
Cluster Computing in Zero Knowledge

Alessandro Chiesa1, Eran Tromer3 and Madars Virza2

1 ETH Zurich, alessandro.chiesa@inf.ethz.ch
2 MIT, madars@csail.mit.edu

3 Tel Aviv University, tromer@cs.tau.ac.il

Abstract. Large computations, when amenable to distributed parallel execution,
are often executed on computer clusters, for scalability and cost reasons. Such
computations are used in many applications, including, to name but a few, ma-
chine learning, webgraph mining, and statistical machine translation. Oftentimes,
though, the input data is private and only the result of the computation can be pub-
lished. Zero-knowledge proofs would allow, in such settings, to verify correctness
of the output without leaking (additional) information about the input.
In this work, we investigate theoretical and practical aspects of zero-knowledge
proofs for cluster computations. We design, build, and evaluate zero-knowledge
proof systems for which: (i) a proof attests to the correct execution of a cluster
computation; and (ii) generating the proof is itself a cluster computation that is
similar in structure and complexity to the original one. Concretely, we focus on
MapReduce, an elegant and popular form of cluster computing.
Previous zero-knowledge proof systems can in principle prove a MapReduce
computation’s correctness, via a monolithic NP statement that reasons about all
mappers, all reducers, and shuffling. However, it is not clear how to generate the
proof for such monolithic statements via parallel execution by a distributed sys-
tem. Our work demonstrates, by theory and implementation, that proof generation
can be similar in structure and complexity to the original cluster computation.
Our main technique is a bootstrapping theorem for succinct non-interactive ar-
guments of knowledge (SNARKs) that shows how, via recursive proof compo-
sition and Proof-Carrying Data, it is possible to transform any SNARK into a
distributed SNARK for MapReduce which proves, piecewise and in a distributed
way, the correctness of every step in the original MapReduce computation as well
as their global consistency.

Keywords: computationally-sound proofs, proof-carrying data, zero knowledge,
cluster computing, MapReduce

1 Introduction

We study theoretical and concrete aspects of zero-knowledge proofs for cluster compu-
tations, seeking proofs for which: (i) the output of the cluster computation carries a
zero-knowledge proof of its correctness; and (ii) generating a proof is itself a cluster
computation that is similar in structure and complexity to the original one.

1.1 Motivation

Consider the following motivating example. A server owns a private database x, and
a client wishes to learn y := F (x) for a public function F , selected either by himself
or someone else. A (hiding) commitment cm to x is known publicly. For example, x
may be a database containing genetic data, and F may be a machine-learning algorithm
that uses the genetic data to compute a classifier y. On the one hand, the client seeks
integrity of computation: he wants to ensure that the server reports the correct output y
(because the classifier y may be used for critical medical decisions). On the other hand,
the server seeks confidentiality of his own input: he is willing to disclose y to the client,
but no additional information about x beyond y (because the genetic data x may contain
sensitive personal information).

Zero-knowledge proofs. Achieving the combination of the aforementioned security
requirements seems paradoxical; after all, the client does not have the input x, and the
server is not willing to share it. Nevertheless, cryptography offers a powerful tool that
is able to do just that: zero-knowledge proofs [48]. More precisely, the server, acting as
the prover, attempts to convince the client, acting as the verifier, that the following NP
statement is true: “there exists x̃ such that y = F (x̃) and x̃ is a decommitment of cm”.
Indeed: (a) the proof system’s soundness property addresses the client’s integrity con-
cern, because it guarantees that, if the NP statement is false, the prover cannot convince
the verifier (with high probability);4 and (b) the proof system’s zero-knowledge prop-
erty addresses the server’s confidentiality concern, because it guarantees that, if the NP
statement is true, the prover can convince the verifier without leaking any information
about x (beyond was is leaked by the output y).

Cluster computations. When F is amenable to parallel execution by a distributed
system, it is often desirable, for scalability and cost reasons, to compute y := F (x) on
a computer cluster. A computer cluster consists of nodes (e.g., commodity machines)
connected via a network, and each node performs local computations as coordinated via
messages with other nodes. Thus, to compute F (x), a cluster may break x down into
chunks and use these to assign sub-tasks to different nodes; the results of these sub-
tasks may require further computation, so that nodes further coordinate, deduce more
sub-tasks, and so on, until the final result y can be collected. Parallel execution by a
distributed system is possible in many settings, including the aforementioned one of
running machine-learning algorithms on private genetic data. Indeed, “cloud” service
providers do offer users distributed programming interfaces (e.g., Amazon’s “EMR”
and Rackspace’s “Big Data”, both of which use the Hadoop framework).

The problem: how to do cluster computing in zero knowledge? In principle, any
zero-knowledge proof system for NP can be used to express an NP statement that cap-
tures F ’s correct execution. However, while F may have been efficient to execute on a
computer cluster, the process of generating a proof attesting to its correctness may not
be. Suppose, for example, that the NP statement to be proved must be expressed as an
instance of circuit satisfiability. Then, one would have to construct a single circuit that

4 Sometimes a property stronger than soundness is required: proof of knowledge [48, 4], which
guarantees that, whenever the client is convinced, not only can he deduce that a witness exists,
but also that the prover knows one such witness.

2

expresses the correctness of the computation of every node in the cluster, as well as the
correctness of communication among them. Proving the satisfiability of the resulting
monolithic circuit via off-the-shelf zero-knowledge proof systems is a computation that
looks nothing like the original one and, moreover, may not be suitable for efficient ex-
ecution on a cluster. Ideally, the proving process should be a distributed computation
that is similar to the original one, in that the complexity of producing the proof is not
much larger than that of the original computation and, likewise, has a cluster-friendly
communication structure. In sum: To what extent can one efficiently perform cluster
computing in zero knowledge?

1.2 Our focus: MapReduce

Cluster computing is a hypernym that encompasses numerous forms of distributed com-
puting, as determined by the cluster’s architecture (i.e., its programming model and its
execution framework). Indeed, a cluster’s architecture often depends on the class of en-
visioned applications (e.g., indexing the World Wide Web, performing astrophysicalN -
body simulations, executing machine-learning algorithms on genetic data, and so on).

In this work, we focus on a concrete, yet elegant and powerful, distributed architec-
ture: MapReduce [35]. We review MapReduce later (in Section 2), and now only say
that MapReduce can express many useful computations, including ones used for ma-
chine learning [26, 82, 67], graph mining and processing [58, 52], statistical machine
translation [20, 38, 57, 70], document similarity [56], and bioinformatics [54, 71]. For
concreteness, we specialize to MapReduce the question raised in Section 1.1:

Can one obtain zero-knowledge proofs attesting to the correctness of
MapReduce computations, in which the proving process is itself distributed
and can be efficiently expressed via MapReduce computations?

1.3 Our contributions

In this paper we present two main results, both contributing to the feasibility of cluster
computing in zero knowledge.

1. MapReduce in zero knowledge. Under knowledge-of-exponent assumptions [31,
50, 5], we construct a zero-knowledge proof system in which: (i) a proof attests
to the correct execution of a MapReduce computation; and (ii) generating a proof
consists of MapReduce computations with similar complexity as the original one.
Moreover, the proof system is succinct and non-interactive, i.e., is a zk-SNARK [44,
12, 15].

2. A working prototype. We design, build, and evaluate a working prototype for the
aforementioned construction.

At the heart of our construction (and implementation) lies a new bootstrapping theo-
rem for zk-SNARKs. Informally:

Assuming collision-resistant hashing, there is an efficient transformation
that takes as input a zk-SNARK (even one with expensive preprocessing)
and outputs a distributed zk-SNARK for MapReduce, i.e., a zk-SNARK for
MapReduce where the prover can be efficiently implemented via MapReduce.

3

The transformation consists of the following two steps.

– Step I: use a given (non-distributed) zk-SNARK to obtain a proof-carrying data
(PCD) system [24, 25], a cryptographic primitive that enforces local invariants, the
compliance predicates, in distributed computations.

– Step II: use the PCD system on a specially-crafted predicate to obtain a distributed
zk-SNARK for MapReduce.

The theory for the first step is due to [13]; a special case was implemented in [8], and our
implementation generalizes it to support the MapReduce application. The second step is
novel and is an example of using “compliance engineering” to conduct and prove cor-
rectness of non-trivial distributed computations. From an implementation standpoint,
both steps require significant and careful engineering, as we explain later.

1.4 Prior work

zk-SNARKs. We study zero-knowledge proofs [48] that are non-interactive [17, 66,
16]. Specifically, we study non-interactive zero-knowledge proofs that are succinct, i.e.,
short and easy to verify [63]; these are known as zk-SNARKs [44, 12, 15].

There are many zk-SNARK constructions in the literature, with different properties
in efficiency and supported languages. In preprocessing zk-SNARKs, the complexity of
the setup of public parameters grows with the size of the computation being proved
[49, 59, 15, 43, 69, 7, 60, 39, 9, 61, 53, 3, 81, 83, 33, 30]; in fully-succinct zk-SNARKs,
that complexity is independent of computation size [63, 79, 64, 36, 12, 32, 47, 14,
13, 8, 11]. Working prototypes have been achieved both for preprocessing zk-SNARKs
[69, 7, 9, 53, 83, 30] and for fully-succinct ones [8]. Several works have also explored
more in depth various applications of zk-SNARKs [23, 21, 34, 6, 41].

Prior work has not sought (or achieved) distributed zk-SNARKs for MapReduce.
Of course, non-distributed zk-SNARKs for MapReduce (i.e., where the prover is not
amenable to parallel distributed execution) can be achieved, trivially, via any zk-SNARK
for NP: (a) express (the correctness of) the MapReduce computation via a suitable NP
statement; then (b) prove satisfiability of that NP statement by using the zk-SNARK.

Proof-carrying data. Proof-Carrying Data (PCD) [24, 25] is a framework for enforc-
ing local invariants in distributed computations; it is captured via a cryptographic primi-
tive called PCD system. Proof-Carrying Data covers, as special examples, incrementally-
verifiable computation [79] and targeted malleability [19]. Its role in bootstrapping
zk-SNARKs was shown in [13], and an implementation of it was achieved in [8].

Outsourcing MapReduce computations. Braun et al. [21] construct (and imple-
ment) an interactive protocol for verifiably outsourcing MapReduce computations to
untrusted servers. While interacting with the prover, the client has to perform him-
self the MapReduce shuffling phase; hence, their protocol is neither succinct nor zero
knowledge. (In particular, their protocol is not a zk-SNARK and, a fortiori, nor a dis-
tributed zk-SNARK.)

Other works on outsourcing computations. Numerous works [46, 51, 2, 27, 42,
10, 22, 29, 73, 40, 75, 76, 74, 28, 78, 80, 77, 21, 18, 68] seek to verifiably outsource

4

various classes of computation to untrusted powerful servers, e.g., in order to leverage
cheaper cycles or storage. Some of these works have achieved working prototypes of
their protocols.

Verifiable outsourcing of computations is not our goal. Rather, we study theoret-
ical and practical aspects of zero-knowledge proofs for cluster computations. Zero-
knowledge proofs are useful even when applied to relatively-small computations, and
even with high overheads (e.g., see [65] for a recent example).5

1.5 Summary of challenges and techniques

Our construction (and implementation) rely on a new bootstrapping theorem for zk-SNARKs:
any zk-SNARK can be transformed into a distributed zk-SNARK for MapReduce. The
transformation is done in two steps, as follows.

From the zk-SNARK to a multi-predicate PCD system The transformation’s first
step uses the given zk-SNARK to construct a PCD system [24, 25], a cryptographic
primitive that enforces a given local invariant, known as the compliance predicate, in
distributed computations. Such a transformation was described by [13], following [79]
and [24]. It was implemented by [8], and used for obtaining scalable zero-knowledge
proofs for random-access machine executions.

These prior works are constrained to enforcing a single compliance predicate at
all nodes in the distributed computation. However, in MapReduce computations (as in
many others), different nodes are subject to different requirements. In principle one
can create a single compliance predicate expressing the disjunction of all these require-
ments; but the resulting predicate is large (its size is the sum of each requirement’s size)
and entails a large cost in proving time.

We thus extend [8] to define, construct, and implement a multi-predicate PCD sys-
tem, where different nodes may be subject to different compliance predicates, and yet
the cost of producing the proof, at each node, depends merely on the compliance predi-
cate to which this particular node is subject. The presence of multiple compliance pred-
icates complicates the construction of the arithmetic circuits for performing recursive
proof composition, as these must now verify a zk-SNARK proof relative to one out of a
(potentially large) number of compliance predicates, each with its own verification key,
at a cost that is essentially independent of the predicates that are not locally relevant.

Additional restrictions in the prior works, which we also relax, are that node arity
(the number of input messages to a node) was fixed, and that a node’s input lengths had
to equal its output length. While not fundamental, these limitations cause sizable over-
heads in heterogenous distributed computations (of which MapReduce is an example).

5 In this paper’s setting, the client does not have the server’s input, and so cannot conduct the
computation on his own. It is thus not meaningful to compare “efficiency of outsourced com-
putation at the server” and “efficiency of native execution at the client”, since the latter was
never an option.

5

From a multi-predicate PCD system to a distributed zk-SNARK for MapReduce
The transformation’s second step uses the aforementioned multi-predicate PCD system
to construct a distributed zk-SNARK for MapReduce.

For each individual map node or reduce node, correctness of the local computation
is independent of other computations; so it is fairly straightforward to distill local “map”
and “reduce” compliance predicates. However, the shuffle phase of the MapReduce
computation is a global computation that involves all of the mappers’ outputs. We wish
to ensure globally correct shuffling, while only enforcing (via the PCD system) the
preservation of a compliance predicate, locally at each node. (Of course, one could
always consider a big shuffler node that takes all the shuffled messages as inputs, but
doing so would prevent the proof generation from being distributed.)

We thus show how to decompose correct shuffling into a collection of simple local
predicates, while preserving zero knowledge (which introduces subtleties). Roughly,
we show that there is a parallel distributed algorithm to simultaneously compute, for
each unique key k, a proof attesting that the list of values associated to k in the output
of the shuffling process contains all the those values, and only those, that were paired
with k by some mapper.

Subsequently, we use the map and reduce compliance predicates, along with those
used to prove correct shuffling, and obtain a collection of compliance predicates with
the property that any distributed computation that is complaint with these corresponds
to a correct MapReduce computation.

Note how the extensions to basic PCD, mentioned in Section 1.5, come into play.
First, we specify multiple compliance predicate, for the different stages of the compu-
tation, and only pay for the applicable one at every point. Second, because MapReduce
computation has a communication pattern that is input-dependent and not very homoge-
nous, we require PCD to support (directly and thus more efficiently) flexible communi-
cation patterns, with variable node arity and varying input and output message lengths.

2 Preliminaries

We give notations and definitions needed for this paper’s technical discussions.
We denote by λ the security parameter. We write f = Oλ(g) to mean that there is

c > 0 such that f = O(λcg). We write |a| to denote the number of bits needed to store
a (whether a be a vector, a circuit, and so on). Finally, to simplify notation, we do not
make explicit adversaries’ auxiliary inputs.

2.1 Commitments

A commitment scheme is a pair COMM = (COMM.Gen,COMM.Ver) with the follow-
ing syntax:
– COMM.Gen(z)→ (cm, trp). On input data z, the commitment generator COMM.Gen

probabilistically samples a commitment cm of z and a corresponding trapdoor trp.
– COMM.Ver(z, cm, trp) → b. On input data z, commitment cm, and trapdoor trp,

the commitment verifier COMM.Ver outputs b = 1 if cm is a valid commitment of z
with respect to the trapdoor trp (and b = 0 otherwise).

6

The scheme COMM satisfies the natural completeness, (computational) binding, and
(statistical) hiding properties. We assume that cm does not even leak |z|, and thus |cm|
is a fixed polynomial in the security parameter.

2.2 Merkle trees

We use Merkle trees [62] (based on some collision-resistant function) as non-hiding
succinct commitments to lists of values, in the familiar way. A Merkle-tree scheme is
a tuple MERKLE = (MERKLE.GetRoot,MERKLE.GetPath,MERKLE.CheckPath)
with the following syntax:
– MERKLE.GetRoot(z)→ rt. Given list z = (zi)

n
i=1, the root generator MERKLE.GetRoot

deterministically computes a root rt of the Merkle tree with the list z at its leaves.
– MERKLE.GetPath(z, i) → ap. Given input list z and index i, the authentication

path generator MERKLE.GetPath deterministically computes the authentication path
ap for zi.

– MERKLE.CheckPath(rt, i, zi, ap) → b. Given root rt, input data zi, index i, and
authentication path ap, the path checker MERKLE.CheckPath outputs b = 1 if ap is
a valid path for zi as the i-th leaf in a Merkle tree with root rt.

The scheme MERKLE satisfies the natural completeness and (computational) binding
properties.

2.3 MapReduce

Overview of MapReduce MapReduce is a programming model for describing data-
parallel computations to be run on computer clusters [35]. A MapReduce job consists
of two functions, Map and Reduce, and an input, x, which is a list of key-value pairs;
executing the job results into an output, y, which also is a list of key-value pairs. Com-
puting y requires three phases: (i) Map phase: the function Map is separately invoked
on each key-value pair in the list x; each such invocation produces an intermediate
sub-list of key-value pairs. (ii) Shuffle phase: all the intermediate sub-lists of key-value
pairs are jointly shuffled so that pairs that share the same key are gathered together into
groups. (iii) Reduce phase: the function Reduce is separately invoked on each group of
key-value pairs; each such invocation produces an output key-value pair; all these pairs
are concatenated (in some order) to form y.

Naturally, efficiently computing the three phases on a computer cluster requires a
suitable framework to assign computers to Map tasks, implement the distributed shuf-
fle of intermediate key-value pairs, assign computers to Reduce tasks, and collect the
various outputs; this is typically orchestrated by a master node. For now, we focus on
the definition of the programming model and not the details of a framework that imple-
ments it.

Notation for MapReduce We introduce notation that enables us to discuss MapReduce
in more detail.
Keys, values, and records. First, we discuss the data associated to a MapReduce job.
The main “unit of data” is a record, which is a pair (k, v) where k is its key and v is

7

its value. We distinguish between different kinds of records, depending on which phase
they belong to: input records are of phase 1 and lie in K1 × V1; intermediate records
are of phase 2 and lie in K2 × V2; and output records are of phase 3 lie in K3 × V3.
MapReduce pairs. Next, we discuss the functions associated to a MapReduce job. A
MapReduce pair is a pair (Map,Reduce) where Map : K1×V1 → (K2×V2)∗ is its Map
function and Reduce : K2×(V2)∗ → (K3×V3) is its Reduce function; both must run in
polynomial time. In other words, on input a phase-1 record (k1, v1) ∈ (K1 ×V1), Map
outputs a list of phase-2 records

(
(k2i , v

2
i)
)
i
∈ (K2 × V2)∗. Instead, on input a phase-2

key k2 ∈ K2 and a list of phase-2 values (v2i)i ∈ (V2)∗, Reduce outputs a phase-3
record (k3, v3) ∈ (K3 × V3).
MapReduce executions. Finally, we discuss how functions operate on data so to exe-
cute a MapReduce job. Given a MapReduce pair (Map,Reduce) and an input x ∈ (K1×
V1)∗, the output of the execution of (Map,Reduce) on x, denoted [Map,Reduce](x), is
the result y ∈ (K3 × V3)∗ of the following (abstract) computation.
1. Map step. For each i ∈ {1, . . . , |x|}, letting (k1i , v

1
i) be the i-th phase-1 record

in x, compute the list of phase-2 records
(
(k2i,j , v

2
i,j)
)
j
:= Map(k1i , v

1
i). This step

produces a list of intermediate records z =
(
(k2i,j , v

2
i,j)
)
i,j

.
2. Shuffle step. Shuffle the list z so that records with the same key are grouped together.

This step induces, for each unique key k2 appearing in z, a corresponding list v2 of
values paired with k2.

3. Reduce step. For each unique phase-2 key k2 in z and its corresponding list of
phase-2 values v2, compute the phase-3 record (k3, v3) = Reduce(k2,v2). The
output y equals the concatenation of all of these phase-3 records.

We note that MapReduce jobs enjoy certain “symmetries” (which simplify the task
of execution on clusters): the order of records in x or in y is irrelevant.6 In terms of
complexity measures, we say that the execution of (Map,Reduce) on x is (m, r, p)-
bounded if each individual execution of Map takes at most m time, each individual
execution of Reduce takes at most r time, and |x| · m + |y| · r ≤ p (where y :=
[Map,Reduce](x)).7

The MapReduce language. We express, via a suitable language, the notion of “cor-
rect” MapReduce executions:

Definition 1. For a MapReduce pair (Map,Reduce), the language L(Map,Reduce) con-
sists of the tuples (x, y) for which y = [Map,Reduce](x).8

In this work, we consider the setting where an input x is not known to the user, but
only its commitment cm is (as x is private). Thus, we work with a related relation,
RCOMM

(Map,Reduce), derived from L(Map,Reduce) and a commitment scheme COMM = (COMM.Gen,

COMM.Ver) (using the syntax introduced in Section 2.1). In contrast to L(Map,Reduce),

6 One only considers Map and Reduce functions that do not introduce asymmetries (by, e.g.,
leveraging the order of elements in a list).

7 For simplicity, we ignore the cost of shuffling because it is typically on the order of the input
and output sizes [45].

8 Due to symmetry, (x, y) ∈ L(Map,Reduce) if and only if
(
π(x), π′(y)

)
∈ L(Map,Reduce) for any

two permutations π and π′ (of records).

8

instances in RCOMM
(Map,Reduce) contain cm instead of x, and witnesses are extended to con-

tain decommitment information (i.e., the input and commitment trapdoor). More pre-
cisely, we define the relation RCOMM

(Map,Reduce) as follows.

Definition 2. For a MapReduce pair (Map,Reduce) and commitment scheme COMM,
the relation RCOMM

(Map,Reduce) consists of instance-witness pairs
(
(cm, y), (x, trp)

)
such

that COMM.Ver(x, cm, trp) = 1 and (x, y) ∈ L(Map,Reduce).

MapReduce sequences. A single MapReduce execution is at times insufficient to
run an algorithm. In such cases, instead of a single MapReduce pair, we consider a
MapReduce sequence S: a list

(
(Ii,Mapi,Reducei)

)d
i=1

such that, for each i, Ii ⊆
{0, . . . , i−1} and (Mapi,Reducei) is a MapReduce pair. We call d the depth of S. The
output of the execution of S on an input x, denoted S(x), is the result y obtained as
follows: (1) set y(0) := x; (2) for i = 1, . . . , d, compute y(i) := [Mapi,Reducei](x

(i))
where x

(i) is the concatenation of all y(j) with j ∈ Ii; (3) output y := y
(d).In terms

of complexity measures, similarly to above, we say that the execution of S on x is
(m, r, p)-bounded if each individual execution of any Mapi takes at most m time, each
individual execution of any Reducei takes at most r time, and

∑d
i=1(|x(i−1)| · m +

|x(i)| · r) ≤ p.
Family of MapReduce sequences. A family of MapReduce sequences is a family
(SN)N∈N where each SN is a MapReduce sequence

(
(IN,i,MapN,i,ReduceN,i)

)dN
i=1

.

3 Definition of distributed zk-SNARKs for MapReduce

We (informally) define non-distributed zk-SNARKs for MapReduce, and then distributed
zk-SNARKs for MapReduce. Throughout, we assume familiarity with the notations and
definitions for MapReduce introduced in Section 2.3.

3.1 Non-distributed zk-SNARKs for MapReduce

A (non-distributed) zk-SNARK for MapReduce is a zk-SNARK for proving knowledge
of witnesses in RCOMM

(Map,Reduce), for a user-specified MapReduce pair (Map,Reduce) and a
fixed choice of commitment scheme COMM. That is, it is a cryptographic primitive that
provides short and easy-to-verify non-interactive zero-knowledge proofs of knowledge
for the relation RCOMM

(Map,Reduce). Concretely, the primitive consists of a tuple (COMM,

MR.KeyGen,MR.Prove,MR.Verify) with the following syntax.

– MR.KeyGen(1λ,Map,Reduce) → (pk, vk). On input a security parameter λ (pre-
sented in unary) and a MapReduce pair (Map,Reduce), the key generator MR.KeyGen
probabilistically samples a proving key pk and a verification key vk. We assume,
without loss of generality, that pk contains (a description of) the MapReduce pair
(Map,Reduce).

The keys pk and vk are published as public parameters and can be used, any number of
times, to prove/verify knowledge of witnesses in the relation RCOMM

(Map,Reduce), as follows.

9

– MR.Prove(pk, cm, y, x, trp) → πMR. On input a proving key pk, instance (cm, y),
and witness (x, trp), the prover MR.Prove outputs a proof πMR for the statement
“there is (x, trp) such that

(
(cm, y), (x, trp)

)
∈ RCOMM

(Map,Reduce)”.
– MR.Verify(vk, cm, y, πMR) → b. On input a verification key vk, commitment cm,

output y, and proof πMR, the verifier MR.Verify outputs b = 1 if he is convinced that
there is (x, trp) such that

(
(cm, y), (x, trp)

)
∈ RCOMM

(Map,Reduce).

As in other zk-SNARKs, the above tuple satisfies (variants of) the properties of com-
pleteness, succinctness, (computational) proof of knowledge, and (statistical) zero knowl-
edge; we describe these in the full version. Here we recall succinctness: an honestly-
generated proof πMR hasOλ(1) bits, and MR.Verify(vk, cm, y, πMR) runs in timeOλ(|y|).
Costs of key generation. The above implies that (pk, vk) is generated in time Oλ(1) ·
poly(|Map| + |Reduce|), that |pk| = Oλ(1) · poly(|Map| + |Reduce|), and that |vk| =
Oλ(1) (since MR.Verify runs in time Oλ(|y|) for any y). These key-generation costs
are between those of a preprocessing zk-SNARK (where key generation costs as much
as the entire computation being proved) and a fully-succinct zk-SNARK (where key
generation costs only a fixed polynomial in λ), because they do not depend on the
number of mappers and reducers in the MapReduce computation.

One could strengthen the definition above to require “full succinctness”, i.e., to
further require that key generation depends polynomially on the security parameter only
(and, in particular, that the MapReduce pair is not hard-coded into the keys). The results
presented in this paper extend to achieve this stronger definition.

3.2 Distributed zk-SNARKs for MapReduce

A distributed zk-SNARK for MapReduce is a zk-SNARK for MapReduce where the
prover consists of few MapReduce computations whose overall complexity is similar to
the MapReduce computation being proved. More precisely, when producing proofs for
the relation RCOMM

(Map,Reduce), MR.Prove(pk, ·, ·, ·, ·) is a family of MapReduce sequences
that is (Map,Reduce)-faithful, a property defined below.

Definition 3. Given a MapReduce pair (Map,Reduce), a family of MapReduce se-
quences (SN)N∈N is (Map,Reduce)-faithful if, for allN ∈ N and

(
(cm, y), (x, trp)

)
∈

RCOMM
(Map,Reduce) with |x|+ |y| ≤ N :

– the depth of SN is logarithmic in N , i.e., dN = O(logN); and
– SN has a linear overhead compared to (Map,Reduce), i.e., for allm, r, p ∈ N, if x is
(m, r, p)-bounded then the execution of SN on (cm, y, x, trp) is (Oλ(m), Oλ(r), Oλ(p))-
bounded.

4 Definition of multi-predicate PCD

Proof-carrying data (PCD) [24, 25] is a cryptographic primitive that encapsulates the se-
curity guarantees achievable via recursive composition of proofs. Since recursive proof
composition naturally involves multiple (physical or virtual) parties, PCD is phrased in
the language of a distributed computation among computing nodes, who perform local

10

computations, based on local data and input messages, and then produce output mes-
sages. Given a compliance predicate Π to express local checks, the goal of PCD is to
ensure that any given message msg in the distributed computation is Π-compliant, i.e.,
is consistent with a history in which each node’s local computation satisfies Π . This
formulation covers, as special cases, incrementally-verifiable computation [79] and tar-
geted malleability [19].
Extending PCD to multiple predicates. The definition of PCD naturally generalizes
to compliance with respect to a vectorΠ of compliance predicates (rather than a single
predicate). Namely, a msg is Π-compliant if it is consistent with a history in which
each node’s local computation satisfies some predicate Π in the vector Π . Moreover,
a message msg comprises two parts: the type, which records what kind of node output
msg, and the payload, which is the rest.

The above multi-predicate PCD can be “simulated” via a single-predicate PCD, by
folding all the predicates in the vector Π into a single predicate Π? that (a) reasons
about which predicate inΠ to use at a give node, and (b) enforces a message’s type and
payload separation. However, this simulation incurs a significant overhead: the size of
Π? is the sum of the sizes of all the predicates in Π , and this cost is incurred at every
node regardless of which predicate is actually used to check compliance at a node. In
contrast, in our construction of multi-predicate PCD (see Section 6), we incur, at each
node, only the cost of the predicate that is actually used to check compliance.
Implications for MapReduce. As we discuss in Section 5, reducing the correctness
of MapReduce computations to compliance of distributed computations involves mul-
tiple predicates that perform checks with different semantics: a predicate for mapper
nodes, a predicate for reducer nodes, and various other predicates for other nodes that
reason about shuffling. These predicates have different sizes and, thus, it is crucial to
leverage the flexibility offered by multi-predicate PCD (so to then obtain a distributed
zk-SNARK for MapReduce).

Next, we define distributed-computation transcripts (our formal notion of distributed
computations), compliance of a transcript T with respect to a given vector Π of com-
pliance predicates, and multi-predicate PCD.

Transcripts. A (distributed-computation) transcript is a tuple T = (G,TYPE,LOC,
PAYLOAD), where:
– G = (V,E) is a directed acyclic graph with node set V and edge set E ⊆ V × V ;
– TYPE: V → N are node labels;
– LOC: V → {0, 1}∗ are (another kind of) node labels; and
– PAYLOAD: E → {0, 1}∗ are edge labels.
The message of an edge (u, v) ∈ E is the pair MSG(u, v) := (TYPE(u),PAYLOAD(u, v)).
The outputs of the transcript T, denoted OUTS(T), is the set of messages MSG(ũ, ṽ)
where (ũ, ṽ) ∈ E and ṽ is a sink. Typically, we denote a message by msg, and its type
and payload by msg.type and msg.payload.
Compliant transcripts and messages. A compliance predicate Π is a function with
a type, denoted type(Π). Given a vectorΠ of compliance predicates, we say that:
– a transcript T = (G,LOC,TYPE,PAYLOAD) isΠ-compliant, denotedΠ(T) =

OK, if:

11

(i) for each v ∈ V , TYPE(v) = 0 if and only if v is a source; and
(ii) for each non-source v ∈ V and each w ∈ children(v), there is Π ∈ Π with

TYPE(v) = type(Π) such that
Π
(
MSG(v, w),LOC(v),

(
MSG(u, v)

)
u∈parents(v)

)
accepts.

– a message msg is Π-compliant if there is a transcript T such that Π(T) = OK and
msg ∈ OUTS(T).

A transcript T thus represents a distributed computation, in the following sense. For
each node v ∈ V , the function LOC specifies the local data used at v; and, for each
edge (u, v) ∈ E, the function MSG specifies the message sent from node u to node v.
A node v with parent nodes parents(v) and children nodes children(v) uses the local
data LOC(v) and the input messages

(
MSG(u, v)

)
u∈parents(v)

to compute the output
message MSG(v, w) for each child w ∈ children(v). As for the function TYPE, it
assigns to each node v ∈ V a quantity that determines the type of every message output
by v; this quantity also determines which compliance predicates can be used to verify
compliance of those messages (specifically, the type of the predicate and message must
equal).
Multi-predicate PCD systems. A multi-predicate PCD system is a triple of polynomial-
time algorithms (G,P,V), called key generator, prover, and verifier. The key genera-
tor G is given as input a vector of predicates Π , and outputs a proving key pk and
a verification key vk; these keys allow anyone to prove/verify that a message msg is
Π-compliant. This is achieved by attaching a short and easy-to-verify proof to each
message: given pk, input messages msgin with proofs πin, local data loc, and an output
message msg (allegedly,Π-compliant), the prover P computes a new proof π to attach
to msg; the verifier V(vk,msg, π) checks that msg is Π-compliant. The triple (G,P,
V) must satisfy completeness, succinctness, (computational) proof of knowledge, and
(statistical) zero knowledge; we describe these in the full version. Here we recall suc-
cinctness: an honestly-generated proof π hasOλ(1) bits, and V(vk,msg, π) runs in time
Oλ(|msg|).

5 Step II: from multi-predicate PCD to distributed zk-SNARKs

We discuss Step II of our bootstrapping theorem: constructing a distributed zk-SNARK
for MapReduce from a multi-predicate PCD system. This step itself consists of two
main parts.
– Compliance engineering (Section 5.1): a reduction from the correctness of MapReduce

computations to a question about the compliance of distributed computations with re-
spect to a certain vectorΠMR of predicates.

– Construction of the proof system (Section 5.2): suitably invoke the multi-predicate
PCD system on the vector ΠMR in order to construct a distributed zk-SNARK for
MapReduce.

5.1 Compliance engineering for MapReduce

We show how, given any MapReduce pair (Map,Reduce), one can efficiently con-
struct a vector ΠMR of compliance predicates for which “suitable” ΠMR-compliant

12

transcripts correspond to instance-witness pairs in the relation RCOMM
(Map,Reduce). First, we

clarify what “suitable” means, via the following definition.

Definition 4. For an instance (cm, y), a transcript T is (cm, y)-compatible if OUTS(T)
contains a message with type 1 and payload (cm, |y|) and, for each i ∈ {1, . . . , |y|}, a
message with type 2 and payload (cm, yi).

Next, via the following theorem, we show how one can translate a question of the form

“Given an instance (cm, y), is there a witness (x, trp) such that
(
(cm, y), (x, trp)

)
is

in RCOMM
(Map,Reduce)?”

to a question of the form

“Given an instance (cm, y), is there aΠMR-compliant (cm, y)-compatible transcript
T?”

More precisely:

Theorem 1. There exists a commitment scheme COMM such that, for every MapReduce
pair (Map,Reduce), there exist a vector ΠMR of compliance predicates and two algo-
rithms Eval,Ext satisfying the following properties.
– EFFICIENCY.
• The vectorΠMR consists of 7 predicates, with the following sizes:|ΠMR[1]| = Oλ(|Map|), |ΠMR[2]| = Oλ(|Reduce|), and

|ΠMR[3]|, . . . , |ΠMR[7]| = Oλ(1),
where, above, | · | denotes per-input running time of the underlying algorithm.

• The algorithm Eval is (Map,Reduce)-faithful.
• The algorithm Ext is linear time.

– COMPLETENESS. For any instance (cm, y), if there is (x, trp) such that
(
(cm, y), (x, trp)

)
is in RCOMM

(Map,Reduce), then there is aΠMR-compliant (cm, y)-compatible transcript T;
moreover, Eval(cm, y, x, trp) outputs OUTS(T) by dynamically generating T “node
by node”.

– PROOF OF KNOWLEDGE. For any instance (cm, y), if there is a ΠMR-compliant
(cm, y)-compatible transcript T, then Ext(T) outputs (x, trp) such that

(
(cm, y), (x, trp)

)
is in RCOMM

(Map,Reduce).

We now sketch a proof of the theorem. Recall proof of knowledge: we must con-
struct a vector ΠMR of predicates with the property that, given (cm, y), if there is a
distributed-computation transcript T that is bothΠMR-compliant and (cm, y)-compatible,
then we can find (x, trp) for which COMM.Ver(x, cm, trp) = 1 and y = [Map,Reduce](x).
Intuitively, we achieve proof of knowledge by engineering the predicates in ΠMR so
that the transcript T is forced to encode within it a history of a correct MapReduce ex-
ecution. Technically, the main challenge is that we are restricted to local checks: each
predicate only sees input and output messages of a single node; in contrast, correct ex-
ecution of a MapReduce computation (also) involves global properties, such as correct
shuffling.

We introduce our approach in steps, by first describing two “failed attempts”. For
simplicity, we focus on the (artificial) case where each mapper outputs a single phase-2
record; later, we explain how this restriction can be lifted.

13

Failed attempt #1 It is natural to begin by designing two predicatesΠMap
exe andΠReduce

exe

that simply capture the correct execution of a mapper and reduce node, respectively, as
in Figure 2.

Now suppose that we see a (ΠMap
exe , Π

Reduce
exe)-compliant message msg. What can we

deduce about the history of computations that led to msg? If msg.type = type(ΠMap
exe),

then msg was output by a node at which the predicate ΠMap
exe was checked; conversely,

if msg.type = type(ΠReduce
exe), then msg was output by a node at which the predicate

ΠReduce
exe was checked. Suppose, for example, that msg.type = type(ΠReduce

exe). By con-
struction of ΠReduce

exe , we deduce that: (i) msg.payload is a phase-3 record (k3, v3),
and (ii) there is a list of input messages msgin whose payloads contain phase-2 records(
(k2j , v

2
j)
)
j

that all share the same key and, moreover, result in (k3, v3) when given as
input to Reduce. However, as soon as we try to “dig further into the past”, to see what
properties each phase-2 record (k2j , v

2
j) satisfies, we run into issues not addressed by

the above construction of ΠMap
exe and ΠReduce

exe . Namely,
– Issue I: How can we ascertain that each phase-2 record (k2i , v

2
i) was the correct out-

put of some mapper node?
– Issue II: Even if so, where did that mapper obtain its input phase-1 record?

Failed attempt #2 We augment ΠMap
exe and ΠReduce

exe to address these issues. Roughly,
we address Issue I by inspecting message types: ΠMap

exe ensures that its input messages
have type 0 (i.e., are not output by previous nodes); whileΠReduce

exe ensures that they have
type type(ΠMap

exe). As for Issue II, we augment all messages with a commitment cm to
the (overall) input x and extend ΠMap

exe to authenticate the phase-1 record it receives. We
now describe these ideas.

First, we describe the commitment scheme COMM that we use to create cm. Essen-
tially, COMM consists of (i) a Merkle-tree followed by a commitment to the resulting
root, and also (ii) a commitment to the size of the committed data. See Figure 1 for more
details; we denote the underlying commitment scheme by COMM′ and the Merkle-tree
scheme by MERKLE (and use notation introduced in Section 2.1 and Section 2.2).

COMM.Gen(z) COMM.Ver(z, cm, trp)

1. Compute rt := MERKLE.GetRoot(z).
2. Compute n := |z|.
3. Compute (cmrt, traprt)← COMM′.Gen(rt).
4. Compute (cmn, trapn)← COMM′.Gen(n).
5. Set cm := (cmrt, cmn).
6. Set trp := (traprt, trapn).
7. Output (cm, trp).

1. Compute rt := MERKLE.GetRoot(z).
2. Compute n := |z|.
3. Parse cm as a pair (cmrt, cmn).
4. Parse trp as a pair (traprt, trapn).
5. Check that COMM′.Ver(rt, cmrt, traprt) = 1.
6. Check that COMM′.Ver(n, cmn, trapn) = 1.
7. Output 1 if the above checks succeeded (else, 0).

Fig. 1. Choice of commitment scheme COMM (obtained from MERKLE and COMM′).

Next, in Figure 3, we describe the two (updated) predicates ΠMap
exe and ΠReduce

exe .
Now suppose that we see a (ΠMap

exe , Π
Reduce
exe)-compliant message msg with msg.type =

type(ΠReduce
exe). By (the new) construction of ΠReduce

exe , we know that msg.payload =

14

(cm, k3, v3), where cm is a commitment and (k3, v3) is a phase-3 record; moreover, we
also know that there is a list of messages msgin such that: (i) for each j, msgin[j].type =
type(ΠMap

exe) and msgin[j].payload = (cm, k2, v2j), where (k2, v2j) is a phase-2 record;
(ii) (k3, v3) = Reduce(k2, (v2j)j). In turn, each message msgin[j] is (ΠMap

exe , Π
Reduce
exe)-

compliant and, by (the new) construction of ΠMap
exe , we know that (k2, v2j) is the result

of running Map on some phase-1 record authenticated with respect to cm.
Overall, each (ΠMap

exe , Π
Reduce
exe)-compliant message msg with msg.type = type(ΠReduce

exe)
and msg.payload = (cm, k3, v3) is the result of applying Reduce to some phase-2
records sharing the same key, each of which is in turn the result of applying Map to
some phase-1 record authenticated relative to cm. However, these guarantees are not
enough to imply a correct MapReduce computation, as we still need to tackle the fol-
lowing issue.

– Issue III: How do we ascertain the correctness of the shuffling phase? Namely, how
do we ascertain that each list of phase-2 records (received by a particular reducer
node) contains all the records having that same key?

Indeed, in principle, some phase-2 records may have been duplicated, dropped, or sent
to the wrong reducer node (e.g., to different reducer nodes even if sharing the same
key).

Our approach Unlike previous ones, the above issue is conceptually more complex:
tackling it requires ensuring correct shuffling, which is a global computation involving
all of the phase-2 (all the mappers’ outputs); in contrast, we are restricted to only per-
form local checks encoded in compliance predicates. Nevertheless, we show how we
can further extend ΠMap

exe and ΠReduce
exe , and also introduce other compliance predicates,

to ensure correct shuffling in a distributed way.
Further extending ΠMap

exe and ΠReduce
exe . Roughly, we extend ΠMap

exe to store, in the
output message, the index i relative to which the phase-1 record, contained in the
input message, was authenticated. Subsequently, when receiving several input mes-
sages,ΠReduce

exe verifies that all the indices contained in them are distinct. This additional
check prevents duplicate messages from being sent to the same reduce node. However,
the check does not prevent the same message from being sent to two different reducer
nodes, a message from being dropped altogether, or messages with the same key from
being sent to two different reducer nodes. Additional “distributed bookkeeping” is re-
quired.

We thus further extend ΠReduce
exe to store in its output message two additional pieces

of information: the phase-2 key k2 shared among its input messages and the number
din of these input messages. More precisely, only commitments cmk2 , cmdin to these
are stored, to not violate zero knowledge (by storing information about the internals of
the computation in final outputs of the distributed computation). As we now explain,
other compliance predicates use the underlying values k2, din; for now, in Figure 4, we
summarize the changes to ΠMap

exe and ΠReduce
exe (highlighted in blue).

We now explain how we leverage, and verify, the messages’ new information main-
tained by ΠMap

exe and ΠReduce
exe . At high level, we introduce new compliance predicates,

called ΠMap
fmt , ΠReduce

fmt , ΠMap
sum , ΠReduce

sum , and Πfin, for checking two main distributed

15

ΠMap
exe (msg, loc,msgin)

1. Parse msgin[1].payload as a phase-1 record
(k1, v1).

2. Parse msg.payload as a phase-2 record (k2, v2).
3. Check that

(
(k2, v2)

)
= Map(k1, v1).

ΠReduce
exe (msg, loc,msgin)

1. Parse each msgin[j].payload as a phase-2 record
(k2j , v

2
j).

2. Parse msg.payload as a phase-3 record (k3, v3).
3. Check that all the k2j ’s are equal, and let v2 :=

(v2j)j

4. Check that (k3, v3) = Reduce(k21,v
2).

Fig. 2. Summary of the construction of ΠMap
exe and ΠReduce

exe for “Failed attempt #1” (see Sec-
tion 5.1).

ΠMap
exe (msg, loc,msgin)

1. Check that msgin[1].type = 0.
2. Parse msgin[1].payload as a tuple (cm, i, k1, v1)

where:
– cm is a commitment (for the scheme COMM);
– i is an index;
– (k1, v1) is a phase-1 record.

3. Parse msg.payload as a tuple (cm′, k2, v2) where:
– cm′ is a commitment (for the scheme COMM);
– (k2, v2) is a phase-2 record.

4. Parse loc as a tuple (rt,M, trprt, trpM , ap) where:
– rt is a commitment (for the scheme MERKLE);
– M is a positive integer;
– trprt, trpM are trapdoors (for the scheme

COMM);
– ap is an authentication path (for the scheme

MERKLE).
5. Parse cm as a pair (cmrt, cmM) where both com-

ponents are commitments for the scheme COMM′.
6. Check that COMM′.Ver(rt, cmrt, trprt) = 1.
7. Check that COMM′.Ver(M, cmM , trpM) = 1.
8. Check that 0 ≤ i < M .
9. Check that

MERKLE.CheckPath
(
rt, i, (k1, v1), ap

)
= 1.

10. Check that cm′ = cm.
11. Check that

(
(k2, v2)

)
= Map(k1, v1).

ΠReduce
exe (msg, loc,msgin)

1. Check that msgin[j].type = type(ΠMap
exe) for each

j.
2. Parse each msgin[j].payload as a tuple

(cm′j , k
2
j , v

2
j) where:

– cm′j is a commitment (for the scheme COMM);
– (k2j , v

2
j) is a phase-2 record.

3. Parse msg.payload as a tuple (cm′′, k3, v3)
where:
– cm′′ is a commitment (for the scheme COMM);
– (k3, v3) is a phase-3 record.

4. Check that cm′′ = cm′j for each j.
5. Check that all the k2i’s are equal, and let v2 :=

(v2i)i.
6. Check that (k3, v3) = Reduce(k21,v

2).

Fig. 3. Summary of the construction of ΠMap
exe and ΠReduce

exe for “Failed attempt #2”

ΠMap
exe (msg, loc,msgin)

1. Check that msgin[1].type = 0.
2. Parse msgin[1].payload as a tuple (cm, i, k1, v1)

where:
– cm is a commitment (for the scheme COMM);
– i is an index;
– (k1, v1) is a phase-1 record.

3. Parse msg.payload as a tuple (cm′, i′,k2, v2)
where:
– cm′ is a commitment (for the scheme COMM);
– i′ is an index;
– (k2, v2) is a phase-2 record.

4. Parse loc as a tuple (rt,M, trprt, trpM , ap) where:
– rt is a commitment (for the scheme MERKLE);
– M is a positive integer;
– trprt, trpM are trapdoors (for the scheme

COMM);
– ap is an authentication path (for the scheme

MERKLE).
5. Parse cm as a pair (cmrt, cmM) where both com-

ponents are commitments for the scheme COMM′.
6. Check that COMM′.Ver(rt, cmrt, trprt) = 1.
7. Check that COMM′.Ver(M, cmM , trpM) = 1.
8. Check that 0 ≤ i < M .
9. Check that

MERKLE.CheckPath
(
rt, i, (k1, v1), ap

)
= 1.

10. Check that cm′ = cm and i′ = i.
11. Check that

(
(k2, v2)

)
= Map(k1, v1).

ΠReduce
exe (msg, loc,msgin)

1. Check that msgin[j].type = type(ΠMap
exe) for each

j.
2. Parse each msgin[j].payload as a tuple (cm′j , i

′
j ,k

2
j , v

2
j) where:

– cm′j is a commitment (for the scheme COMM);
– i′j is an index;
– (k2j , v

2
j) is a phase-2 record.

3. Parse msg.payload as a tuple (cm′′, k3, v3, cmk2 , cmdin) where:
– cm′′ is a commitment (for the scheme COMM);
– (k3, v3) is a phase-3 record;
– cmk2 , cmdin are commitments (for the scheme

COMM′).
4. Parse loc as a tuple (trapk2 , trapdin

) where:
– trapk2 , trapdin

are trapdoors (for the scheme
COMM′).

5. Check that cm′′ = cm′j for each j.
6. Check that the i′j are distinct, and let din be their

number.
7. Check that all the k2i’s are equal, and let v2 :=

(v2i)i.
8. Check that COMM′.Ver(k21, cmk2 , trapk2) = 1.
9. Check that COMM′.Ver(din, cmdin , trapdin

) =

1.
10. Check that (k3, v3) = Reduce(k21,v

2).

Fig. 4. Summary of the construction of ΠMap
exe and ΠReduce

exe for “Our approach” (see Section 5.1).
The text that is highlighted in blue denotes the differences from the construction in Figure 3.

16

computations: a tree-like distributed computation that aggregates information stored by
all the messages output by mapper nodes, and another tree-like distributed computa-
tion that aggregates information stored by all the messages output by reducer nodes.
By comparing the final outputs of these two tree-like distributed computations, we can
check if correct shuffling occurred.

Aggregating mappers’ outputs. We describe each of these tree-like distributed com-
putations, starting with the one for messages output by mapper nodes. Each message
output by a mapper node has a payload that looks like (cm, i, k2, v2). We use, for each
such message, a node to reformat the message into a new with payload (cm, a⊥, a>, b, c)
where a⊥ = a> = i and b = c = 1. Afterwards, we use a tree of nodes to ag-
gregate all the resulting messages into a final single one, by pairwise transforming
two input messages (cm, a⊥1 , a

>
1 , b1, c2) and (cm, a⊥2 , a

>
2 , b2, c2) into the new message

(cm, a⊥1 , a
>
2 , b1 + b2, c1 + c2), provided that a>1 < a⊥2 . Intuitively, the second and third

components of a message denote the least and largest index seen so far, the fourth
component counts the number of mappers, and the fifth counts the number of mapper
outputs. If M denotes the number of mappers, the final message, output by the “root
node” has payload (cm, 1,M,M,M). If, however, some messages are either duplicated
or dropped, then at least one node will not satisfy its compliance predicate. We realize
this idea by designing two new compliance predicates, ΠMap

fmt and ΠMap
sum , respectively

for enforcing the reformatting and aggregation of mapper nodes’ output messages.

Aggregating reducers’ outputs. We now turn to the tree-like distributed computa-
tion to aggregate outputs of reducer nodes. Each message output by a reducer node
has a payload that looks like (cm, k3, v3, cmk2 , cmdin). Similarly to (but not exactly
equal to) above, we use a node to reformat the message into a new with payload
(cm, a⊥, a>, b, c) where a⊥ = a> = k2, b = 1 c = din (note that the values k2

and din can be obtained by receiving decommitment information as part of the node’s
local data loc). Afterwards, again similarly to above, we use a tree of nodes to ag-
gregate all the resulting messages into a final single one, by pairwise transforming
two input messages (cm, a⊥1 , a

>
1 , b1, c1) and (cm, a⊥2 , a

>
2 , b2, c2) into a new message

(cm, a⊥1 , a
>
2 , b1 + b2, c1 + c2), provided that a>1 < a⊥2 . The final message, output by

the root node, looks like (cm, k2min, k
2
max, R,M), where k2min and k2max are respectively

the least and largest keys encountered, R is the total number of reducer nodes, and M
is the total number of inputs received by reducer nodes. Again, we concretely realize
the above strategy by designing two new predicates, ΠReduce

fmt and ΠReduce
sum , respectively

for enforcing the reformatting and aggregation of reducer nodes’ output messages; both
take Oλ(1) to execute.

Consistency between aggregations. After both aggregations have taken place, we are
left with two messages msgMap

sum and msgReducesum , respectively with payloads (cm, 1,M,
M,M) and (cm, k2min, k

2
max, R,M), resulting in an output message msgfin with pay-

load (cm, R). A simple predicate Πfin performs consistency checks, such as ensuring
that the value of M is actually equal between the two messages (and consistency with
the commitment cmM stored in cm). The message msgfin that the two messages msgMap

sum

and msgReducesum have been successfully compared, which demonstrates that the outputs
of all M mapper nodes were correctly shuffled to R reducer nodes. (We exclude M
from msgfin, for zero-knowledge reasons.)

17

Throughout, we leverage message types to enforce communication flow between
nodes subject to different compliance predicates.
From sketch to proof. The above sketches how the Eval algorithm produces a suitable
graph of nodes, culminating in the transcript’s output, as stated in Theorem 1. It skims
over many details, some of which are provided in the full version. For example, above
we have not explained how to handle the case where a mapper node (or even a reducer
node) outputs more than one record. Moreover, not only do we work out the details
of a solution, but we also bring the solution to efficient implementations of arithmetic
circuits for each of the seven compliance predicates.

5.2 Construction of distributed zk-SNARKs for MapReduce

We give the construction of our distributed zk-SNARK for MapReduce, by describing
its key generator MR.KeyGen, prover MR.Prove, and verifier MR.Verify. (We describe
the commitment scheme COMM in Figure 1.)
The key generator MR.KeyGen(1λ,Map,Reduce) → (pk, vk). On input a se-
curity parameter λ (presented in unary) and a MapReduce pair (Map,Reduce), the key
generator MR.KeyGen computes a key pair (pk, vk) as follows.
1. Use Theorem 1 to deduce, from (Map,Reduce), the vector ΠMR of compliance

predicates.
2. Use the PCD key generator G to compute a PCD key pair for ΠMR: (pk, vk) :=

G(1λ,ΠMR).
3. Set pk := (Map,Reduce, pk) and vk := (vk); output (pk, vk).
The prover MR.Prove(pk, cm,y,x, trp) → πMR. On input a proving key pk,
an instance (cm, y), and a witness (x, trp), the prover MR.Prove computes a non-
interactive proof πMR for the statement “I know (x, trp) such that

(
(cm, y), (x, trp)

)
∈

RCOMM
(Map,Reduce)” as follows. By Theorem 1, we know that there is a ΠMR-compliant

(cm, y)-compatible transcript T and, moreover, that OUTS(T) can be obtained via a
(Map,Reduce)-faithful evaluator Eval, which takes as input the the instance (cm, y)
and its witness (x, trp). Thus, the prover MR.Prove computes πMR by recursively in-
voking the PCD prover P on T, following Eval as it computes new nodes of T, by pro-
viding to P, at each node, the relevant input messages and their proofs, local data, and
output message. At the end of this process, itself (Map,Reduce)-faithful, MR.Prove
sets πMR equal to the concatenation of the proofs of all messages in OUTS(T).
The verifier MR.Verify(vk, cm,y, πMR) → b. On input a verification key vk,
commitment cm, output y, and proof πMR, the verifier MR.Verify computes a decision
bit b as follows.
1. Parse vk as a PCD verification key vk.
2. Use the instance (cm, y) to construct the following output messages (recall Defini-

tion 4):

msg0

{
.type := 1

.payload := (cm, |y|)
and, for each i ∈ {1, . . . , |y|},

msgi

{
.type := 2

.payload := (cm, yi)
.

18

3. Parse πMR a vector of PCD proofs (π0, π1, . . . , π|y|).
4. For each i ∈ {0, 1, . . . , |y|}, check that the i-th output message is ΠMR-compliant:

V(vk,msgi, πi) = 1.
5. If all the above steps succeeded, output b := 1; otherwise output b := 0.
Indeed, if MR.Verify outputs 1, then we know that the prover that produced πMR knows
a ΠMR-compliant (cm, y)-compatible transcript T (by the proof-of-knowledge prop-
erty of the PCD system), and thus also knows a witness (x, trp) for the instance (cm, y)
(by Theorem 1).

As seen above, the combination of compliance engineering and PCD systems provides
a powerful tool for constructing zero-knowledge proofs for distributed computations:
compliance engineering allows us to express the desired properties as the compliance
of distributed computations, while PCD systems allow us to prove, in a distributed way
(and in zero knowledge), the compliance of such distributed computations.

Turning to security, we recall that, when invoking a PCD system to produce proofs
along a distributed computation, proof of knowledge is achieved by recursively extract-
ing “past proofs” from known ones. This process is technically quite delicate, and a
formal treatment of it is in [13]. Here we only note that the distributed computations
considered in this paper are shallow (of logarithmic depth) and are thus easily amenable
to recursive proof extraction.

6 Step I: construction of multi-predicate PCD

We discuss Step I of our bootstrapping theorem: constructing multi-predicate PCD
from (preprocessing) zk-SNARKs. As in [8], we consider compliance predicates Π
expressed as F-arithmetic circuits, where F is a certain field of cryptographically-large
prime size (determined by the underlying zk-SNARK). Throughout this section, Fn
denotes the field of size n, and we assume familiarity with finite fields (and, for back-
ground on these, see [55]).

6.1 Arithmetic circuits and preprocessing zk-SNARKs

Arithmetic circuits. As mentioned, we work with circuits that are arithmetic, rather
than boolean. Given a finite field F, an F-arithmetic circuit takes inputs that are elements
in F, and its gates output elements in F; the circuits we consider only have bilinear
gates. The circuit satisfaction problem of an F-arithmetic circuit C : Fn × Fh → Fl is
defined by the relation RC = {(x, a) ∈ Fn × Fh : C(x, a) = 0l}.
Preprocessing zk-SNARKs. As in [9], a preprocessing zk-SNARK [15, 13] for F-
arithmetic circuit satisfiability is a triple of polynomial-time algorithms (G,P, V), called
key generator, prover, and verifier. The key generator G, given a security parameter λ
and an F-arithmetic circuit C : Fn × Fh → Fl, samples a proving key pk and a verifi-
cation key vk; these are the proof system’s public parameters, and are generated only
once per circuit. After that, anyone can use pk to generate non-interactive proofs of
knowledge for witnesses in the relation RC , and anyone can use the vk to check these
proofs. Namely, given pk and any (x, a) ∈ RC , the honest prover P (pk, x, a) produces

19

a proof π for the statement “there is a such that (x, a) ∈ RC”; the verifier V (vk, x, π)
checks that π is a convincing proof for this statement. A proof π is a (computational)
proof of knowledge, and a (statistical) zero-knowledge proof. The succinctness property
requires that π has length Oλ(1) and V runs in time Oλ(|x|).

6.2 Review of the [8] construction

For efficiency reasons, Ben-Sasson et al. [8] construct a PCD system via two (prepro-
cessing) zk-SNARKs, (Gα, Pα, Vα) and (Gβ , Pβ , Vβ), that satisfy the following. For
two primes qα and qβ : (a) (Gα, Pα, Vα) proves/verifies satisfiability of Fqβ -arithmetic
circuits, while Vα is an Fqα -arithmetic circuit; instead, (b) (Gβ , Pβ , Vβ) proves/verifies
satisfiability of Fqα -arithmetic circuits, while Vβ is an Fqβ -arithmetic circuit. This prop-
erty is achieved by instantiating the two zk-SNARKs via a PCD-friendly 2-cycle of el-
liptic curves (see [8] for details on how to obtain these), and facilitates recursive proof
composition.

Specifically, the core of the PCD system construction is the design of two PCD
circuits: Cpcd,α over the field Fqβ and Cpcd,β over the field Fqα . For a given compliance
predicate Π , the two circuits work roughly as follows.
– Cpcd,α: given input xα = msg and witness aα = (loc,msgin,πin), use Vβ to verify

that each input message msgin[j] has a valid proof πin[j], and check that Π accepts
the output message msg, local data loc, and input messages msgin.

– Cpcd,β : given input xβ = msg and witness aβ = (πα), uses Vα to verify that the
message msg has a valid proof πα.

The aforementioned property ensures that fields “match up”: Cpcd,α is defined over the
same field as Vβ , and similarly for Cpcd,β and Vα. (Such field matching is not possible
when using a single elliptic curve.) The two PCD circuits are used as follows: Pα proves
satisfiability of Cpcd,α, and the resulting proof πα attests to the compliance of msg; and
Pβ proves the satisfiability ofCpcd,β , and the resulting proof πβ provides a “translation”
of πα so that πβ can in turn be used as part of a witness to Cpcd,α. We refer to Cpcd,α

as the compliance circuit, and Cpcd,β as the translation circuit.
The above description omits several details (relevant to later discussions): to re-

duce the size of the PCD circuits Cpcd,α and Cpcd,β , [8] additionally use hashing, pre-
computation, and hardcoding. First, the input xα to Cpcd,α is H(bits(vkβ)‖bits(msg)),
where H is a collision-resistant function mapping {0, 1}-vectors to Fqβ -vectors, vkβ is
the verification key for Cpcd,β , and msg is the output message to be checked by Π . This
ensures that xα’s length equals H’s output length, which only depends on λ. However,
H’s output is an Fqβ -vector, and thus cannot be passed as input to Cpcd,β , which is an
Fqα -arithmetic circuit. This issue is addressed via two “repacking circuits” that map
information content from elements in Fqβ to ones in Fqα and back, respectively. Sec-
ond, a zk-SNARK verifier V can be viewed as two functions, i.e., an “offline” function
V offline (given the verification key vk, compute a processed verification key pvk) and an
“online” function V online (given pvk, an input x, and proof π, compute the decision bit);
the tradeoff between V and V online can be exploited. Finally, vkα, the verification key
for Cpcd,α, is hardcoded in Cpcd,β . See [8] for more details.

From the point of view of this paper, the construction of [8] in insufficient, because:
(i) it supports a single compliance predicate at a time, while our setting calls for multiple

20

ones; and (ii) it requires the compliance predicate to be “rigid” (i.e., accept a fixed
number of messages and have input lengths equal output length), while our setting calls
for “flexible” predicates.

6.3 Overview of our construction

We overview the construction of our PCD system, which extends [8]’s so to achieve
native (and thus more efficient) support for multiple compliance predicates, variable
message arity, and varying message lengths.

At high level, our construction consists of the following two parts.
– Part 1: given a vector of compliance predicates Π , construct a vector Cpcd of

PCD circuits. Roughly, for each Π[i] in Π , we construct two circuits, Cpcd,α,i and
Cpcd,β,i, tasked with recursive proof composition relative toΠ[i].

– Part 2: construct the PCD generator, prover, and verifier. Roughly, the PCD generator
G produces a zk-SNARK key pair for each circuit in Cpcd; the PCD prover P, to
prove compliance relative to Π[i], produces a zk-SNARK proof of satisfiability for
Cpcd,α,i and then uses it to produce one for Cpcd,β,i; the PCD verifier V verifies a
zk-SNARK proof by using the appropriate verification key.

Below, we elaborate on these two parts. We also note that the above separation is only
conceptual, because the two parts are procedurally entangled (due to hardcoding of
certain values).

Part 1: the PCD circuits. For each compliance predicate Π[i] in Π , we construct
two PCD circuits: a compliance circuit Cpcd,α,i, tasked with checking compliance with
Π[i]; and a translation circuit Cpcd,β,i, tasked with checking proofs attesting to the
satisfiability of Cpcd,α,i.

The design of Cpcd,β,i is similar to [8]’s translation circuit. Namely, Cpcd,β,i pro-
vides a way to translate a zk-SNARK proof relative to the verification key vkα[i] (gener-
ated for Cpcd,α,i and hardcoded in Cpcd,β,i) to one relative to the verification key vkβ [i]
(generated for Cpcd,β,i); the translation has the only goal of matching fields up.

The design of Cpcd,α,i extends [8]’s compliance circuit, so to take into account the
fact that input messages may carry proofs relative to different verification keys (de-
pending on which compliance predicate was used to reason about their compliance).
So, while the input xα to [8]’s compliance circuit was H(bits(vkβ)‖bits(msg)), we
now take the input to Cpcd,α,i to be H(bits(rt)‖bits(msg)) where rt is the root of the
Merkle tree whose leaves consist of the vector vkβ .9 The circuit Cpcd,α,i then receives,
as part of the witness, an authentication path for the verification key required of each
input message, and checks this authentication path against rt. Additional details of the
construction (e.g., checking that the type of the output message equals type(Π[i])) are
discussed later.

Part 2: the PCD generator, prover, and verifier. Next, we outline below the PCD
generator, prover, and verifier.

– The PCD generator G, given a vectorΠ of compliance predicates, works as follows.

9 Merely taking xα to be H(bits(vkβ)‖bits(msg)) would cause Cpcd,α,i’s to be linear, instead
of logarithmic, in the number of predicates.

21

1. For each i, construct:
(a) the compliance circuitCpcd,α,i and generate a zk-SNARK key pair (pkα[i], vkα[i])

for it, and then
(b) the translation circuitCpcd,β,i (hardcoding vkα[i]) and generate a zk-SNARK

key pair (pkβ [i], vkβ [i]) for it.
2. Compute rt, the root of the Merkle tree whose leaves consist of the vector vkβ .
3. Output the key pair (pk, vk), where pk := (pkα, vkα,pkβ , vkβ , rt) and vk =

(vkβ , rt).
– The PCD prover P, given a proving key pk, output message msg, local data loc, and

input messages msgin with proofs πin, works as follows.
1. Parse pk as a tuple (pkα, vkα,pkβ , vkβ , rt).
2. Let i? be the index of the compliance predicate Π[i?] in Π that is satisfied by

(msg, loc,msgin).
3. Construct a vector ap of authentication paths, where each ap[j] is the authentica-

tion path, relative to the root rt, for the leaf vkβ [πin[j].idx].
4. Use rt, (msg, loc,msgin), and ap to construct an input xα and a witness aα for
Cpcd,α,i.

5. Use pkα[i?] to generate a zk-SNARK proof πα attesting that the compliance cir-
cuit Cpcd,α,i accepts (xα, aα).

6. Use rt and msg to construct an input xβ and a witness aβ for Cpcd,β,i.
7. Use pkβ [i?] to generate a zk-SNARK proof πβ attesting that the translation circuit
Cpcd,β,i accepts (xβ , aβ).

8. Output the proof π, where π.idx := i? and π.proof := πβ .
– The PCD verifier V, given a verification key vk, a message msg, and a proof π, works

as follows.
1. Parse vk as a tuple (vkβ , rt).
2. Set i? := π.idx and πβ := π.proof.
3. Use rt and msg to construct the input xβ for Cpcd,β,i? .
4. Use vkβ [i?] to check that πβ is a valid zk-SNARK proof for xβ .

6.4 Details of our construction

We provide more details about the construction of our PCD system.

Representation of a compliance predicate. The choice of representation of a compli-
ance predicate (e.g., whether the predicate is expressed via a machine or a circuit) does
not impact the main ideas behind the construction of multi-predicate PCD (see Sec-
tion 6.3). Yet, some efficiency optimizations depend on this choice, and so henceforth
we make it explicit: a compliance predicate Π is represented as an arithmetic circuit.
As in [8], this choice is not arbitrary but, rather, is inherited from the “native” model of
computation supported by the underlying zk-SNARK.

Notation for predicates as circuits. Arithmetic circuits are a “rigid” computation
model, so we introduce additional notation to support a detailed description of our con-
struction. To each F-arithmetic compliance predicate Π , we associate several quan-
tities: (i) outlen(Π), the payload length of an output message; (ii) loclen(Π), the
length of local data; (iii) max-arity(Π), the maximum number of input messages; and

22

(iv) inlen(Π), the vector for which inlen(Π)[j] is the payload length for the j-th input
message. As for the type of a message (which is merely an integer), it will suffice to
use a single element of F to represent it. Moreover, in order for Π (which is a circuit)
to “know” the number d ∈ {0, . . . ,max-arity(Π)} of input messages, we let Π receive
d explicitly (encoded as a single field element).

In sum, if we view Π as a function, we can write that, for some l ∈ N,

Π : F(1+outlen(Π)) × Floclen(Π) × F
∑max-arity(Π)
j=1 (1+inlen(Π)[j]) × F→ Fl.

Indeed, Π receives an output message msg of length (1 + outlen(Π)); local data
loc of length loclen(Π); max-arity(Π) input messages, where the j-th input message
has length (1 + inlen(Π)[j]); and the arity d. For notational convenience, we write
Π(msg, loc,msgin, d) even when msgin contains less than max-arity(Π) messages
(and assume that msgin is extended with arbitrary padding to the correct length).

Ingredients. In addition to the two (preprocessing) zk-SNARKs (Gα, Pα, Vα) and
(Gβ , Pβ , Vβ) (see Section 6.2), in the construction we make use of certain arithmetic
circuits that we now describe. All all of these circuits are discussed in [8] in more detail,
so here we review them only at high level.

We use nα and nβ to denote the size (number of field elements) of an input to the
PCD circuits Cpcd,α,i and Cpcd,β,i (for any i), respectively; these two sizes are fixed,
and they equal nα := dH,α and nβ := dnα·dlog rαe

blog rβc e, where dH,α is the number of
elements output by the collision-resistant function H; nβ is the number of elements in
Frβ needed to encode nα elements in Frα . We use bitsα to denote a function that, given
an input y in F`rα (for some `), outputs y’s binary representation; the corresponding
Frα -arithmetic circuit is denoted Cbits,α and has ` · dlog rαe gates.

We use the following circuits. An Frα -arithmetic circuit CS,α→β implementing
Sα→β : Fnαrα → Fnβ ·dlog rβe

rα , the re-packing function from Frα to Frβ ; and an Frβ -
arithmetic circuit CS,α←β implementing Sα←β : F

nβ
rβ → Fnα·dlog rαe

rβ , the inverse of
Sα→β . An Frβ -arithmetic circuitConline

V,α implementing V online
α for inputs of nα elements

in Frα (an input xα ∈ Fnαrα is given toConline

V,α as a string of nα ·dlog rαe elements in Frβ ,
each carrying a bit of xα). An Frα -arithmetic circuit CV,β implementing Vβ for inputs
of nβ elements in Frβ (an input xβ ∈ Fnβrβ is given to CV,β as a string of nβ · dlog rβe
elements in Frα , each carrying a bit of xβ).

Moreover, for a given compliance predicate Π , we use various Frα -arithmetic cir-
cuits for hashing: Cout

H,α implements a collision-resistant function Hout
α : {0, 1}m

out
H,α →

FdH,αrα , and C in
H,α is a vector such that each C in

H,α[j] implements a collision-resistant

function H in
α [j] : {0, 1}mH,α,j → FdH,αrα ; parameters are such that mout

H,α = (dH,α +
1 + outlen(Π)) · dlog rαe and mH,α,j = (dH,α + 1 + inlen(Π)[j]) · dlog rαe.

Finally, we use an Frα -arithmetic circuit for verification of Merkle-tree authenti-
cation paths: CCheckPath,α,p implements the function MERKLE.CheckPath (see Sec-
tion 2.2) for paths of length dlog pe.

Construction of the PCD circuits. In Figure 5 we provide pseudocode for MakePCDCircuitA
and MakePCDCircuitB, the two functions that we use to construct the compliance and
translation PCD circuits (i.e., Cpcd,α,i and Cpcd,β,i).

23

MakePCDCircuitA(C in
H,α, C

out
H,α, CS,α→β , CV,β , CCheckPath,α,p, Π)

Set:
– the input size nα := dH,α; and
– the witness size hα := (1 + outlen(Π)) + loclen(Π) + 1 +∑max-arity(Π)

j=1 ((1 + inlen(Π)[j]) + |π|+ |vkβ(nβ)|+ `ap + 1).

Output the Frα -arithmetic circuit Cpcd,α that, given input xα ∈ Fnαrα and witness aα ∈ Fhαrα , works as follows:
1. Parse the witness aα as (msg, loc,msgin, d, vkβ , rt, ap,πin, bres).
2. Check that msg.type = type(Π).
3. Check that 0 ≤ d ≤ max-arity(Π).
4. For j = 1, . . . , d:

(a) Compute σvk,β,j := Cbits,α(vkβ [j]).
(b) Check that CCheckPath,α,p(rt,πin[j].idx, σvk,β,j , ap[j]) = bres[j].
(c) Compute xin,α,j := C in

H,α[j](Cbits,α(rt‖msgin[j].type‖msgin[j].payload)) ∈ Fnαrα .

(d) Compute xin,β,j := CS,α→β(xin,α,j) ∈ F
nβ ·dlog rβe
rα .

(e) Check that CV,β
(
vkβ [j], xin,β,j ,πin[j].proof

)
= bres[j].

(f) Check that bres[j] ∈ {0, 1} and msgin[j].type · (1− bres[j]) = 0 (that is, either msgin[j] is a base-case
message or its proof verified).

5. Check that xα = Cout
H,α(Cbits,α(rt‖msg.type‖msg.payload)).

6. Check thatΠ(msg, loc,msgin, d) accepts.

MakePCDCircuitB(pvkα, CS,α←β , C
online
V,α)

Set:
– the input size nβ :=

⌈
nα·dlog rαe
blog rβc

⌉
; and

– the witness size hβ := |πα|.

Output the Frβ -arithmetic circuit Cpcd,β that, given input xβ ∈ F
nβ
rβ

and witness aβ ∈ F
hβ
rβ

, works as follows:
1. Parse the witness aβ as a zk-SNARK proof πα.
2. Compute xα := CS,α←β(xβ) ∈ Fnα·dlog rαerβ

.

3. Check that Conline
V,α

(
pvkα, xα, πα

)
= 1.

Fig. 5. Construction of PCD circuits for our multi-predicate PCD system.

Construction of the PCD generator, prover, and verifier. In Figure 6 we provide
pseudocode for the PCD generator G, prover P, and verifier V. The construction works
for a vector Π of Frα -arithmetic compliance predicates Π .10 For convenience, we
export i?, the index of the predicate with respect to which compliance is proved, to P’s
interface.

7 Implementation

Our system. We built a system that implements our constructions. First, we imple-
mented multi-predicate PCD, providing interfaces for the PCD generator G, prover
10 For comparison, [8] consider the following special case: Π = (Π), inlen(Π)[j] =
outlen(Π) for all j, and d = max-arity(Π). Also note that, in this case, there are only two
message types (namely, 0 and type(Π)), which is why [8] do not discuss message types, and
instead only distinguish between messages that are “base case” or not.

24

PCD generator G
– INPUTS: a vector of p compliance predicatesΠ = (Π[1], . . . ,Π[p]), where each compliance predicateΠ[i]

is a Frα -arithmetic circuit
– OUTPUTS: a proving key pk and a verification key vk

1. Set nα := dH,α and nβ :=
⌈
nα·dlog rαe
blog rβc

⌉
.

2. Construct CS,α→β , the Frα -arithmetic circuit implementing Sα→β : Fnαrα → F
nβ ·dlog rβe
rα .

3. Construct CS,α←β , the Frβ -arithmetic circuit implementing Sα←β : F
nβ
rβ
→ Fnα·dlog rαerβ

.

4. Construct CV,β , the Frα -arithmetic circuit implementing Vβ for inputs of nβ elements in Frβ .

5. Construct Conline
V,α , the Frβ -arithmetic circuit implementing V online

α for inputs of nα elements in Frα .
6. Construct CCheckPath,α,p, the Frα -arithmetic circuit implementing MERKLE.CheckPath for depth dlog pe.
7. Allocate the proving key pk, consisting of:

(a) a Merkle tree root pk.rt; and
(b) four vectors of size p: pk.pkα, pk.pkβ , pk.vkα, pk.vkβ .

8. Allocate the verification key vk, consisting of:
(a) a Merkle tree root vk.rt; and
(b) one vector of size p: vk.vkβ .

9. For i = 1, . . . , p, compute proving and verification keys forΠ[i] as follows:

(a) Construct Cout
H,α, the Frα -arithmetic circuit implementingHout

α : {0, 1}m
out
H,α → F

dH,α
rα forΠ[i].

(b) Construct C in
H,α, the vector of Frα -arithmetic circuits such that C in

H,α[j] implements

H in
α[j] : {0, 1}mH,α,j → F

dH,α
rα forΠ[i].

(c) Compute Cpcd,α,i := MakePCDCircuitA(C in
H,α, C

out
H,α, CS,α→β , CV,β , CCheckPath,α,p,Π[i]).

(d) Compute (pkα,i, vkα,i) := Gα(Cpcd,α,i).
(e) Compute pvkα,i := V offline

α (pkα,i).
(f) Compute Cpcd,β,i := MakePCDCircuitB(pvkα,i, CS,α←β , C

online
V,α).

(g) Compute (pkβ,i, vkβ,i) := Gβ(Cpcd,β,i).
(h) Set pk.pkα[i] := pkα,i, pk.pkβ [i] := pkβ,i, pk.vkα[i] := vkα,i, pk.vkβ [i] := vkβ,i, vk.vkβ [i] :=

vkβ,i.
10. Compute rt := MERKLE.GetRoot(vkβ) and set pk.rt := rt, vk.rt := rt.
11. Output (pk, vk).

PCD prover P
– INPUTS:
• proving key pk
• index i? of the compliance predicateΠ[i?] inΠ , with respect to which compliance is proved
• output message msg ∈ F1+outlen(Π[i?])

rα

• local data loc ∈ Floclen(Π[i?])
rα

• arity d ∈ {0, . . . ,max-arity(Π[i?])}
• d input messages msgin, each msgin[j] ∈ F1+inlen(Π[i?])[j]

rα
• d corresponding proofs πin (some entries may equal⊥, denoting that there is no prior proof)

– OUTPUTS: a PCD proof π for the output message msg as attested byΠ[i?]

1. Compute xα := Hα(bitsα(pk.rt‖msg.type‖msg.payload)) ∈ Fnαrα and xβ := Sα→β(xα) ∈

F
nβ ·dlog rβe
rα , and parse xβ as lying in F

nβ
rβ

.
2. Let vkβ , ap and bres be three vectors of size d. For j = 1, . . . , d, do the following:

(a) If msgin[j].type 6= 0, set bres[j] := 1, set vkβ [j] := pk.vkβ [πin[j].idx], and compute ap[j] :=
MERKLE.GetPath(pk.vkβ ,πin[j].idx).

(b) If msgin[j].type = 0, set bres[j] := 0, and let vkβ [j] and ap[j] have arbitrary contents of the correct
length.

3. Extend msgin from a vector of size d to a vector of size max-arity(Π[i?]) using arbitrary padding. Do the same
for πin, vkβ , ap, and bres. For simplicity we denote the padded vectors also by msgin, πin, vkβ , ap, and bres.

4. Set aα := (msg, loc,msgin, d, vkβ , rt, ap,πin, bres) and compute πα := Pα(pk.pkα[i?], xα, aα).
5. Set aβ := (πα) and compute πβ := Pβ(pk.pkβ [i?], xβ , aβ).
6. Output a PCD proof π with π.idx := i?, π.proof := πβ .

PCD verifier V
– INPUTS:
• verification key vk
• message msg ∈ F∗rα
• proof π

– OUTPUTS: decision bit

1. Interpret π as a PCD proof with i := π.idx and πβ := π.proof.
2. Compute xα := Hα(bitsα(vk.rt‖msg.type‖msg.payload)) ∈ Fnαrα and xβ := Sα→β(xα) ∈

F
nβ ·dlog rβe
rα , and parse xβ as lying in F

nβ
rβ

.
3. Compute b := Vβ(vk.vkβ [i], xβ , πβ) and output b.

Fig. 6. Construction of a multi-predicate PCD system.

25

P, and verifier V; this realizes Step I (see Section 6). Next, we used multi-predicate
PCD to implement a distributed zk-SNARK for MapReduce, providing interfaces for
the zk-SNARK generator MR.KeyGen, prover MR.Prove, and verifier MR.Verify; this
realizes Step II (see Section 5).

The prover in our implementation is itself a MapReduce computation, currently
running on an ad-hoc MapReduce implementation; integration with Hadoop [1], an
open-source MapReduce framework, is ongoing.

Integration with libsnark. We have integrated our code with libsnark [72], a
C++ library for zk-SNARKs.

Our multi-predicate PCD provides an alternative to the single-predicate PCD that
was already part of libsnark. In fact, we have harmonized the two PCD interfaces:
the object classes for a compliance predicate, messages, and local data are shared across
the two. In terms of concrete parameter choices, our multi-predicate PCD uses the two
zk-SNARKs (based on PCD-friendly 2-cycles of elliptic curves) that are also used in
the single-predicate PCD.

Our distributed zk-SNARK for MapReduce provides an additional choice of proof
system in libsnark. A MapReduce pair (Map,Reduce) can be specified via the same
“constraint formalism” used throughout libsnark (i.e., rank-1 constraint systems),
thereby facilitating the re-using and sharing of useful constraint systems.

Prototypical MapReduce example: word counting. For evaluation purposes (see
Section 8), we wrote a MapReduce pair (Map,Reduce) that implements the prototyp-
ical MapReduce application of word counting [35], whose goal is to count the number
of occurrences of each word in a text (or a collection of texts). Word counting can
be cast in the MapReduce framework, e.g., as follows. Each input record (k1, v1) rep-
resents a slice of, say, 100 words of the document: the key k1 is the position of the
slice in the document, and the value v1 is the list of words in the slice. The mapper
Mapwordcount, when invoked on an input record (k1, v1), emits a list of intermediate
records

(
(k21, v

2
1), . . . , (k

2
` , v

2
`)
)
, with ` ≤ 100, denoting that the word k2i appears v2i

times among the words in the slice v1. The reducer Reducewordcount, when invoked
on a particular word k2 and the vector of counts v2 for k2, emits the output record
(k3, v3) = (k2,

∑
i v

2[i]), which reports the total number of occurrences of k2 in the
collection of input records.

8 Evaluation

We evaluated our system by using it to execute the MapReduce application of word
counting (see Section 7).

Experimental results. We ran our system on the word counting example, on our
benchmarking system. Each of the reported times is relative to a commodity compute
node with a 3.40 GHz Intel Core i7-4770 CPU and 16 GB of RAM available and utiliz-
ing all 4 cores. We chose the immortal introduction of Diffie and Hellman’s pioneering
paper “New directions in cryptography” [37], divided into slices of 100 words each, as
the input to the MapReduce computation.

26

By analyzing our system’s components, we deduced a cost model of the prover’s
runtime as a function of M , the number of slices the document was divided into, and
R, the number of distinct words in the document:

M ·
(
cost(ΠMap

exe) + cost(ΠMap
fmt) + 2 · cost(ΠMap

sum)
)
+R ·

(
cost(ΠReduce

exe) +

cost(ΠReduce
fmt) + 2 · cost(ΠReduce

sum)
)
+ cost(Πfin).

The above costs have the following meaning, and the following measured values on
our reference node: cost(ΠMap

exe) ≈ 9.3 s is the cost of proving execution of a map-
per node; cost(ΠReduce

exe) ≈ 45.2 s is the cost of proving execution of a reducer node;
cost(ΠMap

fmt) ≈ 13.6 s and cost(ΠMap
sum) ≈ 14.2 s, as well as cost(ΠReduce

fmt) ≈ 13.8 s
and cost(ΠReduce

sum) ≈ 14.3 s denote the individual costs in proving the correctness
of aggregation of mapper nodes’ outputs and reducer nodes’ inputs, respectively; and
cost(Πfin) ≈ 14.3 s is the cost of producing the final proof.

Extrapolating the cost model. Our cost model accurately characterizes the prover’s
runtime for the word counting example. When changing the input, the costs change as
follows: (a) the costs ofΠMap

fmt andΠMap
sum remain fixed for all MapReduce computations;

(b) the costs of ΠReduce
fmt , ΠReduce

sum and Πfin remain stable as they only exhibit a slight
dependency on the length of k2, but do not otherwise depend on the specific MapReduce
computation; (c) the cost of ΠMap

exe changes depending on Nmax, the maximum number
of mapper outputs, and Map’s running time. The cost of ΠReduce

exe is dominated by the
cost incurred by performing dmax

in proof verifications, each costing ≈ 90,000 gates.

References

1. Apache Hadoop.
2. B. Applebaum, Y. Ishai, and E. Kushilevitz. From secrecy to soundness: Efficient verification

via secure computation. In ICALP ’10, 2010.
3. M. Backes, D. Fiore, and R. M. Reischuk. Nearly practical and privacy-preserving proofs on

authenticated data. 2014.
4. M. Bellare and O. Goldreich. On defining proofs of knowledge. In CRYPTO ’92, 1993.
5. M. Bellare and A. Palacio. The knowledge-of-exponent assumptions and 3-round zero-

knowledge protocols. In CRYPTO ’04, 2004.
6. E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza. Zero-

cash: Decentralized anonymous payments from Bitcoin. In SP ’14, 2014.
7. E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza. SNARKs for C: Verifying

program executions succinctly and in zero knowledge. In CRYPTO ’13, 2013.
8. E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Scalable zero knowledge via cycles

of elliptic curves. In CRYPTO ’14, 2014. Extended version at http://eprint.iacr.
org/2014/595.

9. E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Succinct non-interactive zero knowledge
for a von Neumann architecture. In USENIX Security ’14, 2014. Extended version at http:
//eprint.iacr.org/2013/879.

10. S. Benabbas, R. Gennaro, and Y. Vahlis. Verifiable delegation of computation over large
datasets. In CRYPTO ’11, 2011.

11. N. Bitansky, R. Canetti, A. Chiesa, S. Goldwasser, H. Lin, A. Rubinstein, and E. Tromer.
The hunting of the SNARK. ePrint 2014/580, 2014.

27

http://eprint.iacr.org/2014/595
http://eprint.iacr.org/2014/595
http://eprint.iacr.org/2013/879
http://eprint.iacr.org/2013/879

12. N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From extractable collision resistance to
succinct non-interactive arguments of knowledge, and back again. In ITCS ’12, 2012.

13. N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. Recursive composition and bootstrapping
for SNARKs and proof-carrying data. In STOC ’13, 2013.

14. N. Bitansky and A. Chiesa. Succinct arguments from multi-prover interactive proofs and
their efficiency benefits. In CRYPTO ’12, 2012.

15. N. Bitansky, A. Chiesa, Y. Ishai, R. Ostrovsky, and O. Paneth. Succinct non-interactive
arguments via linear interactive proofs. In TCC ’13, 2013.

16. M. Blum, A. De Santis, S. Micali, and G. Persiano. Non-interactive zero-knowledge. SIAM
J. Comp., 1991.

17. M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge and its applications.
In STOC ’88, 1988.

18. A. J. Blumberg, J. Thaler, V. Vu, and M. Walfish. Verifiable computation using multiple
provers. ePrint 2014/846, 2014.

19. D. Boneh, G. Segev, and B. Waters. Targeted malleability: Homomorphic encryption for
restricted computations. In ITCS ’12, 2012.

20. T. Brants, A. C. Popat, P. Xu, F. J. Och, and J. Dean. Large language models in machine
translation. In EMNLP-CoNLL ’07, 2007.

21. B. Braun, A. J. Feldman, Z. Ren, S. Setty, A. J. Blumberg, and M. Walfish. Verifying com-
putations with state. In SOSP ’13, 2013.

22. R. Canetti, B. Riva, and G. N. Rothblum. Two protocols for delegation of computation. In
ICITS 12, 2012.

23. M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn. Succinct malleable NIZKs
and an application to compact shuffles. In TCC ’13, 2013.

24. A. Chiesa and E. Tromer. Proof-carrying data and hearsay arguments from signature cards.
In ICS ’10, 2010.

25. A. Chiesa and E. Tromer. Proof-carrying data: Secure computation on untrusted platforms
(high-level description). The Next Wave: The National Security Agency’s review of emerging
technologies, 2012.

26. C. Chu, S. K. Kim, Y. Lin, Y. Yu, G. R. Bradski, A. Y. Ng, and K. Olukotun. MapReduce for
machine learning on multicore. In NIPS ’04, 2006.

27. K.-M. Chung, Y. Kalai, and S. Vadhan. Improved delegation of computation using fully
homomorphic encryption. In CRYPTO ’10, 2010.

28. G. Cormode, M. Mitzenmacher, and J. Thaler. Practical verified computation with streaming
interactive proofs. In ITCS ’12, 2012.

29. G. Cormode, J. Thaler, and K. Yi. Verifying computations with streaming interactive proofs.
Proceedings of the VLDB Endowment, 2011.

30. C. Costello, C. Fournet, J. Howell, M. Kohlweiss, B. Kreuter, M. Naehrig, B. Parno, and
S. Zahur. Geppetto: Versatile verifiable computation. ePrint 2014/976, 2014.

31. I. Damgård. Towards practical public key systems secure against chosen ciphertext attacks.
In CRYPTO ’92, 1992.

32. I. Damgård, S. Faust, and C. Hazay. Secure two-party computation with low communication.
In TCC ’12, 2012.

33. G. Danezis, C. Fournet, J. Groth, and M. Kohlweiss. Square span programs with applications
to succinct NIZK arguments. In ASIACRYPT ’14, 2014.

34. G. Danezis, C. Fournet, M. Kohlweiss, and B. Parno. Pinocchio Coin: building Zerocoin
from a succinct pairing-based proof system. In PETShop ’13, 2013.

35. J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. In
OSDI ’04, 2004.

36. G. Di Crescenzo and H. Lipmaa. Succinct NP proofs from an extractability assumption. In
CiE ’08, 2008.

28

37. W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans. on Inf. Theory,
1976.

38. C. Dyer, A. Cordova, A. Mont, and J. Lin. Fast, easy, and cheap: Construction of statistical
machine translation models with MapReduce. In StatMT ’08, 2008.

39. P. Fauzi, H. Lipmaa, and B. Zhang. Efficient modular NIZK arguments from shift and prod-
uct. In CANS ’13, 2013.

40. D. Fiore and R. Gennaro. Publicly verifiable delegation of large polynomials and matrix
computations, with applications. ePrint 2012/281, 2012.

41. M. Fredrikson and B. Livshits. Zø: An optimizing distributing zero-knowledge compiler. In
USENIX Security ’14, 2014.

42. R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: outsourcing
computation to untrusted workers. In CRYPTO ’10, 2010.

43. R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs and succinct
NIZKs without PCPs. In EUROCRYPT ’13, 2013.

44. C. Gentry and D. Wichs. Separating succinct non-interactive arguments from all falsifiable
assumptions. In STOC ’11, 2011.

45. A. Goel and K. Munagala. Complexity measures for Map-Reduce, and comparison to paral-
lel computing. ArXiv abs/1211.6526, 2012.

46. S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating computation: Interactive proofs
for Muggles. In STOC ’08, 2008.

47. S. Goldwasser, H. Lin, and A. Rubinstein. Delegation of computation without rejection
problem from designated verifier CS-proofs. ePrint 2011/456, 2011.

48. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof
systems. SIAM J. Comp., 1989.

49. J. Groth. Short pairing-based non-interactive zero-knowledge arguments. In ASIACRYPT
’10, 2010.

50. S. Hada and T. Tanaka. On the existence of 3-round zero-knowledge protocols. In
CRYPTO ’98, 1998.

51. Y. T. Kalai and R. Raz. Probabilistically checkable arguments. In CRYPTO ’09, 2009.
52. U. Kang, D. H. Chau, and C. Faloutsos. Pegasus: Mining billion-scale graphs in the cloud.

In ICASSP ’12, 2012.
53. A. E. Kosba, D. Papadopoulos, C. Papamanthou, M. F. Sayed, E. Shi, and N. Triandopoulos.

TRUESET: Faster verifiable set computations. In USENIX Security ’14, 2014.
54. B. Langmead, M. C. Schatz, J. Lin, M. Pop, and S. Salzberg. Searching for SNPs with cloud

computing. Genome Biology, 2009.
55. R. Lidl and H. Niederreiter. Finite Fields. Cambridge University Press, second edition

edition, 1997.
56. J. Lin. Brute force and indexed approaches to pairwise document similarity comparisons

with mapreduce. In SIGIR ’09, 2009.
57. J. Lin and C. Dyer. Data-Intensive Text Processing with MapReduce. Morgan and Claypool

Publishers, 2010.
58. J. Lin and M. C. Schatz. Design patterns for efficient graph algorithms in mapreduce. In

MLG ’10, 2010.
59. H. Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-

knowledge arguments. In TCC ’12, 2012.
60. H. Lipmaa. Succinct non-interactive zero knowledge arguments from span programs and

linear error-correcting codes. In ASIACRYPT ’13, 2013.
61. H. Lipmaa. Efficient NIZK arguments via parallel verification of Beneš networks. In SCN

’14, 2014.
62. R. C. Merkle. A certified digital signature. In CRYPTO ’89, 1989.

29

63. S. Micali. Computationally sound proofs. SIAM J. Comp., 2000.
64. T. Mie. Polylogarithmic two-round argument systems. Journal of Mathematical Cryptology,

2008.
65. I. Miers, C. Garman, M. Green, and A. D. Rubin. Zerocoin: Anonymous distributed e-cash

from bitcoin. In SP ’13, 2013.
66. M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen ciphertext

attacks. In STOC ’90, 1990.
67. B. Panda, J. Herbach, S. Basu, and R. J. Bayardo. PLANET: massively parallel learning of

tree ensembles with MapReduce. Proceedings of the VLDB Endowment, 2009.
68. O. Paneth and G. N. Rothblum. Publicly verifiable non-interactive arguments for delegating

computation. ePrint 2014/981, 2014.
69. B. Parno, C. Gentry, J. Howell, and M. Raykova. Pinocchio: Nearly practical verifiable

computation. In Oakland ’13, 2013.
70. J. Pino, A. Waite, and W. Byrne. Simple and efficient model filtering in statistical machine

translation. Prague Bulletin of Mathematical Linguistics, 2012.
71. M. C. Schatz. CloudBurst: highly sensitive read mapping with MapReduce. Bioinformatics,

2009.
72. SCIPR Lab. libsnark: a C++ library for zkSNARK proofs.
73. S. Setty, A. J. Blumberg, and M. Walfish. Toward practical and unconditional verification of

remote computations. In HotOS ’11, 2011.
74. S. Setty, B. Braun, V. Vu, A. J. Blumberg, B. Parno, and M. Walfish. Resolving the conflict

between generality and plausibility in verified computation. In EuroSys ’13, 2013.
75. S. Setty, M. McPherson, A. J. Blumberg, and M. Walfish. Making argument systems for

outsourced computation practical (sometimes). In NDSS ’12, 2012.
76. S. Setty, V. Vu, N. Panpalia, B. Braun, A. J. Blumberg, and M. Walfish. Taking proof-based

verified computation a few steps closer to practicality. In USENIX Security ’12, 2012.
77. J. Thaler. Time-optimal interactive proofs for circuit evaluation. In CRYPTO ’13, 2013.
78. J. Thaler, M. Roberts, M. Mitzenmacher, and H. Pfister. Verifiable computation with mas-

sively parallel interactive proofs. CoRR, 2012.
79. P. Valiant. Incrementally verifiable computation or proofs of knowledge imply time/space

efficiency. In TCC ’08, 2008.
80. V. Vu, S. Setty, A. J. Blumberg, and M. Walfish. A hybrid architecture for interactive verifi-

able computation. In Oakland ’13, 2013.
81. R. S. Wahby, S. Setty, Z. Ren, A. J. Blumberg, and M. Walfish. Efficient RAM and control

flow in verifiable outsourced computation. ePrint 2014/674, 2014.
82. J. Wolfe, A. Haghighi, and D. Klein. Fully distributed EM for very large datasets. In ICML

’08, 2008.
83. Y. Zhang, C. Papamanthou, and J. Katz. Alitheia: Towards practical verifiable graph pro-

cessing. In CCS ’14, 2014.

30

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Our focus: MapReduce
	1.3 Our contributions
	1.4 Prior work
	1.5 Summary of challenges and techniques
	From the zk-SNARK to a multi-predicate PCD system
	From a multi-predicate PCD system to a distributed zk-SNARK for MapReduce

	2 Preliminaries
	2.1 Commitments
	2.2 Merkle trees
	2.3 MapReduce
	Overview of MapReduce
	Notation for MapReduce

	3 Definition of distributed zk-SNARKs for MapReduce
	3.1 Non-distributed zk-SNARKs for MapReduce
	3.2 Distributed zk-SNARKs for MapReduce

	4 Definition of multi-predicate PCD
	5 Step II: from multi-predicate PCD to distributed zk-SNARKs
	5.1 Compliance engineering for MapReduce
	Failed attempt #1
	Failed attempt #2
	Our approach

	5.2 Construction of distributed zk-SNARKs for MapReduce

	6 Step I: construction of multi-predicate PCD
	6.1 Arithmetic circuits and preprocessing zk-SNARKs
	6.2 Review of the BCTV14-scalable-crypto construction
	6.3 Overview of our construction
	6.4 Details of our construction

	7 Implementation
	8 Evaluation
	References

