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Abstract. We present a novel method for constructing linear secret
sharing schemes (LSSS) from linear error correcting codes and linear
universal hash functions in a blackbox way. The main advantage of this
new construction is that the privacy property of the resulting secret
sharing scheme essentially becomes independent of the code we use, only
depending on its rate. This allows us to fully harness the algorithmic
properties of recent code constructions such as efficient encoding and
decoding or efficient list-decoding. Choosing the error correcting codes
and universal hash functions involved carefully, we obtain solutions to
the following open problems:
– A linear near-threshold secret sharing scheme with both linear time

sharing and reconstruction algorithms and large secrets (i.e. secrets
of size Ω(n)). Thus, the computational overhead per shared bit in
this scheme is constant.

– An efficiently reconstructible robust secret sharing scheme for n/3 ≤
t < (1−ε)·n/2 corrupted players (for any constant ε > 0) with shares
of optimal size O(1 + λ/n) and secrets of size Ω(n + λ), where λ is
the security parameter.

Keywords: Linear Secret Sharing Schemes, Linear Time Sharing, Robust
Secret Sharing

1 Introduction

Linear secret sharing schemes (LSSS) are the central building block for informat-
ion-theoretically secure cryptographic primitives such as multiparty computa-
tion, robust secret sharing, as well as for two-party primitives via the so-called
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MPC-in-the-head paradigm [16,18]. Naturally, the computational efficiency of
the LSSS directly influences the efficiency of the implied primitive, so it is inter-
esting to construct schemes where both sharing a secret and reconstruction is as
efficient as possible.

It is well known that there is a natural correspondence between linear codes
and LSSS [21,4]. Since there is a rich body of literature about codes with efficient
encoding and decoding, one might hope that this would lead to very efficient se-
cret sharing schemes, ideally with linear time (in the number of players) to share
and reconstruct a secret. However, for applications, one typically needs an LSSS
where both the privacy and reconstruction thresholds are constant fractions of
the number of players. If we try to reach this goal using the standard method
for going from codes to LSSSs, we will need (a family of) codes where both the
code itself and its dual are (asymptotically) good codes. But unfortunately, the
known codes that are efficiently (linear time) en- and decodable have very bad
dual codes. Therefore it was previously an open problem to construct LSSSs
with linear time sharing and reconstruction.

In this paper, we suggest a new paradigm for constructing LSSSs based on
linear codes and linear universal hash functions. The main advantage of this
approach is that it gives us a good privacy threshold no matter which code we
start from. We can therefore use the full power of the known constructions of
linear codes with efficient encoding and (list) decoding. We also suggest several
applications of the technique. We remark however that there is no obvious way
to obtain multiplicative secret sharing schemes via our construction paradigm.
But constructions of general MPC protocols such as [6,4] require multiplicative
secret sharing schemes. Thus, we consider it an interesting open problem to
extend our construction paradigm to multiplicative secret sharing schemes.

A paradigm for building LSSS. First we note that any LSSS can be seen as being
derived from a linear code C of length n and a linear function h : Fk 7→ F`. We
obtain an LSSS as follows: to share a secret s ∈ F` we choose at random x ∈ Fk
subject to h(x) = s, encode x in C, and give each entry in the resulting codeword
to a player, where in the most general case, each player may receive more than
one value.

We can now say which player subsets can reconstruct the secret and which
sets have no information: Let A be a player subset and let ΠA : Fk 7→ F|A|
be the linear mapping that on input x outputs the shares given to A when x
is the randomness used in the LSSS. Then A can reconstruct the secret if and
only if dim(h(ker(ΠA))) = 0, and A has no information on the secret if and only
if dim(h(ker(ΠA))) = `, i.e., h is surjective on ker(ΠA). This characterisation
was first given in Theorem 10 of [4], which we have rephrased here to match
our notation (see also Lemma 3 below). It was noted already in [4] that the
privacy threshold can be estimated via the dual distance, but that this bound
is not sharp. Nevertheless, previous works have often established privacy for
LSSS schemes from the dual distance. A notable exception of this is [2], where
large privacy of certain secret sharing schemes is established via a descent field
technique, but the dual distance of the corresponding code is merely constant.



Thus [2] uses the characterization of [4] in its full generality, however for a very
special class of codes. As we shall see, the dual distance bound is generally very
far from being sharp, and there is great potential in avoiding the dual distance
approach.

We now explain our construction of an LSSS from a code C, such that some
constant fraction of the players can reconstruct and any set smaller than some
(other) constant fraction has no information. Reconstruction is easy to handle:
if we have at least r shares, then we can compute the secret if C allows decoding
from n− r erasures, and r can be Θ(n) if C is (asymptotically) good. However,
it much less clear what we can say about privacy in general (e.g., if C has a bad
dual distance).

Our main idea for solving this is to notice that a player set A has partial
information on x from its shares, namely x must be in some subspace defined by
the shares known to A. Now, suppose we choose h at random from a universal
family of linear hash functions. It is well known that such a random function
acts as a good randomness extractor, so we may hope that A has little or no
information on h(x), at least if A is small enough.

In the following, we show how this intuition can be formalised. It turns out
that because the hash functions are linear and the partially unknown string
resides in a subspace, things are even better than what the general theory of
extractors would predict: fix any small enough corrupted set A and choose h at
random from the family. Then with very high probability, the h we have chosen
will satisfy that h(x) is uniform in the view of the adversary. We can then
simply apply a union bound over all the desired privacy sets to conclude that a
random choice of h yields an LSSS with privacy threshold a constant fraction of
the number of players. For constant rate (family of) codes, this fraction can be
chosen as a constant arbitrarily close to the rate.

We emphasise that the random choice of h only needs to be done once and for
all when the LSSS is set up. Then, with overwhelming probability, the LSSS we
have constructed has perfect privacy and reconstruction as required for an LSSS.
If we were willing to spend a very long (exponential) time in the set-up phase we
could verify that a candidate h indeed gives us privacy for all the desired player
sets, and this way remove the probabilistic aspect from the construction.

1.1 Applications

Linear time LSSS Clearly, for any linear secret sharing scheme a secret can be
shared using a quadratic amount (in the number of players) of field operations.
In the light of the above mentioned linear time encodable codes, the question
arises whether secret sharing schemes with a linear time sharing phase can be
constructed. Recently, Druk and Ishai [9] provided a construction of a linear
time near-threshold linear secret sharing scheme. For a near-threshold scheme,
one can choose the (relative) privacy and reconstruction thresholds as arbitrar-
ily close constants. Their main tool for this construction is a family of linear
time encodable linear codes with good distance and good dual distance. Their
construction of linear secret sharing schemes follows Massey’s blueprint [21], i.e.



exploiting the dual distance to establish privacy. The codes constructed in [9]
are not known to be linear time erasure decodable. While their construction
allows to compute shares in linear time, reconstruction is more expensive for
their scheme, i.e. it requires quadratic time with preprocessing. However more
importantly, the secret space of their scheme is limited to a constant number of
bits. But this means that in their scheme the computational overhead per shared
bit is linear, rather than constant.

Following the paradigm sketched in the last paragraph, we obtain a linear
time near-threshold LSSS with secrets of size Ω(n). In particular, the computa-
tional overhead per shared bit in this scheme is constant. Just like in the scheme
of Druk and Ishai [9], we can choose the (relative) privacy and reconstruction
thresholds as arbitrarily close constants. Our construction uses the following
ideas. First, we construct a linear secret sharing scheme where sharing and re-
construction of random secrets can be performed in linear time. We do this by
plugging a linear time computable linear hash function and linear time en- and
decodable code C into our basic construction. We can then choose a random x
and compute a (random) secret s = h(x) and a share vector c by encoding x in
C. Note that this can be done without having to invert the hash function which
would be too inefficient with known constructions.

We bootstrap this into a standard secret sharing scheme by the following
trick. To share a given secret s, first compute a random secret s′ together with
corresponding shares c. We can now use s′ to one-time-pad encrypt s, i.e. com-
pute a ciphertext y = s + s′. To distribute y to the players, we disperse y, i.e.
we encode y using a linear time encodable erasure correcting code and share
the codeword symbols among the players. Note that we have effectively shared
y non-privately, but this is not a problem as y is not private anyway. Thus, the
overall overhead to share the secret s is linear. To reconstruct, we can use lin-
ear time erasure correction algorithms (provided by the codes). Therefore, both
sharing and reconstruction can be performed in linear time.

Linear time UC commitments. In a commitment scheme, a prover commits to
a bit string towards a verifier who does not learn the string at commitment
time, yet the prover is committed to his choice and can later reveal it to the
verifier in a convincing way. Universally composable (UC) commitments provide
the strongest possible security for commitments schemes, guaranteeing security
in any context. Until recently, we only knew UC commitments based on ex-
pensive public-key primitives. In [8] (see also [10]), Damg̊ard et al. propose a
general scheme that constructs UC commitments with small amortised over-
head from any sufficiently good LSSS, assuming a once-and-for-all preprocessing
phase where some oblivious transfers are executed. They show how to get UC
commitments with linear complexity for the verifier (linear in the size of the
string committed to), but left it as an open problem to get linear complexity
also for the prover. This problem was solved very recently by Cascudo et al. in
[1] using a new construction of a non-threshold LSSS and a new variant of the
MPC-in-the-head paradigm.



Our results can be used to give an alternative and simpler solution: since
the efficiency of the original construction in [8] is inherited directly from the un-
derlying LSSS, we immediately get linear complexity for both parties by simply
plugging in our linear time LSSS. It is also interesting to note that if our scheme
can be made multiplicative, then this and another result from [8] would imme-
diately imply non-interactive UC Zero-Knowledge proofs with linear complexity
for both prover and verifier.

Robust secret sharing with constant size shares. A robust secret sharing scheme
is a secret sharing scheme with the additional property that reconstruction of
the secret is possible (and, ideally, computationally feasible) even if some of the
shares are incorrect. More concretely, a robust secret sharing scheme satisfies
standard t-privacy as well as robust-reconstructability, where the latter means
that given all n shares, the secret can be reconstructed even if t of them come
from dishonest players and may be incorrect. In this work, we consider robust
secret sharing in the setting of a non-rushing adversary; this means that the
dishonest players have to announce their incorrect shares before getting to see
the shares of the honest players.

If t < n/3 then standard error correction provides robustness for free. On
the other extreme, if t ≥ n/2 then robust secret sharing is not possible. Thus,
the interesting range is n/3 ≤ t < n/2. Here, robust secret sharing is possible,
but we have to allow a small error probability of 2−λ, and additional “checking
data” needs to be appended to the actual shares. The goal is to optimize the
tradeoff between error probability and the increase in share size.

Cramer, Damg̊ard and Fehr [5] gave a construction of a robust secret shar-
ing scheme based on so-called Algebraic Manipulation Detection (AMD) codes
(even though the terms robust secret sharing and AMD codes were not used
there). Roughly speaking, an AMD code enables to detect certain manipula-
tions — namely algebraic manipulations — of encoded messages. The robust se-
cret sharing scheme then simply works by sharing an AMD encoding of the secret
(using a standard linear secret sharing scheme), and the robust reconstruction
is by going through all sets of possibly honest players, reconstruct from their
shares, and verify correctness of the reconstructed AMD encoding. By making
the AMD codeword large enough, resulting in an overhead in the share size of
O(λ+n), this procedure finds the correct secret except with probability 2−λ. An
obvious downside of this scheme is that the robust reconstruction procedure is
not efficient, as there is an exponential number of sets of possibly honest players
to be considered.

In [3], based on very different techniques, Cevallos, Fehr, Ostrovsky and Ra-
bani proposed a robust secret sharing scheme, with similar parameters: overhead
O(λ+n log n) for an error probability of 2−λ, but which offers an efficient robust
reconstruction. Both these schemes work for any fraction t/n < 1

2 , and neither
becomes significantly better in terms of this error probability versus the size of
the checking data if we bound t/n away from 1

2 by a small constant.
Based on our new paradigm for building LSSSs, we construct a new robust

secret sharing scheme. Our construction works when t/n is bounded away from



1
2 by an arbitrary small positive constant. In this regime, we can consider ramp
schemes, for which there is a gap between the privacy threshold t and the stan-
dard reconstruction threshold r, while still allowing for robust reconstruction in
the presence of t faulty shares. In ramp schemes, the (actual) shares may be
smaller than the secret (by a factor r − t). In our construction, we can addi-
tionally reduce the size of the checking data per share; this is in contrast to the
above mentioned constructions when generalized to ramp schemes where the size
of the checking data stays O(λ).

Our construction can be seen as an efficient variant of the approach from [5].
We will secret share an AMD codeword, but this time using our construction
of LSSS from above and choosing the underlying code C to be one that allows
efficient list decoding. This means that we can consider the contributed shares as
a codeword with errors and apply the list decoding algorithm. This will return
a small (i.e., polynomial size) list of possible code words from C, each of these
will suggest a possible AMD codeword. Thus, we only have a small number of
candidates to check for correctness of the AMD encoding. This not only provides
efficiency of the reconstruction (in contrast to the scheme of [5]), but also allows
better parameters: using a highly list-decodable code as underlying code in our
construction, we obtain that for every constant τ < 1

2 there exists a robust secret
sharing scheme for threshold t = τn that supports secrets of size linear in n+ λ
and has shares of size O(1 + λ/n), i.e. the size of the shares actually decreases
in n.

2 Preliminaries

We will assume basic concepts from linear algebra such as linear maps and their
kernels. For any prime power q, we will denote the finite field with q elements by
Fq. We will denote vectors x with boldface letters. We will also consider vectors
whose components are vectors, e.g. a vector x ∈ (Fmq )n whose components are

Fmq vectors. For a set A ⊆ {1, . . . , n} we will use ΠA : (Fmq )n → (Fmq )|A| to
denote the projection onto the components in A. For a vector x ∈ (Fmq )n and a
set A ⊆ {1, . . . , n} we will also use the notation xA = ΠA(x).

2.1 Probability

The binary entropy function H : [0, 1/2] → [0, 1] is given by H(0) := 0 and
H(x) := −x · log(x) − (1 − x) · log(1 − x) for x ∈ (0, 1/2]. For 0 ≤ t/n ≤ 1/2
we can upper bound binomial coefficients by

(
n
t

)
≤ 2H(t/n)·n, for a proof see e.g.

[22]. We will also use the Markov inequality (see also [22]).

Lemma 1 (Markov Inequality). Let X be a non-negative random variable
defined on R for which E[X] exists. Then it holds for every x > 0 that

Pr[X ≥ x] ≤ E[X]

x
.



Corollary 1. Let X be a random variable with finite support X ⊆ R which
assumes its minimum at x0 and its second smallest value at x1 > x0. Then it
holds that

E[X] ≥ x0 + (x1 − x0) · Pr[X 6= x0].

Proof. The expectation E[X] exists as X has a finite support. Since X assumes
its minimum at x0 it holds that X−x0 is non-negative. By the Markov inequality
it holds that

Pr[X 6= x0] = Pr[X ≥ x1] = Pr[X − x0 ≥ x1 − x0] ≤ E[X]− x0

x1 − x0
,

as E[X − x0] = E[X]− x0 by linearity of expectation. Thus the claim follows.

2.2 Universal Hashing

Universal hash functions are a central tool in information-theoretically secure
cryptography.

Definition 1 (Universal Hash Functions). Let X and Y be finite sets. A
family H of functions X → Y is called family of universal hash functions if it
holds for all distinct x, x′ ∈ X that

Pr
H←$H

[H(x) = H(x′)] ≤ 1

|Y|
,

where H is chosen uniformly from H.

For families H of Fq-linear functions, meaning that both X and Y are Fq-vector
spaces and each h ∈ H is a Fq-linear function, the condition of Definition 1 can
be rephrased as follows: H is a family of universal hash functions if and only if
for all x ∈ X \ {0}

Pr
H←$H

[H(x) = 0] ≤ 1

|Y|
.

We then naturally refer to H as a family of Fq-linear universal hash functions.
There are various efficient families of linear universal hash functions, such

random matrices or random Toeplitz matrices (see e.g. [20]). Ishai et al. [16]
constructed a linear time computable family of linear universal hash functions,
c.f. Section 5.

2.3 Error Correcting Codes

We assume basic concepts from coding theory. Error correcting codes are used to
encode messages in such a way that the encoding is resilient against certain types
of errors. Formally, a Fq-linear error correcting code C of length n and dimension
k is a k-dimensional subspace of Fnq . We say that C is an m−folded code, if C is a
k-dimensional subspace of (Fmq )n. This basically means that the alphabet of C is



Fmq rather than Fq. An m-folded code C of length n can be naturally interpreted
as a code of length m · n. In this view, the possible error patterns in a folded
code are burst errors rather than symbol errors. The rate R of an m-folded [n, k]
code is defined by R = k

mn , i.e. 1/R is the factor by which the code expands
messages. We will denote distinguished encoding and decoding algorithms5 for
a linear code C by C.Encode and C.Decode. We will denote the (generalized)
Hamming distance for vectors x,y ∈ (Fmq )n by d(x,y) = |{i | xi 6= yi}|, i.e.
d(x,y) counts in how many blocks xi,yi ∈ Fmq the vectors x and y differ.

2.4 Secret Sharing Schemes

A secret sharing scheme allows a dealer to distribute a secret to n players in
such a way that the players of any large enough set of players can jointly re-
construct the secret from their shares, whereas small coalitions of players have
no information on the secret. A secret sharing scheme is called linear, if any
linear combination of valid share vectors results in a valid share vector of the
linear combination applied to the respective secrets. This is summarized in the
following definition.

Definition 2. Let Fq be a finite field, and let l, m and t < r ≤ n be posi-
tive integers. A linear secret sharing scheme LSSS consists of two algorithms
LSSS.Share(·) and LSSS.Reconstruct(·). For every s ∈ Flq, LSSS.Share(s) outputs
a vector of shares c = (c1, . . . , cn) ∈ (Fmq )n. We require the following three
properties.

– t-privacy: for all s, s′ ∈ Flq and every A ∈ {1, . . . , n} of size |A| = t, the
restrictions cA and c′A of c = LSSS.Share(s) and c′ = LSSS.Share(s′) to the
coordinates in A have the same probability distribution.

– r-reconstructability: for every s ∈ Flq and every Q ∈ {1, . . . , n} of size |Q| =
r, it holds for c = LSSS.Share(s) that LSSS.Reconstruct(c̃) = s, where c̃ is a
vector with c̃Q = cQ and c̃Q̄ only contains erasure symbols, i.e. c̃Q̄ = ⊥|Q̄|.

– Linearity: If c1 and c2 are respective sharings of s1 and s2, then αc1 + βc2

is a sharing of αs1 + βs2.

We emphasize that we do not require r = t + 1; secret sharing schemes with
r > t+1 are sometimes referred to as ramp schemes. We may use this terminology
sometimes to emphasize that we allow r > t+1. For schemes with r = t+1, it is
well known that the size of the secret cannot be bigger than the size of a share,
i.e., l ≤ m. For a ramp schemes, this generalizes to l ≤ (r− t) ·m. The rate of a
secret sharing scheme is given by ρ = l

mn . Using this terminology, the above can
be expressed as follows. For any n-player ramp scheme that satisfies τn-privacy
and σn-reconstructability, the rate of the scheme can be at most ρ ≤ σ − τ .

5 such as linear time algorithms for these tasks



3 Subspace Surjectivity of Linear Universal Hash
Functions

In this section, we provide a general theorem about universal hash functions.
The theorem states that if we fix an r-dimensional subspace V of Fkq , then a

randomly chosen linear universal hash function H from a family which maps Fkq
to Flq is surjective on V , except with probability q−(r−l). By saying that H is

surjective on V , we mean that H(V ) = Flq.
This theorem can be interpreted in information theoretic terms. We can iden-

tify a subspace V with the uniform distribution v on V and consider v as a linear
source of randomness. Since V has dimension l, the q-ary min-entropy of v is at
least l. From this point of view, the theorem states that universal hash functions
are good extractors for linear sources, i.e. they extract such sources perfectly,
except with probability q−(r−l). Perfect extraction in this context means that
H(v) is exactly the uniform distribution. The leftover hash lemma [15] states
that universal hash functions yield good extractors for sources with a sufficient
amount of min-entropy. We can actually establish a weaker version of this theo-
rem based on the leftover hash lemma. However, the parameters obtained by our
theorem are tighter than parameters obtainable by the leftover hash lemma. The
best probability of failure obtainable via the leftover hash lemma is q−(r−l)/2,
which is worse than the bound given in the theorem.

Theorem 1. Let H be a family of linear universal hash functions Fkq → Flq.
Further let V be a subspace of Fkq of dimension at least r. Let H←$ H be chosen

uniformly at random and then fixed. Then it holds that H(V ) = Flq (i.e. H is

surjective on V ), except with probability q−(r−l) over the choice of H.

Proof. For any linear function h ∈ H, it holds that h(V ) = Flq if and only if

dim(V ∩ ker(h)) = dim(V )− l, which is equivalent to |V ∩ ker(h)| = |V |
ql

. Now, let

H←$ H and define the random variable X = |V ∩ ker(H)| (depending on H). By
the above it holds that H is surjective on V if and only if X = |V |/ql. For each
v ∈ V , define the random variable

Xv =

{
1 if H(v) = 0

0 otherwise

Clearly, it holds that X =
∑

v∈V Xv. Since X0 = 1, we have that X = 1 +∑
v∈V \{0}Xv. Moreover, X assumes its minimum at x0 = |V |

ql
and its second

smallest value at x1 = |V |
ql−1 . We will now compute the expectation of X. For

each v ∈ V \{0} it holds that

E[Xv] = Pr
H←$H

[H(v) = 0] ≤ q−l,



as H is a family of universal hash functions. By linearity of expectation, it holds
that

E[X] = 1 +
∑

v∈V \{0}

E[Xv] = 1 +
|V | − 1

ql
.

By Corollary 1 and the fact that |V | ≥ qr it holds that

Pr

[
X 6= |V |

ql

]
≤

1 + |V |−1
ql
− |V |

ql

|V |
ql−1 − |V |ql

=
ql − 1

|V | · (q − 1)

≤ ql

|V |
≤ q−(r−l).

Consequently, it holds that H(V ) = Flq, except with probability q−(k−l).

Given a collection V of at most r-dimensional subspaces of Fk, taking a union
bound over all V ∈ V and applying Theorem 1 yields that it holds for all V ∈ V
that H(V ) = Flq, except with probability |V| · q−(r−l). This is summarized in
Corollary 2.

Corollary 2. Let H be a family of linear universal hash functions Fkq → Flq and

V be a collection of subspaces of Fkq , each of dimension at least r. Let H ←$ H
be chosen uniformly at random and then fixed. Then it holds for all V ∈ V that
H(V ) = Flq (i.e. H is surjective on V ), except with probability |V| · q−(r−l) over
the choice of H.

4 Linear Secret Sharing Schemes from Codes and
Universal Hash Functions

In this section, we will provide our basic LSSS construction. In the following
sections, we will provide applications based on this scheme. The scheme LSSSC,h
is defined by an m-folded Fq-linear code C and an Fq-linear surjective function h.
A secret s is shared by first sampling a random preimage x of s under the function
h, and then encoding x using the (folded) code C, obtaining a share vector
c ∈ (Fmq )n. Each share ci is a vector in Fmq . Notice that we can efficienly sample
a preimage x of s under the function h by using basic linear algebra, since the
function h is linear. More specifically, we can sample such an x by first computing
any preimage x1 of s and then randomize x1 by adding a uniformly random
x2 ←$ ker(h) to x1, i.e. setting x← x1+x2. Though this sharing algorithm Share
is efficient, it still involves a rather costly inversion of h, which has overhead
O(n3) when implemented naively. Thus, even if both h and C.Encode can be
computed super-efficiently (e.g. in linear time), Share does not achieve the same
efficiency.



In order to take full advantage of super-efficient h and C.Encode, we will
provide an alternative sharing algorithm ShareRandom which computes both h
and ShareRandom only in forward direction. Thus, if both h and C.Encode are
super-efficient, then so is ShareRandom. However, ShareRandom only generates
shares for randomly chosen secrets. In Section 5 we show how a secret sharing
scheme with super-efficient random sharing algorithm can be bootstrapped into
a secret sharing scheme with super-efficient standard sharing algorithm Share.
We will now provide our construction.

Construction 1 Let C be an m-folded Fq-linear [n, k] code with encoding and
decoding procedures C.Encode and C.Decode and let h : Fkq → Flq be a surjective
Fq-linear function. The secret sharing scheme LSSSC,h is given by the following
sharing and reconstruction procedures.

Share(s):
x←$ h−1(s)
c← C.Encode(x)
Output share vector c

Reconstruct(c̃):
x← C.Decode(c̃)
If x = ⊥

Output ⊥
s← h(x)
Output s

ShareRandom():

x←$ Fk
q

c← C.Encode(x)
s← h(x)
Output secret s

and share vector c

First observe that the linearity of LSSSC,h follows straightforwardly from the
linearity of the code C and the function h. Moreover, all reconstruction properties
of LSSSC,h follow from corresponding properties of the code C.

Lemma 2. Let C be an m-folded Fq-linear [n, k] code and h : Fkq → Flq be a sur-

jective Fq-linear function. Secrets are elements of Flq, whereas (single) shares are
elements of Fmq . Assume that C.Decode can correct n−r erasures. Then LSSSC,h
is an n-player LSSS which fulfills the linearity and r-reconstructability proper-
ties. Moreover, ShareRandom implements the same functionality as choosing s
at random, computing c← Share(s) and outputting (s, c).

Proof. First notice that since h is surjective, the sharing algorithm Share can
compute a share vector c for every message s ∈ Flq. The Fq-linearity property
follows directly from the Fq-linearity if C and h. If r shares are given, we can
assemble a vector c̃ that has at most n− r erasures. Consequently, C.Decode(c̃)
will recover the correct x and we can compute the secret s = h(x). To see
that ShareRandom computes the same functionality as choosing s uniformly at
random and computing c ← Share(s), notice that the x computed by Share(s)
can be written as x = x1 + x2, where x1 is a vector uniquely determined by
s in an l-dimensional subspace W of Fkq with h(W ) = Flq and x2 is chosen
uniformly at random from ker(h). Thus if s is chosen uniformly at random, then



x is also distributed uniformly at random in Fkq , just as the x computed by
ShareRandom(). The claim follows.

We will now determine under which conditions LSSSC,h fulfills the privacy
property. In the first step, we first derive a general condition on the function
h which is actually a necessary and sufficient requirement. In the second step,
we will show that this requirement is met with overwhelming probability when
the function h is chosen randomly from a family of universal hash functions. To
simplify the analysis, we will identify the linear function h : Fkq → Flq with an-

other linear function Φ : C→ Flq. This is always possible as C is a k-dimensional

Fq-vectorspace and thus isomorphic to Fkq . In fact, we can basically define the
function Φ by Φ(c) = h(C.Decode(c)) for all c ∈ C. We will denote projections
of shares to a subset A of players by ΠA : C→ (Fmq )|A|.

Lemma 3. A set A ⊆ {1, . . . , n} has privacy if and only if Φ(ker(ΠA)) = Flq,
where ker(ΠA) = {x ∈ C | ΠA(x) = 0}.

Proof. First assume that Φ(ker(ΠA)) = Flq. Fix a subspace W ⊆ ker(ΠA) of

dimension l such that Φ(W ) = Flq. As W ∩ ker(Φ) = {0}, it holds that C =
W ⊕ ker(Φ), i.e. we can write every c ∈ C as c = cs + cr, for unique cs ∈W and
cr ∈ ker(Φ). Now, let c = Share(s). As c ∈ C, we can write c as

c = cs + cr,

where cs ∈W is a unique vector such that Φ(cs) = s and cr is chosen uniformly
at random from ker(Φ). Now, it holds that

ΠA(c) = ΠA(cs + cr) = ΠA(cs) +ΠA(cr) = ΠA(cr),

as cs ∈ W ⊆ ker(ΠA). Thus, ΠA(c) = ΠA(cr) is distributed independently of s
and we can conclude that privacy holds.

For the converse direction, assume that Φ(ker(ΠA)) $ Flq, i.e. there exists

an s∗ ∈ Flq\Φ(ker(ΠA)). We will now show that if c = Share(0) and c∗ =
Share(s∗), then the projections ΠA(c) and ΠA(c∗) can always be distinguished.
We claim that ΠA(c∗) /∈ ΠA(ker(Φ)). To see this, assume towards contradiction
that ΠA(c∗) ∈ ΠA(ker(Φ)). Then there exists a h ∈ ker(Φ) such that ΠA(c∗) =
ΠA(h). Since ΠA is linear, it holds that ΠA(c∗ − h) = 0 and consequently
c∗ − h ∈ ker(ΠA). From this, however follows

Φ(c∗) = Φ(c∗ − h) ∈ Φ(ker(ΠA)),

as h ∈ ker(Φ). This however contradicts s∗ = Φ(c∗) /∈ Φ(ker(ΠA)) and we
conclude that it must hold that ΠA(c∗) /∈ ΠA(ker(Φ)). Finally, notice that c ∈
ker(Φ) as c = Share(0). Thus it holds that ΠA(c) ∈ ΠA(ker(Φ)). We can therefore
easily (and perfectly) distinguish ΠA(c) from ΠA(c∗) by checking whether it is
in ΠA(ker(Φ)). This contradicts the privacy property and we can conclude the
proof.



We will now use the characterization of Lemma 3 and Corollary 2 to show
that if we instantiate h with a randomly chosen linear universal hash function,
then we obtain a good linear secret sharing scheme.

Lemma 4. Let C be a m-folded Fq-linear [n, k] code and let H be a family of Fq-
linear universal hash functions Fkq → Flq. Let R = k

mn be the rate of C, let ρ = l
nm

and let τ > 0 and η > 0 be constants. Given that R ≥ ρ+η+τ+H(τ)/(m·log(q)),
then there exists a h ∈ H such that LSSSC,h has τn-privacy. Moreover, such a
function h can be chosen randomly with success-probability 1− q−ηnm.

Proof. Let Ψ : C → Fkq be the isomorphism that corresponds to the function
C.Decode(·). For each set A ⊆ {1, . . . , n} of size at most t = τn, it holds that
ker(ΠA) ⊆ C is a subspace of dimension at least k − mt, as C has dimension
k and the image of ΠA has dimension at most mt. Thus, Ψ(ker(ΠA)) ⊆ Fkq
also has dimension at least k −mt, as Ψ is an isomorphism. Consequently V =
{Ψ(ker(ΠA)) | A ∈ {1, . . . , n}, |A| = t} is a collection of subspaces of dimension
at least k −mt. Moreover, as A is taken over all subsets of {1, . . . , n} of size t,
it holds that

|V| ≤
(
n

t

)
≤ 2H(t/n)·n = 2H(τ)·n = q

H(τ)
m log(q)

·mn.

By Lemma 3, LSSSC,h has privacy for all A with |A| ≤ t if it holds h(V ) = Flq
for each V ∈ V. By Corollary 2, it holds for all V ∈ V that H(V ) = Flq, except
with probability

|V| · q−(k−mt−l) ≤ q−(k−mt−l− H(τ)
m log(q)

·mn) = q−(R−ρ−τ− H(τ)
m log(q)

)·mn ≤ q−ηmn,

over the choice of H←$ H, as R ≥ ρ+ η+ τ +H(τ)/(m · log(q)). Thus, LSSSC,H
has t-privacy, except with probability q−ηmn over the choice of H ←$ H. This
concludes the proof.

Remark 1. It can be seen rather easily that the function H in Lemma 4 must
either be chosen randomly or depending on the code C, i.e. for any fixed function
h we can find a code C∗ such that LSSSC∗,h does not provide any privacy. Thus, to
obtain a construction that is oblivious of the specific code we use, randomization
is strictly necessary.

5 Linear Time Sharing and Reconstruction

As our first application, we will show how to construct a linear secret sharing
scheme with linear time sharing and reconstruction phase. Choosing a linear
time encodable code C and a linear time computable function h yields that the
sharing procedure ShareRandom of Construction 1 is also linear time computable.
This is, in turn, not true for the sharing procedure Share of Construction 1. We
circumvent this issue by providing a sharing algorithm that first computes shares
of a random secret s′ using ShareRandom, then uses s′ to one-time-pad encrypt



the actual secret s. The ciphertext s + s′ is then distributed by applying a
standard information dispersal technique, i.e. we encode s + s′ using an erasure
correcting code and append the codeword symbols to the shares. This basically
results in a doubling of the share size. This technique bears resemblance to
the construction of Krawczyk [19]. However, while in [19] information dispersal
is applied to reduce the share size (using a computationally secure encryption
scheme), we use this technique to salvage the linear time computability of the
(non-random) sharing algorithm.

We will start by providing an instantiation of Construction 1 with linear
time random sharing and reconstruction algorithms. Moreover, the scheme we
provide will be near -threshold. We need both a family of linear time computable
universal hash functions and linear time en- and decodable codes. Ishai et al. [17]
construct a family of F2-linear universal hash functions which can be computed
in linear time. This result has recently been generalized by Druk and Ishai [9]
to any finite field, but the binary case of [17] is sufficient for our application.

Theorem 2 (Ishai et al. [17]). For every l < k, there exists a family F2-
linear universal hash functions H mapping Fk2 to Fl2 which can be computed in
time linear in k.

There is a large corpus of work dealing with linear time encodable codes,
starting with the seminal work of Spielman [24]. To the best of our knowledge,
the currently best known parameters can be obtained using a family of codes by
Guruswami and Indyk [11].

Theorem 3 (Guruswami-Indyk [11]). For every rate R and every suffi-
ciently small ε (depending on R) there exists an infinite family of m-folded

F2-linear codes {Cn} of rate R, where m = O
(

log(1/ε)
ε4R

)
, such that the codes

from the family can be encoded in linear time and also decoded in linear time
from an 1−R− ε fraction of erasures.

We will now instantiate the the linear secret sharing scheme LSSSC,h of Con-
struction 1 with the codes from Theorem 3 and universal hash functions from
Theorem 2.

Lemma 5. For all constants 0 < τ < σ < 1 and every rate ρ < σ−τ there exists
an infinite family of F2-linear secret schemes {LSSS1

n} with τn-privacy, σn-
reconstructability and rate ρ. The shares of LSSS1

n have size m bits, where m > 0
is a constant. Furthermore, LSSS1

n.ShareRandom and LSSS1
n.Reconstruct can be

computed in linear time. Moreover, such a scheme LSSS1
n can be constructed

randomly with success-probability 1−2−ηmn (for some constant η > 0 depending
on τ , σ and ρ).

Proof. We will instantiate the linear secret sharing scheme LSSSC,h from Con-
struction 1 with a linear code Cn from the family {Cn} of F2-linear codes from
Theorem 3 and a function h from the family H of F2-linear universal hash func-
tions from Theorem 2. We now show how to choose the parameters for this
instantiation.



By Lemma 4, in order to obtain a secret sharing scheme with τn privacy, we
need to select an m-folded code Cn from the above family of length n and rate R
such that R ≥ ρ+η+ τ +H(τ)/m for an arbitrarily small constant η. Moreover,
as by Lemma 2 we ne need to be able to correct a 1 − σ fraction of erasures
to have σn reconstruction, we need to choose Cn such that 1 − σ ≤ 1 − R − ε,
equivalently R ≤ σ − ε. Both constraints together yield

σ − τ − ρ ≥ ε+ η +
H(τ)

m
. (1)

Since σ > τ and σ−τ > ρ, the left hand side of Inequality 1 is a constant greater
than 0. It is clear from Theorem 3 that we can choose the folding parameter m
as an arbitrarily large constant, thereby also decreasing ε. Consequently, the

terms ε and H(τ)
m become arbitrarily small and we can choose a sufficiently small

η > 0 such that the inequality is satisfied. Setting R = σ−ε we found admissible
constants R,m, η, ε > 0 such that R ≥ ρ+η+τ+H(τ)/m. Now let Cn be a code
of length n from the above family that matches these constants. By Theorem 3
such a code exists for all constants R,m, ε > 0. Now let H be a the family of
universal hash functions from 2 mapping FRmn2 to Fρmn2 obtained by Theorem
2. By Lemma 4, choosing the universal hash function H randomly from H yields
that LSSSC,H has τ privacy, except with probability 2−ηmn.

Notice that the computational overhead per shared bit in LSSS1
n is constant

for ShareRandom. We will now bootstrap the scheme LSSS1
n given by Lemma 5

into a secret sharing scheme with linear time sharing and reconstruction algo-
rithms.

Construction 2 Let C′ be a (folded) Fq-linear [n, l] code with encoding and de-
coding procedures C′.Encode and C′.Decode and let LSSS1 be a Fq-linear secret
sharing scheme with a sharing procedure LSSS1.ShareRandom() for random se-
crets. The secret sharing scheme LSSS2 is given by the following sharing and
reconstruction procedures.

Share(s):
(s′, c)← LSSS1.ShareRandom()
d← C′.Encode(s′ + s)
Parse c = (c1, . . . , cn)

and d = (d1, . . . ,dn)
Output z = ((c1,d1), . . . , (cn,dn))

Reconstruct(z̃):

Parse z̃ = ((c̃1, d̃1), . . . , (c̃n, d̃n))
c̃← (c̃1, . . . , c̃n)

d̃← (d̃1, . . . , d̃n)
s′ ← LSSS1.Reconstruct(c̃)

y← C′.Decode(d̃)
If s′ = ⊥ or y = ⊥

Output ⊥
Otherwise

Output y − s′



Lemma 6. Assume that LSSS1 provides t-privacy and r-reconstructability, and
LSSS1.ShareRandom is linear time computable. Assume further that C′ is lin-
ear time encodable and that C′.Decode can decode from r-erasures. Then LSSS2

also has t-privacy and r-reconstructability and LSSS2.Share is linear time com-
putable. Furthermore, if both LSSS1.Reconstruct and C′.Decode are linear time
computable, then LSSS2.Reconstruct is also linear time computable.

Proof. Linear time computability of LSSS2.Share and LSSS2.Reconstruct follows
straightforwardly from the linear time computability of LSSS1.ShareRandom and
C′.Encode as well as LSSS1.Reconstruct and C′.Decode respectively.

To see that LSSS2 has r-reconstructability, observe that LSSS1.Reconstruct(c̃)
recovers s′ from t as long as c̃ contains at most r erasures. Likewise, C′.Decode(d̃)
recovers x = s+s′ from d̃ as long as d̃ contains at most r erasures. r-reconstruct-
ability of LSSS2 follows.

To see that LSSS2 has t-privacy, let z = ((c1,d1), . . . , (cn,dn)) be a vector
of shares generated by LSSS2.Share(s). For any A ⊆ {1, . . . , n} of size at most
t, it holds by the t-privacy of LSSS1 that s′ is distributed uniformly at random
given the shares cA. Thus, the (cA, s + s′) is distributed independently of s. But
the same holds for (cA,dA), as dA can be computed from s + s′. Consequently,
t-privacy of LSSS2 follows.

Finally, plugging the linear secret sharing scheme LSSS1
n obtained in Lemma

5 into Construction 2, we obtain the main result for this section. For the sake
of simplicity, as code C′ in Construction 2 we can choose the same code C as in
Lemma 5 and match its rate to the rate of LSSS1

n. We conclude the following
theorem.

Theorem 4. For all constants 0 < τ < σ < 1 and every rate ρ < σ − τ there
exists an infinite family of F2-linear secret scheme {LSSS2

n} with τn-privacy,
σn-reconstructability and rate ρ. The shares of LSSS2

n have size m, where m > 0
is a constant. LSSS2

n.Share and LSSS2
n.Reconstruct can be computed in linear

time. Moreover, such a scheme LSSS2
n can be constructed randomly with success-

probability 1− 2−ηmn (for some constant η > 0 depending on τ , σ and ρ).

6 Robust Secret Sharing with Constant Size Shares

In this section, we show how our generic construction of LSSSs from codes gives
rise to new robust secret sharing schemes, i.e., to schemes where the secret can
be correctly reconstructed even if some of the shares provided are incorrect.

The idea behind our new scheme is to instantiate Construction 1 with a
highly list-decodable code C. When confronted with the task of reconstructing
the secret in the presence of faulty shares, this allows us to narrow down the list
of candidate secrets to a small set. To single out the right secret, we will precode
it using an AMD code, as introduced in [7]. Informally, an AMD code is a (key-
less) code that is resilient towards certain — namely algebraic — manipulations.



This construction is similar to the construction of Cramer, Damg̊ard and
Fehr [5]. However, the fact that our construction allows us to use a list-decodable
code (whereas [5] uses standard Shamir secret sharing [23]) makes our scheme
computationally efficient, in contrast to the robust reconstruction procedure of
[5], which involves a brute-force search over all subsets of size t. Furthermore,
in the regime we consider, namely when t/n is bounded away from 1

2 , we get
better parameters than previous work.

6.1 Formal Definitions and Building Blocks

We start by formalizing the notion of a robust secret sharing scheme.

Definition 3. A linear secret sharing scheme LSSS is (t, δ)-robust if there exists
an additional algorithm LSSS.RobustReconstruct with the property that for every
secret s and for every subset A ⊂ {1, . . . , n} of size |A| = t, the following holds.
If c = LSSS.Share(s), and c̃ is such that c̃Ā = cĀ and c̃A only depends on cA,
then LSSS.RobustReconstruct(c̃) = s except with probability δ.

In the range n/3 ≤ t < n/2, robust secret sharing is only possible if we allow
a non-zero error probability δ, and we append some additional “checking data”
to the actual shares. The goal is to optimize the trade-off between this overhead
in the share size and δ. As outlined above, our construction is based on using a
list-decodable code in our general construction of LSSS from codes.

Definition 4. An m-folded Fq-linear [n, k] code C is said to be (t, `)-list decod-
able if there exists an efficient algorithm C.ListDecode such that for any codeword
c ∈ C and any error pattern e ∈ (Fmq )n of weight at most t, C.ListDecode(c + e)

produces a list of all elements x ∈ Fkq with d(C.Encode(x), c + e) ≤ t. Further-
more, the size of the list is at most `.

We will now state two results for highly list-decodable codes. The first one
is due to Guruswami and Rudra [12] as well as Guruswami and Wang [13] and
states that m-folded Reed Solomon codes are highly list-decodable. The second
result, due to Guruswami and Xing [14], states that certain m-folded algebraic
geometric codes are highly list-decodable.

Theorem 5 (List-decodability of Folded Reed Solomon Codes [12,13]).
For any rate 0 < R < 1 and ε > 0, any large enough integer m > 0 (depending
on R and ε) and for any integer n > 0 there exist a prime power q = q(n) = O(n)
and an m-folded Fq-linear code C of length n and rate R, such that C is efficiently
(τn, `)-list decodable with τ = 1 − R − ε and ` = poly(n). The list decoder has
runtime poly(n,m).

Theorem 6 (List-decodability of Folded Algebraic Geometric Codes
[14]). For any rate 0 < R < 1 and ε > 0, and for any large enough integer
m > 0 (depending on R and ε) there exist a constant prime power q and an
infinite family of m-folded Fq-linear codes {Cn}, such that the rate of Cn is R,
and Cn is efficiently (τn, `)-list decodable with τ = 1 − R − ε and ` = poly(n).
The list decoder has runtime poly(n,m).



Notice that in both constructions the runtime of the list decoder is polyno-
mial in both the code length n and the folding parameter m. This means that
we can choose the folding parameter super constant and still have efficient list
decodability. Additionally, we make use of AMD codes (restricting ourselves to
Fq-linear spaces for simplicity).

Definition 5 (Algebraic Manipulation Detection Codes [7]). Let q be a
prime-power, l > k be integers and δ > 0. A (qk, ql, δ)-AMD code AMD consists
of a probabilistic encoding algorithm AMD.Encode : Fkq → Flq and a (determin-

istic) decoding algorithm AMD.Decode : Flq → Fkq t {⊥}, such that the following

holds for every x ∈ Flq.

– Correctness: AMD.Decode(AMD.Encode(x)) = x with probability 1.
– Manipulation detection: for every offset ∆ ∈ Flq, and for c generated as

c ← AMD.Encode(x), it holds that AMD.Decode(c + ∆) ∈ {⊥,x} except
with probability at most δ.

A simple example AMD code is given by AMD.Encode : Fkq → Fkq × Fkq × Fkq ,

s 7→ (s, r, sr), where r is uniformly random from Fkq , and the multiplication sr

is given by fixing an isomorphism of Fq-vector spaces Fkq → Fqk , and with the
obvious decoding: checking the multiplicative relation. It is not hard to show
that this AMD code has error probability δ = q−k. In our construction, we use
a slightly more sophisticated AMD code, due to [7], given by

AMD.Encode : Fdq → Fdq × Fq × Fq, s 7→

(
s, r, rd+2 +

d∑
i=1

sir
i

)

where r is uniformly random from Fkq , char(Fq) - d + 2, and with the obvious
decoding. This construction gives rise to the following claim.

Lemma 7 ([7]). For any prime power q and integers l > 2κ > 0, there exists a(
ql−2κ, ql, (l − 2κ+ 1)/qκ

)
-AMD code.

6.2 The Construction

In order to have a modular exposition, we first introduce the notion of a list
reconstructible secret sharing scheme. In a nutshell, list reconstructible secret
sharing is a weak version of robust secret sharing. Instead of requiring recon-
struction of the correct secret (in the presence of faulty shares), we merely require
reconstruction of a short list of possible candidates of which one is the correct
secret. In addition to that, we require some linearity property.

Definition 6. We say that a linear secret sharing scheme LSSS is (t, `)-list
reconstructible, if there exists an efficient algorithm LSSS.ListReconstruct(), such
that for all e of weight at most t, the following holds. LSSS.ListReconstruct(e)



outputs a list of length ` containing 0, and for any secret s and its share vector
c we have

LSSS.ListReconstruct(c + e) = s + LSSS.ListReconstruct(e)

= {s + w | w ∈ LSSS.ListReconstruct(e)},

We now show that, not very surprisingly, using a list-decodable code in Con-
struction 1 results in a list reconstructable secret sharing scheme.

Lemma 8. Let C be an m-folded Fq-linear [n, k] code and h : Fkq → Flq an
Fq-linear function, and let LSSSC,h be the linear secret sharing scheme result-
ing from Construction 1. If C is (t, `)-list-decodable then LSSSC,h is (t, `)-list
reconstructible.

Proof. ListReconstruct simply works by running C.ListDecode and applying h
to all the elements in the list output by C.ListDecode. In order to show that
Definition 6 is satisfied, due to the linearity of h it is sufficient to show that

C.ListDecode(c + e) = m + C.ListDecode(e) ,

for any m ∈ Fkq , c = C.Encode(m), and any error vector e of weight at most t.
First of all, the bound on the size of the list, and that it contains 0, are

obvious. For any w ∈ C.ListDecode(e), we have that d(C.Encode(w), e) ≤ t. By
linearity, it holds that

C.Encode(m + w) = c + C.Encode(w).

Therefore,
C.Encode(m + w)− (c + e) = C.Encode(w)− e

from which follows that

d(C.Encode(m + w), c + e) = d(C.Encode(w), e) ≤ t,

i.e. m + w ∈ C.ListDecode(c + e). Similarly, for any w ∈ C.ListDecode(c + e), we
have that

C.Encode(w −m) = C.Encode(w)− c,

and consequently

e− C.Encode(w −m) = (c + e)− C.Encode(w).

This proves that the two lists, C.ListDecode(c + e) and m + C.ListDecode(e),
contain exactly the same elements, which was to be proven.

Instantiating the above with the list decodable codes from Theorem 5 and
Theorem 6 respectively yields the following Lemma.

Lemma 9. For any τ < 1
2 , any τ < σ < 1−τ , any ρ < σ−τ and any sufficiently

large m > 0 we have that:



– For every integer n > 0 there exists a q = O(n) and an n-player Fq-
linear secret sharing scheme LSSSn with τn-privacy, σn-reconstruction and
(τn, poly(n))-list reconstruction. Furthermore, the rate of LSSSn is ρ and the
shares of LSSSn are elements of Fmq . The list reconstruction algorithm has
runtime poly(n,m).

– There exists a constant prime power q and an infinite family of Fq-linear se-
cret sharing schemes {LSSSn}, such that LSSSn is an n-player scheme with
τn-privacy, σn-reconstruction and (τn, poly(n))-list reconstruction. Further-
more, the rate of LSSSn is ρ and the shares of LSSSn are elements of Fmq .
The list reconstruction algorithm has runtime poly(n,m).

Proof. We will instantiate the scheme LSSSC,h from Construction 1 enhanced to
a list-reconstructible scheme by Lemma 8 with either the codes from Theorem 5
or Theorem 6 respectively and a suitable family H of universal hash functions.

By Lemma 4, in order to obtain a secret sharing scheme with τn privacy and
rate ρ, we need to select an m-folded code C from one of the above families with
rate R such that

R ≥ ρ+ η + τ +
H(τ)

m log(q)

for an arbitrarily small constant η. To get list reconstructability, we need to be
able to list-decode a τ fraction of errors. Thus, we need to choose the constants
R and ε for the above families such that τ ≤ 1 − R − ε, which is equivalent to
R ≤ 1− τ − ε. Together, these two constraints yield a new constraint

1− 2τ − ρ ≥ ε+ η +
H(τ)

m log(q)
. (2)

The left-hand side of Inequality 2 is a constant greater than 0, as ρ < σ − τ <
1− 2τ and 1− 2τ > 0, as τ < 1

2 . Thus, we can fulfill the constraints by choosing
sufficiently small constants ε > 0 and η > 0 and an m greater than a sufficiently
large constant and setting R = 1− τ − ε.

– Using the folded RS codes provided by Theorem 5 in Construction 1, we
can conclude that for every n > 0 there exist a prime power q = O(n)
and an n-player Fq-linear secret sharing scheme LSSSC,h with τn-privacy,
σn-reconstruction, rate ρ, shares from Fmq and which is (τn, poly(n))-list
reconstructible. Here, we use a linear universal hash function h chosen from
a family H of Fq-linear universal hash functions which maps FRmnq to Fρmnq .

– Using the folded AG codes provided by Theorem 6 in Construction 1, we can
conclude that there exists a constant prime power q and an infinite family
of Fq-linear secret sharing schemes {LSSSn}, such that LSSSn is an n-player
Fq-linear secret sharing scheme LSSSC,h with τn-privacy, σn-reconstruction,
rate ρ, shares from Fmq and which is (τn, poly(n))-list reconstructible. Here,
we use a linear universal hash function h chosen from a family H of Fq-linear
universal hash functions which maps FRmnq to Fρmnq .

This concludes the proof.



Construction 3 Let LSSS1 be an n-player linear secret sharing scheme with
secret space Flq, and say that it has t-privacy and r-reconstructability, as well as

(t, `)-list reconstructability. Let further AMD be a (qk, ql, δ)-AMD code. We de-
fine the secret sharing scheme LSSS3, having message space Fkq and share spaces
equal to those of LSSS1, by the following sharing and reconstruction procedures:

Share(s):
z← AMD.Encode(s)
c← LSSS1.Share(z)
Output c = (c1, . . . cn)

RobustReconstruct(c̃):
L← LSSS1.ListReconstruct(c̃)
For z̄ ∈ L:

s̄← AMD.Decode(z̄)
If s̄ 6= ⊥

Output s̄
Output ⊥

Lemma 10. The scheme LSSS3 given above is a (t, `δ)-robust linear secret shar-
ing scheme with t-privacy and r-reconstructability.

As for efficiency, the running time of Share is equal to the sum of the running
times of AMD.Encode and LSSS1.Share; the running time of RobustReconstruct
is equal to he sum of the running time of LSSS1.ListReconstruct and ` times the
running time of AMD.Decode.

Proof. The fact that LSSS3 has t-privacy and r-reconstruction follows immedi-
ately from the t-privacy and r-reconstruction of LSSS1. We will now show that
LSSS3 can correctly reconstruct a secret from n shares where up to t are in-
correct, except with probability at most `δ. Let c = LSSS3.Share(s) for some
adversarially chosen secret s. Assume the adversary A corrupts a set A of play-
ers, where |A| ≤ t. Thus the corrupted share vector c̃ can be written as

c̃ = c + e,

where e is an additive error with support A. SinceA computes c̃A from cA, which
is independent of z = AMD.Encode(s) by the t-privacy of LSSS1, e is independent
of z (given s). We will consider the error-probability of RobustReconstruct, i.e.
the probability that RobustReconstruct(c̃) outputs something different from s.

Consider the list E = LSSS1.ListReconstruct(e). As the weight of e is at most
t, it holds that 0 ∈ E and

L = LSSS1.ListReconstruct(c̃) = z + E,

and thus in particular that z ∈ L. Moreover, as the error e is independent of z,
it also holds that E is independent of z. Hence, it holds for each r ∈ E that r is
independent of z. By the AMD property it thus holds for each r ∈ E\{0} that

Pr[AMD.Decode(z + r) 6= ⊥] ≤ δ.



A union bound yields that

Pr[∃r ∈ E\{0} : AMD.Decode(z + r) 6= ⊥] ≤ `δ.

Doing a change of variable, namely setting z̄ = z+r, such that the quantification
over r ∈ E\{0} becomes a quantification over z̄ ∈ z + E\{0} = L\{z}, gives us

Pr[∃z̄ ∈ L\{z} : AMD.Decode(z̄) 6= ⊥] ≤ `δ.

Thus, every z̄ ∈ L\{z} will be rejected by AMD.Decode, except with prob-
ability `δ. Furthermore, z ∈ L will be accepted. Therefore, we can conclude
that LSSS3.RobustReconstruct(c̃) = s, except with probability `δ. Consequently,
LSSS3 is (t, `δ)-robust, which concludes the proof.

We will now state our main result for this section.

Theorem 7. For any τ < 1
2 , any τ < σ < 1− τ , any ρ < σ− τ and any integer

λ > 0 (the security parameter), we have that:

– For every n > 0 there exists an efficient n-player (τn, 2−λ)-robust secret
sharing scheme LSSS with τn-privacy, σn-reconstructability and with rate ρ.
The shares have size Θ(log(n)+λ/n) and the secret has size Θ(n·log(n)+λ).

– There exists an infinite family {LSSSn} of efficient n-player (τn, 2−λ)-robust
secret sharing schemes with τn-privacy, σn-reconstructability and with rate
ρ. The shares have size Θ(1 + λ/n) and the secret has size Θ(n+ λ).

We emphasize that even for non-robust ramp schemes, the rate ρ cannot be
bigger than σ − τ .

Proof. We shall instantiate Construction 3 with the list reconstructible secret
sharing schemes provided by Lemma 9 and the AMD code given by Lemma 7.
Let LSSS be an n-player Fq-linear secret sharing scheme (from one of the two
families in Lemma 9) with τn-privacy, σn-reconstructability and (τn, poly(n))-
list reconstructability, shares in Fmq and rate ρ′ with ρ < ρ′ < σ− τ . Recall that
both constructions in Lemma 9 allow us to choose the parameter m arbitrarily
large.

Now, we consider a (qρ
′mn−2κ, qρ

′mn, δ′)-AMD code AMD, as provided by
Lemma 7, with δ′ = (ρ′mn− 2κ+ 1)/qκ, where κ is to be determined later. By
Theorem 7, this gives (τn, δ)-robustness for

δ ≤ poly(n) · δ′ ≤ poly(n)
ρ′mn

qκ
=
m · poly(n)

qκ
.

Setting κ = λ/ log(q) + log(m · poly(n)) gives δ ≤ 2−λ. Finally, the rate of the
scheme is given by

ρ′mn− 2κ

mn
= ρ′ − 2

λ

mn log(q)
− 2 · log(poly(n))

mn
− 2

log(m)

mn
.



By choosing the parameter m large enough, i.e. m = Ω(1 + λ/(n · log(q))),
this becomes bigger than ρ. Finally, for the first family provided in Lemma 9,
such an LSSS exists for every length n and we have q = O(n). Thus we can
choose the parameter m as m = Θ(1 + λ/(n · log(n)) and the shares for this
instantiation have size m · log(q) = Θ(log(n) + λ/n), whereas the secret has size
ρmn · log(q) = Θ(n · log(n) + λ). The second family provided by Lemma 9 is an
infinite family for a constant q. Thus, for this instantiation the shares have size
m · log(q) = Θ(1 + λ/n), whereas the secret has size ρmn · log(q) = Θ(n + λ).
This concludes the proof.
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