
Disjunctions for Hash Proof Systems:
New Constructions and Applications

Michel Abdalla, Fabrice Benhamouda, and David Pointcheval

ENS, Paris, France ?

Abstract. Hash Proof Systems were first introduced by Cramer and Shoup (Eu-
rocrypt’02) as a tool to construct efficient chosen-ciphertext-secure encryption
schemes. Since then, they have found many other applications, including password
authenticated key exchange, oblivious transfer, and zero-knowledge arguments.
One of the aspects that makes hash proof systems so interesting and powerful is
that they can be seen as implicit proofs of membership for certain languages. As a
result, by extending the family of languages that they can handle, one often obtains
new applications or new ways to understand existing schemes. In this paper, we
show how to construct hash proof systems for the disjunction of languages defined
generically over cyclic, bilinear, and multilinear groups. Among other applica-
tions, this enables us to construct the most efficient one-time simulation-sound
(quasi-adaptive) non-interactive zero-knowledge arguments for linear languages
over cyclic groups, the first one-round group password-authenticated key exchange
without random oracles, the most efficient threshold structure-preserving chosen-
ciphertext-secure encryption scheme, and the most efficient one-round password
authenticated key exchange in the UC framework.

Keywords. Hash Proof System, Non-Interactive Zero-Knowledge Proof, Group
Password Authenticated Key Exchange, Threshold Encryption, Linearly Homo-
morphic Signature, Structure Preserving Primitive.

1 Introduction

Hash Proof Systems or Smooth Projective Hash Functions (SPHFs), which can be seen
as a kind of implicit designated-verifier proofs of membership [4, 7], were originally
introduced by Cramer and Shoup [12] as a way to build efficient chosen-ciphertext-secure
(IND-CCA) encryption schemes. Informally speaking, SPHFs are families of pairs of
functions (Hash,ProjHash) defined on a language L ⊂ X . These functions are indexed
by a pair of associated keys (hk, hp), where the hashing key hk and the projection key
hp can be seen as the private and public keys, respectively. When computed on a word
C ∈ L , both functions should lead to the same result: Hash(hk,L , C) with the hashing
key and ProjHash(hp,L , C, w) with the projection key and a witness w that C ∈ L .
Of course, if C 6∈ L , such a witness does not exist, and the smoothness property states
that Hash(hk,L , C) is independent of hp. As a consequence, the value Hash(hk,L , C)
cannot be guessed even with the knowledge of hp.

? CNRS – UMR 8548, INRIA, and PSL

2 Michel Abdalla, Fabrice Benhamouda, and David Pointcheval

Since their introduction, SPHFs have been used in various applications, including
Password Authenticated Key Exchange (PAKE) [16, 23, 24], Oblivious Transfer [1,
22], One-Time Relatively-Sound Non-Interactive Zero-Knowledge Arguments [19],
Zero-Knowledge Arguments [6], and Trapdoor Smooth Projective Hash Functions
(TSPHFs) [6]. An SPHF for a language L also directly leads to a witness encryption
scheme [15] for the same language L : encrypting a message m for a word C consists in
generating an hashing key hk and a projection key hp and outputting hp together with m
masked with the hash value Hash(hk,L , C) of C under hk. If we know a witness w for
C, we can compute this hash value from hp, while if C /∈ L , this hash value statistically
masks the message.

As explained in [6], various variants of SPHFs have been proposed over the years,
depending on whether the projection key hp is allowed to depend on C and whether the
smoothness holds even when C is chosen after having seen hp. For witness encryption,
for example, the weakest notion (hp depends on C) is sufficient, while for encryption
schemes and one-round PAKE, the strongest notion (hp does not depend on C and
C may be chosen after hp in the smoothness property) is required. In this article, we
focus on the strongest notion of SPHF, also called KV-SPHF in [6], since it has more
applications. However, most parts of the paper could be adapted to use the weaker
GL-SPHF notion.

Expressiveness of SPHFs. Due to the wide range of applications of SPHFs, one
may wonder what kind of languages can be handled by SPHFs. First, since SPHF
implies statistical witness encryption, it is important to remark that it is impossible to
construct SPHF for any NP language, unless the polynomial hierarchy collapses [15].
Nevertheless, as the many different applications show, the class of languages supported
by SPHFs can be very rich.

Diverse Groups and Diverse Vector Spaces. In [12], Cramer and Shoup showed that
SPHFs can handle any language based on what they call a diverse group. Most, if not
all, constructions of SPHF are based on diverse groups. However, in the context of
languages over cyclic groups, bilinear groups or even multilinear groups, diverse groups
may appear slightly too generic. That is why, in [6], Benhamouda et al. introduced a
generic framework (later called diverse vector space) encompassing most known SPHFs
based over these kinds of groups. It can be seen as particular diverse groups with more
mathematical structure, namely using vector spaces instead of groups. In this article, we
are mainly interested on SPHFs based on diverse vector spaces.

Operations on SPHFs. In order to enrich the class of languages that can be handled
by SPHFs, Abdalla, Chevalier, and Pointcheval [4] showed how to build SPHFs for
languages that can be described in terms of disjunctions and conjunctions of simpler
languages for which SPHFs are known to exist. Let L1 and L2 be two such languages.
In the particular case of conjunctions, when given SPHFs for L1 and L2, they showed
how to build an SPHF for the conjunction L = L1 × L2, so that a word C =
(C1, C2) ∈ L if and only if C1 ∈ L1 and C2 ∈ L2. Note that this definition is a
generalization of the “classical” conjunction: C1 ∈ L if and only if C1 ∈ L1 and
C1 ∈ L2, which we can get by setting C1 = C2.

Disjunctions for Hash Proof Systems: New Constructions and Applications 3

In the case of disjunctions, when given SPHFs for L1 and L2, Abdalla et al.
showed how to build an SPHF for language L = (L1 × X2) ∪ (X1 ×L2), so that
C = (C1, C2) ∈ L if and only if C1 ∈ L1 or C2 ∈ L2. In particular, a witness
for C = (C1, C2) ∈ L can be either a witness w1 for C1 ∈ L1 or a witness w2 for
C2 ∈ L2. As for conjunctions, by setting C1 = C2, one gets the “classical” disjunction:
C = (C1, C1) ∈ L if and only if C1 ∈ L1 or C1 ∈ L2.

Unfortunately, while the conjunction of two strong SPHFs in [4] yields a strong
SPHF, the same is not true for disjunctions, where the projection key hp necessarily
depends on C. And this greatly limits its applications1.

1.1 Results

Disjunction of SPHFs. Our first main result is to show how to construct the disjunction
of two SPHFs for two languages based on diverse vector spaces. Essentially, the only
requirement for the construction is that it is possible to compute a pairing between an
element of the first language L1 and an element of the second language L2. Concretely,
if we have a bilinear map e : G1 ×G2 → GT where G1, G2 and GT are cyclic groups
of some prime order p (we say that (p,G1,G2,GT , e) is a bilinear group), and if L1

is defined over G1 and L2 over G2, then our construction provides an SPHF for the
disjunction of L1 and L2. Furthermore, this disjunction can be repeated multiple times,
if multilinear maps are available. The only limitation is that the complexity of our
constructions grows exponentially with the number of repetitions, therefore limiting the
total number of disjunctions that we can compute.

Application: Constant-Size NIZK and One-Time Simulation-Sound NIZK. First,
we show how to use disjunctions of SPHFs to create efficient non-interactive zero-
knowledge arguments (NIZK) and even one-time simulation-sound NIZK, i.e., NIZK
in which a dishonest (polynomial-time) prover cannot produce a valid proof of a false
statement, even when seeing one simulated proof on a statement of its choice (which
may be false). The proof size consists of only two group elements, even for the one-time
simulation-sound version, assuming the language we are interested in can be handled by
an SPHF over some group G1, where (p,G1,G2,GT) is an asymmetric bilinear group,
and assuming DDH is hard in G2. The languages handled roughly consist of languages
defined by “linear” equations over G1, such as the DDH language, the language of valid
Cramer-Shoup [11] ciphertexts and many other useful languages as shown in [6, 20].

Our NIZK is slightly different from a usual NIZK, since the common reference string
depends on the language. Jutla and Roy called them quasi-adaptive NIZK in [20], and
showed that they can replace NIZK in several applications.

Our one-time simulation-sound NIZK yields a very efficient structure-preserving
threshold IND-CCA encryption scheme, with the shortest ciphertext size so far. Thresh-
old means the decryption key can be shared between parties and a ciphertext can be

1 A reader familiar with [17] may wonder why the methods in [17] cannot be applied to provide a
form of disjunction, given that SPHFs exist for languages of quadratic pairing equations over
commitments [6]. Unfortunately, this technique would not yield a real SPHF, since additional
commitments would be required.

4 Michel Abdalla, Fabrice Benhamouda, and David Pointcheval

decrypted if and only if enough parties provide a partial decryption of it using their key
share, while structure-preserving means it can be used in particular with Groth-Sahai
NIZK [18] or our new NIZK construction. In addition, this new encryption can be used
in the one-round password authenticated key exchange (PAKE) scheme in the UC model
in [6] to obtain an improvement of up to 30% in the communication complexity, under
the same assumptions.

Other Applications. Another important application is the first one-round group pass-
word authenticated key exchange (GPAKE) with n players, assuming the existence of
a (n− 1)-multilinear map and the hardness of the n-linear assumption n-Lin without
random oracles2. This was an open problem. We remark, however, that our construction
only works for small values of n since the overall complexity of the protocol and the gap
in the security reduction grows exponentially in n. We note, however, that the tripartite
PAKE which only requires pairings is reasonably efficient since it consists of flows
with 61 group elements for each user (5 for the Cramer-Shoup ciphertext and 56 for the
projection key).

A second application is a new construction for TSPHF, which supports slightly
more languages than the original one, but which is slightly less efficient. A TSPHF
(Trapdoor Smooth Projective Hash Function [6]) is a variant of an SPHF with a full-
fledged zero-knowledge flavor: there exists a trapdoor for computing the hash value of
any word C ∈ X when only given C and the projection key hp.

Finally, the unforgeability of the one-time linearly homomorphic structure-preserving
signature scheme of Libert et al. [25] can be explained by the smoothness of some
underlying SPHF, which can be seen as the disjunction of two SPHFs. This new way
of seeing their signature scheme directly shows how to extend it to other assumptions,
such as SXDH, κ-Lin, or even any MDDH assumption [13] secure in bilinear groups.

Pseudo-Random Projective Hash Functions (PrPHFs) and More Efficient Appli-
cations. For our NIZK and our new TSPHF, the construction essentially consists in the
disjunction of an SPHF for the language in which we are interested, and another SPHF
for a language which is used to provide extra features (zero-knowledge and “public
verifiability” for our NIZK and trapdoor for our TSPHF). This second language L2 is
supposed to be a hard subset membership one, i.e., it is hard to distinguish a random
word C2 ∈ L2 from a random word C2 ∈ X2 \L2.

To get more efficient applications, we introduce the notion of pseudo-random pro-
jective hash functions (PrPHFs) which are particular SPHFs over trivial languages,
i.e., languages L = X , where all words are in the language. Of course, smoothness
becomes trivial, in this case. That is why PrPHFs are supposed to have another property
called pseudo-randomness, which ensures that if the parameters of the language L and
the word C are chosen at random, given a projection key hp (and no witness for C), the
hash value H of C appears random.

2 At the time the first version of this paper was made public [2], the multilinear map construction
by Coron et al. [10] seemed to be a plausible candidate. However, as recently shown by Cheon
et al. [9], this is no longer the case. Unfortunately, no current candidate multilinear map
construction is known to work for our framework for n ≥ 3.

Disjunctions for Hash Proof Systems: New Constructions and Applications 5

We then show that we can replace the second hard subset membership language
in our NIZK and our TSPHF by a trivial language with a PrPHF, assuming a certain
property over the first language L1 (which is almost always verified). This conversion
yields slightly shorter proofs (for our NIZK and our one-time simulation-sound NIZK)
or slightly shorter projection keys (for our TSPHF).

Related Work. Until now, the most efficient NIZK for similar languages was the one
of Jutla and Roy [21], and the most efficient one-time simulation-sound NIZK was
the unbounded simulation-sound NIZK of Libert et al. [26]. Even though all these
constructions have constant-size proofs, our second NIZK is slightly more efficient for
κ-linear assumptions, with κ ≥ 2, while our one-time simulation-sound NIZK is about
ten times shorter. Moreover, our construction might be simpler to understand due to its
modularity. We provide a detailed comparison in Section 7.3.

1.2 Organization

In the next section, we give the high level intuition for all our constructions and their
applications. Then, after recalling some preliminaries in Section 3, we give the details
of our construction of disjunctions of SPHFs in Section 4, which is one of our main
contributions. We then show how to build efficient NIZK and one-time simulation-sound
NIZK from it in Section 5. After that, we introduce the notion of PrPHF in Section 6
and show in Section 7 how this can improve some of our previous applications. These
last two sections are much more technical: although the underlying ideas are similar to
the ones in previous sections, the proofs are more complex. Due to lack of space, details
of our two other applications, namely one-round GPAKE and TSPHF, are presented in
the full version, but an overview is available in Section 2.3.

2 Overview of Our Constructions

2.1 Disjunction of Languages

Intuition. From a very high point of view, the generic framework [6] enables us to
construct an SPHF for any language L which is a subspace of the vector space of all
words X .

It is therefore possible to do the conjunction of two languages L1 and L2 supported
by this generic framework by remarking that L1 ×L2 is a subspace of the vector space
X1 ×X2. This construction of conjunctions is an “algebraic” version of the conjunction
proposed in [4].

Unfortunately, the same approach cannot be directly applied to the case of disjunc-
tions, because (L1 ×X2) ∪ (X1 ×L2) is not a subspace of X1 ×X2, and the subspace
generated by the former union of sets is X1 ×X2. In this article, we solve this issue by
observing that, instead of using X = X1 ×X2, we can consider the tensor product of X1

and X2: X = X1 ⊗X2. Then the disjunction of L1 and L2 can be seen as the subspace
L of X generated by: L1 ⊗X2 and X1 ⊗L2. Notice that (L1 ⊗X2) ∪ (X1 ⊗L2) is
not a subspace and so L is much larger than this union of sets. But we can prove that if
C1 ⊗ C2 ∈ L , then C1 ∈ L1 or C2 ∈ L2.

6 Michel Abdalla, Fabrice Benhamouda, and David Pointcheval

Before providing more details about these constructions, let us first briefly recall the
main ideas of the generic framework for constructing SPHFs.

Generic Framework for SPHFs. The generic framework for SPHFs in [6] uses a
common formalization for cyclic groups, bilinear groups, and even multilinear groups3

(of prime order p), called graded rings4.
Basically, graded rings enable us to use a ring structure over these groups: the

addition and the multiplication of two elements u and v, denoted u + v and u • v,
respectively, correspond to the addition and the multiplication of their discrete logarithms.
For example, if g is a generator of a cyclic group G, and a and b are two scalars in Zp,
a+ b = a+ b, a • b = a · b (because the “discrete logarithm” of a scalar is the scalar
itself), ga + gb = ga+b, and ga • gb = ga·bT , with gT a generator of another cyclic group
GT of order p.

Of course, computing ga • gb = ga·bT requires a bilinear map e : G×G → GT , if
the discrete logarithms of ga and gb are not known. And if such a bilinear map exists,
we can compute ga • gb as e(ga, gb). For a similar reason, the multiplication of three
group elements via • would require a trilinear map. Therefore, graded rings can be seen
as the ring Zp with some limitations on the multiplication. Here, to avoid technicalities,
the group of each element is implicit, and we suppose that above constraints on the
multiplications are satisfied. Formal details are left to the following sections.

From a high level point of view, in this framework, we suppose there exists a map θ
from the set of words X to a vector space X̂ of dimension n, together with a subspace
L̂ of X̂ , generated by a family of vectors (Γi)

k
i=1, such that C ∈ L if and only if

θ(C) ∈ L̂ . When the function θ is clear from context, we often write Ĉ := θ(C).
A witness for a word C ∈ L is a vector λ = (λi)

k
i=1 so that Ĉ = θ(C) =∑k

i=1 λi • Γi. In other words, it consists of the coefficients of a linear combination of
(Γi)

k
i=1 equal to Ĉ.
Then, a hashing key hk is just a random linear form hk := α ∈ X̂ ∗ (X̂ ∗ being the

dual vector space of X̂ , i.e., the vector space of linear maps from X̂ to Zp), and the
associated projection key is the vector of its values on Γ1, . . . ,Γk:

hp := γ = (γi)
k
i=1 = (α(Γi))

k
i=1.

The hash value of a word C is then H := α(Ĉ). If λ is a witness for C ∈ L , then the
latter can also be computed as:

H = α(Ĉ) = α

(
k∑
i=1

λi • Γi

)
=

k∑
i=1

λi • α(Γi) =

k∑
i=1

λi • γi,

which only depends on the witness λ and the projection key hp. The smoothness comes
from the fact that, if C /∈ L , then Ĉ /∈ L̂ and Ĉ is linearly independent from (Γi)

k
i=1.

Hence, α(Ĉ) looks random even given hp = (α(Γi))
k
i=1.

3 In this work, we need a multilinear map for which DDH, κ-Lin, or any MDDH assumption [13]
hold in the multilinear groups. Unfortunately, as explained in Footnote 2, no current candidate
multilinear map construction is known to work for our framework.

4 Graded rings were named after graded encodings systems [14] and are unrelated to the mathe-
matical notion of graded rings.

Disjunctions for Hash Proof Systems: New Constructions and Applications 7

For a reader familiar with [12], the generic framework is similar to a diverse group,
but with more structure: a vector space instead of a simple group. When θ is the identity
function, (X ∗,X ,L ,Zp) is a diverse group. We remark, however, that one does not
need to know diverse groups to understand our paper.

Example 1 (SPHF for DDH). Let us illustrate this framework for the DDH language:
let g, h be two generators of a cyclic group G of prime order p, let X = G2 and
L = {(gr, hr)ᵀ ∈ X | r ∈ Zp}. We set X̂ = X , L̂ = L and θ the identify function
so that C = Ĉ = (u, v)

ᵀ. L̂ is generated by the column vector Γ1 = (g, h)
ᵀ. The

witness for C = (gr, hr)
ᵀ is λ1 = r. The hashing key hk = α

$← X̂ ∗ can be represented
by a row vector α = (α1, α2) ∈ Z1×2

p and

hp = γ1 = α(Γ1) = α • Γ1 = gα1 · hα2

H = α(Ĉ) = α • Ĉ = uα1 · vα2 = γ1 • r = γr1 .

This is exactly the original SPHF of Cramer and Shoup for the DDH language in [12].

Remark on the Notation of Vectors (Transposition) and Link with [13]. Compared
to [6], in this paper, we transposed all the vectors and matrices: elements of X are now
column vectors, while hashing keys (elements of X ∗) are row vectors. This seems more
natural and makes our notation closer to the one of Escala et al. [13].

Warm up: Conjunction of Languages. As a warm up, let us first construct the con-
junction L = L1 ×L2 of two languages L1 ⊂ X1 and L2 ⊂ X2 supported by the
generic framework, in a more algebraic way than the one in [4]. We can just set:

X̂ := X̂1 × X̂2 n := n1 + n2

L̂ := L̂1 × L̂2 k := k1 + k2

θ((C1, C2)) = Ĉ :=

(
θ1(C1)
θ2(C2)

)
(Γi)

k
i=1 :=

((
Γ

(1)
i

0

)k1
i=1

,

(
0

Γ
(2)
i

)k2
i=1

)

This is what is implicitly done in all conjunctions of SPHFs in [6], for example.

Example 2 (SPHF for Conjunction of DDH). Let g1, h1, g2, h2 be four generators of
a cyclic group G of prime order p. Let X1 = X2 = G2 and Li = {(grii , h

ri
i)

ᵀ ∈
Xi | ri ∈ Zp} for i = 1, 2. We set X̂i = Xi, L̂i = Li and θi the identify function
so that Ci = Ĉi = (ui, vi)

ᵀ, for i = 1, 2. L̂i is generated by the column vector
Γ

(i)
1 = (gi, hi)

ᵀ. The witness for Ci = (grii , h
ri
i)

ᵀ is λ(i)1 = ri. Then, the SPHF for
the conjunction of L1 and L2 is defined by:

X̂ := X̂1 × X̂2 = G4 n = 4 k = 2

L̂ := L̂1 × L̂2 = {(gr11 , h
r1
1 , g

r2
2 , h

r2
2)

ᵀ | r1, r2 ∈ Zp}
Γ1 := (g1, h1, 1, 1)

ᵀ ∈ G4 Γ2 := (1, 1, g2, h2)
ᵀ ∈ G4

θ(C) := Ĉ := (u1, v1, u2, v2)
ᵀ ∈ G4 for C = (C1, C2) = ((u1, v1)

ᵀ
, (u2, v2)

ᵀ
)

8 Michel Abdalla, Fabrice Benhamouda, and David Pointcheval

The hashing key hk = α
$← X̂ ∗ can be represented by a row vector α = (α1, α2, α3,

α4) ∈ Z1×4
p and

hp =

(
γ1
γ2

)
=

(
α • Γ1

α • Γ2

)
=

(
gα1
1 · h

α2
1

gα3
2 · h

α4
2

)
H = α(Ĉ) = α • Ĉ = uα1

1 · v
α2
1 · u

α3
2 · v

α4
2 = γ1 • r1 + γ2 • r2 = γr11 · γ

r2
2 .

Disjunction of Languages. We first remark we cannot naively extend the previous
construction by choosing X̂ = X̂1 × X̂2 and L̂ = (L̂1 × X̂2) ∪ (X̂1 × L̂2), because,
in this case L̂ is not a subspace, and the subspace generated by L̂ is X̂1 × X̂2. That is
why we use tensor products of vector spaces instead of direct product of vector spaces.
Concretely, we set

X̂ := X̂1 ⊗ X̂2 n := n1n2

L̂ := 〈(L̂1 ⊗ X̂2) ∪ (X̂1 ⊗ L̂2)〉 k := k1n2 + n1k2

θ(C) = Ĉ := Ĉ1 ⊗ Ĉ2

where the notation 〈V 〉 is the vector space generated by V . The vectors Γi are described
in detail in the core of the paper. This construction works since, if Ĉ1 ⊗ Ĉ2 ∈ L̂ then,
thanks to properties of the tensor product, Ĉ1 ∈ L̂1 or Ĉ2 ∈ L̂2.

It is important to remark that computing a tensor product implies computing a
multiplication. So if Ĉ1 in X̂1 and Ĉ2 in X̂2 are over some cyclic groups G1 and G2, we
need a bilinear map e : G1 ×G2 → GT to actually be able to compute Ĉ1 ⊗ Ĉ2. More
generally, doing the disjunction of K languages over cyclic groups requires a K-way
multilinear map. This can be seen in the following example and we formally deal with
this technicality in the core of the paper.

Example 3 (SPHF for Disjunction of DDH). Let us use the same notation as in Exam-
ple 2, except that this time (p,G1,G2,GT , e) is an asymmetric bilinear group (e is a
bilinear map: G1×G2 → GT), g1, h1 are generators of G1, g2, h2 are generators of G2,
and Xi = X̂i = G2

i (instead of G2) for i = 1, 2.
The disjunction of L1 and L2 is defined by

X̂ := X̂1 ⊗ X̂2 = G4
T n := 4

L̂ := 〈(L̂1 ⊗ X̂2) ∪ (X̂1 ⊗ L̂2)〉 k := 4

Γ1 :=

(
g1
h1

)
⊗
(
1 ∈ Zp
0 ∈ Zp

)
=

g11
g01
h11
h01

 =

g1
1
h1
1

 ∈ G4
1

Γ2 :=

(
g1
h1

)
⊗
(
0 ∈ Zp
1 ∈ Zp

)
=

g01
g11
h01
h11

 =

1
g1
1
h1

 ∈ G4
1

Disjunctions for Hash Proof Systems: New Constructions and Applications 9

Γ3 :=

(
1 ∈ Zp
0 ∈ Zp

)
⊗
(
g2
h2

)
=

g12
h12
g02
h02

 =

g2
h2
1
1

 ∈ G4
2

Γ4 :=

(
0 ∈ Zp
1 ∈ Zp

)
⊗
(
g2
h2

)
=

g02
h02
g12
h12

 =

1
1
g2
h2

 ∈ G4
2

θ(C) = Ĉ := Ĉ1 ⊗ Ĉ2 = (u1 • u2, u1 • v2, v1 • u2, v1 • v2)ᵀ

= (e(u1, u2), e(u1, v2), e(v1, u2), e(v1, v2))
ᵀ ∈ G4

T ,

for C = (C1, C2) = ((u1, v1), (u2, v2)). The generating family of L̂ we used here is
(Γ1,Γ2,Γ3,Γ4). As seen after, if we know the witness r1 for C1, we can use Γ1 and
Γ2 to compute the hash value of C = (C1, C2), while if we know the witness r2 for C2,
we can use Γ3 and Γ4 to compute the hash value of C. Obviously this generating family
is not free, since L̂ has dimension 3 and this family has cardinality 4.

The witnesses λ for a word C = (C1, C2) are{
(r1 • u2, r1 • v2, 0, 0) if (u1, v1) = (gr1 , hr1) (i.e., if r1 is a witness for C1)
(0, 0, r2 • u1, r2 • v1) if (u2, v2) = (gr2 , hr2) (i.e., if r2 is a witness for C2),

the hashing key hk = α
$← X̂ ∗ can be represented by a row vector α = (α1, α2, α3,

α4) ∈ Z1×4
p and

hp = (γ1, γ2, γ3, γ4)
ᵀ = (gα1

1 · h
α3
1 , gα2

1 · h
α4
1 , gα1

2 · h
α2
2 , gα3

2 · h
α4
2)ᵀ ∈ G2

1 ×G2
2

H = α(Ĉ) = Ĉ •α = e(u1, u2)
α1 · e(u1, v2)α2 · e(v1, u2)α3 · e(v1, v2)α4

=

{
r1 • u2 • γ1 + r1 • v2 • γ2 = e(γ1, u2)

r1e(γ2, v2)
r1 , if (u1, v1) = (gr11 , h

r1
1)

r2 • u1 • γ3 + r2 • v1 • γ4 = e(u1, γ3)
r2e(v1, γ4)

r2 , if (u2, v2) = (gr22 , h
r2
2)

The last equalities, which show the way the projection hashing works, explain the choice
of the generating family (Γi)i.

2.2 Main Application: One-Time Simulation-Sound NIZK Arguments

The language of the NIZK is L1, while L2 is a hard subset membership language used
to build the NIZK. For the sake of simplicity, we suppose that L2 = L̂2, X2 = X̂2, and
θ2 is the identity function. We will consider the SPHF of the disjunction of L1 and L2,
so we need to suppose that it is possible to build it. For this high level overview, let us
just suppose that (p,G1,G2,GT , e) is a bilinear group and that L1 is defined over G1,
L2 over G2. If DDH holds in G2, L2 can just be the DDH language in G2 recalled in
Example 1.

The common reference string is a projection key hp for the disjunction of L1 and
L2, while the trapdoor (to simulate proofs) is the hashing key. Essentially, a proof

10 Michel Abdalla, Fabrice Benhamouda, and David Pointcheval

π = (πi2)i2 for a statement C1 is just a vector of the hash values of (C1, e2,i2) where
(e2,i2)i2 are the scalar vectors of the canonical base of X̂2. These hash values are
πi2 = α(Ĉ1 ⊗ e2,i2), and can also be computed from the projection key hp and a
witness for Ĉ1.

The basic idea is that a valid proof for a word C1 ∈ L1 enables us to compute the
hash value H ′ of (C1, C2) for any word C2 ∈ X̂2, by linearly combining elements of
the proof, since any word C2 can be written as a linear combination of (e2,i2)i2 :

H ′ :=
∑
i2

πi2 • C2,i2 =
∑
i2

α(Ĉ1 ⊗ (C2,i2 • e2,i2)) = α(Ĉ1 ⊗ C2),

if C2 =
∑
i2
C2,i2 • e1,i2 . Hence, for any word C2 ∈ L2 for which we know a witness,

we can compute the hash value of (C1, C2), either using a valid proof for C1 (as H ′

above), or directly using the witness of C2 and the projection key hp (as for any SPHF
for a disjunction).

To check a proof, we basically check that for any word C2 ∈ L2, these two ways
of computing the hash value of (C1, C2) yields the same result. Thanks to the linearity
of the language L2, it is sufficient to make this test for a family of words C2 which
generate L2, such as the words Γ (2)

j (for j = 1, . . . , k2). We recall that the witness for

Γ
(2)
j is the column vector (0, . . . , 0, 1, 0, . . . , 0)ᵀ ∈ Zk2p , where the j-th coordinate is 1.

The trapdoor, i.e., the hashing key, clearly enables us to simulate any proof, and
the resulting proofs are perfectly indistinguishable from normal ones, hence the perfect
zero-knowledge property. Moreover, the soundness comes from the fact that a proof for
a word C1 /∈ L1 can be used to break the hard subset membership in L2.

More precisely, let us consider a soundness adversary which takes as input the
projection key hp and which outputs a word C1 /∈ L1 and a valid proof π for C1. On
the one hand, such a valid proof enables us to compute the hash value H ′ of (C1, C2)
for any word C2 ∈ L2, by linearly combining elements of the proofs (as seen above),
and the validity of the proof ensures the resulting value H ′ is correct if C2 ∈ L2. On
the other hand, we can also compute a hash value H of (C1, C2) for any C2 ∈ X2 using
the hashing key hk. Then, if C2 ∈ L2, necessarily H = H ′, while if C2 /∈ L2, the
smoothness ensures thatH looks completely random when given only hp. SinceH ′ does
not depend on hk but only on hp, it is different from H with overwhelming probability.
Therefore, we can use such an adversary to solve the hard subset membership problem
in L2 (namely, the DDH in G2 in the example below).

Example 4 (NIZK for DDH in G1, assuming DDH in G2). Using the SPHF in Ex-
ample 3, the proof for a word C1 = (u1 = gr1, v1 = hr1) ∈ G2

1 is the vector
π = (π1, π2) ∈ G2

1 where: π1 is the hash value of (C1, (1, 0)
ᵀ) ∈ G2

1 × Z2
p and

π2 is the hash value of (C1, (0, 1)
ᵀ) ∈ G2

1 × Z2
p. Concretely we have:

π1 = γ1 • r = γr1 ∈ G1 π2 = γ2 • r = γr2 ∈ G1.

This proof is valid if and only if:

e(π1, g2) · e(π2, h2) = π1 • g2 + π2 • h2 ?= u1 • γ3 + v1 • γ4 = e(u1, γ3) · e(v1, γ4).

Disjunctions for Hash Proof Systems: New Constructions and Applications 11

This check can be done using the common reference string hp = (γ1, γ2, γ3, γ4).
Finally, to simulate a proof for C1 = (u1, v1) without knowing any witness for C1

but knowing the trapdoor hk = α = (α1, α2, α3, α4) ∈ Z1×4
p , we compute π1 and π2

as follows:

π1 := u1 • α1 + v1 • α3 = uα1
1 · v

α3
1 π2 := u1 • α2 + v1 • α4 = uα2

1 · v
α4
1 .

To get a one-time simulation-sound NIZK, we replace the SPHF over L1 by a
stronger kind of SPHF for which, roughly speaking, the hash value of a word C /∈ L1

appears random even if we are given the projection key hp and the hash value of another
word C ∈ X1 of our choice. We show that it is always possible to transform a normal
SPHF into this stronger variant, assuming the existence of collision-resistant hash
functions5.

2.3 Other Applications

TSPHF. A TSPHF is an extension of an SPHF, with an additional CRS and an associ-
ated trapdoor, where the latter provides a way to efficiently compute the hash value of
any word C knowing only the projection key hp. Since hp now needs to contain enough
information to compute the hash value of any word in X , the smoothness property of
TSPHFs is no longer statistical but computational. As shown in [6], TSPHFs can be
used to construct two-round zero-knowledge protocols and the most efficient one-round
PAKE in the standard model.

TSPHF is a direct application of disjunctions of SPHFs: as for NIZK, the language
we are interested in is L1, while L2 is a hard subset membership language. The common
reference string contains a word C2 ∈ L2, and the trapdoor is just a witness w2 for
this word. The hash value of some C1 ∈ X1, is the hash value of (C1, C2) for the
disjunction of L1 and L2, which can be computed in two or three ways: using hk, or
using hp and w1 (classical projection hashing — possible only when C1 ∈ L1 and w1

is a witness for it), or using hp and w2 (trapdoor). The smoothness comes from the hard
subset membership property of L2 (which says that this common reference string is
indistinguishable from a word C2 /∈ L2) and the fact that when C2 /∈ L2, the hash
value of (C1, C2) appears random by smoothness when C1 /∈ L1, given only hp.

The resulting TSPHF is slightly less efficient than the construction in [6]: if L2

corresponds to the DDH language (Example 1), the projection key contains less than
twice more elements than the original construction. But it has the advantage of handling
more languages, since contrary to the original construction, there is no need to have a
trapdoor Tcrs for crs which enables us to compute the discrete logarithms of all entries of
Γ1 (a property called witness-samplability in [20])6.

5 Actually, the use of collision-resistant hash functions could be avoided, but that would make
the construction much less efficient.

6 However, due to the definition of computational smoothness of TSPHF in [6], it is still required
to have such a trapdoor Tcrs enabling to check whether a word C1 is in L1 or not. It may be
possible to change definitions to avoid that, but in all applications we are aware of, this is never
a problem.

12 Michel Abdalla, Fabrice Benhamouda, and David Pointcheval

One-Time Linearly Homomorphic Structure-Preserving Signature. We can obtain
the one-time linearly homomorphic structure-preserving signature scheme of messages
in Gn1

1 of Libert et al. [25] and extend it to work under any hard-subset membership
language assumption, such as the DDH language in Example 1 but also DLin or any
MDDH assumption [13] as seen later (instead of just DLin as in the original paper). The
construction is very similar to our NIZK construction.

Let L2 = L̂2 ⊂ X2 = X̂2 be a hard membership language and X1 = X̂1 = Gn1
1

(the language L1 = L̂1 will be defined later). The secret key is the hashing key hk = α
of the SPHF of the disjunction of L1 and L2 (notice that it does not depend on the
language L̂1 but only on X̂1), while the public key is the associated projection key when
L1 = L̂1 = {0}. The signature of a message M ∈ X̂1 = Gn1

1 is the vector of the
hash values of (M , e2,i2) where (e2,i2)i2 are the scalar vectors of the canonical base of
X̂2. It can be computed using the secret key hk. Actually, this corresponds to the NIZK
proof of M (computed using the trapdoor hk), in our NIZK scheme above. Checking
the signature can be done by checking the validity of the proof using the projection key
hp when L̂1 = {0}.

Finally, to prove the one-time unforgeability, we just need to remark that knowing
signatures ofM1, . . . ,Mn ∈ X̂1 actually can be seen as knowing a projection key hp′

associated to hk when L̂1 is the subspace generated by Γ1 := M1, . . . ,Γn := Mn.
Therefore, generating a signature of a messageM linearly independent of these messages
means generating an NIZK proof for a statementM /∈ L̂1, which has been shown to be
hard thanks to the smoothness property of the SPHF and the hard subset membership
property of L2.

One-Round GPAKE. A one-round group password-based authenticated key exchange
(GPAKE) is a protocol enabling n users sharing a password pw to establish a common
secret key sk in only one round: just by sending one flow. For such protocols, online
dictionary attacks, which consist in guessing the password of an honest user and running
honestly the protocol with this guessed password, are unavoidable. As a result, the best
security that one can hope for is to limit the adversary to at most one password guess per
interaction with an honest party. In order to capture this intuition, the formal security
model of Abdalla et al. [3], which is recalled in the full version, essentially guarantees
that, in a secure GPAKE scheme, no adversary having at most q interactions with honest
parties can win with probability higher than q/N , where N is the number of possible
passwords. Here, winning means distinguishing a real key (generated by an honest user
following the protocol, controlled by the challenger) from a random key sk.

Our construction is a non-trivial extension of the one-round PAKE of Benhamouda et
al. in [6], which is an efficient instantiation of the Katz-Vaikuntanathan framework [24].
Basically, a user Ui (1 ≤ i ≤ n) sends an extractable commitment Ci (i.e., an encryption
for some public key ek in the common reference string) of his password pw together with
a projection key hpi for the disjunction of n− 1 languages of valid commitments of pw
(words in this disjunction are tuple Ci = (Cj)j 6=i of n− 1 commitments where at least
one of them is a valid commitment of pw). Each partner Uj of this user Ui can compute
the hash value Hi of the tuple Ci, with hpi, just by additionally knowing the witness
(the random coins) of his commitment Cj onto pw, while Ui uses hki. The resulting

Disjunctions for Hash Proof Systems: New Constructions and Applications 13

secret key K is just the XOR of all these hash values (one per hashing key, i.e., one per
user): sk = H1 xor · · · xorHn.

At a first glance, one may wonder why our construction relies on a disjunction and
not on a conjunction: intuitively, as a user, we would like that every other user commits
to the same password as ours. Unfortunately, in this case, nobody would be able to
compute the hash value of the expected conjunction, except for the user who generated
the hashing key. This is because this computation would require the knowledge of all
the witnesses and there is no way for a user to know the witness for a commitment of
another user. However, by relying on a disjunction, each user is only required to know
the witness for his own commitment.

To understand why this is a secure solution, please note that the challenger (in the
security game) can make dummy commitments for the honest players he controls. Then,
if no corrupted user (controlled by the adversary) commits to a correct password, the
tuple of the n − 1 other commitments would not be a valid word in the disjunction
language (no commitment would be valid) for any of the honest users. Hence, the hash
value would appear random to the adversary. The complete proof is a very delicate
extension of the proof of the one-round PAKE of Katz and Vaikuntanathan in [24], and
may be of independent interest.

Due to recent results by Cheon et al. [9], currently no concrete instantiation of our
GPAKE is known for n ≥ 4 (see Footnote 2 on page 4). For n = 3, our scheme only
relies on bilinear groups and is practical

2.4 Pseudo-Random Projective Hash Functions and More Efficient Applications

Pseudo-Random Projective Hash Functions. As already explained in Section 1.1, for
our (one-time simulation-sound) NIZK and our TSPHF, the second language L2 is used
to provide extra features. Security properties come from its hard subset membership
property. However, hard subset membership comes at a cost: the dimension k2 of L̂2 has
to be at least 1 to be non-trivial, and so the dimension n2 of X̂2 is at least 2, otherwise
L̂2 = X̂2. This makes the projection key of the disjunction of L1 and L2 of size
k1n2 + n1k2 ≥ 2k1 + n1.

Intuitively, what we would like is to be able to have a language L2 where n2 = k2 =
1. Such a language would clearly not be hard subset membership, and the smoothness
property of SPHF would be completely trivial, since X̂2 \ L̂2 would be empty. That is
why we introduce the notion of pseudo-randomness which says that the hash value of a
word C2 chosen at random in X2 (and for implicit languages parameters crs2 chosen at
random), the hash value of C2 looks random, given only the projection key.

Under DDH in G2, we can simply choose crs2 = g2 a random generator in G2,
X2 = X̂2 = L2 = L̂2 = G2, and θ2 the identity function. The witness for a word
C2 ∈ G2 is just its discrete logarithm in base g2, and so L̂2 is seen as generated by the
vector Γ (2)

1 = (g2). An hashing key hk is just a random scalar α ∈ Zp, the associated
projection key is hp = gα2 . Finally the hash value is H = Cα2 . It can also be computed
using hp if we know the discrete logarithm of C2. The DDH assumption says that if
g2, hp = gα2 , C2 are chosen uniformly at random in G2, it is hard to distinguishH = Cα2
from a random group element H ∈ G2; hence the pseudo-randomness.

14 Michel Abdalla, Fabrice Benhamouda, and David Pointcheval

Mixed Pseudo-Randomness. In all our applications, we are not really interested in the
SPHF on L2 but in the SPHF on the disjunction L of L1 and L2. Of course, this
SPHF would be smooth, but that property is again trivial, since all words (C1, C2) are
in L . We therefore again need a stronger property called mixed pseudo-randomness
which roughly says that if hk is a random hashing key, if C1 /∈ L1 and if C2 is chosen
at random, the hash value of (C1, C2) ∈ L appears random to any polynomial-time
adversary, even given access to the projection key hp.

The proof of this property is quite technical and requires that it is possible to generate
parameters of L1 so that we know the discrete logarithm of the generators (Γ (1)

i1
)
i1

of

L̂1. This last property is verified by most languages in which we are interested.

Applications. Using the mixed pseudo-randomness property, we easily get more efficient
NIZK and TSPHF, just by replacing L2 by a language L2 with a pseudo-random
Projective Hash Function. Getting a more efficient one-time simulation-sound NIZK
is slightly more complex and is only detailed in the core of the paper. The resulting
TSPHF construction actually corresponds to the original construction in [6]. But seeing
it as a disjunction of an SPHF for the language we are interested in and of a pseudo-
random projective hash function sheds new light on the construction and make it easier
to understand, in our opinion.

3 Preliminaries

3.1 Notation

As usual, all the players and the algorithms will be possibly probabilistic and stateful.
Namely, adversaries can keep a state st during the different phases, and we denote by $←
the outcome of a probabilistic algorithm or the sampling from a uniform distribution.
The statement y $← A(x; r) denotes the operation of runningA with input x and random
tape r and storing the result in y. For the sake of clarity, we will sometimes omit the
random tape r in A(x; r).

The qualities of adversaries will be measured by their successes and advantages
in certain experiments Expsec or Expsec−b (between the cases b = 0 and b = 1), de-
noted Succsec(A,K) and Advsec(A,K) respectively, where K is the security parameter.
Formal definition of all of this and of statistical distance can be found in the full version.

3.2 Definition of SPHF

Let (Lcrs)crs be a family of NP languages indexed by crs with witness relation Rcrs,
namely Lcrs = {x ∈ Xcrs | ∃w, Rcrs(x,w) = 1}, where (Xcrs)crs is a family set. The
value crs is generated by a polynomial-time algorithm Setupcrs taking as input the unary
representation of the security parameter K, and is usually a common reference string.
The description of the underlying group or graded ring is implicit and not part of crs. We
suppose that membership in Xcrs andRcrs can be checked in polynomial time (in K).

Finally, we suppose that Setupcrs also outputs a trapdoor Tcrs associated to crs. This
trapdoor is empty⊥ in most cases, but for some applications (namely NIZK constructions

Disjunctions for Hash Proof Systems: New Constructions and Applications 15

from Section 7), we require that Tcrs contains enough information to decide whether
a word C ∈ X is in L or not (or slightly more information). We notice that for most,
if not all, languages (we are interested in), it is easy to make Setupcrs output such a
trapdoor, without changing the distribution of crs. In the sequel, crs is often dropped to
simplify notation.

An SPHF over (Lcrs) is defined by four polynomial-time algorithms:

– HashKG(crs) generates a hashing key hk;
– ProjKG(hk, crs) derives a projection key hp from hk;
– Hash(hk, crs, C) outputs the hash value from the hashing key, for any crs and for

any word C ∈ X ;
– ProjHash(hp, crs, C, w) outputs the hash value from the projection key hp, and the

witness w, for a word C ∈ Lcrs (i.e.,Rcrs(C,w) = 1).

The set of hash values is called the range and is denoted Π . It is often a cyclic group.
We always suppose that its size is super-polynomial in the security parameter K so that
the probability to guess correctly a uniform hash value is negligible.

An SPHF has to satisfy two properties:

– Perfect correctness. For any crs and any word C ∈ Lcrs with witness w (i.e., such
that Rcrs(C,w) = 1), for any hk

$← HashKG(crs) and for hp ← ProjKG(hk, crs),
Hash(hk, crs, C) = ProjHash(hp, crs, C, w);

– Perfect smoothness. The hash value of a word outside the language looks completely
random. More precisely, an SPHF is 0-smooth or perfectly smooth if for any crs
and any C /∈ Lcrs, the following two distributions are identical:{

(hp, H) | hk $← HashKG(crs); hp← ProjKG(hk, crs);H ← Hash(hk, crs, C)
}

{
(hp, H) | hk $← HashKG(crs); hp← ProjKG(hk, crs);H

$← Π
}
.

As shown in the full version, this definition of SPHF actually corresponds to a strong
version of KV-SPHF [6] with perfect smoothness7. In particular, it is stronger than the
definition of SPHF given in [12], where the smoothness is not perfect and is actually
defined only for random elements C ∈ X \Lcrs. This is also slightly stronger than the
1-universal hash proof systems also defined in [12], since the hash value is supposed to
look completely random and not just having some minimal entropy.

We restrict ourselves to this very strong form of SPHFs for the sake of simplicity
and because most applications we consider require KV-SPHF. However, the construction
of disjunctions of SPHFs can still easily be extended to weaker forms of SPHFs.

3.3 Hard Subset Membership Languages

A family of languages (Lcrs ⊆ Xcrs)crs is said to be a hard subset membership family
of languages, if is hard to distinguish between a word randomly drawn from inside

7 The reader familiar with [6] may remark that in our definition, there is no parameter aux in
addition to crs. This parameter is indeed useless in the context of KV-SPHFs (contrary to
GL-SPHFs), as it can be included in the word C.

16 Michel Abdalla, Fabrice Benhamouda, and David Pointcheval

Lcrs from a word randomly drawn from outside Lcrs (i.e., from Xcrs \ Lcrs). This
definition implicitly assumes the existence of a distribution over Xcrs and a way to
sample efficiently words from Lcrs and from Xcrs \ Lcrs. This property is formally
defined in the full version.

3.4 Bilinear Groups, Graded Rings and Assumptions

All our concrete constructions are based on bilinear groups, which are extensions of cyclic
groups. Even though groups should be generated by an appropriate setup algorithm taking
the security parameter as input, our definitions below use fixed groups for simplicity.

Cyclic Groups and Bilinear Groups. (p,G, g) denotes a (multiplicative) cyclic group
G of order p and of generator g. When (p,G1, g1), (p,G2, g2), and (p,GT , gT) are three
cyclic groups, (p,G1,G2,GT , e, g1, g2) or (p,G1,G2,GT , e) is called a bilinear group
if e : G1 × G2 → GT is a bilinear map (called a pairing) efficiently computable and
such that e(g1, g2) = gT is a generator of GT . It is called a symmetric bilinear group if
G1 = G2 = G. In this case, we denote it (p,G,GT , e) and we suppose g = g1 = g2.
Otherwise, if G1 6= G2, it is called an asymmetric bilinear group.

Graded Rings. To understand the constructions in the article, it is sufficient to see a
graded ring as a way to use ring operations (+, •) over cyclic groups, bilinear groups,
or even multilinear groups, as explained at the beginning of Section 2.1. In the sequel,
we will often consider two multiplicatively compatible sub-graded rings G1 and G2 of
some graded ring G: this basically means that it is possible to compute the product • of
any element of G1 with any element of G2, and the result is in G. Concretely, as a first
approach, it is possible to consider that G is a bilinear group (p,G1,G2,GT , e), and that
G1 and G2 corresponds to G1 and G2: if u1 ∈ G1 and u2 ∈ G2, u1 • u2 = e(u1, u2).
General and formal definitions are given in the full version.

Assumptions. The assumption we use the most is the SXDH assumption The SXDH
assumption over a bilinear group (p,G1,G2,GT , e, g1, g2) says the DDH assumption
holds both in (p,G1, g1) and (p,G2, g2), where the DDH assumption is defined as
follows:

Definition 5 (Decisional Diffie-Hellman (DDH)). The Decisional Diffie-Hellman as-
sumption says that, in a cyclic group (p,G, g), when we are given (ga, gb, gc) for
unknown random a, b

$← Zp, it is hard to decide whether c = ab mod p (a DH tuple) or
c

$← Zp (a random tuple).

We also propose constructions under weaker assumptions than SXDH or DDH,
namely κ-Lin, defined as follows:

Definition 6 (κ-Lin). The κ-Linear assumption says that, in a cyclic group (p,G, g) ,
when we are given (ga1 , . . . , gaκ , ga1b1 , . . . , gaκbκ , gc) for unknown a1, . . . , aκ, b1, . . . ,
bκ

$← Zp, it is hard to decide whether c = b1 + · · ·+ bκ (a κ-Lin tuple) or c $← Zp (a
random tuple).

The 1-Lin assumption is exactly DDH. One advantage of κ-Lin with κ ≥ 2 is that it
can hold even in symmetric bilinear groups (where G1 = G2) while DDH or SXDH do

Disjunctions for Hash Proof Systems: New Constructions and Applications 17

not. 2-Lin is also denoted DLin, and κ-Lin often means κ-Lin in G1 and in G2. Actually,
our constructions can easily be tweaked to support any MDDH assumption [13]. MDDH
assumptions generalize κ-Lin assumptions.

4 Smooth Projective Hash Functions for Disjunctions

4.1 Generic Framework and Diverse Vector Spaces

Let us now recall the generic framework for SPHFs. We have already seen the main
ideas of this framework in Section 2.1. These ideas were stated in term of generic vector
space. Even though using generic vector spaces facilitates the explanation of high level
ideas, it is better to use an explicit basis when it comes to details. As already explained
in Section 2.1 on page 7, compared to [6], all vectors and matrices are transposed.

Let G be a graded ring. We now set X̂ = Gn, so that any vector Ĉ ∈ X̂ is a
n-dimensional column vector. We denote by (ei)

n
i=1 the canonical basis of X̂ . The dual

space of X̂ is isomorphic8 to Z1×n
p , and the hashing key α ∈ X̂ ∗ corresponds to the

row vector α = (αi)
n
i=1, with αi = α(ei). We denote by Γ the matrix with columns

(Γi)
k
i=1, where the family (Γi) generates the subspace L̂ of X̂ . Finally, we assume

that for each coordinate of the vector θ(C) ∈ Gn, the group in which it is (called the
index of the coordinate, in the formal description of graded rings in the full version) is
independent of C.

We suppose that, a word C ∈ X is in L if and only if there exists λ ∈ Gk such that
Ĉ := θ(C) = Γ • λ. We also assume the latter equality holds if and only if it would
hold by only looking at the discrete logarithms (and not at the groups or indexes of
entries or coordinates)9. In addition, we suppose that λ can be computed easily from any
witness w for C; and in the sequel we often simply consider that w = λ. By analogy
with diverse groups [12], as explained in Section 2.1, we say that a tuple V = (X ,L ,R,
G, n, k, Γ, θ) satisfying the above properties is a diverse vector space.

A summary of diverse vector spaces and the construction of SPHF over them can
be found in Fig. 1. It is straightforward to see (and this is proven in [6]) that any SPHF
defined by a discrete vector space V as in Fig. 1 is correct and smooth.

4.2 Disjunctions of SPHFs

As explained in Section 2.1, an SPHF for the disjunction of two languages L1 and L2

roughly consists in doing the tensor product of their related vector spaces X̂1 and X̂2.
However, our vector spaces are not classical vector spaces, since they are over graded
rings. In particular, multiplication of scalars is not always possible, and so tensor product
may not be always possible either. That is why, we first need to introduce the notion of
tensor product of vector spaces over graded rings, before giving the detailed construction
of disjunctions of SPHFs.

Tensor Product of Vector Spaces over Graded Rings. Let us very briefly recall nota-
tions for tensor product and adapt them to vector spaces over graded rings. Let G1 and G2

8 Here we consider X̂ as Zn
p , for the sake of simplicity.

9 Formal requirements can be found in the full version.

18 Michel Abdalla, Fabrice Benhamouda, and David Pointcheval

Diverse Vector Space V = tuple (X ,L ,R,G, n, k, Γ, θ) where

– n, k are two positive integers;
– L ⊂ X is an NP-language, defined by a witness relation R (and im-

plicitely indexed by crs):

Lcrs = {x ∈ Xcrs | ∃λ ∈ Gk, Rcrs(x,λ) = 1}

– G is a graded ring;
– θ is a function from L to Gn; notation: Ĉ := θ(C);
– Γ is a matrix in Gn×k;

such that for C ∈ X and λ ∈ Gk:

R(x,λ) = 1 ⇐⇒ Ĉ := θ(C) = Γ • λ,

plus some additional technical assumptions on groups or indexes of coeffi-
cients of θ(C) and Γ (see text).
Notation: L̂ is the vector space generated by the columns of Γ ;

SPHF for V = (X ,L ,R,G, n, k, Γ, θ):
HashKG(crs) outputs a random row vector hk := α

$← Z1×n
p

ProjKG(hk, crs) outputs hp := γ = α • Γ ∈ G1×k

Hash(hk, crs, C) outputs H := α • Ĉ ∈ G
ProjHash(hp, crs, C,λ) outputs H ′ := γ • λ ∈ G

Fig. 1. Diverse Vector Space and Smooth Projective Hash Function (SPHF)

be two multiplicatively compatible sub-graded rings of G. Let V1 be a n1-dimensional
vector space over G1 and V2 be a n2-dimensional vector space over G2. Let (e1,i)

n1

i=1
and (e2,i)

n2

i=1 be bases of V1 and V2 respectively. Then the tensor product V of V1 and
V2, denoted V = V1⊗V2 is the n1n2-dimensional vector space over G generated by the
free family (e1,i ⊗ e2,j)i=1,...,n1

j=1,...,n2

. The operator⊗ is bilinear, and if u =
∑n1

i=1 ui •e1,i

and v =
∑n2

j=1 vj • e2,j , then:

u⊗ v =

n1∑
i=1

n2∑
j=1

(ui • vj) • (e1,i ⊗ e2,j).

More generally, we can define the tensor product of two matrices M ∈ Gk×m1 and
M ′ ∈ Gk

′×m′

2 , T =M ⊗M ′ ∈ Gkk
′×mm′

by

T(i−1)k′+i′,(j−1)m′+j′ =Mi,j •M ′i′,j′ for

{
i = 1, . . . , k, i′ = 1, . . . , k′,

j = 1, . . . ,m, j′ = 1, . . . ,m′.

And if M ∈ Gk×m1 , M ′ ∈ Gk
′×m′

2 , N ∈ Gm×n1 and N ′ ∈ Gm
′×n′

2 , and if M •N and
M ′ •N ′ are well-defined (i.e., index of coefficients are “coherent”), then we have

(M ⊗M ′) • (N ⊗N ′) = (M •N)⊗ (M ′ •N ′).

Disjunctions for Hash Proof Systems: New Constructions and Applications 19

Finally, this definition can be extended to more than 2 vector spaces.

Disjunctions of SPHFs. In Fig. 2, we show the construction of the disjunction of two
diverse vector spaces, over two multiplicatively sub-graded rings G1 and G2 of some
graded ring G. In applications, we will often have G1 = G1 and G2 = G2 where
(p,G1,G2,GT , e, g1, g2) is a bilinear group.

Diverse vector space V = (X ,L ,R,G, n, k, Γ, θ) disjunction of diverse
vector spaces V1 = (X1,L1,R1,G1, n1, k1, Γ1, θ1) and V2 = (X2,L2,
R2,G2, n2, k2, Γ2, θ2):

– G1 and G2 are two multiplicatively compatible sub-graded rings of G;
– n = n1n2 k = k1n2 + n1k2;
– X = X1 ×X2 L = (L1 ×X2) ∪ (X1 ×L2)
– Γ =

(
Γ (1) ⊗ Idn2 Idn1 ⊗ Γ (2)

)
θ((C1, C2)) = Ĉ1⊗ Ĉ2;

– Witnesses λ for C = (C1, C2) ∈ L (i.e., vectors λ ∈ Gk such that
R(C,λ) = 1) are:

λ =

(
λ1 ⊗ Ĉ2

0 ∈ Zn1k2
p

)
whenR1(C1,λ1) = 1(

0 ∈ Zk1n2
p

Ĉ1 ⊗ λ2

)
whenR2(C2,λ2) = 1

for any C = (C1, C2) ∈ X and any λ ∈ Gn.

Notation: Due to the form of witnesses, we split γ in two parts: γ(1) cor-
responds to the first k1n2 columns of γ, while γ(2) corresponds to the last
k2n1 columns of γ.

Fig. 2. Disjunction of Diverse Vector Spaces

Let us explain this construction. First, the rows of Γ generate the following subspace
of X̂ = G1×n = X̂1 ⊗ X̂2:

L̂ = 〈(L̂1 ⊗ X̂2) ∪ (X̂1 ⊗ L̂2)〉,

where X̂1 = Gn1
1 , X̂2 = Gn2

2 , L̂1 is the subspace of X̂1 generated by the rows of
Γ (1) and L̂2 is the subspace of X̂2 generated by the rows of Γ (2). So this construction
corresponds exactly to the one sketched in the Section 2.1.

Then, we need to prove that V is really a diverse vector space, namely that C ∈ L
if and only if θ(C) ∈ L̂ . Clearly, if C = (C1, C2) ∈ L , then Ĉ1 ∈ L̂1 or Ĉ2 ∈ L̂2

and so Ĉ = Ĉ1 ⊗ Ĉ2 ∈ L̂ . Now, let us prove the converse. Let C = (C1, C2) /∈ L .
So, Ĉ1 /∈ L̂1 and Ĉ2 /∈ L̂2. Let H1 and H2 be supplementary vector spaces of L̂1 and
L̂2 (in X̂1 and X̂2, respectively). Then X̂1 is the direct sum of L̂1 and H1, while X̂2 is
the direct sum of L̂2 and H2. Therefore, L̂1 ⊗ X̂2 is the direct sum of L̂1 ⊗ L̂2 and
L̂1 ⊗H2, while X̂1 ⊗ L̂2 is the direct sum of L̂1 ⊗ L̂2 and H1 ⊗ L̂2. So finally, L̂ is

20 Michel Abdalla, Fabrice Benhamouda, and David Pointcheval

the direct sum of L̂1 ⊗ L̂2, L̂1 ⊗H2 and H1 ⊗ L̂2; and H1 ⊗H2 is a supplementary
of L̂ . Since 0 6= Ĉ1 ⊗ Ĉ2 ∈ H1 ⊗H2, θ(C) = Ĉ1 ⊗ Ĉ2 /∈ L̂ .

Besides showing the correctness of the construction, this proof helps to better un-
derstand the structure of L̂ . In particular, it shows that L̂ has dimension l1l2 + (n1 −
l1)l2 + l1(n2 − l2) = l1n2 + n1l2 − l1l2, if L̂1 has dimension l1 and L̂2 has dimen-
sion l2. If the rows of Γ (1) and Γ (2) are linearly independent, l1 = k1 and l2 = k2,
L̂ has dimension k1n2 + n1k2 − k1k2, which is less than k1n2 + n1k2, the number
of rows of Γ . Therefore the rows of Γ are never linearly independent. Actually, this
last result can directly be proven by remarking that if Ĉ1 ∈ L̂1 and Ĉ2 ∈ L̂2, then
Ĉ1⊗Ĉ2 ∈ (L̂1⊗X̂2)∩(X̂1⊗L̂2). For the sake of completeness, detailed and concrete
equations are detailed in the full version.

5 One-Time Simulation-Sound NIZK from Disjunctions of SPHFs

In this section, we present our construction of NIZK and one-time simulation-sound
NIZK from disjunctions of SPHFs. The latter requires the use of a new notion: 2-smooth
projective hash functions. We suppose the reader is familiar with NIZK and one-time
simulation-sound NIZK. Formal definitions can be found in the full version.

5.1 NIZK from Disjunctions of SPHFs

Construction. In Fig. 3, we show how to construct a NIZK for any family of lan-
guages L1 such that there exist two diverse vector spaces V1 = (X1,L1,R1,G1, n1,
k1, Γ

(1), θ1) and V2 = (X2,L2,R2,G2, n2, k2, Γ
(2), θ2) over two multiplicatively-

compatible sub-graded rings G1 and G2 of some graded ring G, such that the second
diverse vector space corresponds to a hard subset membership language. In particular,
this construction works for any diverse vector space V1 where G1 = G1 is a cyclic
group of some bilinear group (p,G1,G2,GT , e), where SXDH holds, by using as V2
the discrete vector space for DDH over G2 (Example 1).

The proof π of a word C1 can just be seen as the hash values of rows10 of Ĉ1⊗ Idn2
.

Let us now show that our NIZK is complete, zero-knowledge and sound.

Completeness. If the proof π has been generated correctly, the left hand side of the
verification equation (Eq. (1)) is equal to

γ(1) • (λ1 ⊗ Idn2) • Γ (2) = (α • (Γ (1) ⊗ Idn2)) • (λ1 ⊗ Idn2) • (Id1 ⊗ Γ (2))

= α • (Γ (1) ⊗ Idn2
) • ((λ1 • Id1)⊗ (Idn2

• Γ (2)))

= α • (Γ (1) ⊗ Idn2) • (λ1 ⊗ Γ (2))

= α • ((Γ (1) • λ1)⊗ (Idn2
• Γ (2))),

while the right hand side is always equal to:

γ(2)•(Ĉ1⊗Idk2) = α•(Idn1
⊗Γ (2))•(Ĉ1⊗Idk2) = α•((Idn1

•Ĉ1)⊗(Γ (2)•Idk2)),
10 This is not quite accurate, since rows of Ĉ1 ⊗ Idn1 are not words in X but in X̂ . But to give

intuition, we will often make this abuse of notation.

Disjunctions for Hash Proof Systems: New Constructions and Applications 21

NIZK for V1 = (X1,L1,R1,G1, n1, k1, Γ1, θ1), using V2 = (X2,L2,
R2,G2, n2, k2, Γ2, θ2), with L2 a hard subset membership language:

– V = (X ,L ,R,G, n, k) disjunction of V1 and V2;
– Setup: computes hk = α

$← Z1×n
p , hp = γ = Γ • α, and outputs

trapdoor T := hk, and CRS σ := (crs2, hp);
– Proof π of C1 ∈ L1 with witness λ1 ∈ Gk1 :

π := γ(1) • (λ1 ⊗ Idn2) ∈ G1×n2
1 ;

– Verification of proof π for C1:

π • Γ (2) ?= γ(2) • (Ĉ1 ⊗ Idk2), (1)

– Simulation of proof π for C1 knowing T = hk:

π := α • (Ĉ1 ⊗ Idn2).

Fig. 3. NIZK from Disjunctions of Diverse Spaces

which is the same as the left hand side, since Γ (1) • λ1 = Idn1
• Ĉ1 and Idn2

• Γ (2) =
Γ (2) • Idk2 . Hence the completeness. Another way to see it, is that the row i2 of the
right hand side is the hash value of “(Ĉ1, Γ

(2) • e2,i2)” computed using the witness
λ2 = e2,i2 , while the row i2 of the left hand side is this hash value computed using the
witness λ1.

Zero-Knowledge. The (perfect) unbounded zero-knowledge property comes from the
fact that the normal proof π for C1 ∈ L1 with witness λ1 is:

γ(1)•(λ1⊗ Idn2
) = α•(Γ (1)⊗ Idn2

)•(λ1⊗ Idn2
) = α•((Γ (1)•λ1)⊗(Idn2

• Idn2
)),

which is equal to the simulated proof for C1, as Ĉ1 = Γ (1) •λ1 and Idn2 • Idn2 = Idn2 .

Soundness. It remains to prove the soundness property, under the hard subset member-
ship of L2. We just need to show that if the adversary is able to generate a valid proof
π for a word C1 /∈ L1, then we can use π to check if a word C2 is in L2 or not. More
precisely, let C2 ∈ X2, let H be the hash value of (C1, C2) computed using hk, and let
us define H ′ := π • Ĉ2.

On the one hand, if C2 ∈ L2, there exists a witness λ2 such that Ĉ2 = Γ (2) • λ2

and so, thanks to (1):

H ′ = π • Γ (2) • λ2 = γ(2) • (Ĉ1 ⊗ Idk2) • λ2 = γ(2) • (Ĉ1 ⊗ λ2) = H,

the last equality coming from the correctness of the SPHF and the fact the last-but-one
expression is just the hash value of (C1, C2) computed using ProjHash and witness λ2.

On the other hand, if C2 /∈ L2, then (C1, C2) /∈ L . So H looks completely random
by smoothness and the probability that H ′ = H is at most 1/|Π|.

Toward One-Time Simulation Soundness. The previous proof does not work anymore
if the adversary is allowed to get even one single simulated proof of a word C1 /∈ L1.

22 Michel Abdalla, Fabrice Benhamouda, and David Pointcheval

Indeed, in this case, the smoothness does not hold anymore, in the above proof of
soundness. That is why we need a stronger form of smoothness for SPHF, called
2-smoothness.

5.2 2-Smooth Projective Hash Functions

Definition. In order to define the notion of 2-smoothness, let us first introduce the notion
of tag-SPHF. A tag-SPHF is similar to an SPHF except that Hash and ProjHash now
take a new input, called a tag tag ∈ Tags. Similarly a tag diverse vector space is a
diverse vector space where the function θ also takes as input a tag tag ∈ Zp. The vector
λ is now allowed to depend on tag, but the matrix Γ is independent of tag.

A 2-smooth SPHF is a tag-SPHF for which the hash value of a word C ∈ X for a
tag tag looks random even if we have access to the hash value of another word C ′ ∈ X
for a different tag tag′ 6= tag. Formally, a tag-SPHF is perfectly 2-smooth, if for any
crs, any C ′ ∈ X , any distinct tags tag, tag′, and any C /∈ Lcrs, the following two
distributions are identical:{

(hp, H ′, H)

∣∣∣∣ hk
$← HashKG(crs); hp← ProjKG(hk, crs);

H ′ ← Hash(hk, crs, (C ′, tag′)); H ← Hash(hk, crs, (C, tag))

}
{
(hp, H ′, H)

∣∣∣∣∣ hk
$← HashKG(crs); hp← ProjKG(hk, crs);

H ′ ← Hash(hk, crs, (C ′, tag′)); H
$← Π

}
.

A weaker (statistical instead of perfect) definition is proposed in the full version. The
2-smoothness property is similar to the 2-universality property in [12]. There are however
two minor differences, the first being the existence of an explicit tag, and the second
being that the hash value of a word outside the language is supposed to be uniformly
random instead of just having some entropy. This slightly simplifies its usage in our
constructions, in our opinion.

Canonical Construction from Diverse Vector Spaces. Let V = (X ,L ,R,G, n, k,
Γ, θ) be a diverse vector space. If we set ñ = 2n, k̃ = 2k, and:

Γ̃ =

(
Γ 0
0 Γ

)
λ̃ =

(
λ

tag • λ

)
θ̃(C, tag) =

(
Ĉ

tag • Ĉ

)
,

where λ̃ is the witness for a word C ∈ L and a tag tag, then Ṽ = (X ,L ,R,G, ñ, k̃, Γ̃ ,
θ̃) is a 2-smooth diverse vector space. It is clear thatC ∈ L if and only if ˜̂C = θ̃(C, tag)
is a linear combination of rows of Γ .

To prove the 2-smoothness property, let C ′ ∈ X and C ∈ X \L , and let tag′ and
tag be two distinct tags. We have

˜̂C ′ =

(
Ĉ ′

tag′ • Ĉ ′

)
and ˜̂C =

(
Ĉ

tag • Ĉ

)
.

We just need to prove that ˜̂C is not in the subspace generated by the rows of Γ and ˜̂C ′,
or in other words that it is not in L̂ ′ = 〈L̂ ∪ { ˜̂C ′}〉. Indeed, in that case, H ′ could just

Disjunctions for Hash Proof Systems: New Constructions and Applications 23

be seen as a part of the projection key for the language L̂ ′, and by smoothness, we get
that H looks uniformly random.

So it remains to prove that linear independence of ˜̂C. By contradiction, let us suppose
there exists λ̃ ∈ Z2k

p and µ such that:

˜̂C =

(
Ĉ

tag • Ĉ

)
= Γ̃ • λ̃+ ˜̂C ′ • µ =

(
Γ 0
0 Γ

)
• λ̃+

(
Ĉ ′

tag′ • Ĉ ′

)
• µ.

Therefore ˜̂C + µ • ˜̂C ′ and tag • ˜̂C + tag′ • µ • ˜̂C ′ are both linear combination of rows
of Γ , and so is

tag′ • (˜̂C + µ • ˜̂C ′) + (tag • ˜̂C + tag′ • µ • ˜̂C ′) = (tag′ − tag) • ˜̂C.

As tag′ − tag 6= 0, this implies that ˜̂C is also a linear combination of rows of Γ , hence
C ∈ L , which is not the case.

5.3 One-Time Simulation-Sound Zero-Knowledge Arguments from SPHF

Let us now replace the first diverse vector space by its canonical 2-smooth version in the
NIZK construction of Section 5.1. The resulting construction is a one-time simulation-
sound NIZK, if Ĉ1 is computed as θ1(C1, tag) where tag is the hash value of (C1, `)
under some collision-resistant hash functionH: tag = H((C1, `)).

Completeness and perfect zero-knowledge can be proven the same way. It remains to
prove the one-time simulation soundness. The proof is similar to the one in Section 5.1,
except for the final step: proving that the hash value H of (C1, C2) with tag tag =
H((C1, `)) looks random even if the adversary sees a simulated NIZK π′ for a word
C ′1 ∈ X1 and label `′.

We first remark that the tag tag′ can be supposed distinct from the tag tag for the
NIZK π created by the adversary, thanks to the collision-resistance ofH. We recall that
π′ is the hash values of the rows of Ĉ ′1⊗ Idn2

. So to prove that the hash value of (C1, C2)
with tag tag looks random even with access to π′, we just need to remark that Ĉ1 ⊗ Ĉ2

is linearly independent of rows of Γ and Ĉ ′1 ⊗ Idn2
. The proof is similar to the proof of

2-smoothness.

Remark 7. It would be easy to extend this construction to handle N -time simulation-
sound NIZK, for any constant N . The NIZK CRS σ size would just be N times larger
compared to the NIZK construction of Section 5.1, and the proof size would remain
constant.

5.4 Concrete Instantiation

If V1 is a diverse vector space over G1 and V2 is the diverse vector space for DDH in
G2, where (p,G1,G2,GT , e, g1, g2) is a bilinear group where DDH is hard in G2, then
we get a NIZK and a one-time simulation sound NIZK whose proof is composed of only
n2 = 2 group elements in G1.

24 Michel Abdalla, Fabrice Benhamouda, and David Pointcheval

More generally, we can use as V2, any diverse vector space from any MDDH assump-
tion [13]. Under κ-Lin, we get a proof consisting of only n2 = κ+ 1 group elements.
Details can be found in the full version.

Languages handled are exactly languages for which there exists such a diverse vector
space V1 over G1. That corresponds to languages handled by Jutla and Roy NIZK [20],
which they call linear subspaces (assuming θ is the identity function), if we forget the fact
that in [20], it is supposed that crs can be generated in such a way that discrete logarithms
of Γ is known (that is what they call witness-samplable languages). That encompasses
DDH, κ-Lin, and languages of ElGamal, Cramer-Shoup or similar ciphertexts whose
plaintexts verify some linear system of equations, as already shown in [6]. Concrete
comparison with previous work can be found in Section 7.3.

5.5 Application: Threshold Cramer-Shoup-like Encryption Scheme

The Cramer-Shoup public-key encryption scheme [11] is one of the most efficient
IND-CCA encryption schemes with a proof of security in the standard model. We
remark here that, if we replace the last part of a Cramer-Shoup ciphertext (the 2-universal
projective hash proof) by a one-time simulation-sound NIZK on the DDH language, we
can obtain an IND-CCA scheme supporting efficient threshold decryption. Intuitively,
this comes from the fact that the resulting scheme becomes “publicly verifiable”, in the
sense that, after verifying the NIZK (which is publicly verifiable), one can obtain the
underlying message via “simple” algebraic operations which can easily be “distributed”.

Previous one-time simulation-sound NIZK were quite inefficient and the resulting
scheme would have been very inefficient compared to direct constructions of threshold
IND-CCA encryption schemes. However, in our case, our new one-time simulation-
sound NIZK based on disjunctions of SPHF only adds one group element to the cipher-
text (compared to original Cramer-Shoup encryption scheme; see the full version for
details). In addition, both the encryption and the decryption algorithms only require to
perform operations in the first group G1. A detailed comparison is given in Section 7.4,
where we also introduce a more efficient version of that threshold encryption scheme, for
which the ciphertexts have the same size as the ciphertexts of the original Cramer-Shoup
encryption scheme.

6 Pseudo-Random Projective Hash Functions and Disjunctions

In this section, we sometimes make explicit use of crs (or crs1, or crs2), the language
parameters of the diverse vector space V (respectively of V1, and V2), to provide clearer
definitions. We recall that we suppose there exists an algorithm Setupcrs which can
generate crs together with a trapdoor Tcrs. Contrary to construction in previous sections,
where Tcrs =⊥, the security of the constructions in this section will depend on some
properties of Tcrs.

6.1 Pseudo-Randomness

Definition. An SPHF is said to be pseudo-random, if the hash value of a random word
C in Lcrs looks random to an adversary only knowing the projection key hp and ignoring

Disjunctions for Hash Proof Systems: New Constructions and Applications 25

Expps-rnd-b(A,K)
(crs, Tcrs) $← Setupcrs(1

K)

hk
$← HashKG(crs)

hp← ProjKG(hk, crs)

C
$← Lcrs

if b = 0 then
H ← Hash(hk, crs, C)

else H $← Π
return A(crs, C, hp, H)

Expmixed-ps-rnd-b(A,K)
(crs = (crs1, crs2), (Tcrs1 , Tcrs2))

$← Setupcrs(1
K)

hk
$← HashKG(crs); hp← ProjKG(hk, crs)

C2
$← L2,crs2

(C1, st)
$← A(crs, Tcrs1 , hp, C2); C ← (C1, C2)

if b = 0 or C1 ∈ L1,crs1 then
H ← Hash(hk, crs, C)

else H $← Π
return A(st, H)

Fig. 4. Experiments Expps-rnd-b and Expmixed-ps-rnd-b for pseudo-randomness and mixed pseudo-
randomness

the hashing key hk and a witness for the word C. More precisely, this property is defined
by the experiments Expps-rnd-b depicted in Fig. 4. Contrary to smoothness, this property
is computational. A projective hashing function which is pseudo-random is called a
PrPHF. A PrPHF is not necessarily smooth.

Link with Hard Subset Membership Languages. It is easy to see that an SPHF over
a hard subset membership family of languages is pseudo-random. This yields a way to
create PrPHF under DDH using Example 1. However, this is inefficient since, in this
case X has dimension 2, while we would prefer to have X of dimension 1. Actually,
since for hard subset membership languages, Lcrs 6= X , any SPHF based on diverse
vector space for these languages is such that X has dimension at least 2. More generally,
as shown in 5.4, for a hard subset membership language based on κ-Lin, X = G1×(κ+1)

and Lcrs has dimension κ. That is why, we introduce another way to construct PrPHF,
still based on diverse vector spaces, but not using hard subset membership languages.

6.2 Canonical PrPHF under κ-Lin

Let us construct a diverse vector space (X ,L ,R,G, n, k, Γ, θ) which yields a pseudo-
random SPHF under κ-Lin in the cyclic group G.

We set X = Lcrs = {⊥} and X̂ = L̂crs = Gκ. For DDH = 1-Lin, we get a PrPHF
with X of dimension 1, which is the best we can do using diverse vector spaces. Even
though the resulting projective hash function will be smooth, the smoothness property is
completely trivial, since Lcrs \ X is empty, and does not imply the pseudo-randomness
property. We will therefore need to manually prove the pseudo-randomness.

The “language” is defined by crs = (ζ1, . . . , ζκ)
$← Gκ and the PrPHF by:

Γ :=

ζ1 0 . . . 0
0 ζ2 . . . 0
...

...
. . .

...
0 0 . . . ζκ

 ∈ Gκ×κ λ :=

ζ̂1
ζ̂2
...
ζ̂κ

 ∈ Zκp θ(⊥) :=

g
g
...
g

 ∈ Gκ

hk := α
$← Z1×κ

p hp := (γ1, . . . , γκ)
ᵀ
= (ζα1

1 , . . . , ζακκ)
ᵀ ∈ Gκ

26 Michel Abdalla, Fabrice Benhamouda, and David Pointcheval

H :=

n∏
i=1

gαi = g
∑n
i=1 αi =

n∏
i=1

γ ζ̂ii =: H ′,

where λ is the witness for C =⊥, with ζi = g1/ζ̂i . The pseudo-randomness directly
comes from the hardness of κ-Lin.

6.3 Disjunction of an SPHF and a PrPHF

Let V1 = (X1,L1,R1,G1, n1, k1, Γ
(1), θ1) and V2 = (X2,L2,R2,G2, n2, k2, Γ

(2),
θ2) be two diverse vector spaces over two multiplicatively sub-graded rings G1 and G2

of some graded ring G. Let V = (X ,L ,G, n, k, Γ, θ) be the vector space corresponding
to the disjunction of the two previous languages. We have already seen that this vector
space corresponds to a smooth projective hash function.

But, if the second language is the canonical PrPHF under κ-Lin, the smoothness
brings nothing, since X = L . Therefore, we need to prove a stronger property called
mixed pseudo-randomness.

Definition of Mixed Pseudo-Randomness. The resulting SPHF is said mixed pseudo-
random, if the hash value of a word C = (C1, C2) looks random to the adversary, when
C1 /∈ L1 is chosen by the adversary, whileC2 is chosen at random in L2. More precisely,
the mixed pseudo-randomness property is defined by the experiments Expmixed-ps-rnd-b

depicted in Fig. 4.

Proof of Mixed Pseudo-Randomness. The proof of mixed pseudo-randomness is actu-
ally close to the one for computational soundness of trapdoor smooth projective functions
in [6]. It requires that Tcrs1 contains enough information to be able to compute the discrete
logarithm of elements of Γ (1), denoted L(Γ (1)).

The proof reduces the pseudo-randomness property to the mixed pseudo-randomness
property. The detailed proof is quite technical and can be found in the full version.
Basically, we choose a random hashing key ε and we randomize it using a basis of the
kernel of L(Γ (1)) and projection keys given by the pseudo-randomness game (for some
fixed word C2, using an hybrid method). Then we show how to compute from that, a
valid projection key hp for the language of the disjunction together with a hash value
H of (C1, C2), for C1 /∈ L1. This value H is the correct hash value, if the hash values
of C2, given by the challenger of the hybrid pseudo-randomness game, were valid; and
it is a random value, otherwise. That proves that an adversary able to break the mixed
pseudo-randomness property also breaks the pseudo-randomness property.

7 One-Time Simulation-Sound NIZK from Disjunctions of an
SPHF and a PrPHF

7.1 NIZK from Disjunctions of an SPHF and a PrPHF

The construction is identical to the one in Section 5.1, except that the second diverse
vector space V2 is just supposed to be a PrPHF, and no more supposed to be related to a
hard subset membership language L2. However, we suppose that the disjunction of V1

Disjunctions for Hash Proof Systems: New Constructions and Applications 27

and V2 yields a mixed pseudo-random SPHF, which is the case if Tcrs contains enough
information to compute the discrete logarithm of elements of Γ (1).

Completeness and zero-knowledge can be proven exactly in the same way. It remains
therefore to prove the soundness property, under the mixed pseudo-randomness. The
proof is very similar to the one in Section 5.1: if π is a proof of some word C1 /∈ L1,
then it is possible to compute the hash value of any word (C1, C2) with C2 ∈ L2 as
H ′ := Ĉ2 • π. This comes from the fact that if C2 ∈ L2, then there exists λ2 such that
Ĉ2 = λ2 • Γ (2), hence:

H ′ = λ2 • Γ (2) • π = λ2 • (Ĉ1 ⊗ Idk2) • γ(2) = (Ĉ1 ⊗ λ2) • γ(2),

which is the hash value of (C1, C2) computed using ProjHash and witness λ2. But the
mixed pseudo-randomness property ensures that this value looks uniformly random
when C2 is chosen randomly in L2. That proves the soundness property.

7.2 One-Time Simulation-Sound NIZK

Unfortunately, for the one-time simulation-sound variant, this is not as easy: the construc-
tion in Section 5.3 seems difficult (if at all possible) to prove sound. The main problem
is that the security proof of mixed pseudo-randomness is not statistical, so we do not
know hk = α, but only some representation of α, which does not allow computing the
proof π′ of a word C ′1 for a tag tagC′

1
. Directly adapting the proof with a 2-smooth V1

would require to choose from the beginning π′ (as is chosen hp from the beginning), but
that is not possible since C ′1 and tag′ (the tag for C ′1) are not known at the beginning of
the game.

Our solution is to use the tag bit-by-bit. So we just need to guess which bit is different
between tagC1

and tagC′
1
. This idea is inspired from [8]. Details can be found in the full

version.

7.3 Concrete Instantiation and Comparison with Previous Work

If V1 is a diverse vector space over G1 (for which Tcrs1 gives enough information to
compute the discrete logarithm of Γ (1)) and V2 is the canonical PrPHF under DDH in
Section 6.2, where (p,G1,G2,GT , e) is a bilinear group where DDH is hard in G2, then
we get an NIZK and a one-time simulation sound NIZK whose proof is composed of only
n2 = 1 group element in G1. More generally, if V2 is canonical PrPHF under κ-Lin,
then the proof consists of only κ group elements, one less than our first construction
in Section 5.4. However, this encompasses slightly fewer languages than this first
construction, due to the restriction on L1 and Tcrs1 . More precisely, our NIZK handles
the same languages as Jutla-Roy NIZK in [20, 21].

Table 1 compares NIZK for linear subspaces as Jutla and Roy call it in [20], i.e., any
language over G1 (first group of some bilinear group) for which there exists a diverse
vector space V1 (assuming θ is the identity function and a witness is λ ∈ Zkp). Some of
the entries of this table were derived from [21] and from [26]. The DDH (in G2) variant
requires asymmetric bilinear groups, while the κ-Lin variant for κ ≥ 2 could work on
symmetric bilinear groups.

28 Michel Abdalla, Fabrice Benhamouda, and David Pointcheval

Table 1. Comparison of NIZK for linear subspaces

DDH (in G2) DLin (in G1 = G2 = G)

WS Proof |π| Pairings Proof |π| Pairings

Groth-Sahai [18] n+ 2k 2n(k + 2) 2n+ 3k 3n(k + 3)
Jutla-Roy [20] 3 n− k (n− k)(k + 2) 2n− 2k 2(n− k)(k + 2)
Libert et al. [26] 3 2n+ 4
Libert et al. [26] RSS 4 2n+ 6
Libert et al. [26] USS 20 2n+ 30
Jutla-Roy [21] 3 1 n+ 1 2 2(n+ 2)
§5.1 2 n+ 2 3 2n+ 3
§7.1 3 1 n+ 1 2 2n+ 2
§5.3 OTSS 2 2n+ 2 3 4n+ 3
§7.2 OTSS 3 1 νn+ 2 2 2νn+ 2

– full table with CRS sizes in the full version;
– n = n1, k = k1, and ν = 2K; pairings: number of pairings required to verify the proof;
– sizes |·| are measured in term of group elements (G1 and G2, or G if the bilinear group is symmetric). Generators

g1 ∈ G1 and g2 ∈ G2 (for DDH in G2) or g ∈ G (for DLin) are not counted in the CRS;
– OTSS: one-time simulation-soundness; RSS: single-theorem relative simulation-soundness [19] (weaker than

OTSS); USS: universal simulation-soundness (stronger than OTSS);
– WS: witness-samplability in [20], generation of crs so that Tcrs1 enables us to compute the discrete logarithms

of Γ1. This slightly restricts the set of languages which can be handled.

First of all, as far as we know, our one-time simulation-sound NIZK is the most
efficient such NIZK with a constant-size proof: the single-theorem relatively-sound
construction of Libert et al. [26] is weaker than our one-time simulation-sound NIZK and
requires at least one group element more in the proof, while their universal simulation-
sound construction is much more inefficient. A direct application of our construction is
our efficient structure-preserving threshold IND-CCA encryption scheme, under DDH.

Second, the DLin version of our NIZK in Section 5.1 is similar to the one by Libert
et al. [26], but our DLin version of our NIZK in Section 7.1 is more efficient (the proof
has 2 group elements instead of 3). Furthermore, the ideas of the constructions in [26]
seem quite different.

Third, our NIZK in Section 7.1 is similar to the one by Jutla and Roy in [21] for
DDH. However, in our opinion, our construction seems to be more modular and simpler
to understand. In addition, under κ-Lin, with κ ≥ 2, our construction is slightly more
efficient in terms of CRS size and verification time.

7.4 Application: Threshold Cramer-Shoup-like Encryption Scheme (Variant)

In the construction of Section 5.5, we can replace the previous one-time simulation-
sound NIZK by this new NIZK. This yields a threshold encryption where the ciphertext
size only consists of 4 group elements as the original Cramer-Shoup encryption scheme,
at the expense of having a public key size linear in the security parameter.

Our two schemes are threshold and structure-preserving [5]: they are “compatible”
with Groth-Sahai NIZK, in the sense that we can do a Groth-Sahai NIZK to prove
that we know the plaintext of a ciphertext for our encryption schemes. In addition,

Disjunctions for Hash Proof Systems: New Constructions and Applications 29

normal decryption does not require any pairings, which still are very costly, compared
to exponentiations. A detailed comparison with existing efficient IND-CCA encryption
schemes based on cyclic or bilinear groups is given in the full version. To summarize, to
the best of our knowledge, our two constructions are the most efficient threshold and
structure-preserving IND-CCA encryption schemes.

Acknowledgments. We would like to thank Jens Groth and the anonymous reviewers
for detailed comments on a previous version of this paper. This work was supported in
part by the French ANR-12-INSE-0014 SIMPATIC Project, the CFM Foundation, the
European Commission through the FP7-ICT-2011-EU-Brazil Program under Contract
288349 SecFuNet, and the European Research Council under the European Commu-
nity’s Seventh Framework Programme (FP7/2007-2013 Grant Agreement no. 339563 –
CryptoCloud).

References

1. Abdalla, M., Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D.: SPHF-friendly non-
interactive commitments. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol.
8269, pp. 214–234. Springer (Dec 2013)

2. Abdalla, M., Benhamouda, F., Pointcheval, D.: Disjunctions for hash proof systems: New
constructions and applications. Cryptology ePrint Archive, Report 2014/483 (2014), http:
//eprint.iacr.org/2014/483

3. Abdalla, M., Bresson, E., Chevassut, O., Pointcheval, D.: Password-based group key exchange
in a constant number of rounds. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.)
PKC 2006. LNCS, vol. 3958, pp. 427–442. Springer (Apr 2006)

4. Abdalla, M., Chevalier, C., Pointcheval, D.: Smooth projective hashing for conditionally
extractable commitments. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 671–689.
Springer (Aug 2009)

5. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving
signatures and commitments to group elements. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 209–236. Springer (Aug 2010)

6. Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: New techniques
for SPHFs and efficient one-round PAKE protocols. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 449–475. Springer (Aug 2013)

7. Blazy, O., Pointcheval, D., Vergnaud, D.: Round-optimal privacy-preserving protocols with
smooth projective hash functions. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp.
94–111. Springer (Mar 2012)

8. Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 435–460. Springer (Aug
2013)

9. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear map over
the integers. Cryptology ePrint Archive, Report 2014/906 (2014), http://eprint.iacr.
org/2014/906

10. Coron, J.S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 476–493. Springer (Aug
2013)

http://eprint.iacr.org/2014/483
http://eprint.iacr.org/2014/483
http://eprint.iacr.org/2014/906
http://eprint.iacr.org/2014/906

30 Michel Abdalla, Fabrice Benhamouda, and David Pointcheval

11. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive
chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO’98. LNCS, vol. 1462, pp. 13–25.
Springer (Aug 1998)

12. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext
secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 45–64. Springer (Apr / May 2002)

13. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for Diffie-
Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol.
8043, pp. 129–147. Springer (Aug 2013)

14. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johansson,
T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer (May 2013)

15. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications. In: Boneh,
D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC. pp. 467–476. ACM Press (Jun
2013)

16. Gennaro, R., Lindell, Y.: A framework for password-based authenticated key exchange. In:
Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 524–543. Springer (May 2003),
http://eprint.iacr.org/2003/032.ps.gz

17. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size group
signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459.
Springer (Dec 2006)

18. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N.P.
(ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer (Apr 2008)

19. Jutla, C.S., Roy, A.: Relatively-sound NIZKs and password-based key-exchange. In: Fischlin,
M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 485–503. Springer
(May 2012)

20. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In: Sako, K.,
Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 1–20. Springer (Dec 2013)

21. Jutla, C.S., Roy, A.: Switching lemma for bilinear tests and constant-size NIZK proofs for
linear subspaces. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617,
pp. 295–312. Springer (Aug 2014)

22. Kalai, Y.T.: Smooth projective hashing and two-message oblivious transfer. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 78–95. Springer (May 2005)

23. Katz, J., Ostrovsky, R., Yung, M.: Efficient password-authenticated key exchange using
human-memorable passwords. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045,
pp. 475–494. Springer (May 2001)

24. Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenticated key exchange. In:
Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 293–310. Springer (Mar 2011)

25. Libert, B., Peters, T., Joye, M., Yung, M.: Linearly homomorphic structure-preserving signa-
tures and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS,
vol. 8043, pp. 289–307. Springer (Aug 2013)

26. Libert, B., Peters, T., Joye, M., Yung, M.: Non-malleability from malleability: Simulation-
sound quasi-adaptive NIZK proofs and CCA2-secure encryption from homomorphic signa-
tures. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 514–532.
Springer (May 2014)

http://eprint.iacr.org/2003/032.ps.gz

	Disjunctions for Hash Proof Systems: New Constructions and Applications
	Introduction
	Results
	Organization

	Overview of Our Constructions
	Disjunction of Languages
	Main Application: One-Time Simulation-Sound NIZK Arguments
	Other Applications
	Pseudo-Random Projective Hash Functions and More Efficient Applications

	Preliminaries
	Notation
	Definition of SPHF
	Hard Subset Membership Languages
	Bilinear Groups, Graded Rings and Assumptions

	Smooth Projective Hash Functions for Disjunctions
	Generic Framework and Diverse Vector Spaces
	Disjunctions of SPHFs

	One-Time Simulation-Sound NIZK from Disjunctions of SPHFs
	NIZK from Disjunctions of SPHFs
	2-Smooth Projective Hash Functions
	One-Time Simulation-Sound Zero-Knowledge Arguments from SPHF
	Concrete Instantiation
	Application: Threshold Cramer-Shoup-like Encryption Scheme

	Pseudo-Random Projective Hash Functions and Disjunctions
	Pseudo-Randomness
	Canonical PrPHF under k-Lin
	Disjunction of an SPHF and a PrPHF

	One-Time Simulation-Sound NIZK from Disjunctions of an SPHF and a PrPHF
	NIZK from Disjunctions of an SPHF and a PrPHF
	One-Time Simulation-Sound NIZK
	Concrete Instantiation and Comparison with Previous Work
	Application: Threshold Cramer-Shoup-like Encryption Scheme (Variant)

