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Abstract. In this paper, we propose two variants of the Number Field Sieve (NFS) to
compute discrete logarithms in medium characteristic finite fields. We consider algorithms
that combine two ideas, namely the Multiple variant of the Number Field Sieve (MNFS)
taking advantage of a large number of number fields in the sieving phase, and two re-
cent polynomial selections for the classical Number Field Sieve. Combining MNFS with
the Conjugation Method, we design the best asymptotic algorithm to compute discrete
logarithms in the medium characteric case. The asymptotic complexity of our improved
algorithm is Lpn(1/3, (8(9+ 4

√
6)/15)1/3) ≈ Lpn(1/3,2.156), where Fpn is the target finite

field. This has to be compared with the complexity of the previous state-of-the-art algo-
rithm for medium characteristic finite fields, NFS with Conjugation Method, that has a
complexity of approximately Lpn(1/3,2.201). Similarly, combining MNFS with the Gen-
eralized Joux-Lercier method leads to an improvement on the asymptotic complexities in
the boundary case between medium and high characteristic finite fields.

1 Introduction

Public key cryptosystems are designed around computational hardness assumptions re-
lated to mathematical properties, making such protocols hard to break in practice by any
adversary. Algorithmic number theory provides most of those assumptions, such as the
presumed difficulty to factorize a large integer or to compute discrete logarithms in some
groups. Given an arbitrary element h of a cyclic group, the discrete logarithm problem
consists in recovering the exponent x of a generator g such that gx = h. We focus here on
the multiplicative group of the invertible elements in a finite field.
Current discrete logarithms algorithms for finite fields vary with the relative sizes of the
characteristic p and the extension degree n. To be more precise, finite fields split into three
families and so do the related algorithms. When p is small compared to n, the best choice
is to apply the recent Quasi-Polynomial algorithm [BGJT14]. Medium and high character-
istics share some properties since we use in both cases variants of the Number Field Sieve
(NFS) that was first introduced for discrete logarithms computations in prime fields in
1993 by Gordon [Gor93]. Then, NFS was extended to all medium and high characteristic
finite fields in 2006 by Joux, Lercier, Smart and Vercauteren [JLSV06]. For the past few
months, discrete logarithm in finite fields has been a vivid domain and things change fast
– not only for small characteristic.
In February 2014, Barbulescu and Pierrot [BP14] presented the Multiple Number Field
Sieve (MNFS) that applies in both medium and high characteristic finite fields. As for
NFS, the main idea came from factoring [Cop93] and was first introduced for discrete
logarithms computations in prime fields in 2003 thanks to Matyukhin [Mat03]. In both
medium and high characteristic cases, the idea is to go from two number fields, as in the
classical NFS, to a large number of number fields, making the probability to obtain a good
relation in the sieving phase higher. Yet, the sieving phase differs between medium and high
characteristics since the parameters of the two first polynomials defining the number fields
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are equal in the medium case but unbalanced in the high case. Let us recall the notation
Lq(α, c) = exp((c+o(1))(log q)α(log log q)1−α) to be more precise about complexities, and
focus on the high characteristic case. Due to unbalanced degree of the first two polynomials,
the variant proposed by Barbulescu and Pierrot is dissymmetric. It means that in the
sieving phase they select only elements that are small in some sense in the first number
field and in at least another number field, giving to the first number field a specific role
with regards to the others. With this dissymmetric MNFS, the asymptotic complexity to
compute discrete logarithms in a finite field Fpn of characteristic p = Lpn(lp, c) when p is
high, i.e. when lp > 2/3, is the same as the complexity given for factoring an integer of the
same size [Cop93]. Namely, it is:

Lpn
⎛

⎝

1

3
,(

2 ⋅ (46 + 13
√

13)

27
)

1/3
⎞

⎠
.

Note that MNFS as described in [BP14] is currently the state-of-the-art algorithm for
computing discrete logarithms in high characteristic finite fields.
In the medium characteristic case, i.e. when 1/3 ⩽ lp ⩽ 2/3, the polynomial selection of
the classical Number Field Sieve allows to construct two polynomials with same degrees
and same sizes of coefficients. Making linear combination, MNFS creates then a lots of
polynomials with equal parameters. Thanks to this notion of symmetry, the sieving phase
of the Multiple variant consists in keeping elements that are small in any pairs of number
fields, making the probability to obtain a good relation growing further.
Yet, few months later, in August 2014, Barbulescu, Gaudry, Guillevic and Morain detailed
in a preprint [BGGM14] some practical improvements for the classical Number Field Sieve.
Besides, they gave a new polynomial selection method that has the nice theoretical interest
to lead to the best asymptotic heuristic complexity known in the medium characteristic
case, overpassing the one given in [BP14]. This new polynomial selection also called Conju-
gation Method permits to create one polynomial with a small degree and high coefficients
and another one with a high degree and coefficients of constant size. Finally, the authors
of [BGGM14] obtain the asymptotic complexity:

Lpn (
1

3
,(

96

9
)
1/3

) .

In this article, we adapt for the first time the Multiple variant of NFS to this very recent
algorithm. At first sight, one could fear that the parameters of the two polynomials given
with the Conjugation Method could act as a barrier, since their unbalanced features dif-
fer from the ones used in the medium characteristic case of [BP14]. Moreover, following
the high characteristic dissymmetric sieving phase of [BP14] and creating the remaining
polynomials with linear combination would mean spreading both high coefficients and high
degrees on the polynomials defining the various number fields. This clearly would not be a
good idea, as all NFS-based algorithms require to create elements with small norms. How-
ever, we show that the Conjugation Method may be adapted to overcome this difficulty.
The idea is to try to keep the advantage of the kind of balanced dissymetry brought by
the two polynomials with small -degree-high-coefficients/high-degree-small-coefficients. We
show that the Multiple Number Field Sieve with Conjugation Method (MNFS-CM) be-
comes the best current algorithm to compute discrete logarithms in medium characteristic
finite fields. Indeed, in this case its asymptotic complexity is:

Lpn
⎛

⎝

1

3
,(

8 ⋅ (9 + 4
√

6)

15
)

1/3
⎞

⎠
.

To ease the comparison, note that our second constant (8 (9 + 4
√

6)/15)
1/3

≈ 2.156 whereas

the previous one is (96/9)1/3 ≈ 2.201. MNFS-CM in the boundary case between medium
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and high characteristic leads also to an improvement of NFS-CM. Interestingly enough,
sieving on degree one polynomials with MNFS-CM in this boundary case permits to obtain
the best asymptotic complexity ever of any medium, boundary and high characteristic
discrete logarithms algorithms, which is approximately Lpn(1/3,1.659).
Besides the new Conjugation Method, the authors of [BGGM14] extend the polynomial
selection given by Joux and Lercier in [JL03] for prime fields. Thanks to it, they get an
improvement on the high cases of the boundary case. We propose here a simple dissymetric
Multiple Number Field Sieve based on this Generalized Joux-Lercier method (MNFS-
GJL) to get a further improvement on the same boundary case. Note that the asymptotic
complexity we obtain here,

Lpn
⎛

⎝

1

3
,(

2 ⋅ (46 + 13
√

13)

27
)

1/3
⎞

⎠
,

is exactly the one of MNFS for high characteristic finite fields, as given in [BP14].

Outline. We first detail in Section 2 how to manage the selection of numerous polynomials
based on the Conjugation method to construct a dissymetric Multiple Number Field Sieve.
Section 3 explains then how to combine MNFS with the Generalized Joux-Lercier method.
The asymptotic complexity analyses of both medium and boundary cases are given in
Section 4.

2 Combining the Multiple variant of the Number Field
Sieve with the Conjugation Method

Let Fpn denote the finite field we target, p its characteristic and n the extension degree
relatively to the base field. We propose an algorithm to compute discrete logarithms in
Fpn as soon as p can be written as p = Lpn(lp, cp) with 1/3 ⩽ lp ⩽ 2/3 (and cp close to 1).
In this case we say that the characteristic has medium size. In Section 2.1 we explain how
to represent the finite field and to construct the polynomials that define the large number
of number fields we need. In Section 2.2 we give details about the variant of the Multiple
Number Field Sieve we propose to follow.

Z [X]

Q [X] /(f1(X)) Q [X] /(f2(X))

Fpn

X ↦ θ1

X ↦ θ2

θ1 ↦m

θ2 ↦m

Fig. 1. Commutative diagram of NFS.

2.1 Polynomial selection

Basic idea: large numbers of polynomials with a common root in Fpn To
compute discrete logarithms in Fpn , all algorithms based on the Number Field Sieve start
by choosing two polynomials f1 and f2 with integers coefficients such that the greatest
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common divisor of these polynomials has an irreducible factor of degree n over the base
field. If m denotes a common root of these two polynomials in Fpn and Q(θi) denotes the
number field Q[X]/(fi(X)) for each i = 1,2, i.e. θi is a root of fi in C, then we are able
to draw the commutative diagram of Figure 1.
Since MNFS requires to have a large number of number fields, let say V number fields,
then we have to construct V − 2 extra polynomials that share the same common root m
in Fpn . The commutative diagram that is the cornerstone of all Multiple variants of the
Number Field Sieve is given in Figure 2.

Z [X]

Q (θ1) Q (θ2) . . . Q (θi) . . . Q (θV −1) Q (θV )

Fpn

X ↦ θi

θi ↦m

Fig. 2. Commutative diagram of MNFS

Settings: construction of V polynomials with the Conjugation Method
We start with the Conjugation Method given in [BGGM14, Paragraph 6.3] to construct
the first two polynomials. The idea is as follows.
We create two auxilliary polynomials ga and gb in Z[X] with small coefficients such that
deg ga = n and deg gb < n. We then search for an irreducible polynomial X2

+ uX + v over
Z[X], where u and v are small integers3 of size O(log p), such that its roots λ and λ′ are
in Fp. Since we seek a degree n irreducible polynomial over Fp[X] to construct the finite
field, we keep the polynomial X2

+ uX + v if one of the two degree n polynomials ga + λgb
or ga + λ

′gb is irreducible over Fp[X]. In the sequel we assume that ga + λgb is irreducible
over Fp[X]. When we have found such parameters, we set our first polynomial f1 ∈ Z[X]:

f1 = g
2
a − ugagb + vg

2
b .

Equivalently, f1 is defined in [BGGM14] as equal to ResY (Y 2
+ uY + v, ga(X)+ Y gb(X)).

Since λ and λ′ are roots of X2
+ uX + v in Fp, we have the equality of polynomials

f1 ≡ g2a + (λ + λ′)gagb + λλ
′g2b mod p. In other words, f1 ≡ (ga + λgb)(ga + λ

′gb) mod p.
Thus we have a polynomial f1 of degree 2n with coefficients of size O(log p) that is divisible
by ga + λgb in Fp[X].
Let us construct the next two polynomials. Thanks to continued fractions we can write:

λ ≡
a

b
≡
a′

b′
mod p

3 We correct here a mistake in [BGGM14, Paragraph 6.3]. The authors propose to search for an irre-
ducible quadratic polynomial that has constant size coefficients. However, if ∣u∣ and ∣v∣ are both lower

than a constant C, then there exist 24C2

such polynomials. Since each one has probability 1/2 to has

its roots in Fp for one random prime p, if we try to select such polynomials for approximately 24C2

primes, we will find one finite field Fp for which this method fails. Looking for quadratic polynomi-
als with coefficients of size O(log p) bypasses this trap and does not interfere with final asymptotic
complexities.
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where a, b, a′ and b′ are of the size of
√
p. We underline that these two reconstructions

(a, b) and (a′, b′) of λ are linearly independent over Q. We then set:

f2 = bga + agb and f3 = b
′ga + a

′gb.

Note that the Conjugation Method ends with the selection of f1 and f2 and does not use
the second reconstruction. It is clear that both f2 and f3 have degree n and coefficients of
size

√
p. Furthermore, we notice that f2 ≡ b(ga+λgb) mod p and similarly f3 ≡ b

′
(ga+λgb)

mod p, so they share a common root with f1 in Fpn .
We finally set for all i from 4 to V :

fi = αif2 + βif3

with αi and βi of the size of
√
V . We underline that V is negligible with regards to p,

as shown in Section 4. Thanks to linear combination, for all 2 ⩽ i ⩽ V , fi has degree n,
coefficients of size

√
p and is divisible by ga + λgb in Fp[X].

2.2 A dissymmetric Multiple Number Field Sieve

As any Index Calculus algorithm, the variant we propose follows three phases: the sieving
phase, in which we create lots of relations involving only a small set of elements, the
factor base ; the linear algebra, to recover the discrete logarithms of the elements of the
factor base ; and the individual logarithm phase, to compute the discrete logarithm of an
arbitrary element of the finite field.
We propose to sieve as usual on high degree polynomials φ(X) = a0 + ⋯ + at−1X

t−1 with
coefficients of size bounded by S. Let us recall that, given an integer y, an integer x is
called y-smooth if it can be written as a product of prime factors less than y. We then
collect all polynomials such that, first, the norm of φ(θ1) is B-smooth and, second, there
exists (at least) one number field Q(θi) with i ⩾ 2 in which the norm φ(θi) is B′-smooth. In
other simpler words, we create relations thanks to polynomials that cross over the diagram
of Figure 3 in two paths: the one on the left side of the drawing and (at least) another
one among those on the right. If we set that the factor base consists in the union of all
the prime ideals in the rings of integers that have a B-or-B′-smooth norm, the smoothness
bound depending on the number field, then we keep only relations that involve these factor
base elements. Note that B and B′ are two smoothness bounds possibly different from one
another.

Z [X]

Q (θ1) Q (θ2) . . . Q (θi) . . . Q (θV )

Fpn

X ↦ θ2

θ2 ↦m

Fig. 3. Commutative diagram for the dissymmetric Multiple Number Field Sieve with Conjugation
Method

After the same post-processing as in [JLSV06] or as detailed in [BGGM14] more recently,
each such polynomial φ yields a linear equation between “logarithms of ideals” coming
from two number fields. Hence, from each relation we obtain a linear equation where the
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unknowns are the logarithms of ideals. Let us remark that by construction each equation
only involves a small number of unknowns.
The sparse linear algebra and individual logarithm phases run exactly as in the classical
Number Field Sieve of [JLSV06]. Even if there exists a specific way to manage the last
phase with a multiple variant as detailed in [BP14], taking advantage of the large number
of number fields again, we do not consider it here. In fact, the runtime of the classical
individual logarithm phase is already negligible with regards to the total runtime of the
algorithm, as proved by Barbulescu and Pierrot in their article.

3 Combining the Multiple Number Field Sieve with the
General Joux-Lercier method

In 2003 Joux and Lercier [JL03] gave a polynomial selection to compute discrete loga-
rithms in prime fields. Barbulescu, Gaudry, Guillevic and Morain propose in [BGGM14,
Paragraph 6.2] to generalize this construction. Using again lattice reduction, they obtain
an improvement on the asymptotic complexity in the boundary case where the charac-
teristic can be written as p = LQ(2/3, c) for some specific c. We propose here to apply a
Multiple variant of NFS to this construction in a very simple way.
Let us recall the General Joux-Lercier (GJL) method as presented in [BGGM14]. In order
to compute discrete logarithms in the finite field Fpn , we first select an irreducible poly-
nomial f1 in Fp[X] with small coefficients (let us say of the size of O(log pn)) and such
that it has an irreducible factor ϕ of degree n modulo p. We assume furthermore that this
irreducible factor is monic. Let us write ϕ = Xn

+∑
n−1
i=0 ϕiX

i and d + 1 the degree of f .
Thus we have d+1 > n.4 To assure that the second polynomial shares the same irreducible
factor modulo p, we define it thanks to linear combination of polynomials of the form ϕXk

and pXk. Lattice reduction permits then to obtain small coefficients. More precisely, we
note M the following (d + 1) × (d + 1) matrix:

M =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p
⋱

p
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

n columns

1
⋱ϕn−1

1 ⋱ ⋮

ϕn−1 ϕ0

⋮ ⋱

ϕ0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
d+1−n columns

Xd

Xd−1

⋮

Xn−1

⋮

1

A generator of this lattice of polynomials is represented in one column, meaning that each
one of its coefficients is written in the row corresponding to the associated monomial (see
indications on the right of the matrix). Clearly, the determinant of the lattice is pn and its
dimension is d + 1. Hence, running the LLL algorithm on M gives a polynomial of degree
at most d that has coefficients of size at most pn/d+1 (assuming that 2(d+1)/4 stays small
compared to pn/d+1).
In a nutshell, we obtain two polynomials f1 and f2 that share a common degree n factor
over Fp[X] and such that:

deg f1 = d + 1 > n, ∥f1∥∞ = O(log pn),

deg f2 = d, ∥f2∥∞ = pn/(d+1).

where ∥fi∥∞ denotes the largest coefficients of fi in absolute value. This ends the GJL
method. As in [BP14], we perform then linear combination of these two polynomials.
Setting for all i from 3 to V :

fi = αif2 + βif3

4 We emphasize that we require ϕ to be different from f1 since we need that f2 is not equal to f1 mod p.
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with αi and βi of the size of
√
V . Thus, for all 3 ⩽ i ⩽ V , fi has degree d+1 and coefficients

of size pn/(d+1). Note that is is also possible to extract from the lattice reduction a second
polynomial f3 that has, as f2, degree d and coefficients of size pn/(d+1). Making linear
combination of f2 and f3 leads to polynomials of degree d instead of degree d+1. Yet, this
little improvement has no impact on the asymptotic complexity of the algorithm.
As usual in this boundary case where p = LQ(2/3, c), we propose to sieve on degree 1
polynomials. We apply then a dissymmetric MNFS, as described in Section 2.2.

4 Asymptotic Complexity Analyses

We give now details about the asymptotic heuristic complexities we obtain with MNFS-
CM in medium characteristic and with both MNFS-CM and MNFS-GJL in the boundary
case between medium and high characteristics. Let us fix the notations. We write the
extension degree n and the characteristic p of the target finite field FQ as:

n =
1

cp
(

logQ

log logQ
)

1−lp

and p = exp(cp(logQ)
lp(log logQ)

1−lp)

with 1/3 ⩽ lp ⩽ 2/3. The parameters taking part in the heuristic asymptotic complexity
analyses are: the sieving bound S, the degree of the polynomials we are sieving over t− 1,
the number of number fields V , the smoothness bound B related to the first number field
and the smoothness bound B′ related to the others number fields. The analyses of both
MNFS-CM and MNFS-GJL work by optimizing the total runtime of the sieving and linear
algebra phases while complying with two constraints.

Balancing the cost of the two first phases We first require that the runtime of the
sieving phase St equals the cost of the linear algebra. Since the linear system of equations
we obtain is sparse, the cost of the linear algebra is asymptotically (B + V B′

)
2. Similarly

to balancing the runtime of the two phases, we require that B = V B′. Thus, leaving apart
the constant 4 that is clearly negligible with regards to the sizes of the parameters, the
first constraint can be written as:

St = B2. (1)

Balancing the number of equations with the number of unknows To be
able to do the linear algebra phase correctly, we require that the number of unknows, that
is approximately B, is equal to the number of equations produced in the sieving phase. If
we note P the probability that a polynomial give a good relation then we want to have
StP = B. Combining it with the constraint (1), it leads to:

B = 1/P.

4.1 Analysis of MNFS-CM in the medium characteristic case

We continue the analysis for the large range of finite fields where the characteristic can be
written as p = LQ(lp, cp) with 1/3 ⩽ lp < 2/3. We consider here MNFS-CM as described in
Section 2.

Evaluating the probability of smoothness To evaluate the probability P we
need to recall some tools about norms in number fields. For fi ∈ Z[X] an irreducible
polynomial, θi a complex root of fi, and for any polynomial φ ∈ Z[X], the norm N(φ(θ))
satisfies Res(φ, fi) = ±l

degφ
i N(φ(θ)), where the term li is the leading coefficient of fi. Since
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we treat li together with small primes, we make no distinction in smoothness estimates
between norms and resultants. We have the upper bound on the resultant:

∣Res(φ, fi)∣ ≤ (deg fi + degφ)! ⋅ ∥fi∥
degφ
∞ ⋅ ∥φ∥deg fi∞ .

Thus, recalling that f1 is of degree 2n and has constant coefficients and that every other
polynomials fi has degree n and coefficients of the size

√
p, we obtain that the norm of a

sieving polynomial φ is upper-bounded by S2n in the first number field and by Snpt/2 in
every other number fields. To evaluate the probability of smoothness of these norms with
regards to B and B′, the main tool is the following theorem:

Theorem 1 (Canfield, Erdős, Pomerance [CEP83]). Let ψ(x, y) denote the number of
positive integers up to x which are y-smooth. If ε > 0 and 3 ≤ u ≤ (1 − ε) logx/ log logx,
then ψ(x,x1/u) = xu−u+o(u).

Yet, this result under this form is not very convenient. If we write the two integers x and
y with the Lq-notation, we obtain a more helpful corollary:

Corollary 1. Let (α1, α2, c1, c2) ∈ [0,1]2 × [0,∞)
2 be four reals such that α1 > α2. Let P

denote the probability that a random positive integer below x = Lq(α1, c1) splits into primes
less than y = Lq(α2, c2). Then we have P−1 = Lq (α1 − α2, (α1 − α2)c1c

−1
2 ) .

So we would like to express both norms and sieving bounds with the help of this notation.
As usual, we set:

t =
ct
cp

(
logQ

log logQ
)

2/3−lp

, St = LQ(1/3, csct), B = LQ(1/3, cb) and V = LQ(1/3, cv).

Thanks to this, we first remark that the first constraint can be rewritten as:

csct = 2cb. (2)

Besides, we apply the Corollary 1 to reformulate the second constraint. Let us note
LQ(1/3, pr) (respectively LQ(1/3, pr′)) the probability to get a B-smooth norm in the
first number field (respectively a B′-smooth norm in at least one other number field).
The second constraint becomes cb = −(pr + pr′). Using equation (2), the constants in the
probabilities can be written as:

pr =
−2cs
3cb

=
−2(2/ct)cb

3cb
and pr′ = cv −

(2/ct)cb + ct/2

3(cb − cv)
.

That leads to require cb = −(−4/(3ct)+cv−(4cb+c
2
t )/(6ct(cb−cv))) and afterwards 6ct(c

2
b −

c2v) = 8(cb − cv) + 4cb + c
2
t . Finally we would like to have:

(6ct)c
2
b − 12cb − 6ctc

2
v + 8cv − c

2
t = 0. (3)

Optimizing the asymptotic complexity We recall that the complexity of our
algorithm is given by the cost of the sparse linear algebra LQ(1/3,2cb), since we equalize
the runtime of the sieving and linear algebra phases. Hence we look for minimizing cb
under the above constraint (3). The method of Lagrange multipliers indicates that cb, cv
and ct have to be solutions of the following system:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

2 + λ(12ctcb − 12) = 0
λ(−12cvct + 8) = 0
λ(6c2b − 6c2v − 2ct) = 0



MNFS with Conjugation and Generalized Joux-Lercier Methods 9

with λ ∈ R∗. From the second row we obtain ct = 2/(3cv) and from the third one we get
cb = (c2v + 2/(9cv))

1/2. Together with equation (3), it gives the equation in one variable:
405c6v + 126c3v − 1 = 0. We deduce that cv = ((3

√
6 − 7)/45)1/3 and we recover cb = ((9 +

4
√

6)/15)1/3. Finally, the heuristic asymptotic complexity of the Multiple Number Field
Sieve with Conjugation Method is, as announced:

LQ
⎛

⎝

1

3
,(

8 ⋅ (9 + 4
√

6)

15
)

1/3
⎞

⎠
.

This has to be compared with the Number Field Sieve with Conjugation Method proposed
in [BGGM14] that has complexity LQ(1/3, (96/9)1/3). Note that our second constant is
(8(9 + 4

√
6)/15)1/3 ≈ 2.156, whereas (96/9)1/3 ≈ 2.201.

4.2 Analysis of MNFS-CM in the boundary case p = LQ(2/3, cp)

The analysis made in this case follows the previous one except for the fact that we have
to reconsider the parameter t. We consider here a family of algorithms indexed by the
degree t− 1 of the polynomials of the sieving. We compute so the final complexity of each
algorithm as a function of cp (and t). Moreover, we underline that the round off error in t
in the computation of the norms is no longer negligible.

Sieving on polynomials of degree t − 1 Again, to easily evaluate the probability
of smoothness of norms, we set the following parameters:

V = LQ(1/3, cv), B = LQ(1/3, cb), B′

= LQ(1/3, cb − cv) and S = LQ(1/3, cs).

With these notations, the first constraint becomes this time:

cst = 2cb. (4)

Moreover, the norms are upper-bounded by S2n
= LQ(2/3,2cs/cp) in the first number field

and by Snp(t−1)/2 = LQ(2/3, cs/cp + cp(t − 1)/2) in all the other number fields. We apply
the Canfield-Erdős-Pomerance theorem, and, with the same notation as in the previous
paragraph, we obtain pr = −2cs/(3cbcp) in one hand and pr′ = cv−(cs/cp+cp(t−1)/2)/(3(cb−
cv)) in the other hand. Using equation (4), the second constraint cb = −(pr + pr′) can be
rewritten as 3tcp(cb − cv)(cb + cv) = 4(cb − cv) + 2cb + t(t − 1)c2p/2. As a consequence, we
require:

(6tcp)c
2
b − 12cb − 6tcpc

2
v + 8cv − t(t − 1)c2p = 0. (5)

As previously, we want to minimize 2cb under the constraint (5). The method of Lagrange
multipliers shows that we need that the derivative of (6tcp)c

2
b−12cb−6tcpc

2
v+8cv−t(t−1)c2p

with respect to cv is equal to 0. This leads to require that cv = 2/(3tcp). Putting this value
in equation (5) we get:

(18t2c2p)c
2
b − (36tcp)cb + 8 − 3t2(t − 1)c3p = 0.

Finally, solving this equation in cb we deduce that cb = (6 + (20 + 6t2(t − 1)c3p)
1/2

)/(6tcp).
Consequently, the asymptotic complexity of the Multiple Number Field Sieve with Con-
jugation Method in this boundary case is:

LQ (
1

3
,

2

cpt
+

√
20

(9cpt)2
+

2

3
cp(t − 1))

where t − 1 is the degree of the polynomials we are sieving on. Figure 4 compares our
MNFS-CM with previous and various algorithms in this boundary case. For almost all
variants of the Number Field Sieve presented in this figure (namely NFS, MNFS, NFS-
CM and MNFS-CM), each hollow in the curve corresponds to a particular degree of the
polynomials we are sieving on.
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Remark 1. This boundary case has been the scene of various recent improvements but, as
far as we know, all of them are not yet published nor available on the Internet. In particular,
this is the case of the so-called PiRaTh algorithm, presented at the DLP conference in May
2014 by Pierrick Gaudry, Razvan Barbulescu and Thorsten Kleinjung. Yet, for the sake of
comparison, we plot it together with already broadcast algorithms.

The best asymptotic complexity of any variant of the Number Field
Sieve: MNFS-CM on linear polynomials According to Figure 4, sieving on linear
polynomials seems to give the best complexity, as usual in this boundary case. Let us make
a more precise analysis of the optimal case reached by our Multiple Number Field Sieve
with Conjugation Method. We consider now cp as a variable and we would like to find the
minimal complexity obtained by each algorithm. Namely, we want to minimize:

C(cp) =
2

cpt
+

√
20

(9cpt)2
+

2

3
cp(t − 1).

The derivative of this function with respect to cp vanishes when 2 ⋅ 92 t cp(20/(9 cp t)
2
+

(2/3)cp(t− 1))1/2 = −20+ 27(t− 1)t2c3p. This leads to the quadratic equation in c3p: 36t4(t−
1)2c6p − 24 33 43 t2(t − 1)c3p − 26

⋅ 5 ⋅ 19 = 0. Thus, the optimal value comes when cp = (2/3) ⋅

((43 + 18
√

6)/(t2(t − 1))1/3. We get for this value the minimal complexity:

LQ
⎛

⎝

1

3
,
⎛

⎝

9 +
√

177 + 72
√

6

3 ⋅ (43 + 18
√

6)1/3

⎞

⎠
⋅ (
t − 1

t
)
1/3⎞

⎠
.

Looking at this formula, it is clear that the best possible complexity is obtained when
t = 2, i.e. when we sieve on linear polynomials. Interestingly enough, we conclude that
we have with our MNFS-CM the best complexity of any medium, boundary and high
characteristics cases, which is:

LQ
⎛

⎝

1

3
,

9 +
√

177 + 72
√

6

3 ⋅ (2 ⋅ (43 + 18
√

6))1/3

⎞

⎠
.

Note that the approximation of the second constant in the complexity is given by (9 +
√

177 + 72
√

6) ⋅ 3−1 ⋅ (2 ⋅ (43 + 18
√

6))−1/3 ≈ 1.659. We get this complexity when p can be
written as p ≈ LQ(1/3,1.86).

4.3 Analysis of MNFS-GJL in the boundary case p = LQ(2/3, cp)

In this setting, we recall that we propose to sieve on linear polynomials. As usual, we
assume that B = V B′ where V is the number of number fields and B′ is the smoothness
bound relatively to the last V −1 number fields. Thus, the constraint given in Equation (1)
leads to require that the sieving bound S is equal to the first smoothness bound B. With
the same notations as previously, we also require that B = 1/P. Finally, we emphasize that
the polynomial selection proposed in Section 3 requires that n < d + 1. If we set that:

d = δ (
logQ

log logQ
)

1/3

,

where δ is a parameter to define, then we have to keep in mind that our complexity results
are valid provided δ ⩾ 1/cp.
Since f1 has small coefficients and degree d+1 the norms in the first number field are upper-
bounded by LQ(2/3, cbδ). The probability to get a B-smooth norm is though LQ(1/3, pr)
with pr = −δ/3. Similarly, the norms in the last V − 1 number fields are bounded by
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LQ(2/3, cbδ + 1/δ). The probability to get a B′-smooth norm in a least one number field is
LQ(1/3, pr′) where pr′ = −(cbδ + 1/δ)/(cb − cv) + cv.
From cb = −(pr + pr′) we get then:

cb + cv =
δ

3
+

δ2cb + 1

3δ(cb − cv)
⇔ 3δ(c2b − c

2
v) = 2δ2cb − δ

2cv + 1
⇔ 3δc2b − 2δ2cb + δ

2cv − 3δc2v − 1 = 0.

The method of Lagrange multipliers shows that we require:

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

3δc2b − 2δ2cb + δ
2cv − 3δc2v − 1 = 0

3c2b − 4δcb + 2δcv − 3c2v = 0

δ2 − 6δcv = 0

(6)

From the third line of System (6) we recover δ = 6cv. Substituting in the second line, we
obtain c2b−8cvcb+3c2v = 0. Then, writing cv as as function of cb we get: cv = ((4−

√
13)/3)cb.

Substituting the value of δ in the first line of the system gives 18cvc
2
b −72c2vcb+18c3v −1 = 0,

and, substituting again with the value of cv we finally get: cb = (46+ 13
√

13/108)1/3. With
this constant, we recover the value of δ which is (4

√
13 − 14)1/3. Thus, as soon as:

cp ⩾ (
7 + 2

√
13

6
)

1/3

,

which is approximately equal to 1.33, the complexity of the Multiple Number Field Sieve
with the Generalized Joux-Lercier method is:

LQ
⎛

⎝

1

3
,(

2 ⋅ (46 + 13
√

13)

27
)

1/3
⎞

⎠
.

As expected, we recover the exact asymptotic complexity given by [BP14] when solving
the discrete logarithm problem in high characteristic finite fields. This has to be compared
with the asymptotic complexity of the classical Number Field Sieve with the Generalized
Joux-Lercier method [BGGM14] in the same case which is LQ(1/3, (64/9)1/3). For the sake
of comparison we recall that (64/9)1/3 ≈ 1.92 whereas (2(46 + 13

√
13)/27)1/3 ≈ 1.90.

When cp < ((7 + 2
√

13)/6)
1/3

, from the constraint δ > 1/cp we get δ > (4
√

13 − 14)1/3

and the previous simplification no longer applies. Yet, the equalities cb = 3cv/(4 −
√

13) =
δ/(2(4 −

√
13)) show that we minimize the complexity when δ = 1/cp. We obtain thus

cb = (4 +
√

13)/(6cp). Finally, when:

cp < (
7 + 2

√
13

6
)

1/3

,

the asymptotic complexity of MNFS with the Generalized Joux-Lercier method is:

LQ (
1

3
,
4 +

√
13

3cp
) .

Figure 4 shows how this asymptotic complexity varies with cp.
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Fig. 4. Asymptotic complexities LQ(1/3,C(cp)) in the boundary case, as a function of cp with p =

LQ(2/3, cp). The dark blue curve represents the complexities obtained with our Multiple Number Field
Sieve with Conjugation Method while the brown one represents the complexity of the Multiple Number
Field Sieve with the General Joux-Lercier method (see next Section). The red, light blue, black, yellow
and purple curves represent respectively the complexities of NFS [JLSV06], MNFS [BP14], PiRaTh,
NFS-GJL [BGGM14] and NFS-CM [BGGM14].


