
definitions, we refer the reader to the full version.

Structure lemmas. Our 1SK-MIFE construction uses index sets to enforce constraints
on the adversary’s evaluation (as depicted in Figure 3). The purpose of these constraints
is to prevent the adversary from constructing zero-test queries that are inconsistent—i.e.,
use encodings that “mix and match” elements of different ciphertexts. To show that our
design indeed prevents these undesired queries, we first state and prove a few simple
definitions and “structure lemmas”, showing that all valid query polynomials have a
certain form.

Definition 4.7 (Query-Consistent Polynomials). For an execution trace of the ex-
periment Expt1SK-MIFE

P,Q,b (A) in the generic multilinear map model, consider any input-
consistent sequence τ = (t1, . . . , tm) of query times (Definition 3.3). By definition of the
encryption procedure, the corresponding ciphertexts for those query times are encoded
elements that refer to formal polynomials (Remark 4.6) of the form ctti,h = αti,hM̂ti,h,
where αti,h is a scalar and M̂ti,h is aw×w matrix. We now define the formal polynomial

ατ =
∏

i∈[m], h∈[d]

αti,h

(intuitively, the α coefficient that would be present, for a given query sequence τ , in an
honest evaluation of the program), as well as the tuple of formal polynomials

M̂|τ =
(
M̂tinp(1),inp.h(1), . . . , M̂tinp(`),inp.h(`)

)
(intuitively, the matrices whose entries would be involved in an honest evaluation of the
program). Finally, we say that a formal polynomial zτ ,b is consistent with the query
sequence τ if it can be expressed as a polynomial in the entries of the correct vectors and
matrices (ŝ, M̂|τ , and t̂), scaled by the correct blinding coefficient, ατ . More precisely,
zτ is consistent with τ if it is identically equal to a formal polynomial of the form

zτ = ατ · pτ (ŝ, M̂|τ , t̂)

for some polynomial pτ of degree poly(λ).

Lemma 4.8 (Decomposition of Zero-Test Queries). Fix any efficient adversary A. In
the experiment Expt1SK-MIFE

P,Q,b (A), with all but negligible probability, every MM.ZeroTest
query made byA that is valid (i.e., whose handle is at the top-level universe U ), refers to
a polynomial (Remark 4.6) formally equal to a sum of (potentially exponentially many)
query-consistent polynomials of the form

z =
∑
τ

ατ · pτ (ŝ, M̂|τ , t̂),
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Fig. 3: The matrices of two 1SK-MIFE ciphertexts, ct = (ct
(1)
1 , ct

(1)
2 , ct

(1)
3 )

and ct′ = (ct1
′(1), ct2

′(1), ct3
′(1)) (both encrypted to slot 1), with the index

set of each matrix depicted below it. Since the index sets are defined by
two different elements of the same exclusive partition family, the adversary
cannot “mix and match” elements from the two ciphertexts.
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and each polynomial pτ is allowable (Definition 2.6) and consistent with a query
sequence τ (Definition 4.7).

Proof. Consider any valid formal polynomial z submitted to MM.ZeroTest. First, we
expand the polynomial z into a sum of monomials (for purposes of analysis, not by the
scheme), and collect like terms with respect to the α variables. Each term in the resulting
expression must be encoded at the top-level universe U , since some valid zero-testing
handle refers to their sum. This means, in particular, that the index set of each term must
contain a partition of every Ui.

The only variables available to the adversary whose index sets contain elements of
Ui are the ciphertexts ctt,h generated during time steps t ∈ T (i), where T (i) is the set of
all times at which the adversary made chosen-plaintext queries for input slot i. For these
time steps, we will assume that the partitions selected by the challenger:(

Pt = (S
(i)
t,1, . . . , S

(i)
t,d) : t ∈ T

(i)
)

are distinct, since each is drawn independently uniform from a family of size 2λ, regard-
less of the adversary’s queries, and thus by the birthday bound a collision occurs with
negligible probability.

This implies that the index sets S(i)
t,h are distinct elements of the exclusive partition

family Fit , and thus by Lemma 2.14, for each i ∈ [m], the only monomials whose
index sets can cover each Ui all share the same value of the partition Pt (and hence
of t), and thus are precisely products of one element from each component of the
same query ciphertext, ctti . Finally, for each h ∈ [d], we note that the hth term of
each such ciphertext contains precisely the factors αti,h and Mti,h. Thus, letting τ =
(t1, . . . , tm) ⊆ [Q], we conclude that such monomials have precisely a leading factor
of ατ , while the remaining factors are drawn from M|τ , as desired. We observe that
each such monomial (and hence their sum, pτ ) must be allowable (Definition 2.6), since
all entries of each vector and matrix ŝ, M̂|τ , t̂ are encoded at the same index set, and
thus the monomial can only include one factor from each. Finally, the degree of the
polynomial pτ must be at most poly(λ), since the index set of any formal polynomial
grows with its degree, and the size of any valid index set is bounded by the size of the
top-level universe U .

We are now ready to present the main proof of Theorem 4.5.

4.2 Proof of Theorem 4.5

Proof. Fix an efficient adversaryA for the experiment Expt1SK-MIFE
P,poly(λ),b(A) in the generic

graded encoding model. We will show that for every admissible trace π in the experi-
ment (Definition 3.5), except for failure events of negligible probability, the probability
that the experiment yields the trace π when b = 0 differs by a negligible amount from
the probability that it yields the trace π when b = 1. It then follows immediately that
Adv1SK-MIFE

P,Q (A) = |W0 −W1| is negligible, as desired.
First, we note that in any trace π, the only responses sent to A are either (a) handles

in the multilinear map, via MM.Encode, from the public parameters and from cipher-
texts generated for chosen-plaintext queries; (b) handles in the multilinear map, via
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MM.Add,MM.Mult, from queries to the generic map oracleM; or else (c) answers to
MM.ZeroTest queries on handles in the multilinear map. Since in the generic model the
handles for (a) and (b) are uniform independent nonces, their distribution clearly does not
depend on b. Thus, our task reduces to showing that for each MM.ZeroTest query, the
probability of each response (“zero”, “nonzero”) differs by a negligible amount between
the cases b = 0 and b = 1. The claim will then follow by a union bound, since A (being
efficient) can make only polynomially many oracle queries.10

Fix a valid MM.ZeroTest query, which refers to a formal multivariate polynomial
z (Remark 4.6). By Lemma 4.8, z is identically equal to a polynomial of the form∑

τ

ατ · pτ (ŝ, M̂|τ , t̂) ,

where each polynomial pτ is allowable (Definition 2.6) and consistent with the query
sequence τ (Definition 4.7). For each bit b ∈ {0, 1}, let xτ ,b = (xt1,b, . . . , xtm,b) be the
chosen-plaintext queries corresponding to τ in the adversary’s execution trace up to the
point of query z. Since by assumption the execution trace is admissible (Definition 3.5),
we have P (xτ ,0) = P (xτ ,1). By Lemma 2.7, we now conclude that each formal
polynomial pτ , when evaluated on the real distribution of values in Zq from the oracle’s
table, is either zero with probability 1 for both values of b ∈ {0, 1}, or else is nonzero
with all but negligible probability for both values of b ∈ {0, 1}. We consider the
following cases:

– Suppose that for all τ in the formal sum for z, the polynomial pτ evaluates to zero
on its argument’s entire support. In this case, the entire query z will evaluate to zero
always, regardless of the value of b.

– Suppose that for some τ ∗ in the formal sum for z, the polynomial pτ∗ evaluates to
zero negligibly often, regardless of the value of b (and consider the lexicographically
first such τ ∗, without loss of generality). Then for both values of b, when the query
z is instantiated with the real distribution of all values except the α variables, pτ∗
evaluates to a polynomial function of the α variables which, with all but negligible
probability, is not identically zero. Since the distribution over the α variables is
statistically close to independently uniform over Zq, the Schwartz-Zippel lemma
implies that the entire query z will evaluate to a nonzero value regardless of the
value of b, except for failure events with negligible probability.

Thus, for each MM.ZeroTest query, the probability that the answer is “zero” differs by a
negligible amount between the cases b = 0 and b = 1, as desired.

5 Extensions

Stateful Encryption. In the construction of Section 4, since encryption is required
to be stateless, we need to generate a fresh partition for each encryption (and rely on
10 Technically, we must also show that the distribution of the values in the oracle’s table, condi-

tioned on each possible subsequence of past oracle query-response pairs (assuming no failure
events), has negligible statistical distance from its prior distribution from MM.Setup; this
follows by a standard conditional probability argument, given that the probability of each failure
event is negligible.
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the birthday bound to prevent collisions). However, in many applications of SK-MIFE,
it may be reasonable to modify the encryption procedure to be stateful. For instance,
suppose a client is encrypting an entire database to be stored on a remote server (and later
queried according to the functions for which we reveal MIFE evaluation keys). Here the
client may know the contents of the entire database in advance, or may be able to retain
local state between interactions with the server. In either case, if the maximum number
of database elements N is known in advance, then we can simply replace the (2λ, d)-
exclusive partition families in the construction (Section 4) with (2dlogNe, d)-exclusive
partition families, and instead of sampling a partition index uniformly at random for each
encryption, use the partitions in order: the ith partition for the ith encryption operation,
for each i ∈ [N ].

6 Conclusions

We presented a secret-key multi-input functional encryption scheme for functionalities
that can be captured by a generalized branching programs of polynomial length and width.
An interesting functionality in this family is comparison which enables comparisons of
symmetrically encrypted data. We refer to this specific functionality as order-revealing
encryption (ORE). ORE can be used to answer range queries on symmetrically encrypted
data in one round and in logarithmic time in the size of the database.

Our construction is inspired by obfuscation techniques, but does not use obfuscation.
Instead it is built directly from multilinear maps and is substantially simpler than cur-
rent obfuscation-based schemes. While the resulting order-revealing encryption (ORE)
scheme is still too inefficient for practical use, it provides a first step towards building
usable ORE systems. We hope that future work will further improve the efficiency of
ORE and, more generally, the efficiency of secret-key multi-input functional encryption.
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