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Abstract. The FX-construction was proposed in 1996 by Kilian and
Rogaway as a generalization of the DESX scheme. The construction in-
creases the security of an n-bit core block cipher with a κ-bit key by using
two additional n-bit masking keys. Recently, several concrete instances
of the FX-construction were proposed, including PRINCE (proposed at
Asiacrypt 2012) and PRIDE (proposed at CRYPTO 2014). These ci-
phers have n = κ = 64, and are proven to guarantee about 127 − d bits
of security, assuming that their core ciphers are ideal, and the adversary
can obtain at most 2d data.
In this paper, we devise new cryptanalytic time-memory-data tradeoff
attacks on FX-constructions. While our attacks do not contradict the
security proof of PRINCE and PRIDE, nor pose an immediate threat
to their users, some specific choices of tradeoff parameters demonstrate
that the security margin of the ciphers against practical attacks is smaller
than expected. Our techniques combine a special form of time-memory-
data tradeoffs, typically applied to stream ciphers, with recent analysis
of FX-constructions by Fouque, Joux and Mavromati.

Keywords: Cryptanalysis, block cipher, time-memory-data tradeoff, FX-construction,
DESX, PRINCE, PRIDE.

1 Introduction

The Advanced Encryption Standard (AES) is the most widely used block cipher
today. It is believed to guarantee a large security margin against practical at-
tacks, and can therefore be used to encrypt very sensitive data. The AES was
preceded by the Data Encryption Standard (DES), whose 56-bit key made it
vulnerable to straightforward exhaustive search. Consequently, in 1984, when
DES was still widely used, Ron Rivest proposed a simple solution (known as
DESX [21]) to address the concern regarding its small key size. The DESX con-
struction simply XORs two independent 64-bit keys at the beginning and at the
end of the core DES encryption process, such that the total key size becomes
56 + 64 + 64 = 174 bits. This construction was generalized to the so-called FX-
construction by Kilian and Rogaway in 1996 [18]. The FX-construction is built
using an (arbitrary) n-bit block cipher FK with a κ-bit key K and two additional



n-bit whitening keys K1,K2, and defined as FXK,K1,K2
(P ) = K2⊕FK(K1⊕P ).

Kilian and Rogaway proved that the cipher guarantees κ+ n− d− 1 bits of se-
curity,1 assuming that F is a perfect block cipher and the adversary can obtain
D = 2d plaintext-ciphertext pairs. Furthermore, Kilian and Rogaway showed
that the bound is tight by extending the attack of Daemen [10] (on the related
Even-Mansour construction) to a simple attack on the FX-construction with
complexity of about 2κ+n−d−1.

The analysis of Kilian and Rogaway implies that the security of the FX-
construction depends on how much data the attacker can obtain, and thus the
security is not completely determined by the computational power of the at-
tacker. This is a unique situation, as for (almost) all block ciphers used in prac-
tice today that have no known weaknesses, obtaining additional data does not
seem to give any significant advantage in key recovery attacks. Thus, the security
level of κ + n − d − 1 does not allow to directly compare FX-constructions to
classical ciphers, and does not give a clear indication on the effort required in
order to break such a construction.

Until recently, the security guaranteed by FX-constructions was perhaps
not very relevant, as such constructions were not proposed for practical use
(apart from DESX). This situation changed in 2012, when the FX-construction
PRINCE was presented at Asiacrypt [7], and more recently, at CRYPTO 2014,
a similar FX-construction (named PRIDE [1]) was proposed.2 Both of these con-
structions have n = κ = 64, and thus they offer security of about 127 − d bits,
assuming that their core ciphers are ideal.3

In order to encourage its adoption by the industry, the designers of PRINCE
launched a competition (named the PRINCE Challenge [23]), calling for crypt-
analysis of the cipher which would lead to better understanding of its secu-
rity. The competition focuses on practical attacks on round-reduced variants of
PRINCE, where a practical attack is defined to have data complexity of (up
to) 230 known plaintexts (or 220 chosen plaintexts), time complexity of 264 and
memory complexity of 245 bytes.

Motivated by the PRINCE Challenge, in this paper, we investigate the se-
curity margin guaranteed by FX-constructions against practical attacks, with a
focus on PRINCE and PRIDE (i.e., FX-constructions with n = κ = 64). We first
analyze well-known generic attacks on FX-constructions [5, 12, 18], and conclude
that these attacks do to threaten the security of PRINCE and PRIDE. Then, we
devise new attacks with lower memory complexity, and claim that the security
margin of FX-constructions with n = κ = 64 against these attacks is somewhat
reduced (although the attacks remain impractical).

1 A cipher guarantees b bits of security if the complexity of the most efficient attack
on it is at least 2b.

2 PRINCE and PRIDE are FX-constructions of a particular type, where K2 linearly
depends on K1. However, it is shown in [7] that the smaller key size does not reduce
the security of the schemes against generic attacks.

3 PRINCE guarantees slightly less than 127− d bits of security, as its core cipher was
designed to preserve a special property that ensures a small footprint.
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Despite the new attacks described above, our most interesting attacks are
carried out in Hellman’s time-memory tradeoff model [16]. In this model, the
adversary spends a lot of resources on a one-time preprocessing phase that ana-
lyzes the scheme, and whose output is stored in (relatively small) memory. After
this one-time preprocessing phase is completed, the scheme can be attacked much
more efficiently, and this makes Hellman’s model attractive in many cases.

The starting point of our attacks is a recent analysis of the FX-construction
and related designs by Fouque et al. [14]. One of the attacks of [14] on PRINCE
has data complexity of 232 and a very efficient time complexity of 232. The
main shortcomings of this attack are its huge memory complexity of about 267

bytes, and its impractical preprocessing phase, which has time complexity of
296. The techniques we develop trade off these high memory and preprocessing
complexities with time and data complexities, and allow to obtain more balanced
and practical tradeoffs.

Some concrete parameters of our attacks on PRICE and PRIDE in Hellman’s
model are summarized in Table 1. Consider the online phase of Attack 1, which
requires about 232 data, takes 264 time and requires 251 bytes of memory. The
parameters of this attack are thus not far from the parameters considered in the
PRINCE challenge [23] as practical, and they are valid regardless of the cipher’s
internal number of rounds. Furthermore, we show in this paper that Attack 1 (as
well as our other online attacks in Table 1) rarely accesses the memory (which
can be stored on a hard disk), and can be efficiently realized using dedicated
hardware with a budget of a medium-size enterprize. Therefore, we consider this
attack to be semi-practical.

Attack 1 has two main shortcomings: it requires the 232 data in the form
of adaptively chosen plaintexts, and more significantly, it requires a long and
impractical one-time precomputation phase of4 complexity 296.

In order to reduce the preprocessing complexity, we consider Attack 2 which
exploits a larger number of 240 adaptively chosen plaintexts. This data can be
collected (for example) if the attacker can obtain black-box access to the en-
cryption device for a few hours, and can thus be considered practical in some
(restricted) scenarios. The online attack runs in time 256, requires 251 bytes of
storage, and is therefore even more efficient than the online phase of Attack 1.
More significantly, it requires a shorter precomputation phase of time complexity
288, which is still impractical, but only marginally.5

An interesting observation is that when we execute a 0 < p ≤ 1 fraction of
the preprocessing phase of Attack 2, then the key recovery attack succeeds with
probability p. If we consider p = 2−8, the attack succeeds with a non-negligible

4 Note that according to the bound of [18], any generic attack on FX-constructions
with n = κ = 64 using 232 data, must have time complexity of at least 264+64−32−1 =
295.

5 We assume that some adversaries can spend a huge amount of resources on prepro-
cessing (in contrast to online attacks). Therefore, we consider preprocessing time
complexity of 280 to be (marginally) practical, as demonstrated by the capacity of
the Bitcoin network [6], and supported by the NIST recommendation to disallow
80-bit keys after 2014 [20].
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probability of p ≈ 1/256, requires only 251−8 = 243 bytes of disk space (or
8 terabytes), and can be implemented today with a small academical budget
(similar tasks have been implemented with such a budget [15]). Moreover, the
preprocessing time complexity of the attack above becomes 288−8 = 280 (which
is more practical than 288). This shows that it may be beneficial to start the
preprocessing phase today, instead of waiting for the technology that would make
it fully realizable in the future. We further note that the complexity parameters
of Attack 2 for p = 2−8 and n = κ = 64 are, in fact, equivalent to those for p ≈ 1
and n = 64, κ = 56. Since DES has a 56-bit key, the full attack against DESX
could potentially be carried out today by a resourceful adversary.

Table 1. Attacks on PRINCE and PRIDE

Attack Reference Data Preprocessing Online Memory Online Attack

ID (ACP)† Time Time (Bytes) Cost Estimate††

(US Dollars)

– [14] 232 296 232 267 > 10, 000, 000, 000

1 This paper 232 296 264 251 < 1, 000, 000

2 This paper 240 288 256 251 < 1, 000, 000

3 This paper 240 288 264 247 < 1, 000, 000

4 This paper 248 280 264 251 < 1, 000, 000
† Adaptively chosen plaintexts
†† As estimated at the end of Section 3

Although the FX-construction is a block cipher, our techniques are borrowed
from cryptanalysis of stateful ciphers (i.e., stream ciphers). We first notice that
the FX-construction can be viewed as a (standard) core block cipher with an
additional secret state (namely, the input or output to the core block cipher),
which is hidden by the masking keys using simple XOR operations. Our main
methodological contribution it to use Hellman’s time-memory tradeoff to in-
vert a set of special states, similarly to the techniques that Biryukov, Shamir
and Wagner applied to stream ciphers which have low sampling resistance [3, 4].
However, unlike the case of stream ciphers, in some cases we analyze (in partic-
ular for d > n/2), we have to request the data and optimize our algorithms in a
non-trivial way in order to obtain efficient tradeoffs.

A unique feature of our time-memory-data tradeoff curve for 2d ≤ 2n/2, is
that the effective hidden state (key) size of the FX-construction is reduced by a
factor of 21.5d in the online phase of the attack. On the other hand, for stream
ciphers, the effective hidden state size is only reduced by a factor of 2d. The
reason for this is that in most stream ciphers, the hidden state is permuted and its
entropy is maintained when producing keystream. On the other hand, we exploit
the basic technique of Fouque et al., which applies a non-bijective function to
the hidden state of the FX-construction, reducing its entropy. In particular, for
κ = n = 64 and 2d = 232, the effective key size is reduced to 64+64−1.5·32 = 80
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bits, whereas one could have expected it to be 64 + 64−32 = 96 bits. Exploiting
memory to further reduce the effective key size, leads to online key recovery
attacks on PRINCE and PRIDE with semi-practical complexities.

The paper is organized as follows. We begin by introducing our notation
in Section 2, while Section 3 provides an overview of our attacks. Section 4
gives some necessary background, and our simple attacks (that do not use a
preprocessing phase) are described in Section 5, while our advanced attacks are
described in Section 6. Finally, we conclude the paper in Section 7.

2 Notations and Conventions

The FX-construction [18] is built using an (arbitrary) n-bit block cipher FK
with a κ-bit key K and 2 additional n-bit whitening keys K1,K2, and defined as
FXK,K1,K2

(P ) = K2⊕FK(K1⊕P ). We denote the plaintext by P , its ciphertext
FXK,K1,K2

(P ) = K2 ⊕ FK(K1 ⊕ P ) by C, and the inner values K1 ⊕ P and
FK(K1 ⊕ P ) by X and Y , respectively (see Figure 1).

P ⊕
K1

X
FK

Y ⊕
K2

C

1

Fig. 1. The FX-Construction

In this paper, we are also interested in more specific instances of the FX-
construction. In particular, this construction also inspired the design of the Even-
Mansour scheme [13], in which the core cipher is, in fact, an unkeyed public
permutation F (for which κ = 0). Furthermore, a major focus of this paper
is placed on the recently proposed concrete FX-constructions PRINCE [7] and
PRIDE [1]. These constructions use only n bits of whitening key material K1,
where K2 is defined by A(K1), for an invertible affine function A. We refer to
this simplified scheme as an SFX-construction.

As we deal with various tradeoffs between complexity parameters of attacks,
we define some notation that is used in order to quantify these parameters. For
an n-bit block cipher, we denote N = 2n. When considering an attack, we denote
by T its total online time complexity, where a unit of time corresponds to an
encryption of a single plaintext. We denote by M = 2m the memory complexity
of the attack in terms of n-bit words, and by D = 2d its data complexity in
terms of plaintext-ciphertext pairs. Finally, we denote by T̂ the preprocessing
time complexity of the attack (if the attack does not require preprocessing, then
T̂ = 0).

The online and preprocessing time complexities of our attacks throughout
this paper are formulated in terms of the parameters n, κ, d,m defined above.
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For the sake of convenience, we assume in several parts of this paper that κ =
n, which is the case for PRINCE and PRIDE. We note that if κ > n, the
attacks we describe have a small penalty of about dκ/ne in the time and memory
complexities.6

Since we estimate the practicality of some of our attacks, it is insufficient to
merely compute their time, data, and memory complexities. Indeed, the prac-
ticality of an attack is largely influenced by more subtle properties such as the
number of memory lookups during its execution (which determines whether the
memory has to be stored in RAM, or can be stored on a cheaper hard disk),
and whether the workload of the attack can be easily parallelized (i.e., divided
across different CPUs). Another crucial element is the size of the implementation
circuit, which determines whether the attack can be efficiently realized on cheap
dedicated hardware.

3 Overview of Previous and New Attacks on
FX-Constructions

The new and previously published tradeoffs for FX-constructions are summa-
rized in Table 2. We now compare these attacks at a high level, and then em-
phasize their practicality for n = κ = 64, focusing on the concrete parameters
for the attacks given in Table 1 that use preprocessing.7

Attacks without Preprocessing We first examine attacks with no prepro-
cessing, for which an initial chosen plaintext attack was described in [18]. Then,
a known plaintext attack with the same complexity was published in [5] for
D = 2n/2, and later generalized in [12] to work with any number of known
plaintexts. All of these attacks require M = D memory and seem impractical
for n = κ = 64, as they either require impractical data and memory (e.g. for
D = M = 264), or impractical time (e.g., for D = M = 232 then T = 296). In-
termediate values such as D = M = 248 and T = 280 may seems more practical,
but we note that the large memory of 248 has to be accessed a huge number of
280 times (essentially, for each cipher evaluation). While this can be somewhat
optimized by grouping together the memory lookups, these parameters still seem
completely impractical.

The new attacks we describe in Section 5 show that in the adaptively chosen
plaintext model, we can mount attacks with the same data and time complexi-
ties, and a reduced memory complexity. In particular, for D = 2n/2, our attack
requires negligible memory, while the attacks of [5, 12, 18] require 2n/2 memory.
For n = κ = 64 and D = 248, our attack requires only 22·d−n = 22·48−64 = 232

words of memory, which is significantly better than the attack of [12]. In this

6 The ratio between the key size and block size is typically small in modern block
ciphers.

7 We note that optimal choice of parameters and infrastructure to realize an attack
depends of the setting, and there are many more options than listed in Table 1.
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case, the time complexity is 280, which can be considered as marginally practi-
cal, but is still a huge effort put into recovering a single key. Furthermore, as
the data collection cannot be parallelized, obtaining 248 data is generally not
considered practical. Nevertheless, we still believe that the attack for D = 248

serves as an initial indication that the security margin of PRINCE and PRIDE
is smaller than expected.

Attacks with Preprocessing We examine the attacks that require prepro-
cessing assuming 2d ≤ 2n/2, for which the previously published attack was given
in [14]. This attack has a very efficient online time complexity of 2d, but re-
quires 2κ+n−2d ≥ 2κ words of memory. Our attack trades-off this memory at the
expense of increasing the time complexity, and obtains T = 22(κ+n−m−1.5d).

For d > n/2, assuming 2m ≤ 2κ+n−2d, we can further reduce the pre-
processing complexity and obtain a more efficient online time complexity of
22(κ+n/2−m−d/2). Concrete parameter sets for ciphers with n = κ = 64 are given
in Table 1.

The Practicality of Our Attacks As we show in sections 6.1 and 6.2, the
online attacks summarized in Table 1 rarely access the memory, which can be
stored on a hard disk. Moreover, the attacks can be easy parallelized, and al-
though they are conceptually non-trivial, their circuit sizes are almost as small
as the circuits of the attacked FX-constructions. Therefore, the attacks can be
efficiently implemented on dedicated hardware.

As a consequence of the above, we estimate that the online phase of the
attacks in Table 1 (which require at most 264 cipher evaluations and 251 bytes
of storage) can be realized today by a medium-size enterprize with a budget of
several hundred thousand dollars. This rough estimation is based on the fact that
up to about 264 cipher evaluations can be performed in a few weeks on dedicated
hardware with such a budget [9]. Considering storage, a standard 1-terabyte hard
disk costs about 100 US dollars (as of 2015). Therefore, 251 bytes of storage (or
about 2,000 terabytes) cost roughly 200,000 dollars. Of course, fully realizing an
attack requires additional expenses, but we do not expect them to increase the
overall cost by a significant factor. On the other hand, using the same metric,
we estimate the cost of 267 bytes of storage to be more than 10,000,000,000 US
dollars, making the attack of [14] more expensive than our attacks by a factor
larger than 10,000.

4 Background

The new attacks described in this paper combine several previously published
techniques, which are described in this section.

4.1 Hellman’s Time-Memory Tradeoff [16] (with Preprocessing)

We summarize Hellman’s classical time-memory tradeoff attack [16] on an n-bit
block cipher EK , assuming that κ = n. In the preprocessing phase, we fix a
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Table 2. Time-Memory-Data Tradeoffs for FX-Constructions

Reference Data Preprocessing Time Online Time Memory

[12] 2d ≤ 2n KP† - 2κ+n−d 2d

Section 5.1 2d ≤ 2n/2 ACP†† - 2κ+n−d negligible

Section 5.2 2d > 2n/2 ACP†† - 2κ+n−d 22d−n

[14] 2d ≤ 2n/2 ACP†† 2κ+n−d 2d 2κ+n−2d

Section 6.1 2d ≤ 2n/2 ACP†† 2κ+n−d 22(κ+n−m−1.5d) 2m

Section 6.2 2d > 2n/2 ACP†† 2κ+n−d 22(κ+n/2−m−d/2) 2m ≤ 2κ+n−2d

Section 6.2 2d > 2n/2 ACP†† 2κ+n−d 2κ+d−m 2m > 2κ+n−2d

† Known plaintexts
†† Adaptively chosen plaintexts

plaintext P , and define the function h({0, 1}n) → {0, 1}n as h(K) = EK(P ).
The goal in this phase is to cover most (more than half) of the key space with
chains defined by iterating the function h. For parameters M ′ and T ′, we choose
M ′ arbitrary starting points for the chains, where each chain is of length T ′.
We store in a table only the (startpoint, endpoint) pair8 of each chain and sort
the table according to the endpoint value. Such a table requires M ′ words of
memory, and is referred to as a Hellman table.

After evaluating M ′ chains, and reaching the birthday bound (stopping rule)
of T ′ ·M ′T ′ = N , adding additional chains to the table is wasteful. Thus, we can
cover M ′T ′ = N/T ′ points with M ′ words of memory. In order to cover most
of the key space, we use flavors of h, where flavor i is defined (for example) as
h[i](K) = h(K)+i. Thus, we use T ′ flavors of h, and compute a Hellman table for
each flavor, covering a total of about N/T ′ · T ′ = N = 2κ keys as required. The
T ′ tables are the output of the preprocessing phase, and they require M = M ′T ′

words of memory, and a total of T̂ = N computation time.
During the online phase, we request the encryption of P under the unknown

key K, EK(P ). In order to recover K, we try to invert it using each of the
Hellman tables by iteratively calculating h[i] starting form EK(P ), and search-
ing if the current value is an endpoint in the table. Once we reach an end-
point, we obtain its startpoint, and continue the evaluation, hoping to reach
(h[i])−1(Ek(P )+i) and to recover K. This process has a time complexity of about
T ′ for each Hellman table. Thus, the total online time complexity is T = T ′2, and
as M = M ′T ′ and M ′T ′2 = N , we obtain a time-memory tradeoff of TM2 = N2,
or T = 22(κ−m).

Reducing memory lookups using distinguished points. A simple variant of Hell-
man’s algorithm (attributed to Ron Rivest, and later analyzed in [8, 22]), stops
each chain once it reaches a set of distinguished points, which are defined accord-

8 We note that we can save a large fraction of the memory required for startpoint
storage by exploiting the freedom to choose them, as described in [2]. Thus, we
assume that a chain requires a single word of storage.
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ing to an easily verifiable condition on h[i](K). For example, in case we require
chains of length T ′, we define the set of distinguished points to contain the
points whose log(T ′) LSBs are zero. With this variant, the length of the chains
is variable and is only defined on average, but this does not result in a significant
penalty on the theoretical time complexity of the attack. On the other hand, the
distinguished points method has a big advantage in practice, as we only need
to access a large Hellman table once for (about) every T ′ evaluations of h[i] in
the online phase of the attack. The small number of memory lookups allows the
attacker to store the memory on hard disk, which is much cheaper than RAM.

Parallelization. Since each of the T ′ Hellman tables can be searched indepen-
dently, the computation can be divided across (at most) T ′ CPUs, each requiring
access to a Hellman table of size M ′. Furthermore, each CPU is expected to ac-
cess the memory only once during the computation of T ′ time (in order to find a
startpoint that corresponds to an endpoint). Consequently, time-memory trade-
off algorithms can be implemented relatively cheaply on dedicated hardware [19,
22].

For example, in case where κ = 64 and we have M = 248 available words
of memory, then the online algorithm requires T = 22(64−48) = 232 time. This
computation can be divided across T ′ = N/M = 216 processors, each performing
216 operations, and requiring (a single) access to M ′ = M/T ′ = 232 memory (i.e.,
32 gigabytes).

4.2 Parallel Collision Search [24]

The parallel collision search algorithm was published by van Oorschot and Wiener [24],
reducing the memory required for finding collisions in an n-bit function F (com-
pared to trivial algorithms). Given M = 2m words of memory, the algorithm
builds a chain structure which is similar to a Hellman table. The chain structure
contains 2m chains, where each chain starts at an arbitrary point and is termi-
nated at a distinguished point (stored in memory) such that its average length
is T ′ = 2(n−m)/2 (i.e., the distinguished point set is of size N/T ′). As in the case
of a Hellman table, since T ′ · T ′M = N , then every chain is expected to collide
with about one other chain in the structure. Thus, the structure contains about
M ′ collisions which can be recovered efficiently as shown in [24]. However, as our
attacks only use a degenerated variant of this algorithm, this short description
suffices in order to understand the rest of this paper.

4.3 Basic Time-Memory-Data Tradeoff Attacks on the
FX-Construction [18] (without Preprocessing)

We describe the basic and well-known chosen plaintext attack of the FX-construction [18],
which is based on the attack of Daemen on the Even-Manour scheme [10]. We
also mention the known plaintext attack with the same complexity on the scheme
(see [12]), but we do not describe it here, as it is less relevant for this paper. On
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the other hand, the ideas and notation introduced in this simple attack will be
repeatedly used throughout the rest of this paper.

The attack on the FX-construction is based on encrypting plaintexts Pi,
and independently evaluating the core function FK with values of K and Xj ,
while looking for an (i, j) pair such that Pi⊕K1 = Xj . In order to detect such a
collision efficiently, we cancel the effect of the masking keys by defining functions
φ1(Pi) and φ2(K,Xj) such that Pi⊕K1 = Xj implies that φ1(Pi) = φ2(K,Xj).
These functions enable us to efficiently filter the (i, j) candidates.

For a general FX-construction, we pre-fix an arbitrary value ∆ 6= 0, set
P ′i , Pi ⊕∆ and X ′j , Xj ⊕∆, and define:

φFX1 (Pi) , Ci ⊕ C ′i = FXK,K1,K2
(Pi)⊕ FXK,K1,K2

(Pi ⊕∆)

φFX2 (K,Xj) , Yj ⊕ Y ′j = FK(Xj)⊕ FK(Xj ⊕∆).

Thus, Pi⊕K1 = Xj implies that φFX1 (Pi) = FXK,K1,K2
(Pi)⊕FXK,K1,K2

(Pi⊕
∆) = K2 ⊕ FK(K1 ⊕ Pi)⊕K2 ⊕ FK(K1 ⊕ Pi ⊕∆) = FK(Xj)⊕ FK(Xj ⊕∆) =
φFX2 (K,Xj) as required. Note that each collision gives candidates for the full
key (K,K1 = Pi ⊕ Xj ,K2 = Ci ⊕ Yj), which can be easily tested using trial
encryptions.

For an SFX-construction in which K2 = A(K1) (such as PRINCE and
PRIDE), the functions φ1(Pi) and φ2(K,Xj) can be simplified to use single
pairs of (Pi, Ci) and (Xj , Yj), respectively. Formally, we define:

φSFX1 (Pi) , A(Pi)⊕ Ci = A(Pi)⊕ FXK,K1,K2
(Pi)

φSFX2 (K,Xj) , A(Xj)⊕ Yj = A(Xj)⊕ FK(Xj).

Thus, Pi ⊕ K1 = Xj implies that φSFX1 (Pi) = A(Pi) ⊕ FXK,K1,K2(Pi) =
A(Pi)⊕K2 ⊕ FK(K1 ⊕ Pi) = A(Pi ⊕K1)⊕ FK(K1 ⊕ Pi) = A(Xj)⊕ FK(Xj) =
φSFX2 (K,Xj) as required.

The details of the attack are given in Appendix A. It has a memory com-
plexity of D and an expected time complexity of max(2D, 2κ+n−d+1) on FX-
constructions. For SFX-constructions, the data and time complexities of the
attack are reduced by a factor of 2.

4.4 Time-Memory-Data Tradeoff attacks on Even-Mansour [14]
(with Preprocessing)

We now summarize the time-memory-data tradeoff by Fouque et al. on the Even-
Mansour scheme, which uses a one-time preprocessing phase. The main idea of
the attack is to request plaintexts Pi, and evaluate the permutation F with
values Xj such that a collision Pi⊕K1 = Xj can be efficiently detected. In order
to do so, we request the data Pi and evaluate values Xj in the form of chains,
as in the parallel collision search algorithm [24].

Although we cannot immediately detect that Pi⊕K1 = Xj , the main obser-
vation of Fouque et al. is that we can independently add to Pi and Xj the same
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value φ1(Pi) = φ2(Xj) (for the functions φ1, φ2 defined above for the FX and
SFX constructions, where the key of the core cipher K is simply be ignored),
which guarantees that in case Pi ⊕K1 = Xj , then Pi+1 ⊕K1 = Xj+1.9 Hence,
the functions we iterate are defined as

Pi+1 , Φ1(Pi) , Pi ⊕ φ1(Pi)

Xj+1 , Φ2(Xj) , Xj ⊕ φ2(−, Xj).

Note that Φ1 and Φ2 are generally non-bijective mappings (rather than permu-
tations), and their behaviour (and in particular, the analysis of their collision
probability) can be modeled using random functions, assuming that the under-
lying cipher does not behave unexpectedly.10

The downside of the approach of iterating the defined functions is that the
attack becomes an adaptively-chosen plaintext attack, as Pi+1 = Pi ⊕ φ1(Pi)
depends on Ci and cannot be computed in advance (both for general FX-
constructions and SFX-constructions).

The attack works by evaluating chains during the preprocessing phase, where
each chain is iterated using Φ2 and terminated at a distinguished point that is
stored in memory. During the online phase, we evaluate a chain iterated using
Φ1 and terminated at a distinguished point. The online distinguished point is
matched with the ones stored in memory, where a match allows to recover the
key.

The full details of the attack are described in Appendix B. The time and
data complexities of the online phase of the attack are both about T = D = 2d

for SFX-constructions and 2d+1 for FX-constructions. Its memory complex-
ity is M = 2n−2d, and it requires preprocessing time of T̂ = 2n−d for SFX-
constructions and 2N/D = 2n−d+1 for FX-constructions.

4.5 Time-Memory-Data Tradeoff attacks on the FX-
Construction [14] (with Preprocessing)

As described in [14], we can easily generalize the previous attack on Even-
Mansour to FX-constructions in which the internal permutation is keyed. We
simply iterate over the 2κ keys of the internal permutation, and preprocess
each one separately by computing and storing its distinguished points. In to-
tal, we have M = 2κ · 2n−2d = 2κ+n−2d, while the preprocessing time is about
T̂ = 2κ+n−d for SFX-constructions and T̂ = 2κ+n−d+1 for FX-constructions.
The online phase of the attack is essentially the same as in the previous attack,
i.e., T = D = 2d for SFX-constructions and 2d+1 for FX-constructions.

9 The paper of [14] refers to this situation as the chains becoming parallel.
10 An exception is the specific case of SFX-constructions where the masking keys are

equal (the affine mapping A is the identity), and hence Φ1 and Φ2 defined with the
corresponding φSFX1 and φSFX2 are permutations. Thus, in this particular case, we
use Φ1 and Φ2 defined with the more general φFX1 and φFX2 , resulting in slightly less
efficient attacks.
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5 New Time-Memory-Data Tradeoff Attacks on the
FX-Construction without Preprocessing

In this section, we describe our new time-memory-data tradeoff attacks on the
FX-construction, without using a preprocessing phase. The attacks are described
in the most general form, i.e., they are applicable to general FX-constructions
(exploiting the general definitions of φ1, φ2, given in Section 4.3). However, as
this paper focuses on the concrete SFX-constructions PRINCE and PRIDE, we
directly analyze only the variants of the attacks which are optimized for SFX-
constructions (i.e., assuming φ1 = φSFX1 , φ2 = φSFX2 ). In order to calculate
the complexity parameters for general FX-constructions, we simply multiply the
data and time complexities of the attack by a factor of 2, as in the attacks of
sections 4.3, 4.4 and 4.5.

5.1 The Case of D ≤ 2n/2

The attack for the case of D ≤ 2n/2 can be considered as a straightforward
extension of the attack of [14] on the FX-construction (described in Section 4.5).
However, [14] focused on attacks with preprocessing on the FX-Construction,
and attacks without preprocessing were not described.

We extend the iteration function Φ2 (defined in the Even-Mansour attack of
the FX-construction in Section 4.4) by adding the key of the core cipher as a
parameter. The iteration functions are now defined11 as

Pi+1 , Φ1(Pi) , Pi ⊕ φ1(Pi)

Xj+1 , Φ2(K,Xj) , Xj ⊕ φ2(K,Xj).

The attack is described below:

1. Build a chain of plaintexts, starting from an arbitrary plaintext, ex-
tended using the iteration function Pi+1 = Φ1(Pi), and terminated at a
distinguished point P̂ for which the log(D) LSBs of φ1(P̂ ) are 0 (as in
the attack of Appendix B). Store the endpoint P̂ , and its value φ1(P̂ ).

2. For each possible value of K:
(a) For N/D2 different starting points X0:

i. Build a chain starting from X0, defined according to Xj+1 =

Φ2(K,Xj), and terminated at a distinguished point X̂ for which

the log(D) LSBs of φ2(K, X̂) are 0. If φ2(K, X̂) = φ1(P̂ ), test the
full keyK,K1,K2 derived from P̂ and X̂ using a trial encryption.

11 Where φ1 and φ2 are defined in Section 4.3.
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For the correct value of K in Step 2, we expect a collision between a node in
the online chain (of average length D) and the (expected number of) N/D nodes
evaluated offline. As this collision causes the corresponding chains to merge, it
will be detected at the next distinguished point, allowing to recover the key.

The expected data complexity of the attack is D = 2d, while its memory com-
plexity is negligible. The total number of distinguished points that we compute
in Step 2 is about 2κ+n−2d, requiring about 2κ+n−2d+d = 2κ+n−d computation
time. For each such distinguished point, we do not perform more than one trial
encryption, and therefore the expected total time complexity of the attack is
2κ+n−d.

Consequently, we obtain about the same data and time complexities as the
attack described in Section 4.3, but (almost) completely nullify the memory
complexity in the adaptively chosen plaintext model.

5.2 The Case of D > 2n/2

The attack for D ≤ 2n/2 has to be adapted for the case of D > 2n/2, as the
online chain (built in Step 1 of the previous attack) is expected to cycle (i.e.,
collide with itself) after about 2n/2 evaluations, and thus cannot cover more than
2n/2 nodes. Therefore, we build the structure of chains online, while evaluating
offline only one chain per key.

We note that while this attack can also be viewed as an extension of the
attacks of [14], it is less straightforward, as all the attacks of [14] use D ≤ 2n/2.
The reason is that the attacks of [14] are based on the basic Even-Mansour
attack (described in Section 4.4), for which κ = 0 and there is no gain in using
D > 2n/2 (as this increases the total time complexity of the attack). On the
other hand, we observe that for FX-constructions, we can indeed benefit from
D > 2n/2.

1. For D2/N different starting points P0:
(a) Build a chain of plaintexts, starting from P0, extended using the

formula Pi+1 = Φ1(Pi), and terminated at a distinguished point P̂
for which the log(N/D) LSBs of φ1(P̂ ) are 0. Store the endpoint P̂
in a list L, sorted according to φ1(P̂ ).

2. For each possible value of K:
(a) Build a chain starting from an arbitrary value X0, defined according

to Xj+1 = Φ2(K,Xj), and terminated at a distinguished point X̂ for

which the log(N/D) LSBs of φ2(K, X̂) are 0. Search for φ2(K, X̂)
in the list L and for each match with some φ1(P̂ ), recover P̂ , obtain
a suggestion for the full key K,K1,K2 and test it using a trial
encryption.

The chain structure of plaintexts covers D2/N ·N/D = D nodes on average,
and it is expected to collide with the chain of values (of expected length N/D)
for the correct K, allowing to recover it. The data complexity of the attack is
D = 2d, while its memory complexity is M = D2/N = 22d−n.
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Computing the distinguished points online and offline requiresmax(2d, 2κ+n−d) =
2κ+n−d time (assuming κ ≥ n). Two arbitrary distinguished points match with
probability 2(n−d)−n = 2−d (as the n − d LSBs of distinguished points always
match). We store a total of 22d−n distinguished points in L, and evaluate a total
of 2κ distinguished points in Step 2. Thus, the expected number of matches (re-
sulting in trial encryptions) is 2(κ+2d−n)−d = 2κ−n+d ≤ 2κ+n−d (as d ≤ n), and
the expected total time complexity is 2κ+n−d, dominated by the computation of
the distinguished points in Step 2.

Consequently, we obtain (about) the same time complexity as the basic attack
of Section 4.3, but gain a factor of 2d/(22d−n) = 2n−d in memory.

6 New Time-Memory-Data Tradeoff Attacks on the
FX-Construction with Preprocessing

In this section, we describe our new time-memory-data tradeoff attacks on the
FX-construction, taking advantage of a preprocessing phase. As in Section 5,
we directly analyze only the attack variants which are optimized for SFX-
constructions (although the attacks are described in the most general form). For
general FX-constructions, we simply multiply the data and time complexities of
the attacks by a factor of 2.

6.1 The Case of D ≤ 2n/2

It is possible to apply standard time-memory-data tradeoffs for stream ciphers [3,
4] to the FX-construction in the chosen plaintext model (and to some extent,
also in the known plaintext model). However, the most interesting tradeoffs are
obtained in the adaptively chosen plaintext model, in which we combine the
attacks of the previous section with techniques borrowed from stream cipher
cryptanalysis.

We use Hellman’s time-memory tradeoff algorithm in order to cover during
the preprocessing phase of the attack, the 2κ+n−2d pairs of (K,distinguished
point) that were computed in Step 2 of the attack of Section 5.1. These pairs
were all stored in memory in the attack of [14] (described in Section 4.5), which
required (at least) 2κ words of storage. This memory complexity is completely
impractical for standard values of κ ≥ 64, and our techniques trade it off with
the online time complexity.

The idea of using Hellman’s time-memory tradeoff algorithm to cover special
points was first published in cryptanalysis of a certain type of stream ciphers,12

and we now show how to adapt it to the FX-construction. In order to cover
the pairs of (K,distinguished point), we define a mapping between the 2κ+n−2d

pairs, denoted by h2(K, X̂). One problem that we need to overcome is that X̂ is
an n-bit word, and does not contain the sufficient κ+n− 2d ≥ n bits13 in order

12 Refer to tradeoffs for stream ciphers with low sampling resistance [3, 4].
13 We consider κ = n and d ≤ n/2, and thus κ+ n− 2d ≥ n.

14



to define this mapping. Furthermore, the mapping cannot directly depend on K,
as in the online phase we search the Hellman tables without knowledge of the
online key. Thus, in order to collect more data, we simply continue evaluating
the chain by applying Φ2 to (K, X̂) sufficiently many times, until we collect the
κ + n − 2d bits required in order to define the Hellman value of (K, X̂). This
value will be used in order to determine the next (K,distinguished point) pair,
i.e., the output of h2(K, X̂). The algorithm of the Hellman mapping h2(K, X̂)
is given below, assuming that κ = n for the sake of simplicity. We note that in
cases where κ > n, we simply apply Φ2 more times in order to collect more data
(the case of κ < n can be handled by truncation).

1. Compute the 2n-bit Hellman value of (K, X̂) by first computing the
next 2 points in the chain X ′ = Φ2(K, X̂) and X ′′ = Φ2(K,X ′). The
Hellman value of (K, X̂) is defined as (φ2(K,X ′), φ2(K,X ′′)).

2. Interpret the Hellman value as (Z,Knext) = (φ2(K,X ′), φ2(K,X ′′))
(note that both Z and Knext are n-bit words). Compute a chain of (aver-
age) length D = 2d, using the iteration function Φ2(Knext, X), starting
from X = Z, and terminating at a distinguished point (Knext, Ẑnext)
(i.e., the log(D) LSBs of φ2(Knext, Ẑnext) are zero). Output h2(K, X̂) =
(Knext, Ẑnext).

Once the mapping h2(K, X̂) is well-defined, we can use Hellman’s preprocess-
ing algorithm to cover a space of 2κ+n−2d points (pairs) (K, X̂). As the average
time complexity of one application of h2(K, X̂) is D, the total time complexity
of the preprocessing phase is T̂ = D · 2κ+n/D2 = 2κ+n−d. Since h2 is defined on
(at most) 2n bits, we can store M/2 chains with M words of memory. However,
in case D ≈ 2n/2 and κ ≤ n, we essentially need to cover a space of at most 2n

(we cover one distinguished point per key on average), and thus we can store a
larger number of M chains with M words of memory.

We now point out a few technical issues about the preprocessing algorithm:
since we are using Hellman’s algorithm to cover 2κ+n−2d points, the (average)
length of the Hellman chains is 2κ+n−2d−m (determined according to the avail-
able memory M = 2m). In order to terminate a Hellman chain (computed using
h2 on the space of κ + n − 2d bits), we need to define a subset of “Hellman
distinguished points”, containing pairs of (K, X̂). Such a subset (which deter-
mines when to terminate an iteration chain of h2) can be defined (for example)
according to the LSBs of the Hellman value (φ2(K,X ′), φ2(K,X ′′)), computed
in Step 1 of the algorithm above. The “Hellman distinguished points” should be
contrasted with the distinguished points defined for the iteration on the n-bit
space with a fixed key using Φ2 (such distinguished points are defined accord-
ing to the LSBs of φ2(K, X̂)). In order to avoid confusion, we refer to chains
and distinguished points computed using h2 as Hellman chains and Hellman
distinguished points, whereas the ones computed using Φ1 and Φ2 are simply
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referred to as (standard) chains and distinguished points.14 An additional tech-
nical issue is that in order to cover the full space of 2κ+n−2d points, we need to

define flavors of h2 (namely, h
[i]
2 ), and this can be done (for example) by defining

h
[i]
2 = h2(K, X̂) + (i, i).

The online algorithm is given below.

1. Compute a chain of (approximately) D points using the iteration func-
tion φ1, starting from an arbitrary plaintext, and terminating at a dis-
tinguished point P̂ , where the log(D) LSBs of φ1(P̂ ) are 0.

2. Given P̂ , compute the corresponding Hellman value (φ1(P ′), φ1(P ′′))
similarly to the preprocessing phase, by computing the next 2 points in
the chain P ′ = Φ1(P̂ ) and P ′′ = Φ1(P ′).

3. Invert (K ′, X ′) = (φ1(P ′), φ1(P ′′)) using the Hellman tables, obtain a
suggestion for the full key (K,K1,K2) and test it.

The data complexity of the attack is D, and according to Hellman’s time-
memory tradeoff curve, its average time complexity is T ′ = (N ′/M ′)2 evalua-
tions of h2, where N ′ = 2κ+n−2d is the size of the covered space and M ′ =
M/2 = 2m−1 is the number of Hellman chains stored in memory. Thus T ′ =
(2κ+n−2d/2m−1)2 = 22(κ+n−m−2d+1), and since each evaluation of h2 requires
D = 2d time, then T = 22(κ+n−m−1.5d+1). When D ≈ 2n/2 and κ ≤ n, we can
use the M memory words more efficiently and obtain a (slightly) improved time
complexity of T = 22(κ+n−m−1.5d).

The Difference Between Tradeoffs for FX-Constructions and Stream
Ciphers As can be seen from the tradeoff above for FX-constructions, the
effective key size is reduced by a factor of 21.5d when obtaining 2d data. On the
other hand, for stream ciphers, the effective hidden state size is only reduced
by a factor of 2d. The reason for this is that in the case of stream ciphers,
the state update function is typically a permutation.15 On the other hand, the
corresponding function in the case of FX-constructions is Φ1, which is a non-
bijective function rather than a permutation. Iterating Φ1 a large number of
times results in entropy loss due to collisions in its functional graph. This reduces
the number of points that we need to search in the Hellman tables to recover
the key, and improves the complexity of the online attack compared to the case
of stream ciphers.

14 Our definitions are related to the definitions of full name,output name, and short
name in the context of stream ciphers with low sampling resistance [3].

15 For example, many stream ciphers are built using feedback shift registers, and it is
possible to run them backwards in a deterministic way.
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Implementation for n = κ = 64 In the case of PRINCE and PRIDE, then
n = κ = 64. We assume that we have 2m = 248 words of memory (251 bytes) and
we can obtain 2d = 232 adaptively chosen plaintexts. In total, the online time
complexity of the algorithm is 22(64+64−48−48) = 264, corresponding to Attack
1 in Table 1. Similarly to the example given at the end of Section 4.1, as the
Hellman chains cover a space of size 2κ = 264 points, the 264 computation can
be divided across 216 CPUs, each requiring (a single) access to a memory of 232

words (and it can thus be stored on a hard disk). Each CPU invokes h2 about 216

times, where each invocation requires 232 cipher evaluations. Thus, each CPU
performs about 248 cipher evaluations in total.

6.2 The Case of D > 2n/2

As in the case considered in Section 5.2, we need to adapt the previous attack
to efficiently exploit D > 2n/2 data. Similarly to the case of D ≤ 2n/2, the tech-
niques we use for D > 2n/2 are related to those of [3, 4]. However, as we describe
next, the method in which we request the data and optimize the parameters in
this setting are different from the stream cipher setting (where the method in
which the keystream is obtained does not seem to influence the complexity of
the attack).

We consider two different adaptation methods to the previous attack of D ≤
2n/2. In the first method, we obtain the data using chains of (maximal) length
2n/2. In order to ensure that these chains do not merge, we define flavors of
Φ1 and Φ2 (which should be contrasted with the Hellman flavors of h2). Thus,
we define 2d−n/2 flavors, and build Hellman tables for each one. During the
online phase, we obtain one distinguished point per flavor and search it in the
corresponding Hellman tables. One can observe that in terms of the time-memory
tradeoff, the flavors of Φ1 and Φ2 play a similar role to the flavors of h2 in the
attack with d = n/2. Consequently, we obtain the same time-memory tradeoff
as for d = n/2, i.e., T = 22(κ+n/4−m).16 On the other hand, the preprocessing
complexity is reduced to T̂ = 2κ+n−d.

An Improved Tradeoff The attack above is a direct extension of the tradeoff
obtained for D = 2n/2, which covered offline, 2κ distinguished points using h2.
We now show how to obtain an improved attack, using a simple and yet subtle
and non-trivial observation. We notice that for D > 2n/2, we can use chains of
length N/D < 2n/2. These chains are shorter than the ones used for D = 2n/2

data, and are of the same length as in the attack with only 2d
′

= 2n−d data. At
first, it may not be clear why using shorter chains results in a better attack. As
we show next, the reason for this is that we can use the memory more efficiently
than in the case of longer chains.

We first compare our case of 2d > 2n/2 data and the case of 2d
′

= 2n−d

data, which use the same chain length. The difference is that in the case of
2d
′

= 2n−d data, we obtained only one distinguished point online, whereas now

16 There are additional restrictions to this curve, discussed at the end of the section.
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we have 2d−(n−d) = 22d−n such distinguished points, and we need to cover only
one of them offline in order to succeed. Thus, in the attack with 2d

′
= 2n−d

data, we had to cover offline, the large space of 2κ+n−2d
′

distinguished points
using Hellman tables, whereas now we need to cover only 2κ+n−2d

′−(2d−n) =
2κ+n−2(n−d)−(2d−n) = 2κ distinguished points. Namely, we need to cover about
one distinguished point for every key K of the core cipher, as in the attack above.
However, the crucial observation is that the space of distinguished points is of
the same size as in the attack with 2d

′
= 2n−d data. This space is larger than

the space for D = 2n/2, implying that we can build larger Hellman tables and
use the memory more efficiently compared to the (non optimal) attack above
(which is a direct extension of the case of D = 2n/2).

A simple way to compute the improved tradeoff is to start with the formula
T = 22(κ+n

′−m−1.5d′), calculated for the attack with d′ ≤ n/2. Then, we plug in
d′ = n − d and n′ = n − (2d − n), as the space size that we cover by Hellman
tables is reduced by a factor of 22d−n (which is the number of distinguished points
obtained online). In other words, the tradeoff T = 2κ+n−(2d−n)−m−1.5(n−d) =
22(κ+n/2−m−d/2) is obtained by reducing the number of Hellman tables (by a
factor of 22d−n) compared to the attack that used d′ = n − d. However, the
attack cannot use less than 1 Hellman table, and it is therefore necessary to
derive an expression for this variable, which restricts the tradeoff. Interestingly,
the simplest method that we found to compute the number of Hellman tables
is to redo the low-level computation, which also gives a better understanding of
the full attack.

Data chains

≈2n−d

22d−n

≈2n−d

≈T ′

M′

Hellman tables

Fig. 2. Time-Memory-Data Tradeoff with Preprocessing for D > 2n/2
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For parameters T ′ and M ′, we build a Hellman table of distinguished points
(using the function h2) with the stopping rule of

T ′ · T ′M ′ = 2κ+n−2d
′

= 2κ−n+2d (1)

(after which the Hellman chains start colliding extensively).17 We need to cover
about 2κ distinguished points with H Hellman tables, namely

HT ′M ′ = 2κ. (2)

Since each evaluation of h2 requires 2n−d time, the preprocessing time complex-
ity is T̂ = 2κ+n−d (as in the non-optimized attack above). The total memory
complexity of the attack is

M = HM ′ (3)

and the total online time complexity is calculated as follows: searching a single
Hellman table requires T ′ evaluations of h2, i.e., a total of T ′ · 2n−d time. For
each of the 22d−n distinguished points, we need to search the H Hellman tables,
and thus the total online time complexity is

T = T ′ · 2n−d ·H · 22d−n = T ′H · 2d. (4)

We calculate the tradeoff according to (3) and (4) by evaluating T ·M2 =
T ′H ·2d · (HM ′)2 = 2d ·H3 ·T ′ · (M ′)2. From (2), we get T ·M2 = 2κ+d ·H2 ·M ′.
Furthermore, from (1) and (2), we obtain

H2 ·M ′ = 22κ−(κ−n+2d) = 2κ+n−2d. (5)

Thus, T ·M2 = 2κ+d+κ+n−2d = 22κ+n−d, i.e., we obtain the tradeoff

T = 22(κ+n/2−m−d/2)

(which was obtained above in a different way). This tradeoff efficiently exploits
more than 2n/2 data, unlike the previous tradeoff T = 22(κ+n/4−m).

As noted above, a condition that we have to impose on this tradeoff is that
the number of Hellman tables is at least 1, i.e., H ≥ 1. In order to calculate H,
we use (3) and (5), obtaining H = 2κ+n−2d−m. Since H ≥ 1, the tradeoff above
is valid only for m ≤ κ+ n− 2d.

When we want to utilize 2m memory for m > κ+n−2d, then we use only one
Hellman table (i.e., H = 1), and we are forced to stop the Hellman chains before
the stopping rule (T ′)2 ·M ′ < 2κ−n+2d (1). Namely, we have M ′ = M = 2m and
T ′M ′ = 2κ, implying that T ′ = 2κ−m, and using (4), T = T ′ · 2d = 2κ+d−m.
Note that (T ′)2 ·M ′ = 22(κ−m) · 2m = 22κ−m < 22κ−(κ+n−2d) = 2κ−n+2d, so
indeed we do not violate the stopping rule (1).

Finally, we observe that a similar restriction on m also applies to the previous
tradeoff T = 22(κ+n/4−m) for d > n/2, and it is possible to show that the tradeoff
obtained here is always at least as efficient as the previous one.

17 Note that the stopping rule in the previous attack was T ′ · T ′M ′ = 2κ < 2κ−n+2d.
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Implementation for n = κ = 64 We assume that we have 2m = 248 words
of memory and we can obtain 2d = 240 adaptively chosen plaintexts. In to-
tal, the online time complexity of the algorithm is T = 22(κ+n/2−m−d/2) =
22(64+32−48−20) = 256, corresponding to Attack 2 in Table 1. In this case H =
2κ+n−2d−m = 1, i.e., we have a single Hellman table. As we search the table with
22d−n = 216 distinguished points, the 256 computations can be divided across
(up to) 216 CPUs, each performing 256−16 = 240 computations, and accessing
the memory only once (and it can therefore be stored on a hard disk).

7 Conclusions

In this paper, we proposed new generic time-memory-data tradeoffs for FX-
constructions, and optimized them for the recent proposals PRINCE and PRIDE.
Some of our attacks are surprisingly efficient, and despite their limitations, we
believe that they demonstrate the small security margin of PRINCE and PRIDE
against practical attacks. In the extended version of this paper [11], we show that
PRINCE and PRIDE could counter these generic attacks with little overhead by
incorporating the masking keys into the key schedule of the core ciphers. This
suggests that the DESX solution proposed by Ron Rivest in 1984 (in order to
provide better security for the widely-deployed DES) may be less suitable for
new ciphers.

Acknowledgements: The author would like to thank Orr Dunkelman and
Adi Shamir for helpful discussions on this work.
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A Details of the Basic Time-Memory-Data Tradeoff
Attack on the FX-Construction [18] (without
Preprocessing)

We give the details of the basic attack using the general functions φ1(Pi) and
φ2(K,Xj), defined in Section 4.3.

1. Obtain the encryptions of D arbitrary values Pi, denoted by Ci. For gen-
eral FX-constructions, also obtain the D additional encryptions required
to calculate φFX1 (Pi), by asking for the encryptions of P ′i = Pi⊕∆. Store
(Pi, Ci) in a list L, sorted according to φ1(Pi).

2. For each possible value of K:
(a) For N/D different values of Xj :

i. Compute φ2(K,Xj) by computing Yj = FK(Xj) (for a general
FX-construction, also compute FK(Xj ⊕∆)).

ii. Search φ2(K,Xj) in L. For each match, retrieve (Pi, Ci), and test
each of the key candidate triplet (K,K1 = Pi⊕Xj ,K2 = Ci⊕Yj)
using trial encryptions. If a trial encryption succeeds, return the
corresponding full key (otherwise return to Step 2.(a)).

According the the birthday paradox, for the correct value of K in Step 2, we
expect a pair (i, j) such that Pi ⊕ K1 = Xj . Therefore, we expect to obtain a
match in L in Step 2.(a).ii between φ1(Pi) and φ2(K,Xj) and recover the correct
K,K1,K2.

For general FX-constructions, the data complexity of the attack is 2D chosen
plaintexts, and its memory complexity is M = 2D n-bit words, required in
order to store L. In order to compute the time complexity, we note that for
an arbitrary value of the n bits of φ2(K,Xj), we expect at most one match in
L (which contains at most 2n elements). Thus, the expected time complexity
of Step 2.(a) is about 2, implying that the expected time complexity of the
full attack is max(2D, 2κ+n−d+1) (i.e., we can efficiently exploit D ≤ 2(κ+n)/2

data). For SFX-constructions, the data and time complexities of the attack are
reduced by a factor of 2 (note that in this case, the attack requires only known
plaintexts).
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B Details of the Time-Memory-Data Tradeoff Attack on
Even-Mansour [14] (with Preprocessing)

We assume that we can obtain the encryptions of about D ≤ 2n/2 adaptively-
chosen plaintexts during the online phase. During the preprocessing phase, we
use the preprocessing iteration function Φ2(X) (defined in Section 4.4) in order
to build a structure containing N/D2 chains. Each chain is evaluated from an
arbitrary starting point, and terminated at a distinguished point X̂ for which
the log(D) LSBs of φ2(X̂) are zero. Thus, the average chain length is D, im-
plying that the time complexity of preprocessing is T̂ = N/D = 2n−d for
SFX-constructions and 2N/D = 2n−d+1 for FX-constructions. For each chain
in the structure, we store in memory only the endpoint18 X̂, and sort the
chains according to their values φ2(X̂). Thus, the memory complexity is about
M = N/D2 = 2n−2d.

During the online phase, we evaluate a single chain of (expected) length D,
starting for an arbitrary plaintext. The chain is defined according to the online
iteration function Φ1(P ), and is terminated at a distinguished point P̂ for which
the log(D) LSBs of φ1(P̂ ) are zero. Once a distinguished point is reached, we
search for it in the structure, and for each match, we obtain and test the key
suggestions for K1,K2. Note that unlike Hellman’s original attack, we directly
recover the key from the distinguished points stored in the structure, without
the need to further traverse the chains (and thus we do not need to store any
information about their startpoints).

As the offline structure covers about 2n−d values of Xj and the online chain
contains 2d values of Pi, we expect a collision Pi ⊕ K1 = Xj . The collision
implies that φ1(Pi) = φ2(Xj), which causes the two corresponding chains to
merge and reach distinguished points with the same value. This distinguished
point is recovered in the online phase and allows to recover the key K1,K2. Thus,
the time and data complexities of the online phase of the attack are both about
T = D = 2d for SFX-constructions and 2d+1 for FX-constructions.

18 The structure is somewhat different from a Hellman table, for which we also store
information about the startpoints of the chains.
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