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Abstract. Design of SP networks in which the non-linear layer is ap-
plied to only a part of the state in each round was suggested by Gérard
et al. at CHES 2013. Besides performance advantage on certain plat-
forms, such a design allows for more efficient masking techniques that
can mitigate side-channel attacks with a small performance overhead.
In this paper we present generic techniques for differential and linear
cryptanalysis of SP networks with partial non-linear layers, including
an automated characteristic search tool and dedicated key-recovery al-
gorithms. Our techniques can be used both for cryptanalysis of such
schemes and for proving their security with respect to basic differential
and linear cryptanalysis, succeeding where previous automated analysis
tools seem to fail.
We first apply our techniques to the block cipher Zorro (designed by
Gérard et al. following their methodology), obtaining practical attacks
on the cipher which where fully simulated on a single desktop PC in a few
days. Then, we propose a mild change to Zorro, and formally prove its
security against basic differential and linear cryptanalysis. We conclude
that there is no inherent flaw in the design strategy of Gérard et al., and
it can be used in future designs, where our tools should prove useful.
Keywords: Block cipher, Lightweight, Zorro, differential cryptanalysis,
linear cryptanalysis.

1 Introduction

Most block ciphers are either SP networks that apply linear and non-linear layers
to the entire state in every encryption round, or (generalized) Feistel structures
that apply partial linear and non-linear layers in every round. In the CHES 2013
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paper [10], Gérard et al. suggested a compromise between the two common block
cipher designs – an SP network in which the non-linear layer is applied to only a
part of the state in every round. Such partial non-linear SP networks (which we
call PSP networks) contain a wide range of possible concrete schemes that were
not considered so far, some of which have performance advantage on certain
platforms. More importantly, PSP networks allow for more efficient masking
techniques, capable of thwarting side-channel attacks with a small performance
overhead.

As a concrete instantiation of their methodology, Gérard et al. designed
Zorro, a 128-bit lightweight block cipher. Zorro has an unconventional struc-
ture, as it applies a sequence of 24 AES-like rounds, with a partial S-box layer
in each round, containing only 4 out of the possible 16 S-boxes. Since previ-
ous tools that were developed in order to formally prove the security of block
ciphers against standard differential and linear cryptanalysis (such as the wide-
trail strategy used for AES) do not apply to PSP networks such as Zorro, the
authors replaced the formal proof for Zorro by a heuristic argument. Unfortu-
nately, the heuristic argument turned out to be insufficient, as Wang et al. [16]
found iterative differential and linear characteristics that were missed by the
heuristic and used them to break full Zorro with complexity of 2112.

In this paper, we propose efficient algorithms for differential and linear crypt-
analysis of PSP networks. These algorithms allow us to fully evaluate the security
of such constructions against standard differential and linear cryptanalysis. In
some cases, we can compute tight upper bounds on the probability of differential
and linear characteristics, thus offering formal proofs which are expected from
any proposal of a modern block cipher.

Our most useful tool is a generic differential/linear characteristic search al-
gorithm, allowing us to search for the best differential/linear characteristics for
many rounds with a practical time complexity. A complementary tool is an ef-
ficient key recovery technique for differential and linear attacks, making use of
the partial S-box layers to analyze more rounds at the end of the cipher with no
increase in the attack’s complexity.

1.1 Our New Automated Characteristic Search Tool

The starting point of our characteristic search algorithm is the algorithm of
Biryukov and Nikolic [3] (along with several related algorithms, starting from
Matsui’s classical algorithm [12] and more recent ones [4, 13]), which is based on
a compact representation of differential characteristics, that we call a pattern.
At its most basic form, a pattern describes for each byte (or nibble) of the
cipher’s state, whether it is active (namely, it has a non-zero input difference)
or inactive.1

Patterns allow the algorithm to group together and simultaneously analyze
many characteristics for a given number of the cipher’s rounds. The algorithm

1For example, the 16 bytes of the 128-bit AES state can be described by a pattern
of only 16 bits.
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outputs only patterns that contain the smallest number of active S-boxes, and
thus correspond to high probability characteristics. However, depending on the
analyzed cipher, not all possible patterns are valid, as there are patterns not
followed by any actual characteristic.2 Thus, in order to provide meaningful
results, a characteristic search algorithm has to ensure that it only outputs valid
patterns.

Previous search algorithms [3, 4, 12, 13] indeed made sure that their output
patterns were valid. This was done using local consistency checks, separately
ensuring that for each of the r rounds of a pattern, there exist characteristics that
satisfy the transitions of the round3 (i.e., conform to the 1-round pattern). For
standard block ciphers, ensuring that an r-round pattern is locally valid (in the
sense described above) also implies that it is globally valid, namely, there exists
an actual r-round characteristic that simultaneously satisfies all the transitions
of the r rounds.

Unlike standard block ciphers, for PSP networks there exist many locally
valid patterns which are not globally valid over several rounds. In order to
demonstrate this, consider a 4-round AES-like cipher with 4 S-boxes in each
round (such as 4-round Zorro). The cipher contains a total of 4 · 4 = 16 S-boxes,
and a larger number of 12 · 4 = 48 state bytes that do not go through an S-box in
these rounds. It is easy to see that the cipher has a large number of locally valid
patterns in which all the 16 S-boxes are inactive, as in each round, there are
many valid active/inactive possibilities for the 12 bytes that do not go through
an S-box. Consequently, when applying previous algorithms (such as [3]) to this
cipher, we obtain many patterns in which all the 16 S-boxes are inactive, con-
taining a huge number of possible 4-round characteristics with probability 1.
However, as we show next, it is likely that none of these characteristics is glob-
ally valid, rendering previous algorithms ineffective for this (seemingly simple)
PSP network.

At a high level, the reason that it is likely that there exists no characteristic
in which all the 16 S-boxes are inactive, is that each inactive S-box forces the
input difference to 0, imposing a constraint on the characteristic. Thus, for the
4-round cipher, we have 16 such constraints, whereas the number of available
degrees of freedom to choose the input difference at the first round is also 16.
Consequently, we have the same number of constraints and degrees of freedom,
and it is probable that the constraints cannot be simultaneously satisfied (which
is indeed the case for 4-round Zorro, as shown in [10]).

In order to take into account global constraints, we group characteristics
according to patterns similarly to previous algorithms. However, unlike previous
algorithms, our patterns do not contain information about the full state, but
only about the activity/inactivity of the bytes that go through S-boxes. Then,
we observe that all the constraints imposed on a characteristic that follows such

2For example, if the input to an AES round contains 1 active byte, then its output
contains exactly 4 active bytes, and all other patterns are automatically invalid.

3The algorithm of [4] is a bit different, as a characteristic is broken down into groups
of 3 consecutive rounds.
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a pattern can be described by a set of linear equations. This observation allows
us to group together and efficiently analyze, many characteristics which reside in
a subspace, defined according to subtle linear constraints imposed by the cipher’s
linear layer.

Previous related automated search tools of [3, 4, 12, 13] mostly employed
method of dynamic programming and mixed integer-linear programming. On
the other hand, our characteristic search algorithm, as well as our key recov-
ery algorithms, is mostly based on linearization techniques, which combine in a
novel way methods from simple linear algebra and combinatorics, and may be
of independent interest. These techniques exploit the small number of S-boxes
in the non-linear layers of the cipher in order to “linearize” sequences of rounds,
thus making it possible to analyze many rounds efficiently. We stress that while
we focus in this paper on PSP networks, our algorithms can potentially offer
new insights on the security of other designs that apply a non-linear function to
only a part of the state in each round, such as (generalized) Feistel constructions
and stream ciphers.

1.2 Main Application of the New Tool: Studying the Security of
the PSP Network Design Methodology

As a first demonstration of our techniques, we apply them to the block cipher
Zorro, improving the complexity of the previously best attack from 2112 to a
practical 245. Our attack was fully simulated several times on a standard desktop
PC over several days. This is a rare case in which an attack on a modern block
cipher is fully simulated in practice.

More significantly, we address the general question of whether the attacks on
Zorro indicate a structural flaw in its design methodology, or are merely a result
of an unlucky combination of components. Our conclusion is that indeed the
methodology of building PSP networks based on AES in a straightforward way is
flawed, and should not be reused. The structural weakness in this methodology is
due to a subtle inter-relation between the ShiftRows and MixColumns operations
of AES, that may need to be taken into consideration in future designs, especially
in light of the common practice of using part of the AES components as building
blocks.

Finally, we address an even more general question of whether the basic PSP
network design methodology is flawed, or it can potentially be reused in future
designs. This question is investigated by analyzing a PSP network that slightly
deviates from the AES design strategy, having a lightly modified ShiftRows
mapping. We analyze this scheme using our characteristic search tool and for-
mally prove its resistance to standard differential and linear cryptanalysis (as
expected from modern block ciphers). Thus, as the most important application
of our tools, we answer the main question posed by this paper, concluding that
PSP networks are not inherently flawed, and can be reused (with caution) to
build secure block ciphers.
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1.3 Organization of the Paper

We start by presenting our generic characteristic search algorithms for PSP
networks in Section 2. Our generic key recovery algorithms for differential and
linear attacks are given in Sections 3 and 4, respectively. In Section 5, we use our
algorithms to attack Zorro. Finally, we study the problem of designing secure
PSP networks in Section 6 and conclude in Section 7.

2 Generic High-Probability Characteristic Search
Algorithm for PSP Networks

In this section we present a novel and efficient high-probability characteristic
search algorithm for SP networks with partial non-linear layers. The search al-
gorithm is only presented for differential characteristics, but we note that the
algorithm for linear characteristics is very similar. As the algorithm is somewhat
involved, we first describe it at a high-level and then present it in detail. Finally,
we describe an optimization which is very useful in practice.

For ease of exposition, we describe the algorithm on the example of an AES-
like cipher, in which a 128-bit state is represented as a 4-by-4 matrix of bytes,
and the S-boxes (which are the only non-linear operation) act on some of the
bytes in each round. The number of S-boxes in each round is denoted by t (e.g.,
t = 16 for AES and t = 4 for Zorro). Hence, we shall concentrate on a PSP that
contains the following parts:

– S-box layer — The S-box layer is applied to t out of the 16 state bytes. The
S-boxes are all invertible.

– Linear layer — The linear layer L is applied to the state. We do not as-
sume anything in particular concerning the structure of L (as long as it is
invertible).

– Key addition layer — XORing the subkey into the state.

As common in AES-like ciphers, we shall assume that there is one key addition
layer before the first round (it does not affect our results whatsoever), and one
can have in the last round a different linear layer (our described attacks and
algorithms are trivially extended to cases where each round has its own linear
layer).

Inspired by [3], we define the pattern of a differential (or a linear) charac-
teristic to be a description of the activity for each of its spanned S-boxes (see
Figure 1). Namely, a pattern is a function that specifies for each S-box spanned
by the characteristic whether it is active (i.e., has a non-zero input difference)
or not. We note that while [3] defines a pattern over the full bytes (S-boxes) of
a state, we define it only over the bytes that are covered by S-boxes.

2.1 An Overview of the Algorithm

Our algorithm is based on two observations:
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Fig. 1. A 2-Round Pattern and a Differential Characteristic that Follows it

1. The number of possible patterns is small. We observe that if there are
only a few S-boxes in each round (i.e., if t is small), then even for a relatively
large number r of rounds, the number of possible patterns of r-round char-
acteristics with a small number of active S-boxes is rather small. Specifically,
since r rounds contain only tr S-boxes, the number of r-round patterns with

at most a active S-boxes is at most
(
tr

≤a

)
,

a∑
i=0

(
tr
i

)
. For reasonably small

values of t, r and a, this number is quite small, and we can iterate all of
them. For example, for t = 4, r = 9 and a = 4, there are only

(
36

≤4

)
≈ 217

distinct patterns.

2. All characteristics following a fixed pattern can be enumerated
efficiently. We observe that once we fix a pattern (i.e., fix the active and
inactive S-boxes), we can typically calculate the actual characteristics that
follow this pattern in an efficient way. This is the result of the fact that once
the activity/inactivity of each S-box is determined, all the possible charac-
teristics reside in a restricted linear subspace that can be easily calculated
using linear algebra.

Specifically, we denote the input difference of the characteristic by 128 vari-
ables, and “linearize” the chain of intermediate encryption differences by
adding 8 new variables each time 8 state bits enter an active S-box. Since
the active S-boxes are the only non-linear operations in the encryption pro-
cess, all intermediate differences can be described as linear combinations of
at most 128 + 8a variables. On the other hand, each inactive S-box in the
pattern restricts the intermediate difference at the input of the S-box to zero,
giving rise to 8 linear equations in the state variables. As there are at least
rt− a inactive S-boxes, we obtain a system containing at least 8(rt− a) lin-
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ear equations in at most 128 + 8a variables, which can be efficiently solved.4

For a sufficiently small a (compared to rt, i.e., when most of the S-boxes
are inactive), the expected dimension of the subspace in which the possible
characteristics reside is small.
After calculating the linear subspace of all possible characteristics, we apply
a post-filtering phase that enumerates the elements of the subspace, and
filters out characteristics in which the active S-box transitions are impossible
(according to the difference distribution table of the S-box).5 Given that
the dimension of the subspace is small enough, we can efficiently post-filter
its elements, and thus output all the possible characteristics for the given
pattern.

Combining the two observations, when t, r and a are not too large, we can
efficiently enumerate all the possible r-round differential characteristics with at
most a active S-boxes. The analysis of the algorithm, presented in the next
subsection, shows that the complexity of the algorithm is proportional to

(
tr

≤a

)
,

given that the output size (i.e., the number of possible characteristics) is not too
large.6 As a result, the algorithm is practical for a surprisingly wide choice of
parameters (e.g., for t = 4 as in Zorro, r = 10 rounds and at most a = 10 active
S-boxes, its complexity is still below 232).

2.2 Detailed Description of the Algorithm

We fix the global parameters t, r, a. The algorithm iterates over the
(
tr

≤a

)
distinct

differential patterns, and for each of them, applies the two-step pattern analysis
algorithm described below.

Calculating the Linear Subspace of a Pattern We maintain a symbolic
representation of the 128-bit state difference at round i, STi, using 128 linear
combinations. Each linear combination is initialized with a 1-bit variable, repre-
senting the corresponding unknown state difference bit in the first round ∆(X0)
(before the first S-box layer). Additionally, we allocate a linear equation system
Ei (which is empty at first), that describes linear constraints on the characteris-
tic, which are imposed by the inactive S-boxes. At the end of the algorithm (after
the final round, r), the subspace of all the possible characteristics is described
by the null-space of Er.

The following round-linearization algorithm describes how we extend STi
and Ei to STi+1 and Ei+1, according to the activity pattern of the S-boxes in
round i+ 1 (starting from round i = 0).

4Note that some of the equations may be linearly dependent; this depends on the
exact structure of the linear transformation.

5Note that the solution of the linear equations yields all the intermediate differences,
and in particular, the input and output differences of the active S-boxes.

6As we are mainly interested in characteristics with the smallest number of active
S-boxes, their number is typically not very large, and thus it is reasonable to assume
that the output size is small.
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Extending Linearization by 1 Round:

1. Allocate and initialize STi+1 ← STi, Ei+1 ← Ei.
2. For each S-box S of round i:

(a) If S is inactive according to the pattern of round i, add 8 equa-
tions to the system Ei+1, that equate the corresponding 8 bits in
STi+1 to zero. If the dimension of the null-space of Ei+1 is 0 (i.e.,
there is no non-zero solution to the system, and thus no matching
characteristic), return STi+1 and Ei+1 as NULL, and exit.

(b) If S is active according to the pattern of round i, replace the corre-
sponding 8 linear combinations in STi+1 with the newly allocated
variables.

3. Set STi+1 ← L(STi+1), i.e., update the symbolic state STi+1 according
to the linear function of the cipher, L.

Given a pattern, the linear subspace of all possible characteristics for r rounds
is calculated with the following algorithm:

Calculate Linear Subspace:

1. Initialize ST0 with 128 new variables, and E0 with an empty set of
equations.

2. For i = 0 to i = r − 1, run the extension algorithm for round i + 1,
calculating STi+1 and Ei+1. If they are NULL, return NULL and exit.

3. Output a basis B for all the possible characteristics of the pattern using
the null space of Er. This basis is represented as a set of b free (uncon-
strained) linear variables, and linear combinations of these variables,
as follows: the 128 linear combinations of the initial state ST0, and the
16 · a linear combinations of all the inputs/outputs of the a active S-box
transitions (according to the pattern).

Post-Filtering the Linear Subspace of a Pattern Once we obtain a basis B
for all the possible characteristics of the pattern, we apply a simple post-filtering
algorithm.

1. For each of the 2b possible values of the free variables:
(a) For each active S-box transition:

i. Calculate the actual input/output for the S-box transition by
plugging in the values of the free variables.

ii. Check in the difference distribution table of the cipher whether
the differential transition is possible, and if not, go back to
Step 1.

(b) Output the full characteristic according to the current value of the
free variables.

8



We note that it is possible to optimize the post filtering in various situations
by choosing the free variables to be input/output bits of a restricted set of S-
boxes. This enables us to iterate in advance only over the input/output difference
transitions that are possible according to the difference distribution table of these
S-boxes. The optimization can be particularly useful when the filtered linear
subspace is of a relatively large dimension (and thus, we have less restrictions
on the choice of free variables).

Complexity Analysis Let T (node) be the average complexity of evaluating a
node in the recursive tree, without iterating and post-filtering the solutions. As
the number of evaluated nodes is proportional to

(
tr

≤a

)
, the complexity of the

algorithm can be estimated by the formula
(
tr

≤a

)
·T (node) + SOL, where SOL

is the total number of solutions that we need to post-filter.7 Since we cannot
determine in advance the value of SOL, we will estimate it according to the
total number of characteristics which remain after post-filtering (i.e., the actual
output size), which we denote by OUT .

In order to relate SOL and OUT , we note that an arbitrary input-output
transition for an S-box is possible with probability of (at least) about 2−1.5 (this
is true for the Zorro S-box, and for the AES S-box, the probability is even closer
to 2−1), and thus if we have at most a active S-boxes, then we expect thatOUT ≥
SOL · 2−1.5a, or SOL ≤ OUT · 21.5a. Consequently, the time complexity of the
algorithm can be upper bounded by

(
tr

≤a

)
·T (Node) + OUT · 21.5a. Assuming

that the output size OUT is not too big, the complexity of the algorithm is
proportional to

(
tr

≤a

)
.

2.3 Optimized Search Algorithm Using Pattern-Prefix Search

In this section we describe an optimization of the characteristic search algorithm,
which is based on the observation that we can analyze together many common
patterns with the same prefix. This allows us to dispose of all the patterns whose
common prefix is not possible (instead of analyzing and disposing each one sepa-
rately). In addition, this algorithm reduces the average amount of work (mostly
linear algebra) performed for each pattern. We note that we cannot provide an
improved theoretical analysis for this algorithm. However, this algorithm appears
to give a significant advantage over the basic algorithm in practice.

The algorithm PPS (Pattern-Prefix Search) iterates over the tree of possible
prefixes of patterns using the DFS (Depth First Search) algorithm. The global
parameters of PPS are the number of rounds to analyze, r, the number of
S-boxes in each round, t, and the maximal number of active S-boxes, a. The
parameters which are passed to each node of the tree are: the round number i,
the current S-box index in the round s ∈ {0, 1, . . . , t − 1}, the current number
of active S-boxes in the prefix, ca, and STi, Ei (as in the standard pattern-
analysis algorithm). Thus, the PPS algorithm is initially called with parameters

7As post-filtering a solution is very simple, we assume it can be done in unit time.
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PPS(i, s, ca, ST0, E0), where i = 0, s = 0, ca = 0, ST0 is initialized with 128
new variables and E0 is an empty set of equations.

PPS(i, s, ca, STi, Ei):

1. If i = r (i.e., we finished iterating over all the S-boxes of the pattern),
then the r-round pattern is fully determined by the path to the root of
the tree. Thus, calculate the basis B for all the possible characteristics
of the pattern (using Er). Finally, post-filter the characteristics (as in
the pattern-analysis algorithm), and return them.

2. Allocate a node n1 for the case that S-box with index s in round i is
inactive (duplicating the current STi, Ei): For this node, add 8 equa-
tions to the system Ei, which equate the corresponding 8 bits in STi to
zero. Denote the (yet undetermined) output set of this node as OUT1.
– If the dimension of the null-space of Ei is 0 (i.e., there is no non-zero

solution to the system, and thus no matching characteristic), delete
this node and set OUT1 = ∅.

– Otherwise, the dimension of the null-space is greater than 0. If s =
t − 1 (i.e., we finished iterating over all the S-boxes of the current
round i), then set STi+1 = L(STi) (i.e., update the symbolic state
STi+1 according to the linear function of the cipher, L), also set
Ei+1 = Ei. Recursively call PPS(i + 1, 0, ca, STi+1, Ei+1) and set
OUT1 according to the returned output.

– Otherwise, the dimension of the null-space is greater than 0, and
s < t− 1. Recursively call PPS(i, s+ 1, ca, STi, Ei) and set OUT1
according to the returned output.

3. If ca = a (i.e., we have reached the maximum number of active S-boxes),
return OUT1.

4. Otherwise (ca < a) allocate a node n2 for the case that S-box with
index s in round i is active (duplicating the current STi, Ei): For this
node, replace the corresponding 8 linear combinations in STi with newly
allocated variables. Denote the (yet undetermined) output set for this
node as OUT2.
– If s = t−1 (i.e., we finished iterating over all the S-boxes of the cur-

rent round i), then set STi+1 = L(STi) and Ei+1 = Ei. Recursively
call PPS(i + 1, 0, ca + 1, STi+1, Ei+1) and set OUT2 according to
the returned output.

– Otherwise, s < t− 1. Recursively call PPS(i, s+ 1, ca+ 1, STi, Ei)
and set OUT2 according to the returned output.

5. Return OUT1
⋃
OUT2.
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3 Generic Key-Recovery Algorithm for Differential
Attacks on PSP Networks

In this section we present a key recovery algorithm for differential attacks exploit-
ing the small number t of S-boxes in each round of the cipher. As in Section 2, we
describe the algorithm on the example of an AES-like cipher, in which a 128-bit
state is represented as a 4-by-4 matrix of bytes, and the S-boxes (which are the
only non-linear operation) act on t bytes in each round. We show that given an
r-round differential characteristic with probability p, one can attack r + b16/tc
rounds (i.e., b16/tc rounds in addition to the characteristic) with data and time
complexity of only about 2 · p−1, using negligible memory. First, we present an
overview of the algorithm, and then we give a more detailed description.

3.1 An Overview of the Algorithm

For sake of simplicity, we assume that t divides 16, but the algorithm can be
easily adapted to any value of t. We denote the intermediate difference of the
characteristic after i rounds by ∆i, and thus the characteristic determines ∆i for
i ∈ {0, 1, . . . , r}. The algorithm requires the encryption of p−1 plaintext pairs
with input difference ∆0, and thus we expect that at least one of them is a
right pair (i.e., follows the characteristic) with high probability. However, since
we only have the output after r + 16/t rounds, there are no obvious filtering
conditions on the ciphertext pair, and a trivial differential attack would fail to
distinguish between right and wrong pairs.

In order to work around this problem, we first note that given the actual
values at the output of round r+ 16/t, there is, on average, only one 128-bit key
that leads to the fixed difference of ∆r.8 In this attack, we efficiently find the
key suggestion (or suggestions in general) for each of the p−1 ciphertext pairs,
and then we perform a trial encryption in order to test whether it is the correct
key. Hence, we show that instead of determining the right pair, it is sufficient to
efficiently attach a candidate key to each pair.

Our strategy resembles “Attack-C” of Albrecht and Cid [1]. In Attack-C, the
adversary tests suggestions for the key, obtained by solving non-linear equations
constructed using the fixed final difference of the characteristic and each of the
ciphertexts pairs. In our case, we use a similar strategy, but without directly
solving any non-linear equation. Instead, we use a linearization technique similar
to the technique used in our search algorithm to determine the candidate key
efficiently by solving two systems of linear equations.

The algorithm first “linearizes” the last 16/t rounds by expressing the output
difference ∆r+16/t as a linear combination of the fixed difference ∆r and some
auxiliary variables. We start with the difference ∆r and examine its evolution
through round r + 1. Since there are t S-boxes in round r + 1, after the S-box

8When partially decrypting the two ciphertexts through the last 16/t rounds until
round r with a random key, their intermediate difference is equal to ∆r with probability
2−128.

11



layer there are (at most) 8t unknown bits. Hence, we add 8t variables to denote
this difference so that ∆r+1 can be expressed as a linear combination of ∆r and
these 8t variables.9 We continue through rounds r + 2, r + 3, . . . , r + 16/t, and
finally we obtain a representation of ∆r+16/t as a linear combination of ∆r and
8t · (16/t) = 128 variables. Note that this procedure does not depend on the
actual ciphertexts, and can be performed during preprocessing. After obtaining
the p−1 ciphertext pairs, we plug the output difference ∆r+16/t into the system
of equations, find all the 128 intermediate variables, and thus all intermediate
differences ∆r+1, . . . ,∆r+16/t−1.

After the differential sequence is determined, we can efficiently obtain the
corresponding key suggestions to test. This is due to the fact that the determined
differential transitions for the (16/t) · t = 16 S-boxes give us the actual possible
transition values (as each input/output difference suggests on average a single
actual value). Assuming that the subkeys are interleaved with the state by a
XOR operation (as in most SP networks), this gives 128 linear equations in the
subkey bits, which are usually sufficient to recover the key easily.10

We note that the number of additional rounds can be further increased from
16/t if the differential characteristic is chosen such that its output difference
∆r forces some S-boxes in the next rounds to be inactive. In such a case, the
number of auxiliary variables in the linearization stage is decreased, and thus,
more rounds can be covered by 128 auxiliary variables. As will be shown in
Section 5, this is the case in our attack on Zorro, where the r-round characteristic
is chosen such that out of the 8 S-boxes in rounds (r+ 1) and (r+ 2), only four
are active. As a result, rather than attacking r + 16/4 = r + 4 rounds, we are
able to break r + 5 rounds with the same complexity.

The full details of the algorithm are given below. Its data complexity is
2 · p−1 chosen plaintexts and its time complexity is a bit more than 2 · p−1 (and
is estimated as 4 · p−1), since the analysis of each encrypted pair is very efficient
(it essentially involves solving two small sets of linear equations). The algorithm
requires negligible memory to store two small matrices.

3.2 A Detailed Description of the Algorithm

In order to avoid abundance of variables, we assume that the number of S-boxes
in each round is t = 4 (as in Zorro), and thus the attack targets r + 4 rounds.
The algorithm can be easily adapted to any value of t.

The Main Key-Recovery Algorithm The algorithm makes use of two aux-
iliary matrices, A1 and A2, that are independent of the actual key and data, and
are computed during preprocessing (to be described below).

9Note that unlike the characteristic search algorithm, there is no need for 128 initial
variables, since the “initial” difference ∆r is fixed.

10If the key schedule is linear (as in Zorro), this can be done instantly by solving a
system of linear equations. For more complex key schedules like that of AES, the key
can typically be easily recovered by a guess-and-determine procedure.
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– Given the 96×128 matrix A1, and∆r+4, the 96-bit vector A1 ·∆r+4 describes
all the 12 · 8 = 96 unknown output differences for the S-boxes of rounds r+1,
r + 2 and r + 3. Note that once the output differences of these 12 S-boxes
are known, computing the full ∆r+1, ∆r+2 and ∆r+3 can be done by simple
linear algebra.

– Given the 128 × (128 + 256) matrix A2, and a (128 + 256)-bit vector v
(comprised of the 128-bit ciphertext, and 2 · (32 · 4) = 256-bit input-output
values of all the S-boxes of the last 4 rounds), the product A2 · v gives a
suggestion of the 128-bit key K.

The full algorithm is as follows:

1. Compute the matrices A1 and A2 (as described below).
2. Ask for the encryptions of p−1 plaintext pairs with input difference ∆0.

For each pair (P,C) and (P ′, C ′):
(a) Compute ∆r+4 = C⊕C ′, and then calculate A1 ·∆r+4. This allows

to compute the input-output differences of the 16 S-boxes in rounds
r + 1, r + 2, r + 3, r + 4.

(b) Check for each of the 16 S-boxes, whether the input-output differ-
ence transitions are possible according to the difference distribution
table. If any of them is impossible, discard this pair and analyze the
next pair by going back to Step 2.

(c) Compute according to the difference distribution table, a list of
vectors List, containing 2 · (32 · 4) = 256-bit vectors, specifying all
the possible input-output values of all the 16 S-boxes of the last 4
rounds.

(d) For each 256-bit vector in List, denoted by w:
i. Denote by v the (128+256)-bit vector, comprised of the 128-bit

ciphertext C, and the 256-bit vector w (specifying the input-
output values for all the S-boxes of the last 4 rounds). Obtain
a suggestion for the key K by computing product A2 · v.

ii. Test the key using a trial encryption, and if it succeeds, return
it.

Complexity Analysis The data complexity of the attack is 2 · p−1 chosen
plaintexts. For each plaintext-ciphertext pair, we perform some simple linear
algebra operations, whose complexity is generally proportional to a full cipher
evaluation.11 As noted in the beginning of this section, we expect to test only 1
key per plaintext pair, and thus we can estimate the time complexity of the attack
to be slightly higher than 2 · p−1 cipher evaluations (given that the preprocessing
complexity is negligible compared to p−1).

The memory complexity of the attack is less than 210 words of 128 bits,
required in order to store A1 and A2. Note that the elements of List can be
generated “on-the-fly”, and we do not need to store them.

11We can further reduce the complexity of the linear algebra using various low-level
techniques (e.g., by using Gray-Codes), but these are out of the scope of this paper.
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Calculating the Differential Transitions From the Output Difference
This preprocessing algorithm is given as input ∆r (which is known from the
characteristic) and computes the 96 × 128 matrix A1 defined above. The algo-
rithm symbolically maintains the state difference of round i (∆i), denoted by
STi (which is initialized for i = r with the known ∆r).

1. For each round i ∈ {r, r + 1, r + 2, r + 3}:
(a) Given STi, compute STi+1 by allocating 4 · 8 = 32 new linear vari-

ables for the output of the 4 S-boxes of round i+1, and then symbol-
ically applying the linear layer L, obtaining STi+1 = L(STi) (i.e., a
symbolic representation of ∆i+1).

2. Given the 128 computed symbolic expressions STr+4 (as functions of a
total of 4 · 32 = 128 linear variables), invert the 128× 128 matrix.
This gives a matrix which calculates the S-box output differences of
rounds r + 1, r + 2 and r + 3 (and r + 4) as functions of ∆r+4 (note
that we do not actually need to allocate the 32 variables for ∆r+4 in
order to compute this matrix). Denote by A1 the first 96 rows of this
matrix (calculating the S-box output differences of rounds r + 1, r + 2
and r + 3).

Calculating the Key From the Ciphertext and S-box Transition Values
This preprocessing algorithm computes the 128× (128 + 256) matrix A2 defined
above. The algorithm first symbolically describes all the (32 · 4) = 128 S-box
output values in the decryption process of a (symbolic) ciphertext C, as linear
combinations of the 128 variables of C, the 128 variables of K, and the (32 · 4) =
128 input values of all the intermediate S-boxes. This is done by iteratively
computing the symbolic description of the values obtained in the decryption
process of C through rounds r+ 4, r+ 3, r+ 2, r+ 1 (from the decryption side),
and expressing for each round, the outputs of the S-box transitions as linear
combinations of the previous variables. Finally, the algorithm performs Gaussian
elimination to express the 128 variables of the key as linear combinations in terms
of the other 128 + 256 variables, giving the matrix A2.

As the idea of this algorithm is very similar to the one of the previous algo-
rithm (which computes A1), we do not give its full description in this paper.

4 Key-Recovery Algorithm for Linear Attacks on PSP
Networks

In this section we present a key recovery algorithm for linear attacks exploiting
the small number t of S-boxes in each round. We show that given an r-round
linear characteristic with bias q, one can attack r + ` rounds (i.e., ` rounds
in addition to the characteristic) with data complexity12 of c · q−2, time com-
plexity of q−2 + t` · 28t`+8 , and memory complexity of min(c · q−2, 28t`). As in

12The value of c is determined by the amount of recovered subkey material and
the desired success rate according to the formula suggested by Selçuk in [15] or its
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the differential case, the algorithm is based on linearization of the rounds after
the characteristic. An additional tool used here is a variant of the partial sums
technique introduced by Ferguson et al. [9].

A 1-round attack For sake of clarity, we first present the algorithm in the
case of ` = 1. Thus, we want to attack r + 1 rounds exploiting an r-round
linear characteristic. We denote the mask of the characteristic after i rounds by
Ωi, determining Ωi for i ∈ {0, 1, . . . , r}. The algorithm works by asking for the
encryptions of c · q−2 arbitrary plaintexts, and thus we expect to obtain a strong
linear distinguisher after r rounds.

Obviously, the naive attack (guessing the last subkey and checking whether
the linear relation holds) is worse than exhaustive key search for a 128-bit cipher,
since the last round subkey consists of 128 bits. A better approach is to exchange
the order of operations in the final round, such that the final key addition is
performed right after the S-box layer, and the final linear layer becomes the
last operation in the encryption process. This can be done by replacing the final
round subkey with an equivalent key.13 As a result, in order to compute Ωr ·Xr,
where Xr denotes the state after round r, it is sufficient to guess only the 8t
equivalent subkey bits that affect the S-boxes of the last round. Thus, the attack
complexity is reduced to 28t · q−2.

The next optimization is useful when c · q−2 > 28t (as in the case of Zorro).
We write Ωr = Ω8t ⊕ Ω128−8t, namely, we divide the mask Ωr between two
masks — one that affects only the 8t bits in the S-boxes, and all the rest
(as a result Ω8t ·Ω128−t = 0). If two “ciphertexts” (i.e., partially decrypted
ciphertexts through the linear layer L, which in the case of AES is composed
of MC and SR) have the same value in the bits masked by Ω8t, then for any
key guess, they yield the same value for Ω8t ·Xr. Hence, we count for each
of the 8t bits that enter the S-box, how many times they were suggested (if
Ω0 ·P ⊕Ω128−8t ·Xr = 0, we increment the counter corresponding to the 8t bits,
and if Ω0 ·P ⊕Ω128−8t ·Xr = 1, we decrement this counter). After counting how
many times an 8t-bit value is suggested (again, compensating for the difference
in the values of Ω0 ·P ⊕Ω128−8t ·Xr), we can analyze the 8t-bit value itself, and
just increment/decrement the observed bias by the value of its corresponding
counter. The resulting attack algorithm is as follows:

1. Initialize 28t counters to zero.
2. Collect c · q−2 plaintext/ciphertext pairs (Pi, Ci).
3. For each ciphertext Ci, compute Zi = L−1(Ci).
4. For each pair (Pi, Zi):

refinements from [5]. For example, for t = 4 (32-bit subkey) and success rate of 84%,
we need to fix c = 3.7. For the full 128-bit key and success rate of 78.8% we need to
fix c = 7.

13This procedure is common in attacks on AES, where the equivalent key is defined
by K̃ = SR−1(MC−1(K)), or in our notations K̃ = L−1(K).
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– If Ω0 ·P ⊕Ω128−8t ·Zi = 0, increment the counter corresponding to
the value of the 8t bits of Zi.

– Else, decrement the counter corresponding to the value of the 8t
bits of Zi.

5. For all 8t key bits guess:
(a) Initialize a bias counter to 0.
(b) For any value of the 8t bits masked by Ω8t, use the guess of the key

bits to evaluate Ω8t ·Xr.
(c) If Ω8t ·Xr = 0, add to the bias counter, the counter associated with

the 8t “ciphertext” bits, otherwise, decrement by the same value.
(d) Output the key with the maximal bias from 0.

The advantage of this approach over the previous one is that the expensive
partial decryption step is done only 28t times, rather than c · q−2 times. The
time complexity of the algorithm is c · q−2 + 22 · 8t, and its memory complexity
is min(c · q−2, 28t).

The algorithm can be further refined by dividing the key guessing procedure
into t steps using the partial-sum technique. In the first step, we guess only the
8 subkey bits corresponding to a single S-box and partially decrypt only through
this S-box, summing over the relevant counters. After this step, there are only
28(t−1) possible values (for the 8(t − 1) bits, as the 8 bits corresponding to the
“guessed” S-box are merged into a single entry). This process can be repeated
for the next 8 subkey bits, until all 8t equivalent subkey bits are guessed. As the
complexity of each of these stages is 28t+8 operations, the overall time complex-
ity of the attack becomes c · q−2 + t28t+8 operations. The memory complexity
remains min(c · q−2, 28t).

Finally, we note that when the key addition layer is composed of XOR, we can
optimize the parity evaluations by applying the algorithm of [6]. This algorithm,
based on Fast Fourier Transform, allows computing the biases of all combinations
of values and keys for a single S-box in time 3 · 8 · 28 = 212.6 rather than 216 as
in a straightforward implementation. Hence, the time complexity of our attack
becomes c · q−2 + t28t+4.6.

An `-round attack In order to extend the attack to r+ ` rounds, we linearize
the last ` encryption rounds. Namely, we represent the bits of the state Xr as a
linear function of the ciphertext bits and 8t` auxiliary variables (similarly to the
differential attack, we add 8 variables each time an active S-box is encountered).
As in the case ` = 1, we observe that if two partially decrypted ciphertexts
agree on 8t` bits, then they agree also on Ωr ·Xr. Hence, we can group the
ciphertexts into 28t` sets according to the values of these bits, and execute the
same algorithm as in the case of ` = 1.

The complexity of the attack isD = c · q−2 known plaintexts,M = min(c · q−2, 28t`)
128-bit memory blocks, and T = c · q−2 + t` · 28t`+4.6 operations, where each op-
eration is less than a single round decryption.

We note that the complexity of the attack can be further reduced if the
linear characteristic is chosen in such a way that only t′ of the active S-boxes in
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round r + 1 affect the output mask Ωr ·Xr. In such a case, the number of sets
to which we group the ciphertexts is reduced to 28((`−1)t+t′), and the attack’s
complexity is reduced accordingly. As described in Appendix A, this is the case
in our linear attack on Zorro, where only 2 of the 4 active S-boxes in the last
round affect the output mask. This also changes the memory complexity to
M = min(c · q−2, 28t(`−1)+8t′).

5 Practical Cryptanalysis of the Full Zorro

In this section we apply our generic algorithms to the lightweight block cipher
Zorro.

5.1 Description of Zorro

Zorro is an AES-based 128-bit lightweight block cipher proposed by Gérard et
al. at CHES 2013 [10]. The cipher executes 24 AES-like rounds, where the key
schedule simply adds the 128-bit master key every four rounds, as shown at the
top of Figure 2.

Each Zorro round is made of four AES-like operations, namely SB∗, AC, SR
and MC (see the bottom of Figure 2). SR and MC are exactly the same as the
ones used in AES, whereas AC for round i adds the four constants (i, i, i, i� 3)
to the 4 bytes of the first row. The main difference of Zorro from the AES is its
non-linear operation SB∗, which contains only 4 S-boxes (instead of 16), located
in the first row of the state matrix. Moreover, the actual 8× 8 S-box is different
than the one used in AES. However, as the S-box implantation has only a limited
effect on our results, we refer the interested reader to the design document [10]
for its specification.
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Fig. 2. The Key Schedule and Round Function of Zorro

17



Summary of Attacks on Zorro Table 1 summarizes the previously published
and our new attacks on full Zorro.14 We note that although the (independent and
concurrent) work of Rasoolzadeh et al. [14] exploited the same characteristics as
we do (that were found by them manually), their attack complexities are higher
by a factor of 212, due to the use of inferior attack techniques.

Source Time Data Memory Technique

[16] 2112†† 2112 CP negligible Differential

[14] † ≈ 255 †† 255.12 CP 217 Differential

[14] † 257.85 245.44 KP 217 Linear

Sec. 5.2 245 241.5 CP 210 Differential

App. A 245 245 KP 217 Linear

KP - Known plaintext, CP - Chosen plaintext
† The results were obtained concurrently and indepen-

dently of ours.
†† The reported time complexities of [14, 16] are lower.

However, in order to calculate the time complexity,
we take into account the time required for generating
the data.

Table 1. Previous, Independent and New Key-Recovery Attacks on Full Zorro

5.2 Differential Cryptanalysis of Full Zorro

In order to mount a differential attack on Zorro, we first apply the differential
characteristic search algorithm of Section 2.2, and then use the key recovery
technique of Section 3.

Differential Characteristic Search We applied the differential search algo-
rithm of Section 2.2 to the full Zorro. The highest probability characteristic for
Zorro (for more than 7 rounds) is obtained by concatenating several instances
of the 4-round iterative characteristic described15 in Figure 4 (given in the ap-
pendix). In fact, there are 5 additional linearly-dependent variants (over GF (28))
of the presented characteristic with the same probability.

Key Recovery for the Differential Attack In order to exploit the charac-
teristic in an attack, we extend it up to round 19 (see Figure 4). The resulting
19-round characteristic has 8 active S-boxes in total, and has probability of

14The table does not include the results of [11], which attack a weak-key class.
15We note that similar iterative characteristics were independently found in [14].
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(6/256)
8 ≈ 2−43. We used the optimized version of our characteristic search tool

(pattern-prefix search) to prove that it is the highest probability characteristic
for the full 19 rounds.

A straightforward application of the algorithm presented in Section 3 can
be used to attack 19 + 16/4 = 23 rounds. However, as mentioned in Section 3,
more rounds can be attacked if the characteristic is chosen such that several
S-boxes after the characteristic are inactive, and this is the case here. First, we
observe that the state difference after 19 rounds (i.e., the output difference of the
characteristic) contains 2 inactive S-boxes (see Figure 4). Furthermore, we can
exploit the specific super S-box structure of Zorro (and of AES-based designs
in general), and extend the characteristic with 2 additional inactive S-boxes in
round 20 (see Figure 4). Thus, we have a total of 16 active S-boxes in the last 5
rounds (similarly to 4 fully active Zorro rounds), allowing to attack 5 rounds in
addition to the 19 rounds of the characteristic.

According to Section 3, as the 19-round characteristic has a probability of
about p = 2−43, the data complexity of the attack is about 2 · p−1 = 244 chosen
plaintexts, its time complexity is about 245, and its memory complexity is less
than 210.

We can reduce the data complexity of the attack by a factor of 6 by using
structures that exploit all the 6 characteristics of probability p = 2−43. This
is a common technique in differential cryptanalysis, and was used (for exam-
ple) in [16]. Each structure we use is an affine subspace of dimension 6, which
is constructed from an arbitrary plaintext, by XORing to it all the 26 linear
combinations (over GF (2)) of the 6 initial differences of the characteristics of
probability p = 2−43. Thus, the data complexity is reduced by a factor of 6 to
about 241.5. The time complexity remains the same, and the memory complexity
remains very small (as each structure contains only 26 elements).

Attack Simulation The differential attack presented in this section was im-
plemented and fully simulated 11 times on a single desktop PC, each simulation
running for (up to) several days (the fastest took less than 8 hours, whereas the
longest took about 235.5 hours). Table 2 describes the average results of the
simulations, which are very close to the theoretical prediction. More detailed
results are given in Table 3 (in the appendix).

Result Plaintexts Structures Pairs Keys

Encrypted Analyzed Analyzed Suggested

Theory 241.5 235.5 243 243

Simulations (Average) 241.49 235.49 243.07 243.07

Table 2. Average Simulation Results of Differential Attack on Full Zorro (Versus
Theoretical Estimate)
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6 Design of Secure PSP Networks

In this section, we show that the weakness of Zorro is not inherently present
in all PSP networks. We demonstrate this by designing a mild modification of
Zorro that is provably secure against basic differential and linear attacks (such
as those that broke the original Zorro). Finally, we discuss how to choose the
parameter t (i.e., the number of S-boxes in each round) in PSP networks.

In order to quantify what we consider to be a “good” PSP network with
respect to resistance against basic differential and linear attacks, we estimate
the minimal number a of active S-boxes in an r-round characteristic for a very
strong PSP network. Our model constructs an idealized PSP network by choosing
the layer of each round uniformly at random from the space of invertible linear
mappings, and it is therefore expected to provide very fast diffusion.

As described in Section 2, an r-round characteristic with a active S-boxes
gives rise to a system of 8(tr − a) linear equations in 8(16 + a) variables (using
the notations of Section 2). Based on our randomness assumption, we expect a
solution when 8(16 + a) ≥ 8(tr − a), or equivalently, a ≥ (t · r − 16)/2. Namely,
an r-round characteristic for an idealized PSP network is expected to have at
least (t · r − 16)/2 active S-boxes.16 We note that this inequality is somewhat
oversimplified, as it does not take into account the fact that we have many
possible patterns, whereas we are looking for only one valid characteristic. On
the other hand, depending on the actual S-box, not all solutions are valid for a
given cipher. As these two considerations have opposite effects on a, and their
total effect seems relatively small for large values of r, we consider the formula
a ≥ (t · r − 16)/2 to be a reasonable measure for a “good” PSP Network. As an
extreme case, consider AES for which t = 16. Plugging r = 4 into the formula, we
estimate that 4-round AES can be designed to have at least a ≥ (16 · 4−16)/2 =
24 active S-boxes in any characteristic. Indeed, it is known that the minimal
number of active S-boxes in a 4-round characteristic of AES is 25 (see [7]), and
thus our estimate is very close in this case.

6.1 Analysis of a Concrete PSP Network

We now construct a PSP Network which (roughly) satisfies the formula a ≥
(t · r − 16)/2 for large values of r, thus providing significantly better resistance
against basic differential and linear attacks compared to Zorro. According to
the full version of this paper [2], in order to avoid the weakness of Zorro, our
scheme has to deviate from the AES-based design strategy. More specifically,
this appendix shows that any AES-based PSP network (with small t) is likely
to have 4-round iterative characteristics with a high probably. The reason for
the inherent weakness of AES-based PSP networks is subtle and is detailed in

16This formula is somewhat more conservative (from the point of view of the de-
signer) compared to the one obtained in [10], that seems to underestimate the number
of degrees of freedom available in the construction of the characteristic, thus obtaining
larger values of a.
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the full version of this paper [2]. Very roughly, this weakness stems from the
combination of the two properties below:

1. Any MDS circulant MixColumn matrix, MC, raised to the power of 4 (i.e.,
(MC)4) has a large space of eigenvectors (“almost fixed-points”) that satisfy
MC4(x) = αx for an appropriately chosen eigenvalue scalar α.

2. The order of ShiftRows is 4 (i.e., (SR)4 is the identity).

Therefore, in order to avoid the high probability 4-round iterative character-
istics of the type shown in Figure 4, our scheme has to deviate from the AES
design strategy by changing at least one of the two properties above. In our
tweaked scheme, we slightly change the ShiftRows operation such that its order
is greater than 4, as described below. Furthermore, in order to avoid additional
types of iterative characteristics (namely, characteristics presented in [16], which
are independent of ShiftRows), we also change the locations of the S-boxes, and
place them on the diagonal instead of the first row.

The modified variant of ShiftRows (denoted as SR∗) is described in Figure 3
and works as follows: The action of SR∗ on rows 1,3 and 4 is the same as in
the original ShiftRows. On the other hand, only the first 3 bytes of row 2 are
cyclically rotated by 1 (whereas the 4’th byte remains unchanged at its position),
and it is easy to see that the order of SR∗ is 3 · 4 = 12. We note that this modified
variant provides slightly weaker local diffusion compared to AES-based designs.
However, we now show that globally, this modification significantly strengthens
the resistance of the scheme against standard differential and linear attacks.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 3 4

5 67 8

9 1011 12

13 14 1516

SR∗

Fig. 3. Modified ShiftRows

We first consider 11 rounds of the tweaked scheme and estimate its strength
in our ideal model by plugging t = 4 and r = 11 into the formula a ≥ (t · r −
16)/2, obtaining a ≥ (4 · 11 − 16)/2 = 14. However, a more careful analysis
reveals that there are many possible 11-round patterns with 13 active S-boxes
(
(
11 · 4
13

)
> 235), each giving rise to a system with 8 · (16 + 13) = 8 · 29 variables

and 8 · (44 − 13) = 8 · 31 equations, which has a solution with non-negligible
probability of 28 · (29−31) = 2−16. Therefore, 13-round characteristics can also be
expected, slightly deviating from the generic formula when we do not consider
post-filtering according to the cipher’s S-box.
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Using the characteristic search tool presented in Section 2, we were able
to prove that there exists no characteristic (or linear mask) with at most 12
active S-boxes (regardless of the cipher’s specific S-box). Considering 13 active
S-boxes, there exist only a few dozens of possible characteristics for the cipher.
Consequently, the behavior of the 11-round scheme closely matches our ideal one,
and we conclude that it has no particular weakness against standard differential
and linear cryptanalysis.

A more comprehensive differential analysis17 of the 11-round cipher reveals
that none of the characteristics with 13 active S-boxes satisfies the restrictions
imposed by the 13 transitions through the Zorro S-box. This is expected, as
the number of possible characteristics is small, and implies that our generic
formula a ≥ (t · r − 16)/2 predicted the exact value of a = 14 in this case.
Indeed, we were able to find about 232 11-round characteristics with 14 active
S-boxes using our tool. When considering the specific Zorro S-box for post-
filtering these solutions, about 222 valid 14-round differential characteristics re-
main. The highest-probability differential characteristic with 14 active S-boxes
is described in Figure 5 (in the appendix), having probability of about 2−86.8.
Since the highest differential transition probability for the Zorro S-box is about
2−4.7, this proves that the best 11-round characteristic has probability of at
most min(2−86.8, 215 · (−4.7)) = 2−70.5. Consequently, the best characteristic for
22 rounds of the cipher has probability of at most 2−70.5 · 2 = 2−141 (note that
for the stronger AES S-box, the bound is even lower).

For 12 rounds of the cipher, we were able to prove that there exists no
characteristic (or mask) with at most 14 active S-boxes. However, we did not
run the tool for more than 14 active S-boxes, as this is too time-consuming for
a standard desktop PC. Of course, it would be interesting to further optimize
the search tool and efficiently analyze more rounds.18 Nevertheless, even in their
current state, our results are sufficient for demonstrating that the security of our
modified Zorro variant with respect to standard differential and linear attacks
is close to that of an idealized PSP network with the same parameters. Indeed,
according to the formula a ≥ (t · r − 16)/2, the bound of at least a = 30 active
S-boxes (or a differential characteristic probability bound of 2−141) should be
obtained for r = 19 rounds. Thus, the gap between the expected behavior of the
scheme and what we can prove, is only 3 rounds for a probability bound as low
as 2−141, and if we consider the stronger AES S-box (for which the probability
bound of 2−141 can be obtained with only 24 active S-boxes), this gap is even
smaller.

17The linear analysis is very similar, and we omit it from this paper.
18One could try to incorporate dynamic programming techniques into our tool, sim-

ilarly to the algorithms of [3, 4]. However, this seems far from straightforward, as con-
catenating two patterns requires the relatively complex operation of intersecting their
corresponding linear subspaces.
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6.2 How to Choose the Number of S-boxes in Each Round in PSP
Networks?

We now use the insight gained in this paper to revisit one of the main questions
posed in [10], namely: for a PSP network, what is the value of t that offers security
with the minimal number of S-boxes? In [10], it was concluded that for 128-bit
ciphers with 8-bit S-boxes, the optimal value is t = 4, when considering security
against standard differential and linear cryptanalysis. However, our formula a ≥
(t · r−16)/2 shows that the total number of S-boxes in the scheme, t · r, required
to guarantee that a of them are active (and thus to obtain a bound on the
characteristic probability) is fixed to (2 · a) + 16, regardless of the value of t.
Furthermore, according to Sections 3 and 4, the number of S-boxes that need to
be added at the end of the cipher is fixed as well (e.g., to about 16 for differential
attacks), and is independent of t.

Since it is possible to use t = 16 as in AES, this seems to question the
effectiveness of PSP networks in thwarting side-channel attacks via masking
techniques. Indeed, when considering resistance against standard differential and
linear cryptanalysis, it seems that there is no gain in using partial non-linear
layers. However, we still claim that the combination of partial non-linear layers
with strong linear layers has an advantage, when taking into consideration other
types of attacks.

In order to demonstrate this potential advantage, we consider AES-128,
where 4 rounds are sufficient for assuring that any characteristic has proba-
bility lower than 2−128. Despite its strength against differential and linear crypt-
analysis, 4-round AES-128 is an extremely weak cipher due to strong structural
properties, and can be broken in 210 chosen plaintexts and time (see [9]). In fact,
as the best attacks on AES-128 can break 7 rounds (e.g., see [8]), one has to (at
least) double the number of rounds to 8 (and double the number of S-boxes to
16 · 8 = 128) in order to obtain a secure cipher.

PSP networks, on the other hand, employ many strong linear layers through
more rounds, and thus seem to better mitigate structural attacks. Consequently,
one could build a secure PSP network where the number of S-boxes is closer
(compared to AES) to the bound (2 · a) + 16.

Finally, we note that (generalized) Feistel structures employ only partial lin-
ear layers, and therefore may require many more than (2 · a)+16 S-boxes to resist
standard differential and linear cryptanalysis. Furthermore, due to the partial
linear layers, some Feistel structures are particularly vulnerable to structural
attacks such as impossible differential cryptanalysis.

We conclude that PSP networks may allow for more efficient masking tech-
niques to mitigate side-channel attacks. However, the optimal choice of the num-
ber of S-boxes in each round has to be made for each specific design separately,
after evaluating its security against a broad class of attacks, which are out of
the context of this paper.
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7 Conclusions

In this paper, we introduced new algorithms for differential and linear crypt-
analysis of PSP networks. Using these algorithms, we were able to devise and
fully simulate a practical attack against the block cipher Zorro. We then closely
examined PSP networks, and concluded that they should not be based directly
on the AES design strategy. Finally, we designed and analyzed a tweak of Zorro
and used it to show that PSP networks do not have an inherent flaw. We do not
formally propose to use this tweak, as this would require defining its concrete
number of rounds and performing full analysis against many types of known
attacks. Nevertheless, we believe that our tweak may provide a good starting
point for building future designs. Alternatively, one can think of building PSP
networks based on bit-oriented design strategies, such as the one used for the
block cipher Serpent. Regardless of concrete design strategies, we believe that
the tools developed in this paper will be useful in future PSP network design
and analysis.
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A Details of the Linear Cryptanalysis of Full Zorro

In this section, we describe our linear attack on full Zorro.

Linear Characteristic Search We applied the linear characteristic search
algorithm of Section 2 to 23-round Zorro. Similarly to the differential case, the
best characteristics are concatenations of 4-round iterative linear characteristics.
These characteristics can be viewed as counterparts of the differential ones, and
follow a similar representation as in Figure 4. The resulting 23-round linear
characteristic has 10 active S-boxes, and thus has a bias of q = (56/256)

10 ≈
2−22. As in the differential case, we used our characteristic search tool to prove
that it is the best linear characteristic for 23 rounds.

Key Recovery for the Linear Attack Using the algorithm of Section 4, we
can attack 23 + 1 = 24 rounds with data complexity of 244 known plaintexts,
time complexity of 244 + 22 · 8+9 ≈ 244 encryptions, and memory complexity of
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min(244, 22 · 8+1) = 217 32-bit words.19 The attack recovers 2 bytes of equivalent
key K̃ = SR−1(MC−1(K)) (i.e., the two bytes used in the “active” S-boxes in
round 24), which is the result of exchanging the order of the final key addition
and linear operations SR and MC.

In order to recover additional 2 bytes of K̃, we can simultaneously and inde-
pendently (using the same data) exploit the variant of the same linear character-
istic, in which the 2 columns are swapped. Furthermore, we can simultaneously
exploit another variant of the iterative characteristic which spans rounds 2–24
(with the active S-boxes in round 2), and apply the key recovery on the en-
cryption side. This allows us to recover 2 bytes of K, and additional 2 bytes
can be simultaneously recovered by swapping the columns in the last character-
istic. As the time complexity bottleneck in all of these 4 simultaneous attacks
is the actual collection of data, the total time complexity of recovering the 8
bytes of key material remains about 244, and the memory complexity is less
than 4 · 2(2 · 8)+1 = 219 words of 32 bits, or 217 words of 128 bits.

After determining the 8 bytes of key material used in rounds 1 and 24 which
contribute to all non-linear operations, we can “peel off” this non-linearity and
apply the same ideas to the inner rounds 2 and 23 in order to recover the 8 addi-
tional (linear combinations of) key bytes, which contribute to the non-linearity in
these rounds. This is done by exploiting the iterative characteristics in which the
active S-boxes are in round 2, and in round 23. However, due to the dependency
of the inner-round attacks on the previously recovered 8 bytes, it is not obvious
how to perform these attacks simultaneously, and thus (in order to avoid the
large memory overhead of storing the original data) we can request additional
244 known plaintexts in order to recover the rest of the key. This leads to an
attack that uses 245 known plaintexts, runs in 245 time, and requires memory of
about 217 words of 128 bits.

19Note that since there are only two active S-boxes in round 24 that affect the output
bias of the characteristic, the memory complexity is 217, and not 233 as it would be in
the worst case.
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Simulation Plaintexts Structures Pairs Keys

Encrypted Analyzed Analyzed Suggested

Theory 241.5 235.5 243 243

Simulation Average 241.49 235.49 243.07 243.07

1 238.30 232.30 239.89 239.84

2 238.50 232.50 240.08 240.06

3 238.56 232.56 240.14 240.10

4 238.77 232.77 240.35 240.34

5 238.86 232.86 240.44 240.44

6 239.12 233.12 240.70 240.69

7 240.59 234.59 242.17 242.22

8 240.83 234.83 242.41 242.43

9 242.90 236.90 244.49 244.47

10 243.07 237.07 244.66 244.67

11 243.21 237.21 244.79 244.79

Table 3. Simulation Results of Differential Attack on Full Zorro (Versus Theoretical
Estimate)
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The output differences of the 16 S-boxes marked with L are initially unknown. They
are linearized and recovered according to Section 3, leading to an efficient key recovery.

Fig. 4. Differential Attack on Full Zorro
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Fig. 5. Best 11-round Characteristic with 14 Active S-boxes for the Tweaked PSP
Network
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