
A Generic Approach to Invariant Subspace
Attacks: Cryptanalysis of Robin, iSCREAM and

Zorro

Gregor Leander1?, Brice Minaud2, Sondre Rønjom3

1 Horst Görtz University for IT Security, Ruhr-Universität Bochum, Germany
2 Agence Nationale de la Sécurité des Systèmes d’Information, France

3 Nasjonal sikkerhetsmyndighet, Norway
gregor.leander@rub.de, brice.minaud@gmail.com, sondrer@gmail.com

Abstract. Invariant subspace attacks were introduced at CRYPTO 2011
to cryptanalyze PRINTcipher. The invariant subspaces for PRINTci-
pher were discovered in an ad hoc fashion, leaving a generic technique
to discover invariant subspaces in other ciphers as an open problem.
Here, based on a rather simple observation, we introduce a generic al-
gorithm to detect invariant subspaces. We apply this algorithm to the
CAESAR candidate iSCREAM, the closely related LS-design Robin, as
well as the lightweight cipher Zorro. For all three candidates invariant
subspaces were detected, and result in practical breaks of the ciphers. A
closer analysis of independent interest reveals that these invariant sub-
spaces are underpinned by a new type of self-similarity property. For all
ciphers, our strongest attack shows the existence of a weak key set of den-
sity 2−32. These weak keys lead to a simple property on the plaintexts
going through the whole encryption process with probability one. All
our attacks have been practically verified on reference implementations
of the ciphers.

Key words: Cryptanalysis, Lightweight Cryptography, Invariant Sub-
space, Self-Similarity, iSCREAM, LS-Designs, Zorro, CAESAR

Introduction

Block ciphers are one of the most essential cryptographic primitives. Our un-
derstanding of how to build secure block ciphers has greatly advanced in the
last 20 years. Nowadays, analyzing a given block cipher with respect to a large
class of non-trivial attacks, including linear and differential attacks and their
variants, is a well-understood process for a large class of block ciphers. However,
when it comes to designing block ciphers with strong performance requirements,
often less conservative approaches are chosen. Examples of such performance
requirements that have recently been studied extensively include low hardware
footprint (e.g. PRESENT [6], LED [20], KATAN [10]), low memory consumption

? The work of Gregor Leander was funded by the BMBF UNIKOPS project.



on small embedded processors (e.g. ITUBee [21], SPECK [5], PRIDE [2]), low
latency (e.g. PRINCE [7]) and ease of side-channel protection (e.g. Zorro [14],
LS-Designs [15]).

In order to fit within constrained settings, many of these ciphers feature
innovative designs: they may rely on simpler round functions, or minimal key
schedules. While in most cases, guarantees against traditional linear or differen-
tial attacks are still offered, the simpler structure of many of these ciphers may
lend itself to new attacks. Careful cryptanalysis is required in order to assess the
security of these new designs; in this process, new techniques have emerged.

One such technique is the invariant subspace attack, introduced in [22] for
the cryptanalysis of PRINTcipher. The general idea behind this attack is the
following: assume that the round function of a cipher maps a coset A of some
vector subspace of the inner state to a coset B of the same space, and a fixed
key belonging to A − B is added in every round. Then the set A is preserved
by the round function, and hence remains stable through the whole encryption
process. This property holds for a large set of keys in PRINTcipher, breaking
the cipher in a practical setting. This type of attack seems particularly well-
suited to substitution-permutation networks (SPN) with a minimal key schedule
or cryptographic permutations with highly structured round constants.

Invariant subspace attacks are unusual in that they rely on an unexpected
form of symmetry in the round function, and yield attacks that are independent
of the number of rounds. On the other hand, the same attributes are shared by
attacks based on self-similarity properties. These properties were first formally
defined in [4] to study alternative descriptions of AES, and later used in [8] to
cryptanalyze the SHA-3 candidate Lesamnta and the lightweight cipher XTEA.

Interestingly, despite its fundamental nature, the understanding of symme-
tries and invariant subspaces, in block ciphers or cryptographic permutations,
is rather limited. The invariant subspace attack on PRINTCipher was found
in an ad hoc fashion and no general approach to detect or avoid such invariant
spaces is known. This is even more surprising as for more involved attacks like
differential and linear attacks and their variations our general understanding of
detection and avoiding those attacks by design is much more evolved.

Our contribution In this paper we aim at increasing the general understanding
of invariant subspaces. For this purpose, and as our first main result, we present
a generic algorithm that is able to detect invariant subspaces. The running time
of this algorithm depends on the block size of the primitive and the density of the
existing invariant subspaces. In particular, it is especially efficient if relatively
large invariant subspaces exist. As the impact of an invariant subspace increases
with its dimension, this can be seen as detecting stronger attacks significantly
faster than minor attacks.

We apply this generic algorithm to the lightweight cipher Robin introduced
at FSE 2014 as a concrete instance of the LS-design framework [15], the closely
related CAESAR [1] candidate iSCREAM [18], as well the lightweight cipher
Zorro presented at CHES 2013 [14]. In all cases the algorithm is able to detect



invariant subspaces.4 Attacks resulting from these invariant subspaces break all
three ciphers in a practical setting. All attacks have been verified on reference
implementations of the ciphers.

As our second main contribution, we show that the invariant subspaces we
have discovered are underpinned by a type of self-similarity property of indepen-
dent interest, stemming from a linear map commuting with the round function.
Surprisingly, such a map exists for all three ciphers, despite Robin and Zorro
having quite different structures. As a result, we obtain stronger attacks on our
target ciphers. We also hope to provide useful insight for the design and analysis
of ciphers with minimal key schedules as well as for the choice of round constants
in cryptographic permutations.

More specifically, our attacks show the existence of weak keys in Robin, Zorro,
as well as iSCREAM in the chosen-tweak scenario. In all cases, the proportion of
weak keys is 2−32 within the set of all keys. Encryption of a single chosen plain-
text is enough to determine whether a key is weak, making our weak key setting
very practical. Once a key is recognized as weak, a simple property on plaintexts
goes through the whole encryption process with probability one, breaking plain-
text confidentiality. In addition, the full 128-bit encryption key can be recovered
using one chosen plaintext in time complexity 264. We also show that all three
ciphers are instantly broken in the related-key setting, without any weak key
requirement; although only iSCREAM claims security in this model.

In the case of LS-designs, we furthermore present a second attack, based on
S-box-dependent invariant subspaces, without an underlying self-similarity. We
obtain a new set of weak keys with the same properties as above, including the
fact that they can be detected using a single chosen plaintext. However when
applying this second attack to Robin and iSCREAM, we obtain a much rarer
set of weak keys, with only one key in 280 being weak. We then fine-tune this
attack against iSCREAM, and obtain a ratio of weak keys of 2−48, at the cost of
requiring 232 chosen-tweak chosen plaintexts in order to detect whether a key is
weak; once a weak key is detected, the full 128-bit key can be recovered in time
complexity 248 with no additionnal data.

Regarding LS-designs, it should be pointed out that while our first attack
breaks Robin and iSCREAM in a practical setting, Fantomas and SCREAM
appear to be safe. Moreover, in the case of Robin and iSCREAM, a careful
tweak of the ciphers should be able to prevent our attacks. Thus, the security of
the LS-design framework in general is not called into question. On the contrary,
in the case of Zorro, our attack adds to other attacks suggesting that partial
nonlinear layers should be approached with caution.

Related work Invariant subspace attacks were introduced in [22]. Their ap-
plication to PRINTcipher relies on undesirable properties induced by its 3-bit
S-boxes. By contrast, most of our attacks (except the second attack on Robin
and iSCREAM) are actually independent of a particular choice of S-boxes.

4 The source code of our tool is available at invariant-space.gforge.inria.fr.



A thorough analysis of invariant subspaces in PRINTcipher was subse-
quently carried out in [9]. Using a dedicated tool, the authors were able to
enumerate all invariant subspaces of PRINTcipher, of the type uncovered in
the previous article. However their approach is tailored to PRINTcipher, and
does not extend to other ciphers.

An older line of work has studied “linear factors” of DES [28, 11, 13], which
bear some resemblance to invariant subspaces. The existence of a linear factor
is an even stronger property than that of an invariant subspace: essentially, it
asks that a (linearly defined) portion of the ciphertext only depend on (linearly
defined) portions of the plaintext and key. Nonetheless, it is interesting to note
that our attacks do uncover a linear factor in Robin and Zorro (the subcipher
in Section 3.3), although only in a weak key setting.

Along a similar line, the attack on SAFER in [25] should be mentioned. It
exploits the action of the cipher on cosets of a vector space as a whole, rather
than isolating a specific trail or characteristic.

Self-similarity properties were used to attack hash functions and block ci-
phers in [8]. It should be noted that self-similarity is a very wide framework,
encompassing attacks ranging from probability one related-key differentials to
slide attacks. To the best of our knowledge, the commutation property we con-
sider here is very different from any previous work.

There is no prior cryptanalysis of LS-designs. As for iSCREAM, an issue with
the padding in the original CAESAR submission of SCREAM and iSCREAM
was pointed out in [29] and subsequently corrected. Our attacks have caused
iSCREAM to be temporarily withdrawn from the CAESAR competition for a
redesign [17].

By contrast, many attacks have been carried out against Zorro, mostly differ-
ential or linear in nature [19, 31, 27, 3, 30]. The best attack in [3] is a differential
attack requiring 241 data and time complexity 245 to break the full cipher. Our
attack is of a different nature: it holds in the weak key setting (with 296 weak keys
out of 2128), requires minimal data and time, and is independent of the number
of rounds. Similar to [3], our attack can be readily extended to Zorro-like ciphers,
as shown in the ePrint version of this work [23].

Structure of the paper

In Section 1, we recall the definitions of invariant subspace and present our
generic algorithm for detecting such invariant subspaces. In Section 2, we pro-
vide a description of LS-designs, including our targets Robin and iSCREAM.
In Sections 3, 4 and 5, we develop our attacks against LS-designs, introduce a
particular self-similarity property, the resulting invariant subspaces, and finally
describe a different invariant subspace attack not underpinned by self-similarity.
In Section 6, we apply our self-similarity and invariant subspace attacks to Zorro.
Finally, in Section 7, we conclude with a discussion of our results and outline
interesting open problems.



1 A Generic Algorithm to Detect Invariant Subspaces

In this section we first recall the invariant subspace attack and later present our
algorithmic approach to detect invariant subspaces in a generic manner.

1.1 Invariant Subspace Attacks

Invariant subspace attacks were introduced and applied to PRINTCipher in
[22]. We briefly recall the basic principle here.

Consider a n-bit block cipher with round function FK consisting of a key
addition and a SP layer F : Fn2 → Fn2 . That is, FK is defined by FK(x) =
F (x + K). Assume the SP-layer F is such there exists a subspace A ⊆ Fn2 and
two constants u, v ∈ Fn2 with the property:

F (u+A) = v +A

Then, given a (round) key K ∈ u − v + A, i.e. K = KA + u − v with KA ∈ A,
the following holds:

FK(v +A) = F (v +A+ u− v) = F (u+A) = v +A

i.e. the round function maps the affine subspace v+A onto itself. If all round keys
are in u− v + A, in particular if identical round keys are used as in LS-designs
and Zorro, then this property is iterative over an arbitrary number of rounds.

In the case where an identical key is added in every round (there is no key
schedule), a key is said to be weak iff it belongs to u− v+A. Whenever a key is
weak, plaintexts in v+A are mapped to ciphertexts in v+A, breaking plaintext
confidentiality. The number of weak keys is the cardinality of A.

In order to detect whether an unknown key is weak, it is enough to encrypt
one plaintext in v +A, and test whether the resulting ciphertext is in the same
space. Indeed, over the set of all keys, false positives will occur with the same
frequency as true positives, and can be discarded with a second chosen plaintext.

1.2 A Generic Algorithm

In this section we present a simple and entirely generic probabilistic algorithm
able to discover invariant subspaces for a given round function. The algorithm
gives instant results for vector subspaces, and is able to discover affine subspaces
in time proportional to their density. Despite its simplicity, this algorithm is
enough to automatically discover all invariant subspace attacks to be elaborated
upon in the following sections.

The algorithm will identify minimal invariant subspaces and thereby iden-
tify invariant subspace attacks automatically. However, further analysis usually
allows to significantly improve upon the attacks recovered automatically by the
algorithm and gain further insights in the structure of the detected weakness.
Furthermore, as the expected running time is determined by the density of in-
variant subspaces, it might well be that not all possible attacks are detected.
Thus, for the moment, this generic algorithm cannot be used to fully exclude
the existence of invariant subspaces.



Identifying Minimal Subspaces Assume we are given a permutation F :
Fn2 → Fn2 . Here F could be a (keyless) round of a block cipher or a cryptographic
permutation (like Keccak-f). Our goal is to find affine subspaces u + A ⊂ Fn2
such that:

F (u+A) = v +A

for some v ∈ Fn2 .
Our algorithm is based on the following trivial observation.

Lemma 1. Assume u + A is an affine subspace such that F (u + A) is also
an affine subspace v + A. Then for any subset X ⊆ A, the linear span of
(F (u+X)− v) ∪X is contained in A.

The idea is to first guess one possible offset u′ of the affine space to be found
and use v′ = F (u′). Next, we guess a one-dimensional subspace of A, denote this
by A0. The algorithm will succeed if and only if u′ +A0 is contained in u+A.

1. We compute Ai+1 from Ai as:

Ai+1 = span{(F (u′ +Ai)− v′) ∪Ai}

2. If the dimension of Ai+1 equals the dimension of Ai, we found an invariant
subspace and exit.

3. If not, we continue with step 1.

Thus, the idea is to start with what we denote nucleon of A and map it using
F until it stabilizes. In the case that our initial guess was wrong and u′ + A0

is not contained in some non-trivial invariant subspace we will end up with the
full space after at most n iterations of the above.

Note that it is not necessary to really map the complete spaces Ai using F
but a randomly chosen subset of relatively small size is enough for our purpose
and significantly speeds up the process.

If the largest invariant subspace of F has dimension d, the algorithm will
detect this space (or any invariant subspaces of this space) after an expected
number of 22(n−d) guesses for A0 and u′. Thus, in this basic form, the algorithm
becomes quickly impractical. However, in the case of round functions of a cipher
(or a cryptographic permutation) that differ by round constants only, its running
time can be greatly improved as described next.

Knowing the Nucleon For block ciphers with identical round keys or crypto-
graphic permutations, we actually have a very good idea about the nucleon we
want to be included in the space A, namely the round constants. More precisely,
we consider round functions Fi : Fn2 → Fn2 that differ only by the addition of
constants, i.e.

Fi(x) = F (x) + ci

for ci ∈ Fn2 , where for simplicity we assume c0 = 0. We are looking for affine
subspaces u+A that are mapped to v +A by all round functions. In particular

F0(u+A) = F (u+A) = v +A



and

Fi(u+A) = F (u+A) + ci = v +A

which implies

v +A = ci + v +A

and thus ci ∈ A. Thus, given the situation as above, any subspace that is in-
variant under all round functions must necessarily contain the linear span of all
round constants ci.

For the algorithm outlined above this has significant consequences. Here, the
only thing we have to guess is the offset. Therefore, the expected number of
iterations of the algorithm is reduced from 22(n−d) to 2n−d.

Moreover, after running the algorithm for m iterations with randomly chosen
guesses for the offset, the probability that an invariant subspace of dimension d
is not detected by the approach is given by

pm,n,d :=
(
1− 2n−d

)m
which can be approximated by

log pm,n,d ≈ −m2d−n.

The Algorithm

1: procedure Closure(function F , nucleon A, offset u)
2: v ← F (u)
3: StableCount← 0
4: while StableCount < N do

5: Pick a random x
$←− u+ span{A}

6: if F (x)− v ∈ span{A} then
7: StableCount = StableCount + 1
8: else
9: Add F (x)− v to A

10: StableCount← 0
11: end if
12: end while
13: return u+ span{A}
14: end procedure

For offset u and nucleon A, the above procedure outputs the smallest affine
subspace containing u + span{A}, that is mapped to a coset of the same space
by F (with high probability). The algorithm depends on a global parameter N
that controls the risk of error. Namely, when the algorithm exits, elements of
u+ span{A} are mapped to v+ span{A} with probability greater than 1− 2−N .
This probabilistic result is enough for an invariant subspace attack to go through
even for moderate choices of N .



Guessing the Offset If we are actually looking for stable vector spaces rather
than affine spaces, as will be the case in the S-box independent setting described
in Section 3.2, guessing the offset is not needed: we can choose zero as the offset.
Then the algorithm above finds the smallest invariant subspace instantly.

In the general case where we are looking for any (affine) invariant subspace,
we need to guess one offset u belonging to the affine space we are searching for.
Then we can run the procedure above to find the generated invariant subspace,
if it exists (otherwise, the algorithm will simply output the full space). If the
space we are looking for has dimension d, guessing such an offset u by brute
force will require 2n−d tries on average. Of course we just require one invariant
subspace; so in general 2n−d can be replaced by the density of vectors belonging
to (non-trivial) invariant subspaces.

Each iteration of the algorithm requires Gaussian reduction to determine
whether a certain n-bit vector belongs to some subspace, amounting to n2 oper-
ations. Hence the overall running time to find an invariant subspace of dimension
d is roughly n2 · 2n−d. Thus if n is large, the above approach will only work if
n− d is relatively small, or more generally the density of invariant subspaces is
large. The case where n is small is also useful in order to find invariant subspaces
through a single S-box: this is how we found spaces in Appendix B (after making
the algorithm deterministic and exhaustive, which is affordable for small n).

1.3 Applications

We applied the algorithm to the block ciphers Zorro, Robin, Fantomas, LED and
Noekeon, as well as to the CAESAR candidate iSCREAM. We chose N = 50
to be very conservative. We ran the algorithm with approximately 234 iterations
for each primitive, stopping earlier in the case where an invariant subspace was
detected. The results are summarized in the table below.

Table 1. Experimental Results: Here n is the block size and d0.001 is the smallest
dimension of an invariant subspace that has a probability to exist upper bounded by
0.001

Primitive n Dimension found d0.001 Running Time (h)

LED 64 - 34 24

Noekeon [12] 128 - 98 40

Fantomas 128 - 98 40

Robin 128 96 - 22

iSCREAM 128 96 - 22

Zorro 128 96 - <1

For LED, Noekeon and Fantomas, no invariant subspaces were detected
given our limited iterations. In that case, Table 1 indicates the dimension d0.001
of the largest invariant subspace that has a probability to exist upper bounded
by 0.001. More precisely, if x denotes the codimension of the largest invariant



subspace, each random guess of an offset has probability 2−x of falling into this
subspace. After T tries, the probability of not having found the subspace is thus
(1−2−x)T ≈ e−T2−x

. We want this probability to be 1/1000 within T = 232 tries,
which yields x = 32− log(ln(1000)) ≈ 30, so d0.001 ≈ n− 30. Thus it is unlikely
that invariant subspaces of dimension above 98 exist for Noekeon. However,
the existence of smaller subspaces cannot be excluded with high probability by
our results.

As we will show below, for Zorro, Robin and the CAESAR candidate iS-
CREAM the largest invariant subspace has dimension 96 out of 128, i.e. density
2−32. Thus the time complexity is expected to be 232 Gaussian eliminations on
128×128 binary matrices. Our experiments confirm this estimation. Discovering
the invariant subspace took 22 hours on a single desktop PC equipped with an
Intel Xeon Core i7 with 12 virtual cores used in parallel.

In the case of Zorro, we chose to use a single round as target function, rather
than the four rounds separating key addition. It turns out many cosets of the
invariant subspace in Appendix A are sent to another coset by a single round
(namely, all cosets stemming with offsets where cells 0 and 3 are equal). Our
generic approach discovers this fact and the associated subspace instantly, hence
the “< 1” time in the previous table.

As mentioned in the introduction, a detailed analysis of the findings of the
generic algorithm allows to understand the underlying structure of the invariant
subspaces we have found, and improve the attacks. We present those findings in
the following sections.

2 Description of LS-Designs, Robin, and iSCREAM

2.1 LS-Designs

LS-designs were introduced by Grosso, Leurent, Standaert and Varici at FSE
2014 [15]. We refer the interested reader to their article for a detailed presenta-
tion of LS-designs and their design rationale. For our purpose, a brief technical
description suffices.

An LS-design is a block cipher encrypting n-bit plaintext blocks using a n-
bit key. The inner state of the cipher, as well as the plaintext, ciphertext, and
key, are all represented as an r × c bit array, with r the number of rows and c
the number of columns. A concrete LS-design is parametrized by the following
components:

– A choice of r and c. The size of the key and message blocks is n = r · c.
– An r-bit S-box s.
– A bijective linear map ` on c-bit vectors, called the L-box.
– A number of rounds t.
– A choice of k-bit round constants C(i) for 1 ≤ i ≤ t.

In order to encrypt a given n-bit plaintext block, the plaintext is first loaded
into the inner state of the cipher, and the master key is added in (all additions



are bitwise XORs). Then a round function is applied successively for rounds 1 to
t. At that point the cipherext is equal to the inner state. The round function at
round i proceeds as follows:

1. The round constant C(i) is added to the inner state.
2. The S-box s is applied to each column of the state.
3. The L-box ` is applied to each row of the state.
4. The n-bit master key K is added to the state.

2.2 Notation

When dealing with LS-designs, we will always use the previous notation; that is:
r the number of rows of the state.
c the number of columns.
n the size of the state; that is, n = r · c.
s the r-bit S-box.
S the S-box step; that is, the application of s on each column of the state.
` the c× c binary matrix representing the linear layer, identified with the corre-

sponding linear map on Fc2.
L the L-box step; that is, application of ` on each row of the state.

2.3 Robin

In [15], two concrete LS-designs are proposed, Robin and Fantomas. The idea
behind Robin is that both the S-box and L-box are involutive. This allows the
same circuitry to be reused when computing these components and their inverse
operation, i.e. when encrypting and decrypting. This saves valuable space on em-
bedded devices when both encryption and decryption capabilities are required.
The trade-off is that involutive components have more structure, resulting in a
slightly higher number of rounds to reach the same security level as an LS-design
based on non-involutive components.

Robin strictly fits within the LS-design framework recalled in the previous
section. As such it can be fully described by the following parameters:

– The inner state of Robin has 8 rows and 16 columns, resulting in 128-bit
blocks and a 128-bit key.

– The 8-bit involutive S-box is given in [15].
– The 16-bit involutive L-box is depicted as a 16×16 binary matrix on Fig. 1.
– The number of rounds is 16.
– At round i (starting from 1), the round constant C(i) is zero outside of the

first row, where it is equal to `(i), with ` the L-box matrix.

2.4 iSCREAM

SCREAM and iSCREAM [18] are two authenticated ciphers closely related to
LS-designs. In fact iSCREAM is essentially a tweaked version of Robin, to-
gether with a Tweakable Authenticated Encryption (TAE) mode of operation



0
0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

Fig. 1. Matrix representing the L-box of Robin and iSCREAM. Dark cells stand for
1’s and white cells for 0’s.

[24]. Meanwhile SCREAM is similar to Fantomas, with a different linear layer.
The TAE mode of operation requires a tweakable block cipher [24]. Accordingly,
the difference between the block cipher underlying iSCREAM and Robin stems
from the introduction of a 128-bit tweak T into the (previously non-existent)
key schedule.

In the remainder of this article we focus on weaknesses of the block cipher
on which iSCREAM is built, independently of the mode of operation. We may
abuse notations and write iSCREAM to mean its underlying block cipher.

This block cipher can be described as an LS-design, except for the fact that
during the key addition phase, instead of adding in K every round: at odd
rounds, K +T is added; while at even rounds, T ≪c 1 is added, where T ≪c 1
denotes a circular shift of the columns of T by one column towards the left.
The combination of two rounds is called a step. Beside that, iSCREAM can be
described by the following parameters:

– The inner state of iSCREAM has 8 rows and 16 columns, resulting in 128-bit
blocks and a 128-bit key.

– The S-box and L-box are those of Robin.

– The number of rounds depends on the required security level. The original ar-
ticle lists six variants. However the primary recommendation for iSCREAM
as per CAESAR requirements is 12 steps (24 rounds) [16]. A secondary rec-
ommendation claiming related-key security has 14 steps (28 rounds). Since
our attacks are essentially independent of the number of rounds, we omit
other variants.

– At round i (starting from 1), the round constant C(i) is zero outside of the
first row, where it is equal to 27 · i modulo 256 (affecting only the first 8 bits
of the row).



3 Invariant Permutation Attack

In the next two sections, we analyze the invariant subspace discovered by the
generic algorithm on Robin and iSCREAM. This subspace is actually induced
by a particular type of self-similarity of independent interest, as is the invariant
subspace of Zorro. Using this self-similarity directly results in an even stronger
attack, as will be discussed below.

We start by recalling the concept of self-similarity and explaining a link
to commutating linear maps. These concepts will afterwards be applied to LS-
designs in general and to Robin and iSCREAM in particular (as well as to Zorro
in Section 6).

3.1 Self-Similarity Properties and Linear Commutant

In [4] and [8], self-similarity in general is defined as:

Definition 1 (Self-similarity in a block cipher). For a fixed block cipher
E, let EK(x) denote the ciphertext block resulting from the encryption of plain-
text block x under key K. A self-similarity relation is given by invertible and
efficiently computable mappings φ, ψ, θ such that:

∀K,x : θ(EK(x)) = Eψ(K)(φ(x))

What we are interested in is the case where M = φ = ψ = θ is a linear
map. This situation will arise if the cipher follows a generalized Even-Mansour
structure where key-independent round functions Fi alternate with the addition
of a fixed key K (i.e. no key schedule); and M commutes with the round functions
Fi. This last condition is very demanding; but this is precisely what happens in
both Robin and Zorro, despite their different structure. We expand on why this
might be the case in the discussion (Section 7). The following lemma sums up
the attack.

Lemma 2. Consider a block cipher composed of round functions Fi separated
by addition of a fixed key K. Suppose there exists a linear map M such that M
commutes with the Fi’s. Then:

∀x : M(EK(x)) = EM(K)(M(x))

In particular, if K = M(K):

∀x : M(EK(x)) = EK(M(x))

The commutativity of M and the round functions can be interpreted from
the invariant subspace perspective. Indeed, if we let A = ker(M i + Id) for any
i, A is an invariant subspace5. Of course self-similarity is a stronger property
stemming from a stronger requirement on the cipher.

5 It may be that a non-trivial commuting matrix leads only to trivial invariant sub-
spaces, as evidenced by the 2 × 2 binary matrix with rows [01] and [11]. However if
M is involutive, ker(M + Id) is at least half of the space.



In our applications, M will be involutive, so we focus on the case i = 1.
In the remainder, whenever two plaintext blocks (or ciphertext blocks, or inner
states, or keys) satisfy x2 = M(x1), we say that they are related. If a plaintext
block (or ciphertext block, or inner state, or key) is related to itself, we say that
it is self-related. A weak key is a self-related key. In short, our attack states that
weak keys map self-related plaintexts to self-related ciphertexts; while related
keys map pairs of related plaintexts to pairs of related ciphertexts.

3.2 S-box-Independent Setting

We now focus on the case where the cipher is a substitution-permutation network
(SPN), whose round function Fi consists of an S-box layer with identical S-boxes,
a linear map L, addition of a round constant C(i), and addition of a fixed key K.
From the invariant subspace (resp. self-similarity) perspective, we are interested
in subspaces (resp. linear maps) that traverse (resp. commute with) each of these
components.

It is quite apparent that the main roadblock is the non-linear S-box layer.
However even in a generic setting where we do not take into account a particular
choice of S-box, any permutation of the S-box inputs will commute with the S-
box layer (due to S-boxes being identical). Thus we restrict our attention to
permutations of S-box inputs rather than general linear maps.

In terms of invariant subspaces, this corresponds to subspaces containing
those vectors whose coordinates belonging to the same cycle in the permuta-
tion are equal; that is, subspaces that only require S-box inputs to be equal to
some other input, or independent. We call such spaces equality spaces. Note that
these are vector subspaces and no longer affine subspaces. Our strongest attacks
actually occur in this setting.

As for constant and key addition, asking that their addition commutes with
M amounts to asking that they belong to ker(M + Id). Now it remains to find
permutations that commute with the linear layer. An efficient algorithm to do
so is provided in the ePrint version of this work [23]. The invariant subspace
variant seems more difficult, as we do not know an algorithm able to efficiently
enumerate equality spaces that traverse a linear map.

3.3 Key Recovery

The self-similarity attack above breaks plaintext confidentiality. In addition, if
the commuting permutation P is involutive (as will be the case in our appli-
cations), efficient key recovery may be possible. In short, the part of the key
corresponding to fixed points of the permutation can be guessed independently
of the rest.

Intuitively, this is because if two self-related inner states differ only outside
the fixed points of the permutation P , this difference will never be propagated to
the fixed points of P . This is clear for the S-box layer (because the permutation
operates on entire S-box inputs), but also holds for the linear layer. A general



statement and proof are provided in the ePrint version of this work [23]. In fact
the proof also encompasses the case where the S-box layer is partial.

What we show is that the cipher contains an embedded subcipher operating
on the fixed points F of the permutation: we can project self-related plaintexts
and ciphertexts on F and obtain a well-defined map. Note that this embedded
subcipher may lend itself to further attacks; this is a direction we have not
investigated, as we believe ciphers are sufficiently broken at that point.

3.4 Invariant Permutation Attack on LS-Designs

Notation. In the S-box-independent setting of Section 3.2, for an LS-design,
a permutation of S-box inputs is simply a permutation of the columns of the
state. Let us write P for such a permutation. We always denote by the lowercase
p its effect on a single row. Thus, P is the application of p on each row of the
state. We identify p with the corresponding c× c permutation matrix. We adopt
notations from Section 2.2.

The particular structure of LS-designs means that P commutes with L iff p
commutes with `. This is still a strong requirement, but we expect the L-box of
an LS-design to have some structure in order to provide a good branch number,
especially if it is involutive. In the case of Robin for instance, the linear layer
is built from a Reed-Muller code and provides plenty of structure. Applied to
LS-designs, Lemma 2 becomes:

Lemma 3. For an LS-design, assume there exists a permutation P with the
following properties:

– P commutes with L.
– P (C(i)) = C(i) for all round indices i.

Then for any plaintext message m:

EncP (K)(P (m)) = P (EncK(m))

In particular, if K = P (K):

EncK(P (m)) = P (EncK(m))

Note that the identity permutation trivially satisfies the above requirements.
Hereafter we always assume P is non-trivial. If ncycles(p) is the number of cycles
of p, weak keys form a proportion 2−r·(c−ncycles(p)) of all keys (namely, those keys
whose columns are equal on each cycle of p).

Key Recovery The previous attack breaks plaintext confidentiality. In addi-
tion, when P is involutive, efficient key recovery is possible, as announced in
Section 3.3. A general statement and proof are provided in the ePrint version of
this work[23].

It may still be worthwhile to provide a simpler statement dedicated to LS-
designs. This is what we propose below.



Lemma 4. Consider an LS-design, and assume there exists a permutation P
with the same requirements as in Lemma 3. Also assume that P is an involution.
Consider a weak key K = P (K). Denote by F the set of fixed points of P .

Take any self-related plaintext m = P (m). Then the value of the ciphertext
EncK(m) on the columns in F only depends on the value of m and K on the
same columns.

Proof. Since P is an involution, all of its cycles have length 1 or 2. Hence we
can partition the columns of the state into three subsets F , A, B, such that P
is the identity on F , and maps A and B into each other. Take any self-related
message m that is zero on F . Then the linear layer maps m to a self-related state
L(m) that is also zero on F . To see this, write m = mA+mB , where mA is equal
to m on A, and zero elsewhere, and likewise mB is equal to m on B and zero
elsewhere. Then P (mA) = mB , hence P (L(mA)) = L(mB) by commutativity of
P and L. Since P is the identity on F , this implies that L(mA) +L(mB) is zero
on F , so L(m) is zero on F .

Thus, if m = P (m) is zero on F , so is L(m). By linearity, this implies that
if m1 and m2 are self-related and equal on F , then so are L(m1) and L(m2).
Thus, the property that two self-related states are equal on F goes through the
linear layer. This property automatically goes through the S-box layer since it is
column-wise. Since the same key and round constants are added to both sides,
they have no impact. Hence this property goes through the whole cipher.

As a direct consequence, the value of the key on the columns corresponding
to fixed points of P can be guessed independently of the rest of the key by using
any self-related plaintext. In addition, the embedded subcipher is a smaller LS-
design, and may lend itself to further attacks. As a side note, both this lemma
and the previous one also show that the cipher is malleable in a strong sense.

Permutation Characteristic Instead of considering only permutations P
commuting with L, we can naturally look for pairs of permutations (P,Q) such
that L · P = Q · L. We denote this by P → Q, representing the fact that if two
inner states are related by P before the linear layer, then after the linear layer
they are related by Q.

From there we can hope to build a form of characteristic P0 → P1 → P2 →
P3 → . . . The commutative case in the previous section corresponds to P → P .
Note that the set of permutations P such that Q = L ·P ·L−1 is a permutation
forms a group. Also note that if L is involutive, P → Q is equivalent to Q→ P :
indeed L · P = Q ·L implies P−1 ·L = L ·Q−1, implies L ·Q = P ·L: hence any
transition P → Q yields an iterative characteristic of length at most 2.

A particularly interesting case occurs whenever P → Pα for some α 6= 0.
Indeed, in that case we automatically have a cyclic characteristic P → Pα →
Pα

2 → · · · → Pα
i

= P . Moreover the attack from Lemma 3 goes through with
exactly the same requirements on the key and round constants (namely they are
self-related by P ).



Application to Robin Applying our attack to Robin amounts to finding a
permutation p commuting with the matrix ` in Fig. 1, such that P leaves all
round constants C(i) invariant. More generally, as pointed out just above, we can
actually look at transitions P → Q, i.e. permutations p, q such that ` ·p = q ·`. It
turns out there are 720 such transitions, and all of them are of the form P → P−1.
Moreover 76 of these permutations are involutive, and hence commute with L.

Recall that the round constants of Robin are defined as C(i) = `(i) on the first
row, and zero on the others, for 1 ≤ i ≤ t. Hence we want p(`(i)) = `(i), which
amounts to p(i) = i by commutativity. Since i ranges from 1 to 16, what we are
looking for is simply permutations leaving the first 5 columns fixed. It turns out
there exists exactly one such permutation, namely the involutive permutation P0

switching columns 8, 9, 10, 11 respectively with columns 12, 13, 14, 15. Looking
at Fig. 1, one can indeed see that permuting the rows and columns of the matrix
of ` by p0 leaves the matrix invariant, which is the same as saying p0 commutes
with `.

With P0, weak keys are simply keys whose last four columns are equal to the
previous four. In particular the proportion of weak keys is 2−32. Furthermore P0

leaves the first 8 columns fixed, so Lemma 4 shows that for self-related plaintexts,
the first 8 columns of ciphertexts only depend on the first 8 columns of plaintext
and key. This makes it possible to guess the value of the master key on the first
8 columns independently of the rest of the key. This means 64 bits of the key
can be guessed separately; then the remaining 64 bits are symmetric through
P0, so only 32 bits remain to be guessed. Thus the full key can be recovered in
time complexity 264 by encrypting any self-related message. This may yield a
few solutions, which can be checked against any other plaintext/ciphertext pair.

Table 2. Permutations p0, p1 and p2. Fixed points are omitted.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

p0 12 13 14 15 8 9 10 11

p1 8 9 10 15 4 5 6 7

p2 12 13 14 11 7 4 5 6

Beside P0, two other permutations P1 and P2 commuting with L leave the
round constants invariant up to the very last round (cf. Table 2). This means
related plaintexts are mapped to related inner states after 15 encryption rounds;
followed by the final constant addition, S-box layer, L-box layer, and key addi-
tion. The final linear layer can be reversed, and the resulting states will agree
on pairs of columns transposed by P on which C(16) is equal. In both cases,
there is one such pair, so self-related keys with respect to P1 and P2 can still
be detected easily by encrypting a few self-related plaintexts, reversing the last
linear layer, and checking that these two columns agree.

Permutations P1 and P2 both leave 8 columns fixed and hence yield an at-
tack with essentially the same properties as P0. Actually some key bits can be
recovered faster than with P0 thanks to the one-round differential at the end,



but this involves the symmetric part of the key (that is, outside the fixed points
of the permutation) and thus the overall key recovery time is still 264.

Application to iSCREAM Recall that iSCREAM and Robin share the same
linear layer. Round constants only affect the first eight columns of the state,
and so we are looking for permutations commuting with L and leaving the first
eight columns unchanged. As a matter of fact, there exists exactly one such
permutation, namely the same permutation P0 as above, which switches the last
four columns of the state with the previous four.

Another difference between Robin and iSCREAM is the number of rounds,
but that is actually irrelevant for our attack. The last difference is the presence
of a tweak in the key schedule. Recall that at odd rounds, T +K is added, while
at even rounds, T ≪c 1 is added, where T is a 128-bit tweak. In a chosen-
tweak scenario, we can simply set T to zero, or any other value such that T and
T ≪c 1 are invariant by P . Then the attack against Robin from the previous
section applies to iSCREAM essentially unchanged, with the same consequences.

A small variant of our attack is also possible when using P0 as the commuting
permutation. What we truly want is that K + T and T ≪c 1 should be self-
related. This amounts to asking that columns 8, 9, 10, 11 should be equal to
columns 12, 13, 14, 15. Since T ≪c 1 is a column-wise shift of T by one column
towards the left, this means that columns 9, 10, 11, 12 of T should be equal to
columns 13, 14, 15, 0. Note that there is no condition on column 8 of T . As a
consequence, for K + T to be self-related for some choice of T , it is enough to
ask that columns 9, 10, 11 of K should be equal to columns 13, 14, 15. Indeed
in that case, we can fix T to be all-zero, except for column 8 which can take any
value: exactly one such choice of T will satisfy that K + T is self-related. Thus
we obtain a larger set of weak keys (with ratio 2−24), at the cost of requiring 28

chosen-tweak messages in order to detect whether a fixed unknown key is weak.
In addition, some variants of iSCREAM claim related-key security. If two

keys are related by P0, then our attack applies immediately without any weak
key requirement, following the first consequence of Lemma 3. That is, related
plaintexts are mapped by the related keys to related ciphertexts. Thus it is easy
to check whether a pair of keys is related, and the cipher is broken in a strong
sense.

Generalizations of the Permutation Attack There appears to be a few
simple ways in which our attack could be generalized. We discuss them briefly
here.

We could consider a probabilistic version of the attack. Instead of requiring
L · P = P · L, we could consider P ’s such that the kernel of L · P − P · L is
almost the full space. In the case of Robin or iSCREAM, this would incur a cost
at least 2−8 per round.

Another natural extension is to consider cases where all round constants are
P -invariant except for the last few rounds (or first few rounds). Then our attack
goes through most of the encryption process, and eventually yields a differential



attack on the remaining rounds. When encrypting self-related plaintexts, this
differential attack turns into an inner differential.

4 Invariant Equality Space Attack

In this section we study invariant subspaces for LS-designs following the S-box-
independent setting of Section 3.2. We begin by defining equality spaces, and
then present our results on Robin and iSCREAM. On the way, we will recover
the invariant subspace detected by our generic algorithm (Section 1.3), and link
it to the commuting permutations from the previous section.

4.1 Equality Spaces

As always, we use notations from Section 2.2. We always view n-bit vectors as
an r × c matrix. In Section 3.2, we defined equality spaces in general terms for
an SPN; we now provide a more specific definition suited to LS-designs.

Definition 2. A subspace E of {0, 1}c is an equality space iff there exists a
partition of {0, . . . , c − 1} such that E is the set of vectors whose values on
coordinates belonging to the same class in the partition are equal.

The dimension of E is the number of classes of the partition. By Er we denote
the set of n-bit states whose columns belonging to the same class in the partition
underlying E are equal. Equivalently, this means that every row of the state
belongs to E, hence the notation Er. By extension we also call Er an equality
space. The point of this definition is that equality spaces are preserved by the S-
box layer. The question is to determine which equality spaces are also preserved
by the linear layer. That is, we are looking for equality spaces E ⊂ {0, 1}c such
that `(E) = E.

As pointed out in Section 3.1, when a permutation P commutes with L, the
equality space defined by the cycles of P is preserved by the linear layer. The idea
is that equality spaces preserved by the linear layer do not necessarily stem from a
commuting permutation. Conversely, commuting permutations are an interesting
special case, since they lead to a stronger property: indeed, when considering
equality spaces rather than permutations, we are looking at a property of a single
state, and there is no equivalent to the property that distinct related plaintexts
are mapped to related ciphertexts; there is also no equivalent to Lemma 4.
Meanwhile, Lemma 3 becomes:

Lemma 5. For an LS-design, assume there exists an equality space E such that:

– `(E) = E.
– C(i) ∈ Er for all round indexes i.

Then for any key K and plaintext message m:

If K ∈ Er and m ∈ Er then EncK(m) ∈ Er

The lemma trivially holds if E is the full space {0, 1}c; hereafter we assume
this is not the case. Then we have an attack in the weak key setting, where weak
keys are keys in Er. Hence the proportion of weak keys is 2−r·(c−dim(E)).



4.2 Variants of the Attack

Essentially the same extensions as in Section 3.4 apply to equality spaces.
Characteristics: if the image F = L(E) of an equality space E is also

an equality space, we write E → F . As with permutations, we can aim to
build a characteristic E0 → E1 → . . . over several rounds. Note that the set of
equality spaces is closed under intersection, and as a direct consequence, the set
of equality spaces E such that L(E) is an equality space is also closed under
intersection. If L is involutive, E → F is equivalent to F → E, so characteristics
are automatically cyclic.

Probabilistic attack: Instead of asking F = L(E), we can require the
dimension of the quotient space F/L(E) to be small.

Differential ending: If all round constants are in the required equality
spaces except for the last few (or first few) rounds, it may be possible to cover
the remaining rounds with an inner differential characteristic. Indeed in the case
E → E, the equality space attack may be seen as an all-zero inner differential
attack.

Differential attack: the entire attack itself may be transposed into the
differential world, at the expense of becoming probabilistic. Consider a state
difference living in Er with L(E) = E. Then at each round, require that the
S-box layer preserves this equality; that is, the output of some S-boxes which
receive equal input, should remain equal. Note that if E stems from an involu-
tive permutation commuting with L, the columns corresponding to fixed points
of the permutation can be set to a zero difference: this will be preserved by
the linear layer (cf. the proof of Lemma 4). This attack avoids key and round
constant requirements, at the cost of much lower probability, and hence high
data requirements. In practice this would lead to a weaker attack against Robin
than truncated differential product trails in the original article [15], because the
branch number is 8 and the non-fixed points of P0 involve 8 S-boxes.

4.3 Application to Robin and iSCREAM

Since Robin and iSCREAM share the same linear layer L, we consider them
together. We enumerated all equality spaces E such that L(E) is an equality
space (there are around 233 partitions of 16 elements, so this is feasible), and
analyzed the results.

Our first observation is that there are many more well-behaved equality spaces
E (in the sense that L(E) is also an equality space), than well-behaved permuta-
tions P (in the sense that Q = L ·P ·L−1 is also a permutation). Namely, there
are 720 well-behaved permutations for L, while there are 30162 well-behaved
spaces of dimension 8 or more. Even if we remove from this list spaces that are
an intersection of larger well-behaved spaces (and thus could have a chance of
indirectly resulting from well-behaved permutations), 7746 well-behaved spaces
remain.

Recall that L is involutive, so any transition E → F (i.e. L(E) = F with E
and F two equality spaces) yields a cyclic characteristic E → F → E. Hence all



well-behaved spaces belong to cycles of length 1 or 2. The aforementioned 7746
intersection-reduced well-behaved spaces of dimension at least 8 form 2506 cycles
of length 1 (that is, E → E) and 2620 cycles of length 2 (that is E → F → E).
Thus equality spaces offer considerably more potential attacks, depending on
round constants.

However, all equality spaces compatible with actual round constants for
Robin minus the last round, and hence directly usable in an attack, stem from
commuting permutations. There exist four such spaces: three of them correspond
to permutations P0, P1 and P2 from Table 2, and the last one is a space of dimen-
sion 8 resulting from the composition of any two of the previous permutations
(any combination yields the same permutation or its inverse). As for iSCREAM,
the only well-behaved space compatible with round constants is the one resulting
from P0. Thus, our previous attack is not improved. Moreover, the largest well-
behaved spaces have dimension 12 and all stem from involutive permutations
(there are 15 of them). The largest well-behaved equality spaces not stemming
from a well-behaved permutation have dimension 10. This may be interpreted
to mean that the strongest phenomenon is due to commuting permutations.

Thus for both Robin and iSCREAM, the equality space induced by P0 is
the only equality space that goes through the whole cipher, including the last
round. This space has dimension 96 over F2, and it is the invariant subspace
automatically discovered by the generic algorithm from Section 1.

4.4 A note on Fantomas and SCREAM

The matrix L of Fantomas is a permutation of the lines and columns of the
matrix of Robin. As a consequence, they have the same number of well-behaved
permutations and spaces. However we found no cycle among well-behaved spaces
of Fantomas of dimension 6 or more (lower dimensions would yield very weak
attacks); and no characteristic of length more than 2. Hence Fantomas seems
safe from this attack.

The same is true for SCREAM. However, it is worth noting that there exists
no well-behaved permutation for the matrix of SCREAM, while we found 5404
well-behaved spaces of dimension 8 or more.

5 A Second Invariant Subspace Attack on LS-Designs

In this section we present a different invariant subspace attack on LS-designs,
which may be regarded as a form of dual of the previous attack. This attack
does not stem from an underlying permutation; nor does it have an equivalent
for Zorro. Thus, this section is specific to LS-designs, and takes advantage of
their particular structure: namely, the fact that LS-designs not only rely on a
layer of identical S-boxes, but also on a layer of identical L-boxes.

Now that we have understood the invariant subspace discovered by our
generic algorithm as being an equality space, i.e. a space that is automatically
preserved by the S-box layer, it is natural to ask if something similar can be



done with the L-box layer. That is, we are now going to look for a property that
is automatically preserved by the L-box layer.

This gives us more freedom, since we can leverage linearity. Essentially, if all
columns of the state live in the same linear subspace, this will remain true after
the linear layer (in the ePrint version of this work [23], we prove that this is in
fact the most general property generically preserved by the linear layer); whereas
in the previous case, we were limited to equality spaces. Beside this difference,
the attack is essentially a dual version of the previous one, reversing the roles of
the L-box and S-box layers.

5.1 Description of the Attack

In the previous attack, we searched for equality spaces E ⊂ {0, 1}c on the rows
of the state such that `(E) = E. Instead, we are now interested in general linear
subspaces A ⊂ {0, 1}r on the columns of the state such that s(A) = A. Once
again, if A is a linear space on the columns (or one of its cosets), we denote by
Ac the set of states whose columns all belong to A.

The core of the attack is the following: assume s(A) = A for some linear
space A. If the inner state lies in Ac, this will remain true after the S-box layer.
Moreover, this property is automatically preserved by the linear layer. Indeed,
the linear layer of an LS-design is not truly “line-wise”: precisely because the
same linear map is applied to each row, the linear layer may be seen as directly
adding together column vectors. From this point of view, it becomes clear that
if all columns lie in the same linear space A, this remains true after the linear
layer.

Thus we are still within the invariant subspace framework, and follow the
corresponding strategy: we choose A such that all round constants belong to Ac,
and we consider a weak key scenario by requiring that the key also lie in Ac. If
these requirements are fulfilled, plaintexts in Ac are mapped to ciphertexts in
Ac.

More generally, we can consider cosets of linear spaces (i.e. affine spaces)
rather than just linear spaces: indeed, as long as each coordinate at the output
of ` is the sum of an odd number of coordinates at the input, the linear layer still
preserves the property that all columns belong to a fixed coset. The following
lemma sums up the attack.

Lemma 6. Let u, v, w be r-bit vectors, and A be a linear subspace of r-bit
vectors. Assume the following conditions hold:

– The S-box s maps all vectors in u+A to vectors in v +A.
– Either v = 0 or all rows of the matrix of ` have an odd number of 1’s.
– The columns of all round constants are in w +A.
– The columns of the key are in (u+ v + w) +A.

Then any plaintext in (u+w) +A is encrypted into a ciphertext in (u+w) +A
(and conversely).

Weak keys are keys in (u+v+w)+E. This means a proportion 2−c·(r−dim(A))

of keys is weak.



5.2 Application to Robin and iSCREAM

In the case of Robin, the second condition in Lemma 6 is automatically true.
In order to satisfy the third condition (round constants), since round constants
only affect the first row of the state, we require that the r-bit vector denoted
by 1, with 1 on the first row and 0 elsewhere, belongs to E. To instantiate the
attack, it remains to look for affine spaces whose direction contains the vector
1, that are mapped by the S-box to affine spaces with the same direction.

It turns out the largest such spaces have dimension 3, and are mapped into
themselves. We list all six choices in Table 3. Since these spaces have dimension
3, and the state has 8 rows and 16 columns, a proportion 2−16·5 = 2−80 of keys
are weak. This means our attack is considerably weaker than the first one against
Robin. By comparison, a generic multi-target time-memory trade-off with 248

memory would lead to key recovery for the same proportion of keys. Of course
our attack requires no memory or table lookup.

Table 3. Six affine spaces of dimension 3 invariant through s.

Values in A Dir(A)

00 01 26 27 84 85 a2 a3 01 26 84

18 19 7c 7d 9e 9f fa fb 01 64 86

28 29 32 33 8a 8b 90 91 01 1a a2

3c 3d 5e 5f b2 b3 d0 d1 01 62 8e

44 45 66 67 c8 c9 ea eb 01 22 8c

4e 4f 54 55 6c 6d 76 77 01 1a 22

We now turn to iSCREAM. Recall that its S-box is the same as that of Robin,
and round constants still only affect the first row of the state. We want both
K+T and T to live in the same coset, so we require T to lie in (u+v+w+A)c,
and K to lie in Ac. In our actual attack we have u = v and w = 0 so in the end,
we can set the tweak to zero (or any value in Ac), and the attack goes through
with the same parameters as before.

5.3 Taking Advantage of the iSCREAM Tweak Schedule

In the case of iSCREAM, it is possible to leverage the tweak schedule to create
a trade-off between the ratio of weak keys and the number of chosen-tweak
messages required to detect a weak key. To simplify notations, we explain this
technique using vector spaces; it extends to their cosets in a straightforward
manner. Assume we have two vector spaces A and B with S(A) = B. As before,
we assume 1 ∈ A and 1 ∈ B so that round constants belong to Ac and Bc. Since
S is involutive, we have S(B) = A, so A→ B → A is a characteristic for the the
S-box.

In order for this characteristic to traverse encryption, we need K + T ∈ Ac,
and T ≪c 1 ∈ Bc, which is equivalent to T ∈ Bc. For this it is enough to



ask K ∈ Ac + Bc = (A + B)c. Indeed in that case, write K = KA + KB with
KA ∈ Ac and KB ∈ Bc. Then for T = KB , we have K + T ∈ Ac and T ∈ Bc,
which is precisely what we want. Of course the key is unknown to the attacker,
so she cannot compute T in this way. Instead, she can try every value in the
supplementary space of Ac in (A+B)c (which is smaller than Bc, if only because
1 ∈ A ∩ B). For exactly one such value of the tweak, every plaintext in Ac will
be encrypted to a ciphertext in Bc.

Now the question is to find two spaces A and B as above. Actually we look
for cosets of linear spaces with the same properties, since the linear layer of
iSCREAM also preserves these cosets. In summary, we look for affine spaces
u+A 6= v +B such that S(u+A) = v +B, and 1 belongs to A ∩B.

It turns out the largest such spaces have dimension 3. There are 11 such
spaces (counting only 1 for u + A → v + B and v + B → u + A), listed in
Appendix B. Furthermore, 8 of these spaces satisfy dim(A + B) = 5, which is
the maximal possible value since 1 belongs to A∩B. Thus K ∈ (A+B)c yields
a ratio of weak keys of 2−c·(r−dim(A+B)) = 2−48.

In order to detect whether a key is weak, one needs to encrypt a message
for each tweak in the supplementary of Ac in (A + B)c, which is of dimension
2 · c, hence 232 chosen-tweak messages are required (for a random key and a
given choice of the tweak, a false positive has probability only 2−80, and can be
discarded by one additionnal chosen-tweak message). Finally, once a weak key is
detected in this way, we know K+T ∈ Ac for one specific T , hence K = T +Ac,
so only 2c·dim(A) = 248 possibilities remain for the value of the key.

5.4 Variants of the Attack

It seems natural to consider a probabilistic version of the attack, where instead
of requiring that every vector in u + A be mapped by the S-box to a vector in
v +A, we only require most of them to comply. If only x elements in u+A are
not mapped to v+A, the probability to pass an S-box is 1− x/2r. The cost for
each round is then (1− x/2r)c. In the case of Robin, there is no A of dimension
4 with x < 3, so there does not appear to be an obvious interesting probabilistic
version of the attack.

6 Commuting Permutation and Invariant Subspace for
Zorro

6.1 Description of Zorro

The block cipher Zorro was introduced at CHES 2013 [14]. Like LS-designs, the
design goal is to offer a cipher that can efficiently be made resistant to side-
channel attacks through masking [26]. This is achieved by two main techniques:
first, a carefully constructed 8-bit S-box; and second, an AES-like structure
where S-boxes are only applied on the first row of the state.

The 128-bit state is represented as a 4 × 4 array of 8-bit cells. The round
function applies the following transformations:



– SubBytes: A fixed 8-bit S-box is applied to the first row of the state.
– AddConstant: At round i, the constants i, i, i and i << 3 are added to the

four cells of the first row (from left to right).
– ShiftRow: This step is identical to AES. Row i, counting from zero, is shifted

by i cells to the left.
– MixColumns: This step is again identical to AES. A fixed 4 × 4 circulant

matrix on F28 is applied to each column of the state. The matrix is the same
as that of AES.

Four consecutive rounds are called a step. After each step, the 128-bit master
key is simply added to the inner state: there is no key schedule. Encryption
consists in key addition, followed by 6 steps (24 rounds), each followed by key
addition.

6.2 Self-Similarity and Invariant Subspace

We are interested in an S-box-independent commuting linear map, as in Sec-
tion 3.1. To simplify, we focus on a single round: commuting with every round
is a sufficient condition to commute with every step. Thus we are looking for a
linear map M acting as a permutation on the S-boxes, and commuting with the
linear layer.

Since there are only four S-boxes, there are only 24 choices for the permuta-
tion. In fact, because the constant added to the fourth S-box is different from the
others, we impose that this S-box should remain fixed by the permutation, leav-
ing only 6 possibilities. In this way, our linear map will automatically commute
with both the S-box and constant addition layers.

For each of the 6 permutation choices on the first 3 S-boxes, the set of linear
maps behaving as this particular permutation on the first 4 cells, and indepen-
dently on the other cells, is itself a vector space. Furthermore the commutant
of the linear layer is naturally a vector space. Thus, it suffices to intersect these
two spaces to find a solution, if it exists.

It turns out there exists exactly one solution, for the permutation swapping
the first and third S-boxes, and leaving the other two fixed. This solution is given
in Appendix A, together with the resulting invariant subspace. This subspace
has dimension 12 over F28 , that is, 96 over F2. Hence the proportion of weak
keys is 2−32.

In the ePrint version of this work [23], we show how to enumerate all in-
variant subspaces for Zorro, and deduce that the previous space is in fact the
only invariant subspace (in the S-box-independent setting). The strategy used
to enumerate spaces extends naturally to any SPN with a partial S-box layer of
only a few S-boxes per round.

6.3 Key Recovery

The key recovery strategy from Section 3.4 extends to partial S-box layers such
as Zorro. In brief, if an involutive linear map commutes with the components of



an SPN, and acts as a permutation on the S-box inputs, part of the key may
be recovered independently of the rest. When the S-box layer is full, i.e. the
commuting map is simply a permutation, this part of the key corresponds to the
fixed poins of the permutation. When the S-box layer is partial, and hence the
commuting map M is not fully a permutation, the role of the non-fixed points
is essentially played by I = Im(M + Id). A formal statement and proof are
provided in the ePrint version of this work [23].

The consequence for Zorro is that once a key is recognized as weak, 64 bits
of the key can be guessed independently of the rest using one chosen plaintext
(any self-related plaintext). Indeed, the part of the key in I only influences the
part of the ciphertext in I. After these 64 bits have been recovered by brute
force, only 32 bits remain to be guessed, due to the key being weak. Thus key
recovery requires only one chosen plaintext and a time complexity of 264 offline
encryptions.

7 Conclusion

In this article, we present a unified cryptanalysis of several ciphers based on in-
variant properties traversing the cipher under certain conditions, while providing
generic tools for this type of attack. Our attacks are able to break lightweight
ciphers Robin, iSCREAM and Zorro in a practical setting.

Our attacks from sections 4 and 5 are quite similar in principle. The state of
an LS-design is a rectangular array. A fixed line-wise operation is performed in
each direction. Each attack looks for properties of the inner state that would be
structurally preserved in one direction (in the sense that this does not depend
on the specificities of the S-box or linear layer), that would happen to also be
preserved in the other (this time due to the particular choices of S or L).

In the case where the generic direction is linear, any linear space is preserved,
and under some conditions any coset; if it is nonlinear, only equality spaces
are preserved. In the ePrint version of this work[23], we prove that these are
in fact the most general properties structurally preserved in each direction, so
our attacks fully realize the program outlined in the previous paragraph. It
remains an open question whether a similar attack could in some way combine
information from both directions; that is, neither direction would preserve the
invariant property in a fully generic way.

Concerning our first attack on LS-designs from sections 3 and 4 (encompass-
ing both invariant permutations and invariant equality spaces), the structure
of the linear map is a key component. It seems unlikely that the attack could
succeed in cases where the linear layer is not involutive. Indeed, as shown by
the matrices of SCREAM and Fantomas, even in the presence of a large number
of well-behaved equality spaces, it appears that iterative characteristics do not
occur by accident. By contrast, if the linear layer is involutive, any well-behaved
equality space (or permutation) yields a cyclic characteristic of length at most
2; and indeed, in the case of Robin and iSCREAM, thousands of iterative char-



acteristics exist. Of course, the matrix of Robin and iSCREAM has much more
structure than a generic involutive matrix.

It is quite striking that exactly the same attacks exist on Zorro, despite its
quite different structure (byte-oriented vs. bit-oriented, partial S-box layer vs.
full, AES-like vs. somewhat SERPENT-like). It is worth noting however that
both ciphers attempt precisely the same goal, namely to offer efficient masked
implementations. As a result both reduce non-linear operations to a minimum
per round, while giving more weight to the linear layer; LS-designs achieve this
by parallelizing the S-box through bit slicing; Zorro by resorting to a partial S-
box layer. In both cases the contribution of the non-linear layer is very structured
with respect to the linear layer; this, together with the minimal key schedule and
simple round constants leads to our attacks.

We note that all our attacks can be prevented by a careful choice of round
constants. One needs only ensure that no weaker (such as probabilistic or differ-
ential) version of the attack is left behind. This is particularly true when claiming
related-key security (as in iSCREAM), since in this setting our attacks do not
require weak keys, and hence weaker probabilistic versions are quite relevant.

Going back to the generic algorithm used to find the attacks, an interesting
open problem is to specialize it to SPN structures, hoping to achieve better time
complexity. In particular, it may be worthwhile to find an algorithm that is able
to enumerate all invariant subspaces through a layer of n S-boxes, given n and
the S-box. With improvements in time complexity, it may become possible to
entirely disprove the existence of invariant subspaces for some SPNs.

Finally, we hope our analysis contributes some insight for the design of fu-
ture ciphers with minimal key schedules and the choice of round constants in
cryptographic permutations.

Acknowledgments

The authors would like to thank Henri Gilbert for many fruitful discussions
related to the attacks presented in this article.

References

1. CAESAR– Competition for Authenticated Encryption: Security, Applicability, and
Robustness. General secretary Daniel J. Bernstein, information available at http:
//competitions.cr.yp.to/caesar.html, 2013.

2. Martin R. Albrecht, Benedikt Driessen, Elif Bilge Kavun, Gregor Leander, Christof
Paar, and Tolga Yalçin. Block ciphers - focus on the linear layer (feat. PRIDE).
In Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I, pages 57–76,
2014.

3. Achiya Bar-On, Itai Dinur, Orr Dunkelman, Virginie Lallemand, and Boaz Tsa-
ban. Improved analysis of Zorro-like ciphers. Cryptology ePrint Archive, Report
2014/228, 2014. http://eprint.iacr.org/.



4. Elad Barkan and Eli Biham. In how many ways can you write rijndael? In Yuliang
Zheng, editor, Advances in Cryptology ASIACRYPT 2002, volume 2501 of Lecture
Notes in Computer Science, pages 160–175. Springer Berlin Heidelberg, 2002.

5. Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks,
and Louis Wingers. The SIMON and SPECK Families of Lightweight Block Ci-
phers. IACR Cryptology ePrint Archive, 2013:414, 2013.

6. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and Charlotte Vikkelsø.
PRESENT: An ultra-lightweight block cipher. In Pascal Paillier and Ingrid Ver-
bauwhede, editors, Cryptographic Hardware and Embedded Systems - CHES 2007,
volume 4727 of Lecture Notes in Computer Science, pages 450–466. Springer Berlin
Heidelberg, 2007.

7. Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav
Knežević, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar,
Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçın.
PRINCE - A Low-Latency Block Cipher for Pervasive Computing Applications
- Extended Abstract. In ASIACRYPT, volume 7658 of LNCS, pages 208–225.
Springer, 2012.

8. Charles Bouillaguet, Orr Dunkelman, Gaëtan Leurent, and Pierre-Alain Fouque.
Another look at complementation properties. In Seokhie Hong and Tetsu Iwata,
editors, Fast Software Encryption, volume 6147 of Lecture Notes in Computer Sci-
ence, pages 347–364. Springer Berlin Heidelberg, 2010.

9. Stanislav Bulygin, Michael Walter, and Johannes Buchmann. Many weak keys for
printcipher: Fast key recovery and countermeasures. In Ed Dawson, editor, Topics
in Cryptology CT-RSA 2013, volume 7779 of Lecture Notes in Computer Science,
pages 189–206. Springer Berlin Heidelberg, 2013.

10. Christophe De Cannière, Orr Dunkelman, and Miroslav Knezevic. KATAN and
KTANTAN - A family of small and efficient hardware-oriented block ciphers. In
Cryptographic Hardware and Embedded Systems - CHES 2009, 11th International
Workshop, Lausanne, Switzerland, September 6-9, 2009, Proceedings, pages 272–
288, 2009.

11. David Chaum and Jan-Hendrik Evertse. Crytanalysis of des with a reduced number
of rounds: Sequences of linear factors in block ciphers. In Advances in Cryptology -
CRYPTO ’85, Santa Barbara, California, USA, August 18-22, 1985, Proceedings,
volume 218 of Lecture Notes in Computer Science, pages 192–211. Springer, 1985.

12. Joan Daemen, Michaël Peeters, Gilles Van Assche, and Vincent Rijmen. NESSIE
proposal: Noekeon. Homepage http://gro.noekeon.org/, 2000.

13. Jan-Hendrik Evertse. Linear structures in blockciphers. In Advances in Cryptology
- EUROCRYPT ’87, Workshop on the Theory and Application of of Cryptographic
Techniques, Amsterdam, The Netherlands, April 13-15, 1987, Proceedings, volume
304 of Lecture Notes in Computer Science, pages 249–266. Springer, 1987.

14. Benôıt Gérard, Vincent Grosso, Maŕıa Naya-Plasencia, and François-Xavier Stan-
daert. Block ciphers that are easier to mask: How far can we go? In Guido Bertoni
and Jean-Sébastien Coron, editors, Cryptographic Hardware and Embedded Systems
- CHES 2013, volume 8086 of Lecture Notes in Computer Science, pages 383–399.
Springer Berlin Heidelberg, 2013.

15. Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, and Kerem Varici.
LS-designs: Bitslice encryption for efficient masked software implementations. To
appear in the proceedings of FSE 2014, available at http://www.uclouvain.be/

crypto/people/show/382, 2014.



16. Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, Kerem Varici,
François Durvaux, Lubos Gaspar, and Stéphanie Kerckhof. Addendum to the
CAESAR submission for SCREAM and iSCREAM. Posted on the official
CAESAR submission list, available at http://competitions.cr.yp.to/round1/

scream-ordering.txt, 2014.
17. Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, Kerem Varici,

François Durvaux, Lubos Gaspar, and Stéphanie Kerckhof. CAESAR candi-
date SCREAM. Presentation by Gaëtan Leurent at DIAC 2014, available at
http://2014.diac.cr.yp.to/slides/leurent-scream.pdf, 2014.

18. Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, Kerem Varici,
François Durvaux, Lubos Gaspar, and Stéphanie Kerckhof. SCREAM &
iSCREAM. Entry in the CAESAR competition [1], available at http://

competitions.cr.yp.to/round1/screamv1.pdf, 2014.
19. Jian Guo, Ivica Nikolić, Thomas Peyrin, and Lei Wang. Cryptanalysis of Zorro.

Cryptology ePrint Archive, Report 2013/713, 2013. http://eprint.iacr.org/.
20. Jian Guo, Thomas Peyrin, Axel Poschmann, and Matt Robshaw. The LED block

cipher. In Bart Preneel and Tsuyoshi Takagi, editors, Cryptographic Hardware
and Embedded Systems CHES 2011, volume 6917 of Lecture Notes in Computer
Science, pages 326–341. Springer Berlin Heidelberg, 2011.

21. Ferhat Karakoç, Hüseyin Demirci, and Emre Harmancı. ITUbee: A Software Ori-
ented Lightweight Block Cipher. In Second International Workshop on Lightweight
Cryptography for Security and Privacy (LightSec), 2013.

22. Gregor Leander, Mohamed Ahmed Abdelraheem, Hoda AlKhzaimi, and Erik Zen-
ner. A cryptanalysis of PRINTcipher: The invariant subspace attack. In Phillip
Rogaway, editor, Advances in Cryptology — CRYPTO 2011, volume 6841 of Lec-
ture Notes in Computer Science, pages 206–221. Springer Berlin Heidelberg, 2011.

23. Gregor Leander, Brice Minaud, and Sondre Rønjom. A generic approach to invari-
ant subspace attacks: Cryptanalysis of Robin, iSCREAM and Zorro. Cryptology
ePrint Archive, Report 2015/068, 2015. http://eprint.iacr.org/2015/068.

24. Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block ciphers. In
Moti Yung, editor, Advances in Cryptology CRYPTO 2002, volume 2442 of Lecture
Notes in Computer Science, pages 31–46. Springer Berlin Heidelberg, 2002.

25. Sean Murphy. An analysis of SAFER. Journal of Cryptology, 11(4):235–251, 1998.
26. Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks:

A formal security proof. In Thomas Johansson and Phong Q. Nguyen, editors,
Advances in Cryptology EUROCRYPT 2013, volume 7881 of Lecture Notes in
Computer Science, pages 142–159. Springer Berlin Heidelberg, 2013.

27. Shahram Rasoolzadeh, Zahra Ahmadian, Mahmood Salmasizadeh, and Moham-
mad Reza Aref. Total break of Zorro using linear and differential attacks. Cryp-
tology ePrint Archive, Report 2014/220, 2014. http://eprint.iacr.org/.

28. J.A. Reeds and J.L. Manferdelli. Des has no per round linear factors. In Georg-
eRobert Blakley and David Chaum, editors, Advances in Cryptology, volume 196
of Lecture Notes in Computer Science, pages 377–389. Springer Berlin Heidelberg,
1985.

29. Siang Meng Sim and Lei Wang. Practical forgery attacks on SCREAM and iS-
CREAM. Posted on the crypto competitions mailing list at https://groups.

google.com/d/forum/crypto-competitions; report available at http://www1.

spms.ntu.edu.sg/~syllab/m/images/b/b3/ForgeryAttackOnSCREAM.pdf, 2014.
30. Hadi Soleimany. Probabilistic slide cryptanalysis and its applications to LED-

64 and Zorro. To appear in the proceedings of FSE 2014, available at http:

//research.ics.aalto.fi/publications/bibdb2014/pdf/fse2014.pdf, 2014.



31. Yanfeng Wang, Wenling Wu, Zhiyuan Guo, and Xiaoli Yu. Differential crypt-
analysis and linear distinguisher of full-round Zorro. In Ioana Boureanu, Philippe
Owesarski, and Serge Vaudenay, editors, Applied Cryptography and Network Secu-
rity, volume 8479 of Lecture Notes in Computer Science, pages 308–323. Springer
International Publishing, 2014.

A Commuting Linear Map and Invariant Subspace for
Zorro

The commuting linear map M is represented as a 16×16 matrix over F28 , using
the AES representation of F28 as F2[x]/(x8 + x4 + x3 + x+ 1).



0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 34 101 35 101 50 249 50 249 249 116 249 116

0 0 0 0 101 35 101 34 249 50 249 50 116 249 116 249

0 0 0 0 35 101 34 101 50 249 50 249 249 116 249 116

0 0 0 0 101 34 101 35 249 50 249 50 116 249 116 249

0 0 0 0 17 86 17 86 1 0 0 0 249 50 249 50

0 0 0 0 86 17 86 17 0 0 0 1 50 249 50 249

0 0 0 0 17 86 17 86 0 0 1 0 249 50 249 50

0 0 0 0 86 17 86 17 0 1 0 0 50 249 50 249

0 0 0 0 51 190 51 190 86 17 86 17 35 101 34 101

0 0 0 0 190 51 190 51 17 86 17 86 101 34 101 35

0 0 0 0 51 190 51 190 86 17 86 17 34 101 35 101

0 0 0 0 190 51 190 51 17 86 17 86 101 35 101 34


The invariant subspace ker(M + Id) is generated by the following 12 row

vectors, in the same representation.

(1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0)

(0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

(0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0)

(0 0 0 0 1 0 0 0 0 0 0 38 0 0 159 0)

(0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 3)

(0 0 0 0 0 0 1 0 0 0 0 38 0 0 159 0)

(0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 3)

(0 0 0 0 0 0 0 0 1 0 0 79 0 0 38 1)

(0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0)

(0 0 0 0 0 0 0 0 0 0 1 79 0 0 38 1)

(0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0)

(0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1)



B Well-Behaved Affine Spaces for the Robin and
iSCREAM S-Box

Only spaces whose direction contains 1 are listed.

V
al

u
es

in
u

+
A

B
a
si

s
o
f
A

V
al

u
es

in
v

+
B

=
S

(u
+
A

)
B

a
si

s
o
f
B

d
im

(A
+
B

)

0
0

0
1

2
6

2
7

8
4

8
5

a
2

a
3

0
1

2
6

8
4

0
0

0
1

2
6

2
7

8
4

8
5

a
2

a
3

0
1

2
6

8
4

3

1
8

1
9

7
c

7
d

9
e

9
f

f
a

f
b

0
1

6
4

8
6

1
8

1
9

7
c

7
d

9
e

9
f

f
a

f
b

0
1

6
4

8
6

3

2
8

2
9

3
2

3
3

8
a

8
b

9
0

9
1

0
1

1
a

a
2

9
0

9
1

8
a

8
b

3
2

3
3

2
8

2
9

0
1

1
a

a
2

3

3
c

3
d

5
e

5
f

b
2

b
3

d
0

d
1

0
1

6
2

8
e

b
2

b
3

d
0

d
1

3
c

3
d

5
e

5
f

0
1

6
2

8
e

3

4
4

4
5

6
6

6
7

c
8

c
9

e
a

e
b

0
1

2
2

8
c

c
8

c
9

e
a

e
b

4
4

4
5

6
6

6
7

0
1

2
2

8
c

3

4
e

4
f

5
4

5
5

6
c

6
d

7
6

7
7

0
1

1
a

2
2

7
7

7
6

6
d

6
c

5
5

5
4

4
f

4
e

0
1

1
a

2
2

3

2
8

2
9

3
2

3
3

6
c

6
d

7
6

7
7

0
1

1
a

4
4

9
0

9
1

8
a

8
b

5
4

5
5

4
e

4
f

0
1

1
a

c
4

4

2
8

2
9

3
2

3
3

4
e

4
f

5
4

5
5

0
1

1
a

6
6

9
0

9
1

8
a

8
b

7
6

7
7

6
c

6
d

0
1

1
a

e
6

4

2
e

2
f

3
8

3
9

8
c

8
d

9
a

9
b

0
1

1
6

a
2

6
f

6
e

6
3

6
2

c
d

c
c

c
1

c
0

0
1

0
c

a
2

4

0
8

0
9

2
e

2
f

8
c

8
d

a
a

a
b

0
1

2
6

8
4

4
d

4
c

6
f

6
e

c
1

c
0

e
3

e
2

0
1

2
2

8
c

5

0
8

0
9

3
8

3
9

9
a

9
b

a
a

a
b

0
1

3
0

9
2

4
d

4
c

6
3

6
2

c
d

c
c

e
3

e
2

0
1

2
e

8
0

5

0
a

0
b

1
2

1
3

c
6

c
7

d
e

d
f

0
1

1
8

c
c

2
c

2
d

3
6

3
7

6
8

6
9

7
2

7
3

0
1

1
a

4
4

5

0
e

0
f

1
6

1
7

c
2

c
3

d
a

d
b

0
1

1
8

c
c

b
d

b
c

a
d

a
c

f
1

f
0

e
1

e
0

0
1

1
0

4
c

5

2
0

2
1

3
e

3
f

8
6

8
7

9
8

9
9

0
1

1
e

a
6

5
9

5
8

5
d

5
c

e
9

e
8

e
d

e
c

0
1

0
4

b
0

5

2
2

2
3

3
4

3
5

8
0

8
1

9
6

9
7

0
1

1
6

a
2

7
8

7
9

7
4

7
5

d
8

d
9

d
4

d
5

0
1

0
c

a
0

5

2
4

2
5

3
a

3
b

8
2

8
3

9
c

9
d

0
1

1
e

a
6

4
7

4
6

4
3

4
2

f
d

f
c

f
9

f
8

0
1

0
4

b
a

5

4
a

4
b

5
0

5
1

8
e

8
f

9
4

9
5

0
1

1
a

c
4

e
4

e
5

f
4

f
5

a
8

a
9

b
8

b
9

0
1

1
0

4
c

5


