
Structural Evaluation by
Generalized Integral Property

Yosuke Todo

NTT Secure Platform Laboratories, Tokyo, Japan
todo.yosuke@lab.ntt.co.jp

Abstract. In this paper, we show structural cryptanalyses against two
popular networks, i.e., the Feistel Network and the Substitute-Permutation
Network (SPN). Our cryptanalyses are distinguishing attacks by an im-
proved integral distinguisher. The integral distinguisher is one of the
most powerful attacks against block ciphers, and it is usually constructed
by evaluating the propagation characteristic of integral properties, e.g.,
the ALL or BALANCE property. However, the integral property does
not derive useful distinguishers against block ciphers with non-bijective
functions and bit-oriented structures. Moreover, since the integral prop-
erty does not clearly exploit the algebraic degree of block ciphers, it
tends not to construct useful distinguishers against block ciphers with
low-degree functions. In this paper, we propose a new property called the
division property, which is the generalization of the integral property. It
can effectively construct the integral distinguisher even if the block ci-
pher has non-bijective functions, bit-oriented structures, and low-degree
functions. From viewpoints of the attackable number of rounds or chosen
plaintexts, the division property can construct better distinguishers than
previous methods. Although our attack is a generic attack, it can improve
several integral distinguishers against specific cryptographic primitives.
For instance, it can reduce the required number of chosen plaintexts for
the 10-round distinguisher on Keccak-f from 21025 to 2515. For the Feis-
tel cipher, it theoretically proves that Simon 32, 48, 64, 96, and 128 have
9-, 11-, 11-, 13-, and 13-round integral distinguishers, respectively.

Keywords: Block cipher, Integral distinguisher, Feistel Network, Substitute-
Permutation Network, Keccak, Simon, AES-like cipher, Boolean func-
tion

1 Introduction

The structural evaluation of cryptographic networks is an important topic of
cryptology, and it helps a designer to design strong symmetric key primitives.
There are several structural evaluations against the Feistel Network and the
Substitute-Permutation Network (SPN) [6, 19, 22, 26, 28]. As one direction of the
structural evaluation, there are the security evaluation by “the generic attack,”
which exploits only the feature of the network and does not exploit the particular
weaknesses of a specific cipher. It is applicable to large classes of block ciphers,



2 Yosuke Todo

Table 1. The number of required chosen plaintexts to construct r-round integral dis-
tinguishers on the Simon family, Serpent, and Keccak-f .

Target log2(#texts) Method Reference
r = 6 r = 7 r = 8 r = 9 r = 10 r = 11 r = 12 r = 13

Simon 32 17 25 29 31 - - - - our Sect. 4.3
- - - - - - - - degree [21, 8]

Simon 48 17 29 39 44 46 47 - - our Sect. 4.3
17 - - - - - - - degree [21, 8]

Simon 64 17 33 49 57 61 63 - - our Sect. 4.3
17 - - - - - - - degree [21, 8]

Simon 96 17 33 57 77 87 92 94 95 our Sect. 4.3
17 33 - - - - - - degree [21, 8]

Simon 128 17 33 65 97 113 121 125 127 our Sect. 4.3
17 33 - - - - - - degree [21, 8]

Target log2(#texts) Method Reference
r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10

Serpent 12 28 84 113 124 - - - our Sect. 5.3
28 82 113 123 127 - - - degree [9]

Target log2(#texts) Method Reference
r = 8 r = 9 r = 10 r = 11 r = 12 r = 13 r = 14 r = 15

Keccak-f 130 258 515 1025 1410 1538 1580 1595 our Sect. 5.3
257 513 1025 1409 1537 1579 1593 1598 degree [9]

but it is not often effective than the dedicated attack against the specific cipher.
This paper focuses on generic attacks against both the Feistel Network and
the SPN. The existing generic attack shows that the Feistel Network whose F -
functions are chosen from random functions or permutations is vulnerable up
to 5 rounds [28, 22]. Moreover, Biryukov and Shamir showed that the SPN is
vulnerable up to 2.5 rounds [6].

Our Contribution This paper shows generic attacks against two networks
by improving an integral distinguisher. The integral attack was first proposed
by Daemen et al. to evaluate the security of Square [13], and then it was
formalized by Knudsen and Wagner [23]. Nowadays, many integral distinguishers
have been proposed against specific ciphers [23, 25, 35–37], and they are often
constructed by evaluating the propagation characteristic of integral properties,
e.g., the ALL property or the BALANCE property. In this paper, we revisit
the integral property, and then introduce the division property by generalizing
the integral property. The division property can effectively construct integral
distinguishers even if block ciphers have non-bijective functions, bit-oriented
structures, and low-degree functions.

The Feistel Network is a generic construction to create a (2`)-bit pseudo-
random permutation from an `-bit pseudo-random function. We call the `-bit



Structural Evaluation by Generalized Integral Property 3

function the F -function, and assume that an attacker can not know the specifi-
cation of the F -function. Our distinguishing attack can attack up to 3 rounds,
and it can attack up to 5 rounds if the F -function is limited to a permuta-
tion. Unfortunately, they are not improved compared with the previous ones.
However, assuming that the algebraic degree of the F -function is smaller than
the bit length of the F -function, our attack can attack more rounds than the
previous attacks exploiting the low-degree function. We summarize new integral
distinguishers in Appendix B. Although the assumption of our attack is only the
algebraic degree of the F -function, it can construct new integral distinguishers
on the Simon family [5]. Since Simon has a non-bijective F -function and a bit-
oriented structure, it is complicated task to construct the integral distinguisher.
The division property theoretically introduces that Simon 32, 48, 64, 96, and 128
have at least 9-, 11-, 11-, 13-, and 13-round integral distinguishers, respectively.
Table 1 shows the comparison between our distinguishers and previous ones.

The SPN consists of an S-Layer and a P-Layer, where the S-Layer has m
`-bit bijective S-boxes and the P-Layer has an (`m)-bit bijective linear function.
The attacker can not know the specifications of the S-boxes and the linear func-
tion. Surprisingly, our generic attack becomes able to attack more rounds as the
number of S-boxes is larger than the bit length of the S-box. This fact implies
that the design of the P-Layer that can diffuse more outputs of S-boxes may
not derive prospective security improvements. We summarize new integral dis-
tinguishers in Appendix C. Similar to the result against the Feistel Network, the
division property is also useful to construct integral distinguishers against spe-
cific cryptographic primitives. For instance, we can reduce the required number
of chosen plaintexts for the 7-round distinguisher on Serpent [1] from 2127 to 2124.
Moreover, for the integral distinguisher on Keccak-f [12], we can reduce the
required number of chosen plaintexts compared with previous ones constructed
by Boura et al. [9]. Table 1 shows the comparison between our distinguishers
and previous ones.

Organization This paper is organized as follows: In Sect. 2, we show notations,
Boolean functions, and the framework of integral distinguishers. In Sect. 3, we
propose the division property by generalizing the integral property, and show the
propagation characteristic. In Sect. 4 and Sect. 5, we show new distinguishing
attacks on the Feistel Network and the SPN, respectively. In Sect. 6, we show
that the division property is also useful to construct the dedicated attack against
specific ciphers. As an example, we show new distinguishing attacks on the AES-
like cipher. Section 7 concludes this paper.

2 Preliminaries

2.1 Notation

We make the distinction between addition of Fn2 and addition of Z, and we use
⊕ and + as addition of Fn2 and addition of Z, respectively. For any a ∈ Fn2 , the



4 Yosuke Todo

i-th element is expressed in a[i] and the hamming weight wa is calculated as
wa =

∑n
i=1 a[i]. Let 1n ∈ Fn2 be a value whose all elements are 1. Moreover, let

0n ∈ Fn2 be a value whose all elements are 0.

Subsets Snk and Sn,mk Let Snk be a subset of Fn2 for any integer k ∈ {0, 1, . . . , n}.
The subset Snk is a set of all a ∈ Fn2 satisfying k ≤ wa, and it is defined as

Snk := {a ∈ Fn2 | k ≤ wa} .

Let Sn,mk be a subset of (Fn2 )m for any vector k ∈ ({0, 1, . . . , n})m. The subset
Sn,mk is a set of all a ∈ (Fn2 )m satisfying ki ≤ wai , and it is defined as

Sn,mk := {(a1, a2, . . . , am) ∈ (Fn2 )m | ki ≤ wai for 1 ≤ i ≤ m} .

Bit Product Functions πu and πu Let πu : Fn2 → F2 be a function for any
u ∈ Fn2 . Let x ∈ Fn2 be an input of πu, and πu(x) is the AND of x[i] satisfying
u[i] = 1, namely, it is defined as

πu(x) :=

n∏
i=1

x[i]u[i].

Let πu : (Fn2 )m → F2 be a function for any u ∈ (Fn2 )m. Let x ∈ (Fn2 )m be an
input of πu, namely, πu(x) is calculated as

πu(x) :=

m∏
i=1

πui
(xi).

2.2 Boolean Function

A Boolean function is a function from Fn2 to F2. Let deg(f) be the algebraic
degree of a Boolean function f . As representations of the Boolean function, we
use Algebraic Normal Form, which is defined as follows.

Algebraic Normal Form Algebraic Normal Form (ANF) is a representation
of a Boolean function. Any f : Fn2 → F2 can be represented as

f(x) =
⊕
u∈Fn

2

afu

(
n∏
i=1

x[i]u[i]

)
=
⊕
u∈Fn

2

afuπu(x),

where afu ∈ F2 is a constant value depending on f and u. If deg(f) is at most d, all
afu satisfying d < wu are 0. An n-bit S-box can be regarded as the concatenation
of n Boolean functions. If algebraic degrees of n Boolean functions are at most
d, we say the algebraic degree of the S-box is at most d.



Structural Evaluation by Generalized Integral Property 5

A C C C
C A C C
C C A C
C C C A

A C C C
C C C C
C C C C
C C C C

A
A
A
A

A A A A
A A A A
A A A A
A A A A

B B B B
B B B B
B B B B
B B B B

224 sets 224 sets 224 sets 224 sets

C C C
C C C
C C C
C C C

Fig. 1. Integral distinguisher on 4-round AES

2.3 Integral Distinguisher

An integral distinguisher was first proposed by Daemen et al. to evaluate the
security of Square [13], and then it was formalized by Knudsen and Wagner [23].
It uses a set of chosen plaintexts that contains all possible values for some bits and
has a constant value for the other bits. Corresponding ciphertexts are calculated
from plaintexts in the set by using an encryption oracle. If the XOR of the
corresponding ciphertexts always becomes 0, we say that this cipher has the
integral distinguisher.

Integral Property Nowadays, many integral distinguishers have been pro-
posed against specific ciphers [23, 25, 35–37], and they are often constructed by
evaluating the propagation characteristic of the integral property. We define four
integral properties as follows:

– ALL (A) : Every value appears the same number in the multiset.
– BALANCE (B) : The XOR of all texts in the multiset is 0.
– CONSTANT (C) : The value is fixed to a constant for all texts in the multiset.
– UNKNOWN (U) : The multiset is indistinguishable from one of n-bit random

values.

Knudsen and Wagner showed that AES has the 4-round integral distinguisher
with 232 chosen plaintexts [23]. Figure 1 shows the integral distinguisher.

Unfortunately, the integral property does not derive effective distinguishers
if block ciphers consist of non-bijective functions, e.g., DES [31] and Simon [5]
consist of non-bijection functions. Moreover, since the propagation characteristic
does not clearly exploit the algebraic degree of block ciphers, it tends not to
construct effective distinguishers against block ciphers with low-degree round
functions.

Degree Estimation As another method to construct the integral distinguisher,
there is a higher-order differential attack [24, 21], which exploits the algebraic
degree of block ciphers. When the algebraic degree of a block cipher is at most D,
the cipher has the integral distinguisher with 2D+1 chosen plaintexts. Canteaut
and Videau showed the bound of the degree of iterated round functions [11].
Then, Boura et al. improved the bound [9], and showed integral distinguishers
on Keccak [12] and Luffa [10]. We show the bound in Appendix A.



6 Yosuke Todo

3 Division Property

3.1 Introduction of Division Property

We propose a new property called the division property, which is the generaliza-
tion of the integral property. We consider one bijective S-box with degree d. If
an input multiset has A, the output multiset also has A. If an input multiset
has B, the output multiset has U . If we have the input multiset with 2d+1 cho-
sen texts, the output multiset has B because the degree of the S-box is d. The
integral property does not exploit this property. We now want to exploit useful
properties that are hidden between A and B. Therefore, we redefine A and B by
the same notation, and then introduce the division property by generalizing the
redefinition.

Redefinition of Integral Property Let X be a multiset whose elements take
an n-bit value. We first consider features of the multiset X satisfying A. If we
choose one bit from n bits and calculate the XOR of the chosen bit in the
multiset, the calculated value is always 0. Moreover, if we choose at most (n−1)
bits from n bits and calculate the XOR of the AND of chosen bits in the multiset,
the calculated value is also always 0. However, if we choose all bits from n bits
and calculate the XOR of the AND of n bits in the multiset, the calculated
value becomes unknown1. Above features are expressed by using the bit product
function πu, which is defined in Sect. 2.1, as follows. We evaluate the parity of
πu(x) for all x ∈ X, namely, evaluate

⊕
x∈X πu(x). The parity is always even for

any u satisfying wu < n. On the other hand, the parity becomes unknown for
u = 1n.

We next consider features of the multiset X satisfying B. If we choose one
bit from n bits and calculate the XOR of the chosen bit in the multiset, the
calculated value is always 0. However, if we choose at least two bits from n bits
and calculate the XOR of the AND of chosen bits in the multiset, the calculated
value becomes unknown. Above features are expressed by using the bit product
function πu as follows. We evaluate the parity of πu(x) for all x ∈ X. The parity is
always even for any u satisfying wu < 2. On the other hand, the parity becomes
unknown for any u satisfying wu ≥ 2.

3.2 Definition of Division Property

Section 3.1 redefines both the ALL and BALANCE properties by the same
notation. Since the redefinition can be parameterized by the number of product
bits wu of the bit product function πu, we generalize the integral property as
follows.
1 If all values appear the same even number in the multiset, the calculated value is

always 0. If all values appear the same odd number in the multiset, the calculated
value is always 1. Thus, we cannot guarantee whether the calculated value is 0 or
not when we consider the multiset satisfying A. In this case, we say the calculated
value becomes unknown.



Structural Evaluation by Generalized Integral Property 7

Definition 1 (Division Property). Let X be a multiset whose elements take
a value of Fn2 , and k takes a value between 0 and n. When the multiset X has
the division property Dnk , it fulfils the following conditions: The parity of πu(x)
for all x ∈ X is always even if wu is less than k. Moreover, the parity becomes
unknown if wu is greater than or equal to k.

When the multiset X has Dnk , it satisfies⊕
x∈X

πu(x) = 0, for all u ∈ (Fn2 \ Snk ),

where Snk is a subset defined in Sect. 2.1. The parity of πu(x) for all x ∈ X
becomes unknown for any u ∈ Snk . Namely, in the division property, the set of
u is divided into the subset that

⊕
x∈X πu(x) becomes unknown and the subset

that
⊕

x∈X πu(x) becomes 0.

Example 1. Let X be a multiset whose elements take a value of F4
2. As an exam-

ple, we prepare the input multiset X as

X := {0x0, 0x3, 0x3, 0x3, 0x5, 0x6, 0x8, 0xB, 0xD, 0xE}.
A following table calculates the summation of πu(x).

0x0 0x3 0x3 0x3 0x5 0x6 0x8 0xB 0xD 0xE
∑
πu(x)

0000 0011 0011 0011 0101 0110 1000 1011 1101 1110 (
⊕
πu(x))

u = 0000 1 1 1 1 1 1 1 1 1 1 10 (0)

u = 0001 0 1 1 1 1 0 0 1 1 0 6 (0)

u = 0010 0 1 1 1 0 1 0 1 0 1 6 (0)

u = 0011 0 1 1 1 0 0 0 1 0 0 4 (0)

u = 0100 0 0 0 0 1 1 0 0 1 1 4 (0)

u = 0101 0 0 0 0 1 0 0 0 1 0 2 (0)

u = 0110 0 0 0 0 0 1 0 0 0 1 2 (0)

u = 0111 0 0 0 0 0 0 0 0 0 0 0 (0)

u = 1000 0 0 0 0 0 0 1 1 1 1 4 (0)

u = 1001 0 0 0 0 0 0 0 1 1 0 2 (0)

u = 1010 0 0 0 0 0 0 0 1 0 1 2 (0)

u = 1011 0 0 0 0 0 0 0 1 0 0 1 (1)

u = 1100 0 0 0 0 0 0 0 0 1 1 2 (0)

u = 1101 0 0 0 0 0 0 0 0 1 0 1 (1)

u = 1110 0 0 0 0 0 0 0 0 0 1 1 (1)

u = 1111 0 0 0 0 0 0 0 0 0 0 0 (0)

For all u satisfying wu < 3,
⊕

x∈X πu(x) becomes 0. Therefore, the multiset has
the division property D4

3.

Each definition of B and U is essentially the same as that of Dn2 and Dn1 ,
respectively. However, the definition of A is different from that of Dnn. The mul-
tiset satisfying A always has the division property Dnn but not vice versa. For
instance, the multiset satisfying the EVEN property, which is defined that the
number of occurrences is even for all values [30], does not always have A, but it
always has Dnn. In this paper, we use only Dnn instead of A because it is sufficient
to use Dnn from the viewpoint of the construction of integral distinguishers.



8 Yosuke Todo

Propagation Characteristic of Division Property Let s be an S-box whose
degree is d. Let X be an input multiset whose elements take a value of Fn2 . Let
Y be an output multiset whose elements are calculated from s(x) for all x ∈ X.
We assume that X has Dnk , and want to evaluate the division property of Y. In
the division property, the set of u is divided into the subset that

⊕
x∈X πu(x)

becomes unknown and the subset that
⊕

x∈X πu(x) becomes 0. Therefore, we
divide the set of v into the subset that

⊕
s(x)∈Y πv(s(x)) becomes unknown and

the subset that
⊕

s(x)∈Y πv(s(x)) becomes 0. Since the parity of πv(s(x)) for all

s(x) ∈ Y is equal to that of (πv ◦s)(x) for all x ∈ X, we evaluate
⊕

x∈X(πv ◦s)(x).

Proposition 1 (Propagation Characteristic of Division Property). Let
s be an function (S-box) from n bits to n bits, and the degree is d. Assuming
that an input multiset X has the division property Dnk , the output multiset Y has
Dnd kd e. In addition, assuming that the S-box is a permutation, the output multiset

Y has Dnn when the input multiset has Dnn.

Proof. We represent
⊕

x∈X(πv ◦ s)(x) by using ANF as

⊕
x∈X

(πv ◦ s)(x) =
⊕
x∈X

⊕
u∈Fn

2

aπv◦s
u πu(x)


=
⊕
u∈Snk

aπv◦s
u

(⊕
x∈X

πu(x)

)
⊕

⊕
u∈(Fn

2 \Snk )

aπv◦s
u

(⊕
x∈X

πu(x)

)
.

Since the multiset X has Dnk ,
⊕

x∈X πu(x) is always 0 for any u ∈ (Fn2 \ Snk ).
Therefore, it satisfies

⊕
x∈X

(πv ◦ s)(x) =
⊕
u∈Snk

aπv◦s
u

(⊕
x∈X

πu(x)

)
.

If aπv◦s
u is 0 for all u ∈ Snk ,

⊕
x∈A(πv ◦ s)(x) always becomes 0. In other words,

if there exists u ∈ Snk such that aπv◦s
u is 1,

⊕
x∈A(πv ◦ s)(x) becomes unknown.

Since the function πv is the AND of wv bits and the degree of S-box is d, the
degree of the Boolean function (πv ◦ s) has the following properties:

– The degree of (πv ◦ s) is at most min{n− 1, wv × d}.
– If the S-box is a permutation, the degree of (πv ◦ s) is at most n − 1 for
wv < n.

We first assume that the multiset X has Dnk . In this case, we consider only u
satisfying wu ≥ k. When wv×d < k holds, aπv◦s

u is always 0. Thus, the necessary
condition that aπv◦s

u becomes 1 is wv × d ≥ k, and it is wv ≥ dkde. Namely, the

necessary condition that
⊕

x∈X(πv ◦ s)(x) becomes unknown is wv ≥ dkde, and
Y has Dnd kd e. We next assume that the multiset X has Dnn and the S-box is a

permutation. In this case, we consider only u = 1n. When wv < n holds, aπv◦s
1n



Structural Evaluation by Generalized Integral Property 9

s

D DSet of u Set of u 

unknown even parity

Fig. 2. Propagation characteristic of division property

is always 0 because the degree of the Boolean function (πv ◦ s) is at most n− 1.
Thus, the necessary condition that aπv◦s

1n becomes 1 is v = 1n. Namely, the
necessary condition that

⊕
x∈X(πv ◦ s)(x) becomes unknown is v = 1n, and Y

has Dnn. ut

Example 2. Let us consider a following 4-bit S-box.

x 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF

s(x) 0x8 0xC 0x0 0xB 0x9 0xD 0xE 0x5 0xA 0x1 0x2 0x6 0x4 0xF 0x3 0x7

The S-box is bijective and the algebraic degree is 2. We now prepare the in-
put multiset X := {0x0, 0x3, 0x3, 0x3, 0x5, 0x6, 0x8, 0xB, 0xD, 0xE}, which is the
same as Example 1 and the division property is D4

3. The output multiset is cal-
culated as Y := {0x8, 0xB, 0xB, 0xB, 0xD, 0xE, 0xA, 0x6, 0xF, 0x3}, and a following
table calculates the summation of πv(y).

0x8 0xB 0xB 0xB 0xD 0xE 0xA 0x6 0xF 0x3
∑
πv(y)

1000 1011 1011 1011 1101 1110 1010 0110 1111 0011 (
⊕
πv(y))

v = 0000 1 1 1 1 1 1 1 1 1 1 10 (0)

v = 0001 0 1 1 1 1 0 0 0 1 1 6 (0)

v = 0010 0 1 1 1 0 1 1 1 1 1 8 (0)

v = 0011 0 1 1 1 0 0 0 0 1 1 5 (1)

v = 0100 0 0 0 0 1 1 0 1 1 0 4 (0)

v = 0101 0 0 0 0 1 0 0 0 1 0 2 (0)

v = 0110 0 0 0 0 0 1 0 1 1 0 3 (1)

v = 0111 0 0 0 0 0 0 0 0 1 0 1 (1)

v = 1000 1 1 1 1 1 1 1 0 1 0 8 (0)

v = 1001 0 1 1 1 1 0 0 0 1 0 5 (1)

v = 1010 0 1 1 1 0 1 1 0 1 0 6 (0)

v = 1011 0 1 1 1 0 0 0 0 1 0 4 (0)

v = 1100 0 0 0 0 1 1 0 0 1 0 3 (1)

v = 1101 0 0 0 0 1 0 0 0 1 0 2 (0)

v = 1110 0 0 0 0 0 1 0 0 1 0 2 (0)

v = 1111 0 0 0 0 0 0 0 0 1 0 1 (1)

For all v satisfying wv < 2,
⊕

y∈Y πv(y) becomes 0. Therefore, the multiset Y
has the division property D4

2.

Figure 2 shows the outline of the propagation characteristic of the division
property. Let X and Y be input and output multisets, respectively. First, the



10 Yosuke Todo

size of the set of u that
⊕

x∈X πu(x) becomes unknown is small. However, the
size of the set of u that

⊕
x∈X πu(s(x)) becomes unknown expands. If the size

expands to the universal set except for 0n, we regard that the output multiset
is indistinguishable from the multiset of random texts.

3.3 Vectorial Division Property

Section 3.2 only shows the division property for one S-box. However, since prac-
tical ciphers use several S-boxes in every round, we can not construct integral
distinguishers by only using Proposition 1. Therefore, we vectorize the division
property.

Let an S-Layer be any function that consists of m n-bit S-boxes with degree d
in parallel. We now consider the propagation characteristic of the division prop-
erty against the S-Layer. Let X be the input multiset of the S-Layer, and x ∈ X
takes a value of (Fn2 )m. The vectorization is the natural extension of the divi-
sion property. Namely, the set of u is divided into the subset that

⊕
x∈X πu(x)

becomes unknown and the subset that
⊕

x∈X πu(x) becomes 0, where u is an
m-dimensional vector whose elements take a value of Fn2 . Figure 3 shows the
difference between the division property and the vectorial one.

Definition 2 (Vectorial Division Property). Let X be the multiset whose
elements take a value of (Fn2 )m, and k is an m-dimensional vector whose el-
ements take a value between 0 and n. When the multiset X has the division
property Dn,mk , the multiset fulfils the following conditions: The parity of πu(x)
for all x ∈ X is always even if u does NOT belong to Sn,mk . Moreover, the parity
becomes unknown if u belongs to Sn,mk .

Propagation Characteristic of Vectorial Division Property Assume that
the input multiset of the S-Layer has the division property Dn,mk . The out-
put of the S-Layer is calculated as S(x) = (s1(x1), s2(x2), . . . , sm(xm)) for
(x1, x2, . . . , xm) ∈ X. We now consider the set of v that

⊕
x∈X πv(S(x)) be-

comes unknown and the set of v that
⊕

x∈X πv(S(x)) becomes 0. Since the
output of each S-box is calculated independently, the propagation characteristic
of the division property can also be evaluated independently. Namely, the output
multiset has Dn,mk′ , where k′i = dki/de holds. Moreover, if the S-box is bijective
and ki = n holds, k′i = n holds.

3.4 Collective Division Property

By vectorizing of the division property, we can evaluate the multiset whose ele-
ments take a value of (Fn2 )m. However, it is still insufficient to use only vectorial
division property. For simplicity, we consider a multiset X whose elements take
a value of (F8

2)2. Assume that the number of elements in X is 256, and two ele-
ments of x take all values from 0 to 255 independently. We consider the set of u
that the parity of πu(x) for all x ∈ X becomes unknown and the set of u that
the parity becomes 0.



Structural Evaluation by Generalized Integral Property 11

S

S1 S2 Sm

S1 S2 Sm

division property

vectorizal

collective

n

n

n

Fig. 3. Division property, vectorial division property, and collective division property

– The parity becomes unknown if u belongs to S8,2[8,0].

– The parity becomes unknown if u belongs to S8,2[0,8].

– The parity becomes unknown if u belongs to S8,2[1,1].

– Otherwise, i.e., u does NOT belong to S8,2[8,0] ∪ S8,2[0,8] ∪ S8,2[1,1], the parity is

always even.

We can not express this property by using the vectorial division property. There-
fore, we collect several vectorial division properties. Figure 3 shows the difference
between the vectorial division property and the collective division property.

Definition 3 (Collective Division Property). Let X be the multiset whose
elements take a value of (Fn2 )m, and k(j) (j = 1, 2, . . . , q) are m-dimensional
vectors whose elements take a value between 0 and n. When the multiset X has
the division property Dn,m

k(1),k(2),...,k(q) , the multiset fulfils the following conditions:

The parity of πu(x) for all x ∈ X is always even if u does NOT belong to the
union Sn,m

k(1)∪Sn,mk(2)∪· · ·∪Sn,mk(q) . Moreover, the parity becomes unknown if u belongs
to the union Sn,m

k(1) ∪ Sn,m
k(2) ∪ · · · ∪ Sn,m

k(q) .

It is obvious that the collective division property with q = 1 is the same as the
vectorial division property.

Propagation Characteristic of Collective Division Property Assume
that the input multiset of the S-Layer has the division property Dn,m

k(1),k(2),...,k(q) .

We now consider the set of v that
⊕

x∈X πv(S(x)) becomes unknown, and the set
is derived from only the set of u that

⊕
x∈X πu(x) becomes unknown. Therefore,

we can evaluate the propagation characteristic of Dn,m
k(j) for all j independently.

Namely, the output multiset has Dn,m
k′(1),k′(2),...,k′(q)

, where k
′(j)
i = dk(j)i /de holds.

Moreover, if the S-box is bijective and k
(j)
i = n holds, k

′(j)
i = n holds.



12 Yosuke Todo

F

w1 w2

z1 z2

Fig. 4. (`, d)-Feistel

F

w1 w2

F

x3

z1 z2y2x2

y1x1

y3

F F
-3-

compression

-2-

substitution

-1-

copy

Fig. 5. Propagation characteristic for Feistel Network

4 Improved Integral Distinguishers on Feistel Network

4.1 Feistel Network

(`, d)-Feistel The Feistel Network is one of the most popular network to design
block ciphers. When n-bit block ciphers are constructed by the Feistel Network,
the input of the round function is expressed in two (n/2)-bit values. Moreover,
an (n/2)-bit non-linear function F is used in the round function, and we call
this function the F -function. Let (w1, w2) be the input of the round function,
and the output is calculated as (z1, z2) = (F (w1) ⊕ w2, w1). We now define an
(`, d)-Feistel, whose F -function is an `-bit non-linear function with degree d (this
function is not limited to a permutation). Figure 4 shows the round function of
the Feistel Network. There are many block ciphers adopting (`, d)-Feistel, e.g.
DES [31], Camellia [3], and Simon 2n [5] adopt (32, 5)-, (64, 7)-, and (n, 2)-
Feistel, respectively.

4.2 Propagation Characteristic for Feistel Network

This section shows that the division property is useful to construct integral
distinguishers on (`, d)-Feistel. Since the Feistel Network has “copy,” “substitu-
tion,” and “compression,” we need to propagate the division property against
them. The “copy” creates the input of the F -function, and the “substitution”
processes the input by the F-function, and finally the “compression” creates the
left half of the output by XOR. Figure 5 shows the outline of the propagation
characteristic.

-1- Copy Let W be an input set, and (w1, w2) ∈ W denotes the input value.
The round function first creates (x1, x2, x3), where x1 = w1, x2 = w1, and



Structural Evaluation by Generalized Integral Property 13

x3 = w2 hold. Here, x1 is the input of the F -function, x2 is the right half
of the output of the round function, and x3 is the right half of the input of
the round function. Let X be the output set whose elements take (x1, x2, x3)
for all (w1, w2) ∈W. Assume that the input set W has the division property

D`,2
k(1),k(2),...,k(q) . If we use πu satisfying k

(j)
1 ≤ u1 and k

(j)
2 ≤ u2, the parity of

πu(w) for all w ∈W becomes unknown. Since x1 is equal to x2, the parity of

πv(x) for all x ∈ X becomes unknown if we use πv satisfying k
(j)
1 − k′ ≤ v1,

k′ ≤ v2, and k
(j)
2 ≤ v3 for all k′ (0 ≤ k′ ≤ k(j)1 ). Therefore, the set X has the

division property D`,3
[0,k

(1)
1 ,k

(1)
2 ],[1,k

(1)
1 −1,k

(1)
2 ],...,[k

(1)
1 ,0,k

(1)
2 ],...,[k

(q)
1 ,0,k

(q)
2 ]

.

-2- Substitution The F -function is an `-bit function with degree d. As-
sume that the input set has the division property D`,3

k(1),k(2),...,k(q) . From

the propagation characteristic of the division property, the output set has

D`,3
k′(1),k′(2),...,k′(q)

, where (k
′(j)
1 , k

′(j)
2 , k

′(j)
3 ) = (dk(j)1 /de, k(j)2 , k

(j)
3 ) holds. If the

F -function is limited to a permutation, k
′(j)
1 becomes ` when k

(j)
1 = ` holds.

-3- Compression Let Y be the input set, and (y1, y2, y3) ∈ Y denotes the input
value, where y1 denotes the output of the F -function. Let y1 be XORed with
y3, and then the internal state is expressed in (z1, z2) = (y1 ⊕ y3, y2). Let Z
be the set whose elements take (z1, z2) for all (y1, y2, y3) ∈ Y. To evaluate
the division property of the set Z, we calculate the parity of πv(z1, z2) for
all (z1, z2) ∈ Z as⊕

(z1,z2)∈Z

πv(z1, z2) =
⊕

(z1,z2)∈Z

(πv1(z1)× πv2(z2))

=
⊕

(y1,y2,y3)∈Y

(πv1(y1 ⊕ y3)× πv2(y2))

=
⊕

(y1,y2,y3)∈Y

⊕
c�v1

(πc(y1)× πv1⊕c(y3))× πv2(y2)


=
⊕
c�v1

 ⊕
(y1,y2,y3)∈Y

πc(y1)× πv2(y2)× πv1⊕c(y3)

 ,

where the set of c chosen from c � v1 denotes the set of c satisfying c∧v1 = c.
Assuming that the input set Y has the division property D`,3

k(1),k(2),...,k(q) , the

output set Z has the division property D`,2
k′(1),k′(2),...,k′(q)

, where (k
′(j)
1 , k

′(j)
2 ) =

(k
(j)
1 +k

(j)
3 , k

(j)
2 ) holds. Notice that the parity of πv(z1, z2) for all (z1, z2) ∈ Z

becomes 0 if k
(j)
1 + k

(j)
3 is more than `.

4.3 Path Search Algorithm for (`, d)-Feistel

This section shows the path search algorithm for integral distinguishers against
(`, d)-Feistel. The algorithm is based on the propagation characteristic shown



14 Yosuke Todo

Algorithm 1 Path search algorithm for integral distinguishers on (`, d)-Feistel

1: procedure FeistelFuncEval(`, d, k1, k2)
2: q ⇐ 0
3: for X = 0 to k1 do
4: L⇐ k2 + dX/de
5: if L ≤ ` then
6: q ⇐ q + 1
7: k(q) ⇐ (L, k1 −X)
8: end if
9: end for

10: return k(1), . . . ,k(q)

11: end procedure

12: procedure IntegralPathSearch(`, d, r = 0, k1, k2)
13: k(1), . . . ,k(q) ⇐ FeistelFuncEval(`, d, k1, k2)

14: D ⇐ max{k(1)
1 + k

(1)
2 , k

(2)
1 + k

(2)
2 , . . . , k

(q)
1 + k

(q)
2 }

15: while 1 < D do
16: r ⇐ r + 1
17: for i = 1 to q do
18: k(i,1), . . . ,k(i,pi) ⇐ FeistelFuncEval(`, d, k

(i)
1 , k

(i)
2 )

19: end for
20: (k(1),k(2), . . . ,k(q′))⇐ SizeReduce(k(1,1),k(1,2), . . . ,k(q,pq))

21: D ⇐ max{k(1)
1 + k

(1)
2 , k

(2)
1 + k

(2)
2 , . . . , k

(q′)
1 + k

(q′)
2 }

22: q ⇐ q′

23: end while
24: return r
25: end procedure

in Sect. 4.2. Assume that k1 bits of the left half of the input are active and
the rest (` − k1) bits are constant. Moreover, assume that k2 bits of the right
half of the input are active and the rest (` − k2) bits are constant. Namely, we

prepare 2k1+k2 chosen plaintexts. The input set has the division propertyD`,2[k1,k2]
.

Algorithm 1 shows the path search algorithm to create the integral distinguisher
on (`, d)-Feistel. Algorithm 1 does not limit the F -function to be a permutation.
If the F -function is limited to be a permutation, L becomes k2 + ` when X = `
holds (see the 4-th line in Algorithm 1). Algorithm 1 calls SizeReduce, which

eliminates k(i,j) if there exists (i′, j′) satisfying S`,2
k(i,j) ⊆ S`,2

k(i′,j′) .

Results Table 2 shows the number of required chosen plaintexts to construct
r-round integral distinguishers on (32, 5)- and (64, 7)-Feistel, where DES [31]
is classified into (32, 5)-Feistel with non-bijective function and Camellia [3] is
classified into (64, 7)-Feistel with bijective function. When we construct the in-
tegral distinguisher on (`, d)-Feistel with 2D chosen plaintexts, we use (k1, k2)



Structural Evaluation by Generalized Integral Property 15

Table 2. The number of chosen plaintexts to construct r-round integral distinguishers
on (32, 5)- and (64, 7)-Feistel. Our distinguishers are got by implementing Algorithm 1.

Target F -function log2(#texts) Method Reference
[Application] r = 4 r = 5 r = 6 r = 7 r = 8 r = 9

(32, 5)-Feistel non-bijection 26 51 62 - - - our Sect. 4.3
[DES] 26 - - - - - degree [21, 8]

(64, 7)-Feistel bijection 50 98 124 - - - our Sect. 4.3
[Camellia] 50 - - - - - degree [21, 8]

64 - - - - - integral [23]

Table 3. The number of chosen plaintexts to construct r-round integral distinguishers
on the Simon family, where the F -function is not bijective. Our distinguishers are got
by implementing Algorithm 1.

Target log2(#texts) Method Reference
[Application] r = 6 r = 7 r = 8 r = 9 r = 10 r = 11 r = 12 r = 13

(16, 2)-Feistel 17 25 29 31 - - - - our Sect. 4.3
[Simon 32] - - - - - - - - degree [21, 8]

(24, 2)-Feistel 17 29 39 44 46 47 - - our Sect. 4.3
[Simon 48] 17 - - - - - - - degree [21, 8]

(32, 2)-Feistel 17 33 49 57 61 63 - - our Sect. 4.3
[Simon 64] 17 - - - - - - - degree [21, 8]

(48, 2)-Feistel 17 33 57 77 87 92 94 95 our Sect. 4.3
[Simon 96] 17 33 - - - - - - degree [21, 8]

(64, 2)-Feistel 17 33 65 97 113 121 125 127 our Sect. 4.3
[Simon 128] 17 33 - - - - - - degree [21, 8]

satisfying

(k1, k2) =

{
(D − `, `) for ` ≤ D,
(0, D) for D < `.

For the comparison with our integral distinguishers, we consider two previous
methods, one is the propagation characteristic of the integral property and an-
other is the estimation of the algebraic degree. We first consider the propagation
characteristic of the integral property. If the F -function is a non-bijective func-
tion, the propagation characteristic does not construct sufficient distinguishers.
Therefore, results introduced by the integral property are only shown when the
F -function is bijective. We next consider the estimation of the algebraic degree.
Unfortunately, since we do not know the improved bound against the Feistel
Network, we use the trivial bound for the Feistel Network. Assume that the left
half of the plaintext is constant. For any r-round (`, d)-Feistel, it can be ob-
served that the function, which associates the right half of the ciphertext with
the right half of the plaintext, has degree at most dr−2 for 2 ≤ r. Therefore, we
can construct the r-round integral distinguishers with 2d

r−2+1 chosen plaintexts.



16 Yosuke Todo

S1

S2

Sm

P

S-Layer P-Layer

Fig. 6. (`, d,m)-SPN

Since the right half of the plaintext is at most ` bits, the distinguisher can be
constructed with 2d

r−2+1 < 2`.
As a result, as far as we try, all distinguishers constructed by the division

property are “better” than those by previous methods. We summarize integral
distinguishers on other (`, d)-Feistel in Appendix B. We already know a “bet-
ter” integral distinguisher on Camellia in [36], but it is constructed by using the
specific feature of Camellia. On the other hand, our method is generic distin-
guishing attacks against (`, d)-Feistel. From the result of (64, 7)-Feistel, it shows
that even if the F -function of Camellia is chosen from any functions with degree
7, the modified Camellia has the 6-round integral distinguisher.

Integral Distinguishers on Simon Family Although our attack is a generic
attack, it can create new integral distinguishers on the Simon family [5]. Si-
mon is a lightweight block ciphers proposed by the National Security Agency.
Since Simon has a non-bijective F -function and a bit-oriented structure, it is
complicated task to construct the integral distinguisher. The division property
theoretically shows that Simon 32, 48, 64, 96, and 128 have at least 9-, 11-, 11-,
13-, and 13-round integral distinguishers, respectively. Table 3 shows the com-
parison between our distinguishers and previous ones by the degree estimation.
On the other hand, Wang et al. showed that Simon 32 has the 15-round integral
distinguisher by experiments [33]. Therefore, there are 6-round differences be-
tween our theoretical result and Wang’s experimental result. Our distinguisher
is valid against all (32, 2)-Feistel and it does not exploit the feature of the round
function. Namely, we expect that the 6-round difference is derived from the
specification of the round function of Simon 32.

5 Improved Integral Distinguishers on Substitute-
Permutation Network

5.1 Substitute-Permutation Network

(`, d,m)-SPN The Substitute-Permutation Network (SPN) is another impor-
tant structure for block ciphers. The SPN has a round function that consists of



Structural Evaluation by Generalized Integral Property 17

an S-Layer and a P-Layer, and a block cipher is designed by iterating the round
function. We now define an (`, d,m)-SPN, whose round function has m `-bit
S-boxes in the S-Layer and one (`m)-bit linear function in the P-Layer. Here,
each S-box is any bijective function whose degree is at most d, and an (`m)-
bit linear function is any bijective function whose degree is at most 1. Figure 6
shows the round function of the SPN. Nowadays, many block ciphers adopting
(`, d,m)-SPN have been proposed, e.g. AES [32], PRESENT [7], and Serpent [1]
adopt (8, 7, 16)-, (4, 3, 16)-, and (4, 3, 32)-SPN, respectively. Moreover, Keccak-
f [12], which is a permutation in the hash function Keccak, can be regarded
as (5, 2, 320)-SPN.

5.2 Propagation Characteristic for SPN

This section shows that the division property is useful to construct integral dis-
tinguishers on (`, d,m)-SPN. We first prepare the set of the input of the S-Layer
such that ki bits of the input of the i-th S-box are active and the rest (`−ki) bits

are constant. In this case, the input set has the division property D`,mk . We first
evaluate the propagation characteristic against the S-Layer. Next, the P-Layer
is applied but the input and output take a value of F`m2 . Therefore, we need to

convert the division property D`,mk into D`mk , and then evaluate the propaga-
tion characteristic against the P-Layer. Since the S-Layer is applied again after
the P-Layer, we convert the division property D`mk into D`,m

k(1),k(2),...,k(q) . After

the second round, we evaluate the propagation characteristic of this collective
division property.

- S-Layer Assume that the input set of the S-Layer has the division property
D`,mk . Since the S-Layer consists of m `-bit S-boxes with degree d, the output

set of the S-Layer has D`,mk′ . Here, if ki < ` holds, k′i is calculated as k′i =
dki/de. If ki = ` holds, k′i is calculated as k′i = `.

- Concatenation (Conversion form S-Layer to P-Layer) The output
of the S-Layer is expressed in a value of (F`2)m, but the input of the P-
Layer is expressed in a value of F`m2 . Let X be the output set of the S-Layer
whose elements take a value of (F`2)m. Let Y be the input set of the P-
Layer whose elements take a value of F`m2 . The transformation is generally
implemented by a simple bit concatenation, namely, y = (x1‖x2‖ · · · ‖xm)
where (x1, x2, . . . , xm) and y are values of X and Y, respectively. We now

consider the conversion of the division property from D`,mk to D`mk′ . The
parity of πv(y) for all y ∈ Y becomes unknown if and only if we choose v
satisfying wv ≥

∑m
i=1 ki. Therefore, the input set of the P-Layer has the

division property D`mk′ , where k′ =
∑m
i=1 ki holds.

- P-Layer The P-Layer consists of an (`m)-bit linear function. Since the degree
of the linear function is at most 1, there is no change in the division property.

- Partition (Conversion form P-Layer to S-Layer) The output of the P-
Layer is expressed in a value of F`m2 , but the input of the S-Layer is expressed
in a value of (F`2)m. Let X be the output set of the P-Layer whose elements
take a value of F`m2 . Let Y be the input set of the S-Layer whose elements



18 Yosuke Todo

Algorithm 2 Path search algorithm for integral distinguishers on (`, d,m)-SPN

1: procedure IntegralPathSearch(`, d,m, r = 0, k1, k2, . . . , km)
2: if ki < ` then ki ⇐ dki/de . 1-st round S-Layer
3: end if
4: k ⇐

∑m
i=1 ki . 1-st round Concatenation and P-Layer

5: while 1 < k do
6: r ⇐ r + 1
7: if k ≤ (`− 1)m then k ⇐ dk/de . (r + 1)-th round
8: else k ⇐

⌈
`−1
d

⌉
(`m− k) + `(m− `m + k) . (r + 1)-th round

9: end if
10: end while
11: return r
12: end procedure

take a value of (F`2)m. The transformation is generally implemented by a sim-
ple bit partition, namely, (y1‖y2‖ · · · ‖ym) = x where x and (y1, y2, . . . , ym)
are values of X and Y, respectively. We now consider the conversion of the
division property from D`mk to D`,mk′ . When the output set of the P-Layer
has D`mk , the sufficient condition that the parity of πu(x) for all x ∈ X be-
comes unknown is k ≤ wu. Therefore, the input set of the S-Layer has the
collective division property D`,m

k′(1),k′(2),...,k′(q)
, where q denotes the number

of all possible vectors satisfying k
′(j)
1 + k

′(j)
2 + · · · + k

′(j)
m = k (1 ≤ j ≤ q).

After the second round, we evaluate the propagation characteristic of the
collective division property.

We can construct the integral distinguisher by evaluating the propagation char-
acteristic of the collective division property. However, since the size of q ex-
tremely expands, it is infeasible to execute the straightforward implementation.
Therefore, we show more efficient technique. Let X be the input set of the S-
Layer, and the elements take a value of (F`2)m. Assume that the input set has the

division property D`,m
k(1),k(2),...,k(q) that is created by the partition of the division

property D`mk . If k > (` − 1)m holds, at least (m − `m + k) elements of k(j)

have to become `. In this case, the rest elements have to become `− 1. Since the
S-Layer derives

⌈
`−1
d

⌉
and ` from (`− 1) and `, respectively, the output set has

the division property D`mk′ , where k′ is calculated as

k′ =

{⌈
`−1
d

⌉
(`m− k) + `(m− `m+ k) for k > (`− 1)m,⌈

k
d

⌉
for k ≤ (`− 1)m.

Here, if k ≤ (`−1)m holds, we simply regard the round function of (`, d,m)-SPN
as one (`m)-bit S-box with degree d.

5.3 Path Search Algorithm for (`, d,m)-SPN

We now consider integral distinguishers on (`, d,m)-SPN. We first prepare the set
of chosen plaintexts such that ki bits of the input of the i-th S-box are active and



Structural Evaluation by Generalized Integral Property 19

Table 4. The number of chosen plaintexts to construct r-round integral distinguishers
on (`, d,m)-SPN. Our distinguishers are got by implementing Algorithm 2.

Target log2(#texts) Method Reference
r = 3 r = 4 r = 5 r = 6 r = 7

(4, 3, 16)-SPN 12 28 52 60 - our Sect. 5.3
[PRESENT] 28 52 60 63 - degree [9]

(8, 7, 16)-SPN 56 120 - - - our Sect. 5.3
[AES] 117 127 - - - degree [9]

Table 5. The number of chosen plaintexts to construct r-round integral distinguishers
on Keccak-f and Serpent. Our distinguishers are got by implementing Algorithm 2.

Target log2(#texts) Method Reference
[Application] r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9‘ r = 10

(4, 3, 32)-SPN 12 28 84 113 124 - - - our Sect. 5.3
[Serpent] 28 82 113 123 127 - - - degree [9]

Target log2(#texts) Method Reference
[Application] r = 8 r = 9 r = 10 r = 11 r = 12 r = 13 r = 14 r = 15

(5, 2, 320)-SPN 130 258 515 1025 1410 1538 1580 1595 our Sect. 5.3
[Keccak-f ] 257 513 1025 1409 1537 1579 1593 1598 degree [9]

the rest (`−ki) bits are constant. Namely, we prepare 2
∑m

i=1 ki chosen plaintexts.

The input set has the division property D`,mk . Algorithm 2 shows the path search
algorithm to construct the integral distinguisher.

Results Table 4 shows the number of required chosen plaintexts to construct the
r-round integral distinguisher on (4, 3, 16)- and (8, 7, 16)-SPN, where PRESENT [7]
and AES [32] are classified into (4, 3, 16)- and (8, 7, 16)-SPN, respectively. When
we construct the integral distinguisher on (`, d,m)-SPN with 2D chosen plain-
texts, we use a vector k satisfying

ki =


` for i` ≤ D,
D − (i− 1)` for (i− 1)` ≤ D < i`,

0 for D < (i− 1)`.

For the comparison with our integral distinguishers, we first consider the
propagation characteristic of the integral property. However, it does not con-
struct a sufficient distinguisher because the P-Layer is any linear function. Next,
we estimate the algebraic degree by using the method proposed by Boura et al.
We show the method in Appendix A.

As a result, as far as we try, all distinguishers constructed by the division
property are “better” than those by previous methods. We summarize inte-
gral distinguishers on other (`, d,m)-SPN in Appendix C. We already know the
7-round integral distinguisher on PRESENT in [34] and the 4-round integral



20 Yosuke Todo

distinguisher on AES in [23]. However, they are constructed by using the spe-
cific feature of each block cipher. On the other hand, our method is generic
distinguishing attacks against (`, d,m)-SPN. From the result of (4, 3, 16)-SPN,
it shows that even if the P-Layer of PRESENT is chosen from any bijective
linear functions, the modified PRESENT has the 6-round integral distinguisher.
Similarly, from the result of (8, 7, 16)-SPN, it shows that even if the P-Layer of
AES is chosen from any bijective linear function, the modified AES still has the
4-round integral distinguisher.

Integral Distinguishers on Serpent and Keccak-f Although our attack
is a generic attack, it can create new integral distinguishers on Serpent and
Keccak-f . Serpent is one of AES finalists and is classified into (4, 3, 32)-SPN.
The existing integral distinguisher is shown in [37], and it shows that Serpent has
3.5-round integral distinguisher. On the other hand, we show that all (4, 3, 32)-
SPNs have at least 7-round integral distinguishers with 2124 chosen plaintexts.
Table 5 shows the comparison between our distinguishers and previous ones by
the degree estimation.

Keccak is chosen as SHA-3, and the core function Keccak-f is classified
into (5, 2, 320)-SPN. Boura et al. estimated the algebraic degree of Keccak-f
in [9]. We search for the integral distinguisher by using Algorithm 2. As a result,
our distinguishers can reduce the number of chosen plaintexts compared with
previous ones. Table 5 shows the comparison between our distinguishers and
previous ones.

6 Toward Dedicated Attack

We introduced the division property in Sect. 3, and proposed distinguishing
attacks against the Feistel Network and the SPN in Sect. 4 and Sect. 5, re-
spectively. In this section, we show that the division property is also useful to
construct the dedicated attack against specific ciphers. As an example, we show
integral distinguishers on AES-like ciphers.

6.1 AES-Like Cipher

(`, d,m)-AES AES is a 128-bit block cipher, and an intermediate text of AES
is expressed in a 4× 4 matrix whose elements are 8 bits. The round function of
AES consists of SubBytes, ShiftRows, MixColumns, and AddRoundKey, where
each function is defined as follows:

– SubBytes (SB) : It substitutes each byte in the matrix into another byte by
an S-box.

– ShiftRows (SR) : Each byte of the i-th row is rotated i− 1 bytes to the left.
– MixColumns (MC) : It diffuses bytes within each column by a linear function.
– AddRoundKey (AK) : A round key is XORed with the intermediate text.



Structural Evaluation by Generalized Integral Property 21

Algorithm 3 Evaluating algorithm against the round function of (`, d,m)-AES

1: procedure AesFuncEval(`, d,m,K)
2: for r = 1 to m do
3: for c = 1 to m do
4: if kr,c < ` then kr,c ⇐ dkr,c/de . SubBytes
5: end if
6: end for
7: end for
8: K ⇐ ShiftRows(K) . ShiftRows
9: k′c ⇐

∑m
r=1 k

′
r,c for all c . MixColumns

10: k′ ⇐ sort(k′)
11: return k′

12: end procedure

We define an (`, d,m)-AES, where `, d, and m denote the bit length of an S-box,
the algebraic degree of an S-box, and the size of the matrix, respectively. This
intermediate text is expressed in an m × m matrix whose elements are ` bits.
Let X ∈ (F`2)m×m be an input of the round function, which is arranged as

x1,1 x1,2 · · · x1,m
x2,1 x2,2 · · · x2,m

...
...

. . .
...

xm,1 xm,2 · · · xm,m

 .
Let Y ∈ (F`2)m×m be an output of the round function, which is calculated as
Y = (AK ◦ MC ◦ SR ◦ SB)(X). Each function is the same as that of AES
except for the scale. For instance, AES [32] and LED [18] adopt (8, 7, 4)-AES and
(4, 3, 4)-AES, respectively. Moreover, P256 of PHOTON [17] adopts (4, 3, 8)-AES2.

6.2 Path Search Algorithm for (`, d,m)-AES

Section 5 shows how to construct integral distinguishers on (`, d,m)-SPN, but
practical block ciphers have a specific P-Layer. For instance, the P-Layer in
AES consists of ShiftRows and MixColumns, and it is not any linear function.
Taking into account the structure of the P-Layer, we can construct more effective
algorithm. In this section, as an example, we show a path search algorithm to
construct integral distinguishers on (`, d,m)-AES. Algorithm 3 evaluates the
propagation characteristic of the division property against the round function
of AES-like ciphers, and it calls ShiftRows and sort. ShiftRows performs a
similar transformation to SR. sort is the sorting algorithm, which is useful for
feasible implementation. Algorithm 4 shows the path search algorithm, and it
calls Partition, AesFuncEval, and SizeReduce. Partition(k(i)) calculates all

2 Since PHOTON is a hash function, it uses AddConstant instead of AddRoundKey.



22 Yosuke Todo

Algorithm 4 Path search algorithm for integral distinguishers on (`, d,m)-AES

1: procedure IntegralPathSearch(`, d,m, r = 0,K ∈ {0, 1, . . . , `}m×m)
2: k(1) ⇐ AesFuncEval(`, d,m,K) . 1-st round

3: D ⇐
∑m

c=1 k
(1)
c

4: q ⇐ 1
5: while 1 < D do
6: r ⇐ r + 1
7: for i = 1 to q do
8: K(i,1), . . . ,K(i,s) ⇐ Partition(k(i))
9: for j = 1 to s do

10: k̄
(1)

, . . . , k̄
(t) ⇐ AesFuncEval(`, d,m,K(i,j)) . (r + 1)-th round

11: if (i, j) = (1, 1) then

12: k′(1), . . . ,k′(q
′) ⇐ SizeReduce(k̄

(1)
, . . . , k̄

(t)
)

13: else
14: k′(1), . . . ,k′(q

′′) ⇐ SizeReduce(k′(1), . . . ,k′(q
′), k̄

(1)
, . . . , k̄

(t)
)

15: q′ ⇐ q′′

16: end if
17: end for
18: end for
19: k(i) ⇐ k′(i) for all 1 ≤ i ≤ q′

20: q ⇐ q′

21: D ⇐ min{
∑m

c=1 k
(1)
c ,
∑m

c=1 k
(2)
c , . . . ,

∑m
c=1 k

(q)
c }

22: end while
23: return r
24: end procedure

possible K(i,j) satisfying(
m∑
r=1

k
(i,j)
r,1 ,

m∑
r=1

k
(i,j)
r,2 , . . . ,

m∑
r=1

k(i,j)r,m

)
= (k

(i)
1 , k

(i)
2 , . . . , k(i)m ),

where 0 ≤ k
(i,j)
r,c ≤ ` holds. SizeReduce eliminates k(i,j) if there exists (i′, j′)

satisfying S`m,m
k(i,j) ⊆ S`m,m

k(i′,j′) .

Notice that the size of q in the division property extremely expands when the
partition of the division property is executed (see the 8-th line in Algorithm 4).
Namely, our algorithm takes large execution time and large memory capacity
if we straightforwardly implement our algorithm. Therefore, we use an effective
method, which uses the feature of (`, d,m)-AES, for the feasible implementation.
Notice that each column of (`, d,m)-AES is equivalent each other. Assuming that

the input set has D`m,mk,k′ that k′ is a permutation of elements of k, the division
property of the next round calculated from k is exactly the same as that from k′

because columns of (`, d,m)-AES are equivalent each other. Namely, it is enough
to save either, and we implement it by a sorting algorithm (see the 10-th line in
Algorithm 3). This technique enables us to execute our path search algorithm
feasibly in many parameters.



Structural Evaluation by Generalized Integral Property 23

Table 6. The number of chosen plaintexts to construct r-round integral distinguish-
ers on (4, 3,m)-AES. Our distinguishers are got by implementing Algorithm 2 and
Algorithm 4.

Target log2(#texts) Method Reference
[Application] r = 3 r = 4 r = 5 r = 6 r = 7 r = 8

(4, 3, 4)-AES 4 12 32 52 - - our (AES) Sect. 6.2
[LED] 12 28 52 60 - - our (SPN) Sect. 5.3

28 52 60 63 - - degree [9]
4 16 - - - - integral [13, 23]

(4, 3, 5)-AES 4 12 20 72 97 - our (AES) Sect. 6.2
[P100 in PHOTON] 12 28 76 92 - - our (SPN) Sect. 5.3

28 76 92 98 - - degree [9]
4 20 - - - - integral [13, 23]

(4, 3, 6)-AES 4 12 24 84 132 - our (AES) Sect. 6.2
[P144 in PHOTON] 12 28 84 124 140 - our (SPN) Sect. 5.3

28 82 124 138 142 - degree [9]
4 24 - - - - integral [13, 23]

(4, 3, 7)-AES 4 12 24 84 164 192 our (AES) Sect. 6.2
[P196 in PHOTON] 12 28 84 160 184 192 our (SPN) Sect. 5.3

28 82 158 184 192 195 degree [9]
4 28 - - - - integral [13, 23]

(4, 3, 8)-AES 4 12 28 92 204 249 our (AES) Sect. 6.2
[P256 in PHOTON] 12 28 84 200 237 252 our (SPN) Sect. 5.3

28 82 198 237 250 254 degree [9]
4 32 - - - - integral [13, 23]

Results Table 6 shows the number of required chosen plaintexts to construct
r-round integral distinguishers on (4, 3,m)-AES. When we construct the integral
distinguisher on (`, d,m)-AES with 2D chosen plaintexts, we carefully choose the
input matrix K.

For the comparison with our improved integral distinguishers, we also show
integral distinguishers by using the propagation characteristic of the integral
property. We also estimate the algebraic degree by the method proposed Boura et
al. (see Appendix A). Moreover, since (4, 3,m)-AES are classified into (4, 3,m2)-
SPN, we construct integral distinguishers by Algorithm 2.

As a result, as far as we try, all distinguishers constructed by the division
property are at least better than those by previous methods. Especially, the
advantage of our method is large when we construct the integral distinguisher
with the small number of texts. For instance, our method shows that (4, 3, 8)-
AES, which is adopted by P256 in PHOTON, has the 6-round distinguisher with
292 chosen plaintexts. If we regard (4, 3, 8)-AES as (4, 3, 64)-SPN, 2200 chosen
plaintexts are required to construct the distinguisher.



24 Yosuke Todo

7 Conclusions

In this paper, we proposed the fundamental technique to improve integral distin-
guishers, and showed structural cryptanalyses against the Feistel Network and
the SPN. Our new technique uses the division property, which is the generaliza-
tion of the integral property. It can effectively construct integral distinguishers
even if block ciphers have non-bijective functions, bit-oriented structures, and
low-degree functions. For the Feistel Network, when the algebraic degree of the
F -function is smaller than the bit length of the F -function, our method can
attack more rounds than previous generic attacks. Moreover, we theoretically
showed that Simon 48, 64, 96, and 128 have 11-, 11-, 13-, and 13-round integral
distinguishers, respectively. For the SPN, our method extremely reduces the re-
quired number of chosen plaintexts compared with previous methods. Moreover,
we improved integral distinguishers on Keccak-f and Serpent. The division
property is useful to construct integral distinguishers against specific ciphers. As
one example, we showed a path search algorithm to construct integral distin-
guishers on the AES-like cipher, which is the sub class of the SPN. From this
fact, we expect that the division property can construct many improved integral
distinguishers against specific ciphers by constructing the dedicated path search
algorithm.

References

1. Anderson, R., Biham, E., Knudsen, L.: Serpent: A proposal for the Advanced
Encryption Standard. NIST AES Proposal (1998)

2. Andreeva, E., Bilgin, B., Bogdanov, A., Luykx, A., Mendel, F., Mennink, B.,
Mouha, N., Wang, Q., Yasuda, K.: PRIMATEs v1.02 (2014), submission to CAE-
SAR competition

3. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: Camellia: A 128-bit block cipher suitable for multiple platforms - design and
analysis. In: SAC. LNCS, vol. 2012, pp. 39–56 (2000)

4. Barreto, P.S.L.M., Rijmen, V.: The Whirlpool hashing function (2003), submit-
ted to the NESSIE project, available at http://www.larc.usp.br/~pbarreto/

WhirlpoolPage.html

5. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK families of lightweight block ciphers. IACR Cryptology
ePrint Archive 2013, 404 (2013), http://eprint.iacr.org/2013/404

6. Biryukov, A., Shamir, A.: Structural cryptanalysis of SASAS. In: EUROCRYPT.
LNCS, vol. 2045, pp. 394–405. Springer (2001)

7. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: CHES. LNCS, vol. 4727, pp. 450–466 (2007)

8. Boura, C., Canteaut, A.: On the influence of the algebraic degree of F−1 on the
algebraic degree of G◦F . IEEE Transactions on Information Theory 59(1), 691–702
(2013)

9. Boura, C., Canteaut, A., Cannière, C.D.: Higher-order differential properties of
Keccak and Luffa. In: FSE. LNCS, vol. 6733, pp. 252–269 (2011)



Structural Evaluation by Generalized Integral Property 25

10. Cannière, C.D., Sato, H., Watanabe, D.: Hash function Luffa - a SHA-3 candidate
(2008), available at http://hitachi.com/rd/yrl/crypto/luffa/round1archive/
Luffa_Specification.pdf

11. Canteaut, A., Videau, M.: Degree of composition of highly nonlinear functions and
applications to higher order differential cryptanalysis. In: EUROCRYPT. LNCS,
vol. 2332, pp. 518–533 (2002)

12. Daemen, J., Bertoni, G., Peeters, M., Assche, G.V.: The Keccak reference version
3.0 (2011)

13. Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher Square. In: FSE. LNCS,
vol. 1267, pp. 149–165 (1997)

14. Daemen, J., Peeters, M., Assche, G.V., Rijmen, V.: The Noekeon block cipher.
(2000), submitted to the NESSIE project, available at http://gro.noekeon.org/

15. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography, Springer (2002)

16. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1 (2014), sub-
mission to CAESAR competition

17. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash
functions. In: CRYPTO. LNCS, vol. 6841, pp. 222–239 (2011a)

18. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.J.B.: The LED block cipher. In:
CHES. LNCS, vol. 6917, pp. 326–341 (2011b)

19. Isobe, T., Shibutani, K.: Generic key recovery attack on Feistel scheme. In: ASI-
ACRYPT (1). LNCS, vol. 8269, pp. 464–485. Springer (2013)

20. Kavun, E.B., Lauridsen, M.M., Leander, G., Rechberger, C., Schwabe, P., Yalçin,
T.: Prøst v1.1 (2014), submission to CAESAR competition

21. Knudsen, L.R.: Truncated and higher order differentials. In: FSE. LNCS, vol. 1008,
pp. 196–211 (1994)

22. Knudsen, L.R.: The security of Feistel ciphers with six rounds or less. J. Cryptology
15(3), 207–222 (2002)

23. Knudsen, L.R., Wagner, D.: Integral cryptanalysis (extended abstract). In: FSE.
LNCS, vol. 2365, pp. 112–127 (2002)

24. Lai, X.: Higher order derivatives and differential cryptanalysis. In: Communications
and Cryptography. The Springer International Series in Engineering and Computer
Science, vol. 276, pp. 227–233 (1994)

25. Li, Y., Wu, W., Zhang, L.: Improved integral attacks on reduced-round CLEFIA
block cipher. In: WISA. LNCS, vol. 7115, pp. 28–39 (2011)

26. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseu-
dorandom functions. SIAM J. Comput. 17(2), 373–386 (1988)

27. Morawiecki, P., Gaj, K., Homsirikamol, E., Matusiewicz, K., Pieprzyk, J., Ro-
gawski, M., Srebrny, M., Wøjcik, M.: ICEPOLE v1 (2014), submission to CAESAR
competition

28. Patarin, J.: Security of random Feistel schemes with 5 or more rounds. In:
CRYPTO. LNCS, vol. 3152, pp. 106–122 (2004)

29. Sasaki, Y., Todo, Y., Aoki, K., Naito, Y., Sugawara, T., Murakami, Y., Matsui,
M., Hirose, S.: Minalpher v1 (2014), submission to CAESAR competition

30. Shibayama, N., Kaneko, T.: A peculiar higher order differential of CLEFIA. In:
ISITA. pp. 526–530. IEEE (2012)

31. of Standards, N.I., Technology: Data Encryption Standard (DES). Federal Infor-
mation Processing Standards Publication 46 (1977)

32. of Standards, N.I., Technology: Specification for the ADVANCED ENCRYPTION
STANDARD (AES). Federal Information Processing Standards Publication 197
(2001)



26 Yosuke Todo

33. Wang, Q., Liu, Z., Varici, K., Sasaki, Y., Rijmen, V., Todo, Y.: Cryptanalysis of
reduced-round SIMON32 and SIMON48. In: INDOCRYPT. LNCS, vol. 8885, pp.
143–160. Springer (2014)

34. Wu, S., Wang, M.: Integral attacks on reduced-round PRESENT. In: ICICS. LNCS,
vol. 8233, pp. 331–345 (2013)

35. Wu, W., Zhang, L.: LBlock: A lightweight block cipher. In: ACNS. LNCS, vol.
6715, pp. 327–344 (2011)

36. Yeom, Y., Park, S., Kim, I.: On the security of CAMELLIA against the Square
attack. In: FSE. LNCS, vol. 2365, pp. 89–99 (2002)

37. Z’aba, M.R., Raddum, H., Henricksen, M., Dawson, E.: Bit-pattern based integral
attack. In: FSE. LNCS, vol. 5086, pp. 363–381 (2008)

A Estimation of Algebraic Degree for (`, d,m)-SPN

If the degree of r iterated round functions is at most D, we can construct the r-
round integral distinguisher with 2D+1 chosen plaintexts. In a classical method,
if the degree of the round function is at most d, the degree of r iterated round
functions is bounded by dr. In 2011, Boura et al. showed tighter bound as follows.

Theorem 1 ([9]). Let S be a function from Fn2 into Fn2 corresponding to the
concatenation of m smaller S-boxes, defined over Fn0

2 . Let δk be the maximal
degree of the product of any k bits of anyone of these S-boxes. Then, for any
function G from Fn2 into F2, we have

deg(G ◦ S) ≤ n− n− deg(G)

γ
,

where

γ = max
1≤i≤n0−1

n0 − i
n0 − δi

.

By using this bound, we can estimate the degree of (`, d,m)-SPN. For instance,
we show the degree of (4, 3, 64)-SPN as follows.

Number of rounds 1 2 3 4 5 6 7 8 9
Bound on degree 3 9 27 81 197 236 249 253 255

Therefore, we can construct the 8-round integral distinguisher on (4, 3, 64)-SPN
with 2254 chosen plaintexts.



Structural Evaluation by Generalized Integral Property 27

B Integral Distinguishers on (`, d)-Feistel

Table 7 shows integral distinguishers on (`, d)-Feistel, where (`, d)-Feistel is de-
fined in Sect. 4.1. If we construct the dedicated path search algorithm for the
specific cipher, we expect that the algorithm can create better integral distin-
guishers.

Table 7. The number of required chosen plaintexts to construct r-round integral dis-
tinguishers on (`, d)-Feistel. We get these values by implementing Algorithm 1.

Target F -function log2(#texts) Examples
r = 6 r = 7 r = 8 r = 9 r = 10 r = 11 r = 12 r = 13 r = 14

(16, 2) non-bijection 17 25 29 31 - - - - - Simon 32 [5]
bijection 16 23 28 30 31 - - - -

(24, 2) non-bijection 17 29 39 44 46 47 - - - Simon 48 [5]
bijection 17 27 38 43 46 47 - - -

(32, 2) non-bijection 17 33 49 57 61 63 - - - Simon 64 [5]
bijection 17 32 47 56 60 62 63 - -

(48, 2) non-bijection 17 33 57 77 87 92 94 95 - Simon 96 [5]
bijection 17 33 55 76 86 91 94 95 -

(64, 2) non-bijection 17 33 65 97 113 121 125 127 - Simon 128 [5]
bijection 17 33 64 95 112 120 124 126 127

Target F -function log2(#texts) Examples
r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10 r = 11

(32, 5) non-bijection 6 26 51 62 - - - - - DES [31]
bijection 6 26 46 61 - - - - -

(48, 5) non-bijection 6 26 64 90 95 - - - -
bijection 6 26 59 89 95 - - - -

(64, 5) non-bijection 6 26 77 118 126 - - - -
bijection 6 26 72 117 126 - - - -

Target F -function log2(#texts) Examples
r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10 r = 11

(32, 7) non-bijection 8 35 60 - - - - - -
bijection 8 32 59 - - - - - -

(48, 7) non-bijection 8 49 90 - - - - - -
bijection 8 48 84 95 - - - - -

(64, 7) non-bijection 8 50 104 125 - - - - -
bijection 8 50 98 124 - - - - - Camellia [3]

Target F -function log2(#texts) Examples
r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10 r = 11

(32, 31) non-bijection 32 62 - - - - - - -
bijection 32 32 63 - - - - - -

(48, 47) non-bijection 48 94 - - - - - - -
bijection 48 48 95 - - - - - -

(64, 63) non-bijection 64 126 - - - - - - -
bijection 64 64 127 - - - - - -

(32, 32) non-bijection 33 - - - - - - - -

(48, 48) non-bijection 49 - - - - - - - -

(64, 64) non-bijection 65 - - - - - - - -



28 Yosuke Todo

C Integral Distinguishers on (`, d,m)-SPN

Table 8 shows integral distinguishers on (`, d,m)-SPN, where (`, d,m)-SPN is
defined in Sect. 5.1. If we construct the dedicated path search algorithm for the
specific cipher, we expect that the algorithm can create better integral distin-
guishers.

Table 8. The number of required chosen plaintexts to construct r-round integral dis-
tinguishers on (`, d,m)-SPN. We get these values by implementing Algorithm 2.

Target Size log2(#texts) Examples
(bits) r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10

(4, 3, 16) 64 28 52 60 - - - - PRESENT [7], LED [18]

(4, 3, 24) 96 28 76 89 - - - -

(4, 3, 32) 128 28 84 113 124 - - - Serpent [1], Noekeon [14]

(4, 3, 40) 160 28 84 136 152 - - -

(4, 3, 48) 192 28 84 156 180 188 - -

(4, 3, 56) 224 28 84 177 209 220 - -

(4, 3, 64) 256 28 84 200 237 252 - - Prøst-128 [20], Minalpher-P [29]

(4, 3, 128) 512 28 84 244 424 484 504 509 Prøst-256 [20]

Target Size log2(#texts) Examples
(bits) r = 5 r = 6 r = 7 r = 8 r = 9 r = 10 r = 11

(5, 2, 40) 200 18 35 65 130 178 195 - PRIMATE-80 [2]

(5, 2, 56) 280 18 35 65 130 230 265 275 PRIMATE-120 [2]

(5, 2, 64) 320 18 35 65 130 258 300 315 ASCON Permutation [16]

Target Size log2(#texts) Examples
(bits) r = 9 r = 10 r = 11 r = 12 r = 13 r = 14 r = 15

(5, 2, 160) 800 258 515 705 770 790 798 - Keccak-f [800] [12]

(5, 2, 256) 1280 258 515 1025 1195 1253 1271 1278

(5, 2, 320) 1600 258 515 1025 1410 1538 1580 1595 Keccak-f [1600] [12]

Target Size log2(#texts) Examples
(bits) r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9

(5, 4, 40) 200 20 65 170 195 - - -

(5, 4, 56) 280 20 65 230 270 - - -

(5, 4, 64) 320 20 65 260 305 - - -

(5, 4, 160) 800 20 65 260 665 770 795 -

(5, 4, 256) 1280 20 65 260 1025 1220 1265 - ICEPOLE Permutation [27]

(5, 4, 320) 1600 20 65 260 1025 1460 1565 1595

Target Size log2(#texts) Examples
(bits) r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9

(8, 7, 16) 128 56 120 - - - - - AES [32]

(8, 7, 24) 192 56 176 - - - - - Rijndael-192 [15]

(8, 7, 32) 256 56 232 - - - - - Rijndael-256 [15]

(8, 7, 64) 512 56 344 488 - - - - Whirlpool primitive [4]


