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Abstract. We propose a new decoding algorithm for random binary
linear codes. The so-called information set decoding algorithm of Prange
(1962) achieves worst-case complexity 20.121n . In the late 80s, Stern
proposed a sort-and-match version for Prange’s algorithm, on which all
variants of the currently best known decoding algorithms are build. The
fastest algorithm of Becker, Joux, May and Meurer (2012) achieves run-
ning time 20.102n in the full distance decoding setting and 20.0494n with
half (bounded) distance decoding.
In this work we point out that the sort-and-match routine in Stern’s
algorithm is carried out in a non-optimal way, since the matching is
done in a two step manner to realize an approximate matching up to
a small number of error coordinates. Our observation is that such an
approximate matching can be done by a variant of the so-called High
Dimensional Nearest Neighbor Problem. Namely, out of two lists with
entries from Fm2 we have to find a pair with closest Hamming distance. We
develop a new algorithm for this problem with sub-quadratic complexity
which might be of independent interest in other contexts.
Using our algorithm for full distance decoding improves Stern’s com-
plexity from 20.117n to 20.114n. Since the techniques of Becker et al apply
for our algorithm as well, we eventually obtain the fastest decoding algo-
rithm for binary linear codes with complexity 20.097n. In the half distance
decoding scenario, we obtain a complexity of 20.0473n.

Keywords: linear codes, nearest neighbor problem, approximate match-
ing, meet-in-the-middle

1 Introduction

The NP-hard decoding problem for random linear codes is one of the most fun-
damental combinatorial problems in coding and complexity theory. Due to its
purely combinatorial structure it is the major source for constructing crypto-
graphic hardness assumptions that retain their hardness even in the presence of
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quantum computers. Almost all code-based cryptosystems, such as the McEliece
encryption scheme [15], rely on the fact that random linear codes are hard to
decode.

The way cryptographers usually embed a trapdoor into code-based construc-
tions is that they start with some structured code C, which allows for efficient
decoding, and then use a linear transformation to obtain a scrambled code C ′.
The cryptographic transformation has to ensure that the scrambled code C ′ is
indistinguishable from a purely random code. Unless somebody is able to un-
scramble the code, a cryptanalyst faces the problem of decoding a random linear
code. Hence, for choosing appropriate security parameters for a cryptographic
scheme it is crucial to know the best performance of generic decoding algorithms
for linear codes.

Also closely related to random linear codes is the so-called Learning Parity
with Noise Problem (LPN) that is frequently used in cryptography [9, 12]. In
LPN, one directly starts with a generator matrix that defines a random linear
code C and the LPN search problem is a decoding problem on C. Cryptographers
usually prefer decision versions of hard problems for proving security of their
schemes. However, for LPN there is a reduction from the decision to the search
version that directly links the cryptographic hardness of the underlying schemes
to the task of decoding random linear codes.

The Learning with Errors Problem (LWE) that was introduced for crypto-
graphic purposes in the work of Regev [19, 20] can be seen as a generalization of
LPN to codes defined over larger fields. LWE is closely related to well-studied
problems in learning theory, and it proved to be a fruitful source within the last
decade for many cryptographic constructions that provide new functionalities [5,
7, 16]. Although we focus in this work on random linear codes over F2, we do
not see any obstacles in transferring our techniques to larger finite fields Fq as
this was done in [17]. Surely, our techniques will also lead to some improvement
for arbitrary fields, but we believe that our improvements are best tailored to
F2, easiest to explain for the binary field, and we feel that binary codes define
the most fundamental and widely applied class of linear codes.

Let us define some basics of linear codes and review the progress that de-
coding algorithms underwent. A (random) binary linear code C is a (random)
k-dimensional subspace of Fn2 . Therefore, a code defines a mapping Fk2 → Fn2
that maps a message m ∈ Fk2 to a codeword c ∈ Fn2 . On a noisy channel, a
receiver gets an erroneous version x = c + e for some error vector e ∈ Fn2 . The
decoding problem now asks for finding e, which in turn enables to reconstruct
c and m. Usually, we assume that during transmission of c not too many errors
occurred, such that e has a small Hamming weight wt(e) and c is the closest
codeword to x. This defines the search space of e, which is closely linked to the
distance d of C.

So naturally, the running time T (n, k, d) of a decoding algorithm is a function
of all code parameters n, k and d. However, we know that asymptotically random
linear codes reach the Gilbert-Varshamov bound k

n ≤ 1 −H( dn ), where H(·) is
the binary entropy function (see e.g. [22]). In the full distance decoding setting we
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are looking for an error vector e s.t. wt(e) ≤ d, whereas in half distance decoding
we have wt(e) ≤ bd−12 c. Thus, in both cases we can upper bound the running
time by a function T (n, k) of n and k only. When we speak of worst-case running
time, we maximize T (n, k) for all k where the maximum is obtained for code
rates k

n near 1
2 . Usually, it suffices to compare worst-case complexities since all

known decoding algorithms with running time T, T ′ and worst-case complexity
T (n) < T ′(n) satisfy T (n, k) < T ′(n, k) for all k.

The simplest algorithm is to enumerate naively over e’s search space and
check whether x+e ∈ C. However, it was already noticed in 1962 by Prange [18]
that the search space for e can considerably be lowered by applying simple lin-
ear algebra. Prange’s algorithm consists of an enumeration step with exponential
complexity and some Gaussian elimination step with only polynomial complex-
ity. The worst-case complexity of Prange’s algorithm is 20.121n in the full distance
decoding case and 20.0576n with half distance decoding.

In 1989, Stern [21] noticed that Prange’s enumeration step can be accelerated
by enumerating two lists L,R within half of the search space, a typical time-
memory trade-off. The lists L,R are then sorted and one looks for a matching
pair. This is a standard trick for many combinatorial search problems and is usu-
ally called a sort-and-match or Meet-in-the-middle approach in the literature.
Stern’s algorithm however is unable to directly realize an approximate match-
ing of lists, where one wants to find a pair of vectors from L × R with small
Hamming distance. In Stern’s algorithm this is solved by a non-optimal two-step
approach, where one first matches vector pairs exactly on some portion of the
coordinates, and then in a second step checks whether any of these pairs has
the desired distance on all coordinates. Stern’s algorithm led to a running time
improvement to 20.117n (full distance) and 20.0557n (half distance), respectively.

Our contribution: In this work, we propose a different type of matching algo-
rithm for Stern’s algorithm that directly recovers a pair from L×R with small
Hamming distance. Fortunately, this problem is well-known in different variants
in many fields of computer science as the High Dimensional Nearest Neighbor
Problem [6, 8, 23] or the Bichromatic Closest Pair Problem [2]. The best bounds
that are known for the Hamming metric are due to Dubiner [6] and Valiant [24].

However, we were not able to apply Dubiner’s algorithm to our decoding
problem, since we have a bounded vector size, which is referred to as the limited
amount of data case in [6]. Although it is stated in Dubiner’s work [6] that
his algorithm might also be applicable to the limited case, the analysis is only
done for the unlimited amount of data case. The algorithm of Valiant [24] is
only optimal in special cases (i.e. large Hamming distances) and unfortunately
doesn’t apply to our problem either. Thus we decided to give an own algorithmic
solution, which gives us the required flexibility for choosing parameters that are
tailored to the decoding setting.

We provide a different and quite general algorithm for finding a pair of (lim-
ited or unlimited size) vectors in two lists that fulfill some consistency criterion,
like e.g. in our case being close in some distance metric. The way we solve this
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problem is by checking parts of the vectors locally, and thus sorting out vector
pairs that violate consistency locally, since these pairs are highly unlikely to ful-
fill consistency globally. In our special case, where |L| = |R| and where we want
to find the closest pair of vectors from Fm2 with Hamming distance γm, γ ≤ 1

2 ,

we obtain an algorithm that approaches sub-quadratic complexity |L|
1

1−γ . In our
analysis in Sections 4 and 5 we propose an algorithm for bounded vector size
and show that in the unlimited amount of data case (which is not important for
the decoding problem) our algorithm approaches Dubiner’s bound.

Using this matching algorithm in the full distance decoding setting directly
leads to an improved decoding algorithm for random binary linear codes with
complexity 20.114n, as opposed to Stern’s complexity 20.117n. In 2011, Stern’s
algorithm was improved by Bernstein, Lange and Peters to 20.116n. Then, using
recent techniques from improving subset sum algorithms [11, 3], May, Meurer,
Thomae [14] and Becker, Joux, May, Meurer [4] further improved the running
time to 20.102n. Fortunately, these techniques directly apply to our algorithm as
well and result in a new worst-case running time as small as 20.097n. We obtain
similar results in the case of half distance decoding.

0.097 0.102 0.112 0.114 0.117 0.121

Theorem 3 BJMM (2012) MMT (2011) Th. 2 Stern (1989)Prange (1962)

Fig. 1. History of Information Set Decoding: full distance decoding (FDD)

0.0473 0.0494 0.0537 0.0550

0.0557

0.0576

Theorem 3 BJMM (2012) MMT (2011) Th. 2

Stern (1989)

Prange (1962)

Fig. 2. History of Information Set Decoding: half distance decoding (HDD)

The paper is organized as follows. In Section 2, we elaborate a bit more
on previous work and explain the basic idea of our matching approach. This
leads to a sort-and-match decoding algorithm that we describe and analyze in
Section 3, including the application of the improvement from Becker et al [4].
Our decoding algorithm calls a new matching subroutine that finds a pair of
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Fig. 3. Stern, Th. 2, BJMM and Th. 3 for BDD/FDD and all code rates k/n

vectors with minimal Hamming distance in two lists. We describe this matching
procedure in Section 4.

2 Previous Work – Information Set Decoding

A binary linear code C is a k-dimensional subspace of Fn2 . Thus, C is generated
by a matrix G ∈ Fk×n2 that defines a linear mapping Fk2 → Fn2 . If G’s entries are
chosen independently and uniformly at random from Fk×n2 with the restriction
that G has rank k, then we call C a random binary linear code. The distance d
of C is defined by the minimum Hamming distance of two different codewords
in C.

Let H ∈ F(n−k)×n
2 be a basis of the kernel of C. If C is random then it is

not hard to see that the entries of H are also independently and uniformly at
random distributed in F2. Therefore, we have Hct = 0 for every c ∈ C. For
simplicity, we omit from now on all transposition of vectors and write c instead
of ct.

For every erroneous codeword x = c + e with error vector e, we obtain
Hx = He by linearity. We call s := Hx ∈ Fn−k2 the syndrome of a message x.
In order to decode x, it suffices to find a low weight vector e such that He = s.
Once e is found, we can simply recover c from x. This process is called syndrome
decoding, and the problem is known to be NP-hard.

In the case of full distance decoding (FDD), we receive an arbitrary point
x ∈ Fn2 and want to decode to the closest codeword in the Hamming metric.
We want to argue that there is always a codeword within (roughly) Hamming
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distance d. Therefore, we observe that the syndrome equation He = s is solvable
as long as the search space for e roughly equals 2n−k. Hence, for weight-d vectors
e ∈ Fn2 we obtain

(
n
d

)
≈ 2H( dn )n ≈ 2n−k, where H(·) is the binary entropy

function. This implies H( dn ) ≈ 1 − k
n , a relation that is known as the Gilbert-

Varshamov bound. Moreover, it is well-known that random codes asymptotically
reach the Gilbert-Varshamov bound [22]. This implies that for every x we can
always expect to find a closest codeword within distance d.

In the other case of half distance decoding (HDD), we obtain the promise
that the error vector is within the error correction distance, i.e. wt(e) ≤ bd−12 c,
which is for example the case in cryptographic settings, where an error is added
artificially by e.g. the encryption of a message.

Since the decoding algorithms that we study use ω := wt(e) as an input, we
run the algorithms in the range ω ∈ [0, d] or ω ∈ [0, bd−12 c], respectively. However,
all our algorithms attain their maximum running time for their maximal weight
ω = d, respectively ω = bd−12 c. In the following we assume that we know ω.

Let us return to our syndrome decoding problem He = s. Naively, one can
solve this equation by simply enumerating all weight-ω vectors e ∈ Fn2 in time

Õ
((
n
ω

))
.

Prange’s Information Set decoding: At the beginning of the 60s, Prange
showed that the use of linear algebra provides a significant speedup. Notice that
we can simply reorder the positions of the error vector e by permuting the

columns of H. For some column permutation π let Q ∈ F(n−k)×(n−k)
2 denote

the quadratic matrix at the right hand side of π(H) = (·||Q). Assume that Q
has full rank, which happens with constant probability and define s̄ = Q−1 · s
and H̄ = Q−1 · π(H) = (·|I) for an (n − k) × (n − k) identity matrix I. Let
π(e) = e1 + (0k||eq) with e1 ∈ Fk2 × 0n−k and eq ∈ Fn−k2 be the permuted
error vector. Assume that e1 = 0n. In this case, we call the first k error-free
coordinates an information set. Having an information set, we can rewrite our
syndrome equation as

H̄π(e) = H̄e1 + eq = s̄, where wt(e1) = 0 and wt(eq) = ω.

Since e1 is the zero vector, we can simplify as eq = s̄. Thus we only have to
check whether s̄ has the correct weight wt(s̄) = ω.

Notice that all complexity in Prange’s algorithm is moved to the initial per-
mutation π of H’s columns, whereas the remaining step has polynomial complex-
ity. To improve upon the running time, it is reasonable to lower the restriction
that the information set has no 1-entries in e1, which was done in the work of
Lee-Brickell [13]. Assume that the information set carries exactly p 1-positions.
Then we enumerate over all

(
k
p

)
possible e1 ∈ Fk2 × 0n−k with weight p. There-

fore, we can test whether wt(eq) = wt(s̄− H̄e1) = ω− p. On the downside, this
trade-off between lowering the complexity for finding a good π and enumerating
weight-p vectors does not pay off. Namely, asymptotically (in n) the trade-off
achieves its optimum for p = 0.
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On the positive side, we can improve on the simple enumeration of weight-
p vectors by enumerating two lists of weight-p2 vectors1. This classical time-
memory trade-off, usually called a Meet-in-the-middle approach, allows to re-
duce the enumeration time from

(
k
p

)
to
(
k/2
p/2

)
by increasing the memory to the

same amount. Such a Meet-in-the-middle approach was introduced by Stern for
Prange’s Information Set decoding in 1989 [18]. In a nutshell, Stern’s variant
splits the first k columns of π(e) = e1 + e2 + (0k||eq) with eq ∈ Fn−k2 in two

parts e1 ∈ Fk/22 × 0k/2 × 0n−k and e2 ∈ 0k/2 × Fk/22 × 0n−k. Additionally, we
want a good permutation π to achieve

H̄ · (e1 + e2) + eq = s̄ with wt(e1 + e2) = p and wt(eq) = ω − p. (1)

Thus we have

H̄e1 = H̄e2 + s̄ + eq. (2)

Since wt(eq) = ω − p, for all but ω − p of the n − k coordinates of the vectors
we have

H̄e1 = H̄e2 + s̄. (3)

Remember that Q was defined as the right hand part of π(H). It can be
shown that Q is invertible with constant probability over the choice of H and
π. Thus inverting Q can be ignored for the computation of the time complexity
that suppresses polynomial factors.

Definition 1. A permutation π is good if Q is invertible and if for π(e) there
exists a solution (e∗1, e

∗
2) satisfying (1).

In Stern’s algorithm, one computes for every candidate e1 the left-hand side
of Eq. (3) and stores the result in a sorted list L. Then, one computes for every
e2 the right-hand side and looks whether the result is in L. But recall that the
above equation only holds for all but ω−p coordinates. Thus, one cannot simply
match a candidate solution to one entry in L.

The solution to this problem in Stern’s algorithm is to introduce another
parameter ` and to test whether there is an exact match on ` out of all n − k
coordinates. For those pairs (e1, e2) whose result matches on ` coordinates, one
checks whether they in total match on all but ω − p coordinates. However, this
two-step approach for approximately matching similar vectors introduces another
probability that enters the running time – namely that both vectors match on the
chosen ` coordinates. Clearly, one would like to have some algorithm that directly
addresses the approximate matching problem given by identity (2). Altogether,
Stern’s algorithm leads to the first asymptotical improvement since Prange’s
algorithm.

1 Throughout the paper we ignore any rounding issues.
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3 Our Decoding Algorithm

3.1 Application to Stern’s algorithm

Our main observation is that the matching in Stern’s algorithm can be done in
a smarter way by an algorithm for approximately matching vectors. We propose
such an algorithm in Section 4. Our algorithm NearestNeighbor works on two
lists L,R with uniformly distributed and pairwise independent entries from Fm2 ,
where one guarantees the existence of a pair from L×R that has small Hamming
distance γm, 0 ≤ γ ≤ 1

2 . On lists of equal size |L| = |R| we achieve a running

time that approaches Õ(|L|
1

1−γ ). Notice that our running time is sub-quadratic
for any γ < 1

2 . The smaller γ the better is our algorithm. In the case of γ = 0,
we achieve linear running time (up to logarithmic factors) which coincides with
the simple sort-and-match routine.

Our new matching algorithm immediately gives us an improved complexity
for decoding random binary linear codes. First we proceed as in Stern’s algorithm

by enumerating over all weight-p2 candidates for e1 ∈ Fk/22 × 0k/2 × 0n−k. We
compute the left-hand side H̄e1 of Eq. (3) and store the result in a list L. For
the right-hand side we proceed similar and store H̄e2 + s̄ in a list R.

Notice that by construction each pair (e1, e2) of enumerated error vectors
yields an error vector e1 + e2 + (0k||eq) with eq = H̄(e1 + e2) + s̄ such that
identity (2) holds. Moreover, by construction we have wt(e1 + e2) = p. Thus all
that remains is to find among all tuples (H̄e1, H̄e2 + s̄) ∈ L×R one with small
Hamming distance ω − p.

Our complete algorithm Decode is described in Algorithm 1.
Before we analyze correctness and running time of algorithm Decode, we

want to explain the idea of the subroutine NearestNeighbor.
Basic Idea of NearestNeighbor: Letm be the length of the vectors in L and R
and define a constant λ such that |L| = |R| = 2λm. Assume the permutation π is
good and hence (e∗1, e

∗
2) exist such that wt(e∗1+e∗2) = p and wt(H̄e∗1+H̄e∗2+s̄) =

ω − p =: γm for some 0 < γ < 1
2 holds. Let u∗ := H̄e∗1 and v∗ := H̄e∗2 + s̄. Our

algorithm NearestNeighbor gets the input (L,R, γ) and outputs a list C,
where (u∗,v∗) ∈ C with overwhelming probability. Thus our algorithm solves
the following problem.

Definition 2 (NN problem). Let m ∈ N, 0 < γ < 1
2 and 0 < λ < 1. In the

(m, γ, λ)-Nearest Neighbor (NN) problem, we are given γ and two lists L,R ⊂
Fm2 of equal size 2λm with uniform and pairwise independent vectors. If there
exists a pair (u∗,v∗) ∈ L×R with Hamming distance ∆(u∗,v∗) = γm, we have
to output a list C that contains (u∗,v∗).

Notice that in Definition 2 the lists L, R themselves do not have to be
independent, e.g. L = R is allowed. A naive algorithm solves the NN problem
by simply computing the Hamming distance of each (u,v) ∈ L×R in quadratic

time Õ((2λm)2). In the following we describe a sub-quadratic algorithm for the
NN problem.
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Algorithm 1 Decode

1: procedure Decode
2: Input: n, k, H ∈ F(n−k)×n

2 , x ∈ Fn2
3: Output: e ∈ Fn2 with He = Hx and wt(e) ≤ d (FDD), wt(e) ≤ b d−1

2
c (HDD)

4: s← Hx . compute the syndrome
5: d← H−1(1− k

n
) · n . H: bin. entropy function, inverse H−1 maps to [0, 1

2
]

6: for ω ← 0 . . . d do . (FDD) or ω ← 0 . . . b d−1
2
c in the HDD case

7: Choose 0 < p < ω . We find an optimal choice of p numerically
8: repeat poly(n) · 1

P[π is good]
many times

9: π ← random permutation on Fn2 .
10: (·||Q)← π(H) (permute columns) with Q← F(n−k)×(n−k)

2

11: choose another permutation (goto line 9), if Q is not invertible
12: H̄← Q−1π(H) and s̄← Q−1s

13: L← H̄e1 for all e1 ∈ Fk/22 × 0k/2 × 0n−k with wt(e1) = p
2

14: R← H̄e2 + s̄ for all e2 ∈ 0k/2 × Fk/22 × 0n−k with wt(e2) = p
2

15: C← NearestNeighbor(L,R, ω−p
n−k )

16: if (u,v) ∈ C ∩ (L×R) with Hamming distance ∆(u,v) = ω − p then
17: find (e1, e2) s.t. u = H̄e1 and v = H̄e2 + s̄ . binary search in L,R
18: return π−1(e1 + e2 + (0k||u + v))
19: end if
20: until
21: end for
22: end procedure

Given an initial list pair L,R, our main idea is to create exponentially many
pairs of sublists L′,R′. Each sublist is computed by first choosing a random
partition A ⊂ [m] of the columns of size m

2 . We keep only those elements in
L′,R′ that have a certain Hamming weight h · m2 on the columns defined by A,
for some 0 < h < 1

2 that only depends on λ. The parameter h will be chosen
s.t. each of the L′,R′ have expected polynomially (in m) many elements. We
create as many sublists L′,R′ s.t. with overwhelming probability there exists a
pair of sublists L∗,R∗ with (u∗,v∗) ∈ L∗ ×R∗. For each sublist pair L′,R′ we
check naively for a possible “good” vector by computing the Hamming distance
∆(u′,v′) for all (u′,v′) ∈ L′ ×R′. Notice that this results only in a polynomial
blow-up, because the list sizes are polynomial. We store all vectors (u,v) with
the correct Hamming distance in the output list C.

The idea of the algorithm is summarized in Fig. 4.
We will discuss the algorithm NearestNeighbor in more detail in Section 4.

The following theorem that we prove in Section 5 states its correctness and time
complexity.

Theorem 1. For any constant ε > 0 and any λ < 1−H(γ2 ), NearestNeigh-
bor solves the (m, γ, λ)-NN problem with overwhelming probability (over both
the coins of the algorithm and the random choice of the input) in time

Õ
(

2(y+ε)m
)

with y := (1− γ)

(
1−H

(
H−1(1− λ)− γ

2

1− γ

))
.
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L R
u∗ ∈ L

v∗ ∈ R size: 2λm

create exponentially many sublists

by choosing random partitions A

L′ R′ L′ R′ · · · L∗ R∗ L′ R′

For at least one sublist pair we have (u∗,v∗) ∈ L∗ ×R∗ w.o.p.

Fig. 4. Main idea of our algorithm NearestNeighbor

In Definition 2, we defined our list sizes |L| = |R| = 2λm to be exponential
in m, which is the cryptographically relevant scenario. A naive solution of the
NN problem yields an exponent of 2λm, so we are interested in quotients y

λ < 2.

In the following corollary we achieve a complexity of Õ(|L|
1

1−γ ) in the case of
polynomial list sizes |L| = |R|. This is the best case scenario for our algorithm,
which is in the literature often referred to as the unlimited amount of data
case. Notice that the quotient y

λ is strictly increasing in λ until we reach the
prerequisite bound λ = 1 − H(γ2 ), beyond which our algorithm does no longer
work. Finding a better dependency for the NN problem on λ would immediately
result in further improvements for the decoding bounds from Theorems 2 and 3.

Corollary 1. In the case of a list size |L| = |R| that is polynomial in m, we ob-

tain a complexity exponent limλ→0 y/λ = 1
1−γ , i.e. our complexity is Õ(|L|

1
1−γ ).

Proof. Notice that we defined the inverse of the binary entropy function as
H−1(·) and that H−1(1) = 1

2 . The derivative of the binary entropy function
is H ′(x) = log2

(
1
x − 1

)
and the derivative of the inverse of the binary entropy

function is (H−1(1−λ))′ = −1
log2(

1

H−1(1−λ)
−1) . We obtain the result by the follow-

ing calculation, using L’Hospital’s rule twice.

lim
λ→0

y

λ
= lim
λ→0
−(1− γ) log2

(
1− γ

H−1(1− λ)− γ
2

− 1

)
1

1− γ
−1

log2( 1
H−1(1−λ) − 1)

= lim
λ→0

ln

(
1− γ

H−1(1− λ)− γ
2

− 1

)
/ ln

(
1

H−1(1− λ)
− 1

)

= lim
λ→0

(
1−γ

H−1(1−λ)− γ2
− 1
)−1

(−1)(1−γ)
(H−1(1−λ)− γ2 )

2 (H−1(1− λ))′(
1

H−1(1−λ) − 1
)−1

(−1)
(H−1(1−λ))2 (H−1(1− λ))′

= lim
λ→0

(−1)(1−γ)
(H−1(1−λ)− γ2 )

2

(−1)
(H−1(1−λ))2

= lim
λ→0

(1− γ)

(
H−1(1− λ)

H−1(1− λ)− γ
2

)2

=
1

1− γ
ut
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In the following Theorem we show that Decode is correct and prove its time
complexity.

Theorem 2 (complexity and correctness). Decode solves the decoding
problem with overwhelming probability in time O(20.114n) in the full and time
O(20.0550n) in the half distance decoding setting.

Proof. Let us define

γ :=
ω − p
n− k

, r := H
(ω
n

)
− k

n
·H
(p
k

)
−
(

1− k

n

)
·H (γ) , µ :=

k

2n
·H
(p
k

)
and

y := (1− γ)

(
1−H

(
H−1(1− µn

n−k )− γ
2

1− γ

))
.

We want to show that for any ε > 0 Decode solves the decoding problem with
overwhelming probability in time

Õ
(

2rn
(

2µn + 2(y+ε)(n−k)
))

. (4)

In line 8 of Decode, we repeat poly(n) · 1
P[π is good] times. A permutation π

is good, whenever p/2 ones are in the first k/2 columns, p/2 in the subsequent
k/2 columns and ω − p ones in the last n − k columns. Additionally, Q (as
defined in line 10) has to be invertible (which happens with constant probability).
Therefore, the number of repetitions until we find a good π is

poly(n) ·
(
n
ω

)(
k/2
p/2

)2
·
(
n−k

γ(n−k)
) = Õ

(
2n·H(ω/n)−k·H(p/k)−(n−k)·H(γ)

)
= Õ(2rn).

We fix a repetition that leads to a good permutation π. In this repetition, we
therefore have e∗1, e

∗
2 with wt(e∗1 + e∗2) = p and ∆(u∗,v∗) = ω − p =: γ(n − k)

with u∗ := H̄e∗1 and v∗ := H̄e∗2 + s̄. In lines 13 and 14, the algorithm creates two
lists of uniform and pairwise independent vectors of size n−k s.t. by construction
u∗ ∈ L and v∗ ∈ R and

|L| = |R| =
(
k/2

p/2

)
= Õ

(
2k/2·H(p/k)

)
= Õ(2µn).

Notice that µn = λ(n − k) controls the list size. By a suitably small choice
of p one can always satisfy the prerequisite λ < 1 −H(γ2 ) of Theorem 1. Thus
we obtain an instance (L,R, γ) of the (n − k, γ, µ n

n−k )-NN problem, for which
Theorem 1 guarantees to output a list C that contains the solution (u∗,v∗) with
overwhelming probability. Notice that any vector (u,v) ∈ C ∩ (L ×R) with a
Hamming distance of ω − p solves our problem, because the corresponding e1

with H̄e1 = u and e2 with H̄e2 + s̄ = v have the property wt(e1 +e2) = p. This
in turn leads to wt(e1 + e2 + (0k||(u + v)) = ω. In line 17, the (e1, e2) can be
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found by a binary search in slightly modified lists L,R (that also store e1 and
e2). Thus, with overwhelming probability, the algorithm outputs a solution to
the decoding problem in line 18.

Also by Theorem 1, an application of algorithm NearestNeighbor has
time complexity Õ(2(y+ε)(n−k)) for any ε > 0. Notice that this complexity is
independent of whether we have a good permutation π or not. This complexity
has to be added to the creation time of the input lists L,R. Recall that the loop
has to be repeated Õ(2rn) times, leading to the runtime of Eq. (4).

Numerical optimization in the half distance decoding case yields time com-
plexity O(20.0550n) in the worst case k/n ≈ 0.466 with p/n ≈ 0.00383. In the
full distance decoding case we get a runtime of O(20.114n) in the worst case
k/n ≈ 0.447 with p/n ≈ 0.01286. ut

3.2 Application to the BJMM algorithm

It is possible to apply our idea to the decoding algorithm of Becker, Joux, May
and Meurer (BJMM) [4]. We already explained that BJMM is a variant of Stern’s
algorithm and thus a Meet-in-the-Middle algorithm that constructs two list L̃, R̃.
The major difference is that L̃, R̃ are not directly enumerated as the lists L,R in
Stern’s algorithm. Instead, L̃, R̃ are constructed in a more involved tree-based
manner. This has the benefit that the list length is significantly smaller than
in Stern’s construction, which in turn leads to an improved running time. This
similarity however enables us to directly apply our technique to the BJMM algo-
rithm. Namely, we have to simply replace in Decode the construction of L,R
by the BJMM-construction of L̃, R̃, on which we apply our NearestNeigh-
bor-algorithm.

Notice that as opposed to Section 3.1 not all possible vector pairs in C with
the correct Hamming distance solve the decoding problem. The issue is that the
corresponding e1, e2 do not necessarily have a Hamming distance of p. Thus,
additionally to ∆(u,v) = ω− p, we have to verify that also ∆(e1, e2) = p holds.

Algorithm DecodeBJMM describes the application of our algorithm in the
BJMM framework. Notice that up to line 22 the algorithm is identical to the
one in [4]. The only difference is the final step (from line 23). Instead of using
the exact matching of Stern, we use our NearestNeighbor algorithm that
searches for two vectors that are close (i.e. have Hamming distance ω − p) on
the remaining n− k − ` coordinates.

Algorithm DecodeBJMM uses a subroutine BaseLists. As described in [4],
BaseLists chooses a random partition of the first k + ` columns into two sets
P1, P2 ⊆ [k + `] of equal size. Then a list B1 is created that contains all vectors
b1 ∈ Fk+`2 × 0n−k−` with wt(b1) = p

8 + ε1
4 + ε2

2 that are zero on the coordinates

from P2. Analogously, a list B2 is build, that contains all vectors b2 ∈ Fk+`2 ×
0n−k−` of the same Hamming weight as above, but with zeros on the coordinates
from P1. Thus, with inverse polynomial probability, a fixed vector of size k + `
with Hamming weight p

4 + ε1
2 + ε2 can be represented as a sum of an element in

B1 and an element in B2. Repeating this choice a polynomial number of times
guarantees the representation with overwhelming probability.
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Algorithm 2 DecodeBJMM

1: procedure DecodeBJMM
2: Input: n, k,H ∈ F(n−k)×n

2 , x ∈ Fn2
3: Output: e ∈ Fn2 with He = Hx and wt(e) ≤ d (FDD), wt(e) ≤ b d−1

2
c (HDD)

4: s← Hx
5: d← H−1(1− k

n
) · n . H: bin. entropy function, inverse H−1 maps to [0, 1

2
].

6: for ω ← 0 . . . d do . (FDD) or ω ← 0 . . . b d−1
2
c in the HDD case

7: Choose 0 < p, ε1, ε2 < ω, 0 < `2 < ` < n− k . optimize numerically
8: repeat poly(n) · 1

P[π is good]
many times

9: π ← random permutation on Fn2 .
10: (·||Q)← π(H) (permute columns) with Q← F(n−k)×(n−k)

2

11: choose another permutation (goto line 9), if Q is not invertible
12: H̄← Q−1π(H) and s̄← Q−1s
13: tL ∈R F`2, tL0 , tL1 , tR0 ∈R F`22 . choose uniformly at random
14: tR = [s̄]` − tL . [·]c restricts to first c columns
15: tR1 = [s̄]`2 − tL0 − tL1 − tR0 . [·]c restricts to last c columns
16: L0 ← BaseLists(H̄, p, ε1, ε2, tL0) . list of b ∈ Fk+`2 × 0n−k−`

17: L1 ← BaseLists(H̄, p, ε1, ε2, tL1) . with wt(b) = p
4

+ ε1
2

+ ε2
18: R0 ← BaseLists(H̄, p, ε1, ε2, tR0) . s.t. [H̄b]`2 = tL0

19: R1 ← BaseLists(H̄, p, ε1, ε2, tR1)
20: L← [H̄(x + y)]n−k−` for all x ∈ L0,y ∈ L1 with [H̄(x + y)]` = tL
21: R← [H̄(x + y) + s̄]n−k−` for all x ∈ R0,y ∈ R1 with [H̄(x + y)]` = tR
22: (In lines 20, 21: only keep elements with wt(x + y) = p

2
+ ε1.)

23: C← NearestNeighbor(L,R, ω−p
n−k−` )

24: for all (u,v) ∈ C ∩ (L×R) with distance ∆(u,v) = ω − p do
25: find (e1, e2) s.t. u = [H̄e1]n−k−` and v = [H̄e2 + s̄]n−k−`

26: if wt(e1 + e2) = p then
27: return π−1(e1 + e2 + (0k+`||u + v))
28: end if
29: end for
30: until
31: end for
32: end procedure
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BaseLists continues by computing the corresponding values H̄b1 for each
element b1 ∈ B1, stores these elements and sorts the list by these values. Even-
tually an output list of vectors in b ∈ Fk+`2 × 0n−k−` with weight p

4 + ε1
2 + ε2 is

computed by a standard meet-in-the-middle technique s.t. H̄b equals the input
target value t on the first `2 coordinates.

The same technique is used in lines 20 and 21. In the computation of L, for
each pair of vectors (x,y) ∈ L0 × L1 a list of sums x + y is obtained such that
H̄(x + y) matches a uniformly chosen target value tL on the first ` coordinates.
After this step we also restrict to only those elements that have a certain Ham-
ming weight of p

2 + ε1, since by [4] the target solution splits in two vectors of
this particular weight. The computation tree is illustrated in Figure 5.

L0

L1

R0

R1

L

R

e1 + e2

weight: p

weight: p
2

+ ε1

weight: p
4

+ ε1
2

+ ε2construction of the base lists:

Õ(2τn)

final size of the base lists:

Õ(22τn−`2)

computation time for L,R:

Õ(24τn−`−`2)

final size of L,R:

Õ(2µn)

e computation:

Õ(2(y+ε)(n−k−`))
representations:

2` = Õ(
(
p
p/2

)
·
(
k+`−p
ε1

)
)

2`2 = Õ(
(
p/2+ε1
p/4+ε1/2

)
·
(
k+`−p/2−ε1

ε2

)
)

base top
level level

Fig. 5. Computation tree of DecodeBJMM

Theorem 3. DecodeBJMM solves the decoding problem with overwhelming
probability in time O(20.097n) in the full distance decoding setting and time
O(20.0473n) in the half distance decoding setting.

Proof. Let us define

γ :=
ω − p

n− k − `
, r := H

(ω
n

)
− k + `

n
·H
(

p

k + `

)
−
(

1− k + `

n

)
·H (γ) ,

τ :=
k + `

2n
·H
( p

4 + ε1
2 + ε2

k + `

)
, `

!
= p+ (k + `− p) ·H

(
ε1

k + `− p

)
µ :=

k + `

n
·H
( p

2 + ε1

k + `

)
− `

n
, `2 :=

p

2
+ε1+(k+`− p

2
−ε1) ·H

(
ε2

k + `− p
2 − ε1

)
and

y := (1− γ)

(
1−H

(
H−1(1− µn

n−k−` )−
γ
2

1− γ

))
.

We want to show that for any ε > 0 the decoding problem can be solved with
overwhelming probability in time

Õ
(

2rn
(

2τn + 22τn−`2 + 24τn−`−`2 + 2µn + 2(y+ε)(n−k−`)
))

.
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The correctness and time complexity of the first part of the algorithm (i.e.
the computation of L and R up to line 22) was already shown in [4]. Let us
summarize the time complexity for this computation. First of all we have a loop
that guarantees a good distribution with overwhelming probability. In our case,
a good splitting would be p ones on the first k+ ` coordinates and ω− p ones on
the remaining n − k − ` coordinates. Thus the necessary number of repetitions
is Õ(

(
n
ω

)
/[
(
k+`
p

)
·
(
n−k−`
ω−p

)
]) = Õ(2rn).

The algorithm of BJMM [4] makes use of the so-called representation tech-
nique introduced by Joux and Howgrave-Graham [11]. The main idea is to blow
up the search space such that each error vector can be represented as a sum
of two vectors in many different ways. In the algorithm, all but one of these
representations are filtered out using some restriction. Inside the loop, we there-
fore first need to make sure that 2` is the number of representations on the top
level, because we restrict to ` binary coordinates. On the top level we split the
Fk+`2 vector with p ones in a sum of two vectors in Fk+`2 with p

2 + ε1 ones each.

Thus there are
(
p
p/2

)
ways to represent the ones (as 1 + 0 or 0 + 1) and

(
k+`−p
ε1

)
ways to represent the zeros (as 0 + 0 or 1 + 1). Hence we need to choose ` such

that 2` = Θ̃(
(
p
p/2

)
·
(
k+`−p
ε1

)
). On the bottom level, vectors with p

2 + ε1 ones are

represented as sums of two vectors with p
4 + ε1

2 + ε2 ones each. In this case there

are
(
p/2+ε1
p/4+ε1/2

)
ways to represent the ones and

(
k+`−p/2−ε1

ε2

)
ways to represent the

zeros. Thus we choose 2`2 = Θ̃(
(
p/2+ε1
p/4+ε1/2

)
·
(
k+`−p/2−ε1

ε2

)
).

The computation starts by creating the four base lists. In the first step two
lists with vectors of size k+`

2 and p
8 + ε1

4 + ε2
2 ones are created, which takes time

Õ(
( k+`

2
p
8+

ε1
4 +

ε2
2

)
) = Õ(2τn). These two lists are merged, considering each pair of

one vector of the first list and one vector of the second list such that the first `2
coordinates of the sum are a fixed value (i.e. restricting to one special represen-

tation). The number of elements in the base lists is therefore Õ(22τn/2`2).

In lines 20 and 21 the top level lists L and R are computed from the
base lists. In this step, the vectors are restricted to additional ` − `2 coordi-
nates, resulting in a total restriction of 2`. Therefore, the time complexity is
Õ((22τn/2`2)2/(2`−`2)) = Õ(24τn−`−`2).

In line 22 the algorithm restricts the lists L and R to those vectors with
p
2 +ε1 ones. Due to the fact that the vectors are restricted to fixed ` coordinates,

the number of elements can be upper bounded by Õ(
(

k+`
p/2+ε1

)
/2`) = Õ(2µn).

In the final step we have two lists of uniform (because the elements are a
linear combination of the columns of H) and pairwise independent (because
each element is computed by a linear combination of pairwise different columns)
vectors in Fn−k−`2 .

From the analysis in [4] we know that there are e∗1, e
∗
2 ∈ Fk+`2 × 0n−k−` with

wt(e1 + e2) = p such that u∗ = [H̄e∗1]n−k−` ∈ L and v∗ = [H̄e∗2 + s̄]n−k−` ∈ R,
where wt(u∗ + v∗) = ω − p. Therefore, by Theorem 1, NearestNeighbor
outputs a list C that contains (u∗,v∗). The (e∗1, e

∗
2) can be found in line 25 by

binary searching in slightly modified L,R (that also contain x + y).
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Thus π−1(e∗1 + e∗2 + (0k+`||u∗ + v∗)) (with weight ω) is a correct solution to
the problem, because

H̄ · (e∗1 + e∗2 + (0k+`||u∗ + v∗)) = H̄ · (e∗1 + e∗2) + (0`||u∗ + v∗)

= H̄ · (e∗1 + e∗2) + (0`||[H̄ · (e∗1 + e∗2) + s̄]n−k−`)

= H̄ · (e∗1 + e∗2) + (H̄ · (e∗1 + e∗2) + s̄) = s̄.

Notice that [H̄(e∗1 +e∗2)+ s̄]` = 0` holds by construction. By Theorem 1 the time
complexity of NearestNeighbor is 2(y+ε)(n−k−`).

In the half distance decoding case, for the worst case k/n ≈ 0.45 we get a
time complexity of O(20.0473n) with p/n ≈ 0.01667, ε1/n ≈ 0.00577 and ε2/n ≈
0.00124. In the full distance decoding setting, we have a runtime of O(20.097n)
with k/n ≈ 0.42, p/n ≈ 0.06284, ε1/n ≈ 0.02001 and ε2/n ≈ 0.00391.

ut

4 Solving the Nearest Neighbor Problem

In this section we will describe NearestNeighbor, an algorithm that solves
the Nearest Neighbor problem from Definition 2. We will prove correctness and
time complexity of our algorithm in the subsequent section.

As already outlined in the previous section, given the input lists L and R with
|L| = |R| = 2λm, our idea is to create exponentially many sublists L′,R′ that are
of expected polynomial size. The sublists are chosen such that with overwhelming
probability our unknown solution (u∗,v∗) ∈ L × R with ∆(u∗,v∗) = γm is
contained in at least one of these sublists. The sublists L′ (resp. R′) are defined
as all elements of L (resp. R) that have a Hamming weight of hm2 on the columns
defined by a random partition A ⊂ [m] of size m

2 . In Lemma 3, we will prove
that h := H−1(1 − λ) with 0 ≤ h ≤ 1

2 is a suitable choice, because it leads to
sublists of expected polynomial size.

We will prove in Lemma 2 that the required number of sublists such that
(u∗,v∗) is contained in one of these sublists is Õ(2ym) with

y := (1− γ)

(
1−H

(
H−1(1− λ)− γ

2

1− γ

))
. (5)

We will make use of the fact that y > λ for any constant 0 < λ < 1, 0 < γ < 1
2 ,

which can be verified numerically.
There is still one problem to solve, because we never discussed how to com-

pute the L′,R′ given L,R. A naive way to do so would be to traverse the original
lists linearly and to check the weight condition. Unfortunately, this would have
to be done for each sampled A, which would result in an overall complexity of
Õ(2ym · 2λm).

Instead, as illustrated in Fig. 6, we do not proceed with the whole m coor-
dinates at once, but first start with a strip {1, . . . , α1m} of the left hand side
columns and filter only on that strip. The resulting list pairs L1,R1 are still of
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create Õ(2yα1m) sublist pairs (L′,R′) by sampling random A’s

create Õ(2yα2m) sublist pairs (L′′,R′′) (of each of the Õ(2yα1m)
sublist pairs) and solve recursively or finally naively

list L

list L′

list R

list R′

partition A

random

partition Â

same A

same Â

α1 ·m

α2 ·m

α1 ·m

α2 ·m

m

m

m

m

2λm 2λm

O(2λ(1−α1)m)

part of
vectors with

weight h

in the A

columns

wt. h

in Â

part of
vectors with

weight h

in the A

columns

wt. h

in Â

Fig. 6. Step-by-step computation of NearestNeighbor
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exponential, but smaller, size. In the second step, we proceed on the subsequent
α2m columns {α1m + 1, . . . , (α1 + α2)m} to generate sublists L2,R2 that con-
tain all elements that in addition have a small Hamming weight on the second
strip. The advantage of this technique is that we are able to use the smaller lists
L1,R1 to construct L2,R2, again by traversing these lists, instead of using L,R
for all the m columns.

As illustrated in Fig. 7, we grow a search tree of constant depth t, where
the leaves are pairs of lists Lt,Rt, which were filtered on (α1 + . . . + αt)m
coordinates. We choose α1 + . . . + αt = 1 to cover all coordinates. The choice
of the αj will be given in Theorem 1 and is basically done in a way to balance
the costs in each level of the search tree, which allows us to solve the problem in
time Õ(2(y+ε)m) for any constant ε > 0. Notice that we never actually compute
the Hamming distance between elements from the list pairs, except for the very
last step, where we obtain list pairs Lt,Rt of small size Õ(2

ε
2m), and compute

the Hamming distance of all pairs by a naive quadratic algorithm, which has
time complexity Õ(2εm). Because we proceed analogously for any of the Õ(2ym)

sublists, we obtain an overall time complexity of Õ(2(y+ε)m).

L R

L′ R′ L′ R′ · · · L∗ R∗ L′ R′

· · · · · · · · ·

L∗ R∗ L′ R′ · · · L′ R′ L′ R′

Fig. 7. Example: computation tree of depth t = 2 with one good path (→)

In total, our algorithm heavily relies on the observation that the property
of the pair (u∗,v∗) with small Hamming distance ∆(u∗,v∗) = γm also holds
locally on each of the t strips. In case that the differing coordinates of (u∗,v∗)
would cluster in any of the strips αjm, we would by mistake sort out the pair.
However, this issue can be easily resolved by rerandomizing the position of the
coordinates in both input lists L and R. Denote z∗ := u∗ + v∗ ∈ Fm2 and
the splitting z∗ = (z∗1, . . . , z

∗
t ) ∈ Fα1m

2 × Fα2m
2 × . . . × Fαtm2 according to the t
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strips. We will prove in Lemma 1 that after randomly permuting the m columns
a polynomial in m number of times, there will be one permutation such that
wt(zj) = γαjm for all 1 ≤ j ≤ t.

Furthermore, we want to enforce that wt(u∗) = wt(v∗) = 1
2m, which also

has to hold on each of the t strips. Define u∗ = (u∗1, . . . ,u
∗
t ) and v∗ = (v∗1, . . . ,v

∗
t )

as above. We therefore want to make sure that wt(u∗j ) = wt(v∗j ) = 1
2αjm for all

1 ≤ j ≤ t. Notice that this can also be achieved by rerandomization. Concretely,
we pick a uniformly random vector r ∈ Fm2 and add this vector to all elements
of both input lists L,R. Notice that the Hamming weight of our solution pair
(u∗,v∗) isn’t changed by this operation. We will also show in Lemma 1 that
after applying this process a polynomial (in m) number of times, the vectors u∗

and v∗ have the desired Hamming weight in at least one step.

Algorithm 3 NearestNeighbor

1: procedure NearestNeighbor(L,R, γ) . L,R ⊂ Fm2 , 0 < γ < 1
2

2: compute vectors length m and size λ from L,R

3: y := (1− γ)

(
1−H

(
H−1(1−λ)− γ

2
1−γ

))
. as defined in Theorem 1

4: choose a constant ε > 0 . could also be an input

5: t := d log(y−λ+
ε
2
)−log( ε

2
)

log(y)−log(λ)
e . as defined in the proof of Theorem 1

6: α1 :=
y−λ+ ε

2
y

. as defined in the proof of Theorem 1
7: for 2 ≤ j ≤ t do
8: αi := y

λ
· αi−1 . as defined in the proof of Theorem 1

9: end for
10: for poly(m) uniformly random permutations π of [m] do
11: for poly(m) unif. rand. r ∈ Fα1m

2 × . . .× Fαtm2 (wt. αj
m
2

on each strip) do
12: L̄← π(L) + r
13: R̄← π(R) + r . permute columns and add r to all elements
14: Remove all vectors from L̄, R̄ that are not of weight αj

m
2

on each strip
15: return NearestNeighborRec(L̄, R̄,m, t, γ, λ, α1, . . . , αt, y, ε, 1)
16: end for
17: end for
18: end procedure

Our algorithm NearestNeighbor starts by computing the length of the
vectors m and a λ such that |L| = |R| = 2λm from L and R. This list size is
used to compute the repetition parameter y. The algorithm chooses a constant
ε > 0 that is part of the asymptotic time complexity. The parameter ε also
determines the number of strips t and the relative sizes of the strips α1, . . . , αt.
Eventually, the two input lists are rerandomized by permuting the columns and
adding a random vector. Another recursive algorithm NearestNeighborRec
is then called with the rerandomized lists as input.

In the algorithm NearestNeighborRec we sample random partitions A of
the columns, until it is guaranteed with overwhelming probability that the solu-
tion is in at least one of the created sublists. The sublists are created by naively
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traversing the input lists for all vectors with a Hamming weight ofH−1(1−λ)
αjm
2

on the columns defined by the random partition. We only continue, if L′ and R′

don’t grow too large, as defined in Lemma 3. In line 10, we apply the algorithm
recursively on the subsequent α2m columns, and so on. Eventually, we compare
the final list pairs naively.

Algorithm 4 NearestNeighborRec

1: procedure NearestNeighborRec(L,R,m, t, γ, λ, α1, . . . , αt, y, ε, j) . init j = 1
2: if j = t+ 1 then
3: run the naive algorithm to compute C, a list of correct pairs
4: end if
5: for Θ̃(2yαjm) times do
6: A← partition(αjm) . random partition of size

αjm

2
of the αjm columns

7: L′ ← all vL ∈ L with wt. H−1(1− λ)
αjm

2
on A-columns . naive search

8: R′ ← all vR ∈ R with wt. H−1(1− λ)
αjm

2
on A-columns . naive search

9: if |L′|, |R′| don’t grow too large then . as defined in Lemma 3
10: C← C∪NearestNeighborRec(L′,R′,m, t, γ, λ, α1, . . . , αt, y, ε, j+1)

. solve the problem recursively
11: end if
12: end for
13: return C . output a list of correct pairs
14: end procedure

5 Analysis of Our Algorithm

In this section, we first show that NearestNeighbor achieves a good distri-
bution in at least one of the polynomially many repetitions. We define a good
computation path and show that NearestNeighbor has at least one of them
with overwhelming probability over the coins of the algorithm. We continue by
showing that the lists on that computation path achieve their expected size with
overwhelming probability over the random choice of the input. We conclude
with Theorem 1 that combines these results and shows the correctness and time
complexity of NearestNeighbor.

Lemma 1 (good distribution). Let (L,R, γ) be an instance of an (m, γ, λ)
Nearest Neighbor problem with unknown solution vectors (u∗,v∗) ∈ L ×R. Let
z∗ := u∗ + v∗ and for any constant t let u∗ := (u∗1, . . . ,u

∗
t ), v∗ := (v∗1, . . . ,v

∗
t )

z∗ := (z∗1, . . . , z
∗
t ) be a splitting of the vectors in t strips with sizes αjm for all

1 ≤ j ≤ t with α1 + . . .+ αt = 1. Then the double rerandomization of algorithm
NearestNeighbor guarantees with overwhelming probability that

wt(z∗j ) = γαjm and wt(u∗j ) = wt(v∗j ) = 1
2αjm for all 1 ≤ j ≤ t

in at least one of the rerandomized input lists.
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Proof. In the first loop, random permutations π of the m columns are chosen.
Thus the probability for wt(z∗j ) = γαjm for all 1 ≤ j ≤ t is(

α1m

γα1m

)
· . . . ·

(
αtm

γαtm

)
/

(
m

γm

)
.

A cancellation of the common terms, an application of Stirling’s formula and the
fact that t is constant shows the claim. In the second loop we choose uniformly
random r = (r1, . . . , rt) ∈ Fα1m

2 × . . .Fαtm2 with weight 1
2αjm on each of the

t strips and add them to all elements in L and R. Fix one of the strips j and
consider the vectors (u∗j ,v

∗
j ). Let c01 denote the number of columns such that u∗j

has a 0-coordinate and v∗j has a 1-coordinate. Define c00, c10 and c11 analogously.

We define r to be good on the strip j, if it has exactly 1
2cxy ones in all four parts

xy. The probability for that is(
c00
1
2c00

)(
c01
1
2c01

)(
c10
1
2c10

)(
c11
1
2c11

)
/

(
αjm
1
2αjm

)
.

Notice that this is again inverse polynomial, because c00 + c01 + c10 + c11 = αjm
per definition. Thus the probability stays polynomial for all t strips, since t is
constant.

We conclude that a good r solves the problem, because on each strip

wt(u∗j + rj) = wt(v∗j + rj) = 1
2 (c00 + c01 + c10 + c11) = 1

2αjm. ut

In the following we use the notion of a good computation path inside the
computation tree of our algorithm. See Fig. 7 for an example. In this figure the
good path is marked as →, whereas all the other paths are marked as dashed
arrows.

Definition 3 (good computation path). Let (u∗,v∗) ∈ L×R be the target
solution. A computation path of NearestNeighbor is called good, if (u∗,v∗)
is contained in all t sublist pairs from the root to a leaf.

Lemma 2 (correctness). Let t ∈ N be the (constant) depth of Nearest-
Neighbor and λ < 1−H(γ2 ). Then the computation tree of NearestNeigh-
bor has a good computation path with overwhelming probability over the coins
of the algorithm.

Proof. By construction, the target solution (u∗,v∗) is contained in the initial
list pair L×R on level 1 of the computation tree. In the following we show that
if the solution is in one of the input lists on a level j, then with overwhelming
probability it is also in one of the output lists on level j (which are either the
input lists on level j + 1 or the input lists for the naive algorithm on the last
level). Thus, if this holds for any 1 ≤ j ≤ t, we have a good path by induction.

Let us create 2yαjm sublist pairs for each input list pair on level j with y
from (5). On each level j we therefore have a total of 2y(α1+...+αj)m output list
pairs, resulting in a total of 2ym output list pairs on the last level.
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Fix a level j and a target solution (u∗,v∗) in one of the input pairs L,R
on that level. On this level, we work on a strip of size αjm. Let u∗j and v∗j be
the restrictions of u∗, resp. v∗ to that strip. Due to the rerandomization in our
algorithm, it is guaranteed by Lemma 1 that wt(u∗j ) = wt(v∗j ) = 1

2αjm and
that their Hamming distance is ∆(u∗j ,v

∗
j ) = γαjm.

Thus, if we look at the pairwise coordinates of (u∗j ,v
∗
j ) this implies that we

have exactly 1−γ
2 αjm (0, 0)-pairs and (1, 1)-pairs and exactly γ

2αjm (0, 1)-pairs
and (1, 0)-pairs, respectively. We illustrate this input distribution of the target
pair (u∗j ,v

∗
j ) in Fig. 8.

u∗j = 0 . . . . . . 0 0 . . . 0 1 . . . 1 1 . . . . . . 1
v∗j = 0 . . . . . . 0 1 . . . 1 0 . . . 0 1 . . . . . . 1

weight 1−γ
2
αjm

γ
2
αjm

γ
2
αjm

1−γ
2
αjm

Fig. 8. input distribution (αjm-strip)

The algorithm constructs sublists L′,R′ by choosing a random partition A
of the αj-strip with |A| = 1

2αjm. The algorithm only keeps those vectors of
the input lists that have a relative Hamming weight of h := H−1(1− λ) on the
columns defined by A, a choice that will be justified in Lemma 3. The choice of h
implies that the number of (1, 0) overlaps on the columns defined by A plus the
number of (1, 1) overlaps on the columns defined by A is hαj

m
2 . This is also the

case for the number of (0, 1) overlaps plus the number of (1, 1) overlaps. Finally,
we also know that the sum of all overlaps (0, 0), (0, 1), (1, 0) and (1, 1) is αj

m
2 .

Compared to the input distribution, this leaves one degree of freedom, which we
denote by a parameter 0 ≤ c ≤ h. We obtain the output distribution shown in
Fig. 9.

u∗j,A = 0 . . . . . . . . . . . . . . . 0 0 . . . 0 1 . . . 1 1 . . . . . . . . . . . . 1
v∗j,A = 0 . . . . . . . . . . . . . . . 0 1 . . . 1 0 . . . 0 1 . . . . . . . . . . . . 1
weight (1− h− c)αj m2 c αj

m
2
c αj

m
2

(h− c)αj m2

Fig. 9. output distribution (A-columns of an αjm-strip)

In order to compute the necessary number of repetitions, we have to compute
the number of good partitions A that lead to an output distribution of Fig. 9 for
any 0 ≤ c ≤ h. This can be computed by multiplying the number of choices we
have for each overlap of zeros and ones for any possible value of c αj

m
2 , which is

hαj
m
2∑

cαj
m
2 =0

( 1−γ
2 αjm

(1− h− c)αj m2

)
·
(γ

2αjm

cαj
m
2

)2

·
( 1−γ

2 αjm

(h− c)αj m2

)
.
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For a fixed c, it is for example possible to choose c αj
m
2 (0,1) overlaps in the

A-area from an overall number of γ
2αjm (0,1)’s in the whole strip.

Notice that some choices of c might lead to no possible choice for A, e.g.
if c > γ. We determine a c that maximizes the number of good partitions.
Numerical optimization shows that this maximum is obtained at c = γ

2 . Notice
that this is a valid choice for c (i.e. none of the binomial coefficients is zero) due
to the restriction λ < 1 − H(γ2 ) of Theorem 1 that implies h > γ

2 . Thus the
number of good partitions (up to polynomial factors) is( 1−γ

2 αjm

(1− h− γ
2 )αj

m
2

)
·
( γ

2αjm
γ
2αj

m
2

)2

·
( 1−γ

2 αjm

(h− γ
2 )αj

m
2

)
= Õ

(
(2αjm)γ+(1−γ)H(

h− γ
2

1−γ )

)
The total number of partitions is

( αjm
1
2αjm

)
= Õ(2αjm). Thus the expected number

r of repetitions until we find the correct pair is the total number of partitions
divided by the number of good partitions, which is r = Õ(2yαjm), which justifies
our choice of y in identity (5).

It suffices to choose mr repetitions in order to find the correct pair with
overwhelming probability, since the probability to not find the correct pair can
be upper bounded by

(1− 1/r)mr ≤ 2−m.

Thus the probability that the algorithm goes wrong in any of its 2t calls on a
good computation path can be upper bounded by 2t · 2−m, which is negligible.
Notice that mr = Õ(2yαjm), since polynomial factors vanish in Õ-notation. ut

Lemma 3 (list sizes). Let t ∈ N be the (constant) depth of NearestNeigh-
bor and ε > 0. Consider a good computation path of depth t. Then with over-
whelming probability the 2t lists inside the good computation path have sizes

Õ((2λm)1−
∑j
i=1 αi+

ε
2 ) for all 1 ≤ j ≤ t and thus are not cut off by the algorithm.

Proof. Fix some 1 ≤ j ≤ t and an initial input list L with |L| = 2λm (the
argument is analogous for R). For each vector vk ∈ L we define random variables
Xk such that

Xk =

{
1 if

∧j
i=1 vk ∈ Li

0 otherwise
.

Let X :=
∑|L|
k=1Xk. Thus the random variable X counts the number of elements

in the output list Lj. Recall that NearestNeighbor restricts to relative weight
h = H−1(1−λ) on the columns in A. Since we know that the computation path
is good, there is one vk∗ ∈ L with P[Xk∗ = 1] = 1. Notice that all the other
elements are independent of vk∗ and are uniformly chosen among all vectors
with weight αj

m
2 on each strip j. Thus for all vk ∈ L \ {vk∗} we have

P[Xk = 1] =

j∏
i=1

( αim
2

hαim2

)( αim
2

(1− h)αim2

)
/

(
αim
αim
2

)
,
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which is, for each of the first j strips, the number of vectors that have relative
weight h on the A-columns divided by the number of all possible vectors. Thus
the expected size of the output list is

E[X] = 1 + (2λm − 1) ·
j∏
i=1

( αim
2

hαim2

)( αim
2

(1− h)αim2

)
/

(
αim
αim
2

)
.

Notice that obviously E[X] ≥ 1. Applying Chebyshev’s inequality, we get

P
[
|X − E[X]| ≥ 2

ε
2mE[X]

]
≤ V[X]

2εmE[X]2
≤ 1

2εmE[X]
≤ 2−εm,

using V[X] = V[
∑
kXk] =

∑
k V[Xk] =

∑
k(E[X2

k ] − E[Xk]2) ≤
∑
k E[Xk] =

E[X]. We have V[
∑
kXk] =

∑
k V[Xk], because the Xk are pairwise independent.

Thus (for both lists on each level) we obtain P [Xtoo large in any of the steps] ≤
2t · 2−εm, applying the union bound.

From Stirling’s formula it also follows that E[X] ≤ (2λm)1−
∑j
i=1 αi for each

1 ≤ j ≤ t. Hence, with overwhelming probability, the list sizes are as claimed.
ut

Now we are able to prove Theorem 1.

Theorem 1. For any constant ε > 0 and any λ < 1−H(γ2 ), NearestNeigh-
bor solves the (m, γ, λ) NN problem with overwhelming probability (over both
the coins of the algorithm and the random choice of the input) in time

Õ
(

2(y+ε)m
)

with y := (1− γ)

(
1−H

(
H−1(1− λ)− γ

2

1− γ

))
.

Proof. By Lemma 2, there is a path that includes the solution (with overwhelm-
ing probability over the coins of the algorithm). Fix that path. We show that by
Lemma 3 (with overwhelming probability over the random choice of the input)
NearestNeighbor’s time complexity is the maximum of the times

Õ
(

(2m)λ(1−
∑j−1
i=1 αi)+y

∑j
i=1 αi+

ε
2

)
(6)

to create all sublists on level j for all levels 1 ≤ j ≤ t and the time

Õ(2(y+ε)m) (7)

to naively solve the problem on the last level.
From Lemma 3 we know that on each level j the sizes of the input lists

are Õ((2m)λ(1−
∑j−1
i=1 αi)+

ε
2 ). Notice that if the lists grow too large, we simply

abort. On level j we construct Õ(2yαjm) new sublists for each input list so that

we have a total number of Õ((2ym)
∑j
i=1 αi) sublists on this level. Each of these

sublists is computed by naively searching through the input lists. Thus, we have
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to multiply the sizes of the input lists with the number of sublists which results
in complexity (6).

In NearestNeighbor’s last step we use the naive algorithm to join a total
number of Õ(2ym) pairs of sublists of size Õ(2

ε
2m) each, resulting in complex-

ity (7). The overall complexity is the maximum of complexities (6) and (7).

We want to continue by computing the overall time complexity of the steps
defined by (6) for any fixed t by setting the complexities of (6) equal. Thus we
choose

λ

(
1−

j−1∑
i=1

αi

)
+ y

j∑
i=1

αi +
ε

2
= λ

(
1−

j∑
i=1

αi

)
+ y

j+1∑
i=1

αi +
ε

2

for all 1 ≤ j ≤ t − 1, which implies αj+1 = (λ/y) · αj . Additionally, we

need
∑t
i=1 αi = 1, thus using y > λ from Eq. (5) we get 1 =

∑t
i=1 αi =

α1 ·
∑t−1
i=0(λ/y)i = α1 · 1−(λ/y)

t

1−(λ/y) . This implies α1 = 1−(λ/y)
1−(λ/y)t and finally (uniquely)

determines all (α1, . . . , αt). Since by our choice all complexities (6) are the same,

we get an overall running time of Õ((2m)λ+y·α1+
ε
2 ).

Notice that the (constant) choice t =

⌈
log(y − λ+ ε

2 )− log( ε2 )

log(y)− log(λ)

⌉
∈ N leads

to α1 =
y−λ+ ε

2

y and we finally obtain the same complexity Õ(2(y+ε)m) as in (7),

which makes (7) the time complexity of the whole algorithm.

We want to conclude the proof by showing that for any fixed t it is indeed
optimal to set all time complexities in (6) equal. Let (α1, . . . , αt) be the (unique)
choice defined above. Assume this is not optimal, thus a choice (α̃1, . . . , α̃t)
that is different from the first one improves upon the overall time complexity.
Decreasing one of the time complexities implies that there is a 1 ≤ k ≤ t with
α̃k < αk, because y > λ. Let k be minimal with that property.

Case 1: There is an 1 ≤ ` < k s.t. α̃` > α` and let ` be minimal with that
property. Then

∑`−1
i=1 α̃i =

∑`−1
i=1 αi. Thus λ + (y − λ) ·

∑`−1
i=1 α̃i + y · α̃` + ε

2 >

λ+ (y − λ) ·
∑`−1
i=1 αi + y · α` + ε

2 .

Case 2: Otherwise, we know that
∑k−1
i=1 α̃i =

∑k−1
i=1 αi and thus

∑k
i=1 α̃i <∑k

i=1 αi. Notice that it also has to hold that
∑t
i=1 α̃i =

∑t
i=1 αi = 1. Hence

there is an k < ` ≤ t s.t.
∑`−1
i=1 α̃i <

∑`−1
i=1 αi and

∑`
i=1 α̃i ≥

∑`
i=1 αi. Thus

λ− λ ·
∑`−1
i=1 α̃i + y ·

∑`
i=1 α̃i > λ− λ ·

∑`−1
i=1 αi + y ·

∑`
i=1 αi.

In both cases the time complexity on some level ` 6= k (and therefore the overall
time complexity) strictly increases, which makes the new choice inferior to the
original one.

ut
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Open Problem

Our NearestNeighbor algorithm uses a recursion tree of constant depth t.
This leads to a large polynomial blow-up for our decoding algorithm (in the
size of mt), which asymptotically vanishes but in practice might lead to an
undesirably large break-even point with the BJMM algorithm. We pose it as an
open problem to get rid of this polynomial overhead.
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