
More Efficient Oblivious Transfer Extensions
with Security for Malicious Adversaries?

Gilad Asharov1, Yehuda Lindell2, Thomas Schneider3, and Michael Zohner3

1 The Hebrew University of Jerusalem, Israel
asharov@cs.huji.ac.il

2 Bar-Ilan University, Israel
lindell@biu.ac.il

3 TU Darmstadt, Darmstadt, Germany
{thomas.schneider,michael.zohner}@ec-spride.de

Abstract. Oblivious transfer (OT) is one of the most fundamental prim-
itives in cryptography and is widely used in protocols for secure two-
party and multi-party computation. As secure computation becomes
more practical, the need for practical large scale oblivious transfer pro-
tocols is becoming more evident. Oblivious transfer extensions are pro-
tocols that enable a relatively small number of “base-OTs” to be utilized
to compute a very large number of OTs at low cost. In the semi-honest
setting, Ishai et al. (CRYPTO 2003) presented an OT extension protocol
for which the cost of each OT (beyond the base-OTs) is just a few hash
function operations. In the malicious setting, Nielsen et al. (CRYPTO
2012) presented an efficient OT extension protocol for the setting of ac-
tive adversaries, that is secure in the random oracle model.
In this work, we present an OT extension protocol for the setting of
malicious adversaries that is more efficient and uses less communication
than previous works. In addition, our protocol can be proven secure in
both the random oracle model, and in the standard model with a type of
correlation robustness. Given the importance of OT in many secure com-
putation protocols, increasing the efficiency of OT extensions is another
important step forward to making secure computation practical.

Keywords: Oblivious transfer extensions, concrete efficiency, secure computa-
tion

?
This work was partially supported by the European Union’s Seventh Framework Program
(FP7/2007-2013) grant agreement n. 609611 (PRACTICE). The first author is supported by
the Israeli Centers of Research Excellence (I-CORE) Program (Center No. 4/11). The second is
supported by the European Research Council under the European Union’s Seventh Framework
Programme (FP/2007-2013) / ERC consolidators grant agreement n. 615172 (HIPS). The third
and fourth authors are supported by the DFG as part of project E3 within the CRC 1119 CROSS-
ING, by the German Federal Ministry of Education and Research (BMBF) within EC SPRIDE,
and by the Hessian LOEWE excellence initiative within CASED.

1 Introduction

1.1 Background

Oblivious Transfer (OT), introduced by Rabin [33], is a fundamental crypto-
graphic protocol involving two parties, a sender and a receiver. In the most
commonly used 1-out-of-2 version [9], the sender has a pair of messages (x0, x1)
and the receiver has a selection bit r; at the end of the protocol the receiver
learns xr (but nothing about x1−r) and the sender learns nothing at all about r.
Oblivious transfer is a fundamental tool for achieving secure computation, and
plays a pivotal role in the Yao protocol [35] where OT is needed for every bit of
input of the client, and in the GMW protocol [12] where OT is needed for every
AND gate in the Boolean circuit computing the function.

Protocols for secure computation provide security in the presence of adver-
sarial behavior. A number of adversary models have been considered in the lit-
erature. The most common adversaries are: passive or semi-honest adversaries
who follow the protocol specification but attempt to learn more than allowed by
inspecting the protocol transcript, and active or malicious adversaries who run
any arbitrary strategy in an attempt to break the protocol. In both these cases,
the security of a protocol guarantees that nothing is learned by an adversary be-
yond its legitimate output. Another notion is that of security in the presence of
covert adversaries; in this case the adversary may follow any arbitrary strategy,
but is guaranteed to be caught with good probability if it attempts to cheat.
The ultimate goal in designing efficient protocols is to construct protocols that
are secure against strong (active or covert) adversaries while adding very little
overhead compared to the passive variant. In our paper, we focus primarily on
the case of active adversaries, but also provide a variant for covert security.

OT extensions. As we have mentioned, OT is used extensively in protocols
for secure computation. In many cases, this means several millions of oblivious
transfers must be run, which can become prohibitively expensive. Specifically,
the state-of-the-art protocol for achieving OT with security in the presence of
active adversaries of [31] achieves approximately 350 random OTs per second on
standard PCs. However, a million OTs at this rate would take over 45 minutes.
In order to solve this problem, OT extensions [4] can be used. An OT extension
protocol works by running a small number of “base-OTs” depending on the
security parameter (e.g., a few hundred) that are used as a base for obtaining
many OTs via the use of cheap symmetric cryptographic operations only. This
is conceptually similar to public-key encryption where instead of encrypting a
large message using RSA, which would be too expensive, a hybrid encryption
scheme is used such that the RSA computation is only carried out to encrypt
a symmetric key, which is then used to encrypt the large message. Such an OT
extension can be achieved with extraordinary efficiency; specifically, the protocol
of [16] for passive adversaries requires only three hash function computations per
OT (beyond the initial base-OTs). In [1], by applying additional algorithmic and
cryptographic optimizations, the cost of OT extension for passive adversaries is
so low that essentially the communication is the bottleneck. To be concrete,

10,000,000 OTs on random inputs (which suffices for many applications) can be
carried out in just 2.62 seconds over a LAN with four threads [1].

For active adversaries, OT extensions are somewhat more expensive. Prior
to this work, the best protocol known for OT extensions with security against
active adversaries was introduced by [30]. The computational cost of the protocol
is due to the number of base-OTs needed for obtaining security, the number of
symmetric operations (e.g., hash function computations) needed for every OT in
the extension, and the bandwidth. Relative to the passive OT extension of [16],
the run-time of [30] is approximately 4 times longer spent on the base-OTs, 1.7
times the cost for each OT in the extension, and 2.7 times the communication.
Asymptotically, regarding the number of base-OTs, for security parameter κ
(e.g., κ = 128), it suffices to run κ base-OTs in the passive case. In contrast, [30]
require d 8

3κe base-OTs.

Applications of OT for malicious adversaries. Most prominently, OT is
heavily used in today’s most efficient protocols for secure computation that al-
low two or more parties to securely evaluate a function expressed as Boolean
circuit on their private inputs. Examples include Yao’s garbled circuits-based
approaches such as [22, 24, 32, 19, 11, 34, 25, 14, 10] where OTs are needed
for each input, or the Tiny-OT [30, 21] and MiniMac protocols [6, 5] where
OTs are needed for each AND gate. Additional applications include the private
set intersection protocol of [7] which is based purely on OT, and the Yao-based
zero-knowledge protocol of [17] which allows a party to prove in zero-knowledge a
predicate expressed as Boolean circuit, and needs one OT per bit of the witness.

In many of the above applications, the number of oblivious transfers needed
can be huge. For instance, for many applications of practical interest, the two-
party and multiparty protocols of [30, 21, 6, 5, 7] can require several hundred
millions of OTs, making the cost of OT the bottleneck in the protocol. Con-
cretely, the current implementations of secure computation in the malicious set-
ting requires ∼219 OTs for the AES circuit and ∼230 OTs for the PSI circuit
(Sort-Compare-Shuffle), see full version [2] for further details. Thus, improved
OT extensions immediately yield faster two-party and multi-party protocols for
secure computation.

1.2 Our Contributions

In this paper, we present a new protocol for OT extensions with security in
the presence of malicious adversaries, which outperforms the most efficient ex-
isting protocol of [30]. We follow the insights of prior work [1, 11], which show
that the bottleneck for efficient OT extension is the communication, and focus
on decreasing the communication at the cost of slightly increased computation.
Furthermore, our protocol can be instantiated with different parameters, allow-
ing us to tradeoff communication for computation. This is of importance since
when running over a LAN the computation time is more significant than when
running over a WAN where the communication cost dominates. We implement
and compare our protocol to the semi-honest protocol of [16] (with optimizations

of [18, 1]) and the malicious protocol of [30] (with optimizations of [11]). As can
be seen from the summary of our results given in Table 1, our actively secure
protocol performs better than the previously fastest protocol of [30] running at
under 60% the cost of the base-OTs of [30], 70% of the cost of each OT in the
extension, and 55% of the communication in the local setting. Due to the lower
communication, the improvement of our protocol over [30] in the cloud setting
(between US East and Europe and thus with higher latency), is even greater
with approximately 45% of the time of the base-OTs and 55% of the time for
each OT in the extension.

Comparing our protocol to the passive OT extension of [16], our actively
secure protocol in the local (LAN) setting costs only 133% more run-time in
the base-OTs, 20% more run-time for each OT in the extension, and 50% more
communication. In the cloud setting, the cost for each OT in the extension is 63%
more than [16] (versus 293% more for [30]). Finally, we obtain covert security
at only a slightly higher cost than passive security (just 10% more for each OT
in the extension in the local setting, and 30% more in the cloud setting). Our
protocol reduces the number of base-OTs that are required to obtain malicious
security from 8

3κ for [30] to κ+ ερ, where ρ is the statistical security parameter
(e.g., ρ=40) and ε ≥ 1 is a parameter for trading between computation and
communication. To be concrete, for κ=128-bit security, our protocol reduces the
number of base-OTs from 342 to 190 in the local and to 174 in the cloud setting.

Prot. Security
Run-Time Communication

Local Cloud Local Cloud

[16] passive 0.3s+1.07µs · t 0.7s+4.24µs · t 4KB+128bit · t
This covert 0.6s+1.18µs · t 1.2s+5.48µs · t 21KB+166bit · t
[20] active - - 42KB+106,018bit · t
[31] active 2975.32µs · t 4597.27µs · t 0.3KB+1,024bit · t
[30] active 1.2s+1.82µs · t 2.9s+12.43µs · t 43KB+342bit · t
This active 0.7s+1.29µs · t 1.3s+6.92µs · t 24KB+191bit · t 22KB+175bit · t

Table 1. Run-time and communication for t random OT extensions with κ=128-bit
security (amortized over 226 executions; [31] amortized over 214 executions). 1KB=
8,192bit.

In addition to being more efficient, we can prove the security of a variant of
our protocol with a version of correlation robustness (where the secret value is
chosen with high min-entropy, but not necessarily uniformly), and do not require
a random oracle (see §3.3). In contrast, [30] is proven secure in the random
oracle model. 4 Our implementation is available online at http://encrypto.

de/code/OTExtension and was integrated into the SCAPI library [8] available
at https://github.com/cryptobiu/scapi.

4 It is conjectured that the [30] OT can be proven secure without a random oracle,
but this has never been proven.

http://encrypto.de/code/OTExtension
http://encrypto.de/code/OTExtension
https://github.com/cryptobiu/scapi

1.3 Related Work

The first efficient OT extension protocol for semi-honest adversaries was given
in [16]. Improvements and optimizations to the protocol of [16] were given in
[18, 1].

Due to its importance, a number of previous works have tackled the ques-
tion of OT extensions with security for malicious/active adversaries. There exist
several approaches for achieving security against active adversaries for OT exten-
sions. All of the known constructions build on the semi-honest protocol of [16],
and add consistency checks of different types to the OT extension protocol, to
ensure that the receiver sent consistent values. (Note that in [16], the sender
cannot cheat and so it is only necessary to enforce honest behavior for the re-
ceiver.)

The first actively-secure version of OT extension used a cut-and-choose tech-
nique and was already given in [16]. This cut-and-choose technique achieves a
security of 2−n by performing n parallel evaluations of the basic OT extension
protocol.

This was improved on by [29, 13], who show that active security can be
achieved at a much lower cost. Their approach works in the random oracle model
and ensures security against a malicious receiver by adding a low-cost check per
extended OT, which uses the uncertainty of the receiver in the choice bit of the
sender. As a result, a malicious receiver who wants to learn p choice bits of the
sender risks being caught with probability 2−p. However, this measure allows
a malicious sender to learn information about the receiver’s choice bits. They
prevent this attack by combining S ∈ {2, 3, 4} OTs and ensuring the security of
one OT by sacrificing the remaining S − 1 OTs. Hence, their approach adds an
overhead of at least S ≥ 2 compared to the semi-honest OT extension protocol
of [16] for a reasonable number of OTs (with S = 2 and approximately 107 OTs,
they achieve security except with probability 2−25, cf. [29]). However, the exact
complexity for this approach has not been analyzed.

An alternative approach for achieving actively-secure OT extension was given
in [30]. Their approach also works in the random oracle model but, instead of per-
forming checks per extended OT as in [29, 13], they perform consistency checks
per base-OT. Their consistency check method involves hashing the strings that
are transferred in the base-OTs and is highly efficient. In their approach, they
ensure the security of a base-OT by sacrificing another base-OT, which adds an
overhead of factor 2. In addition, a malicious receiver is able to learn p choice bits
of the sender with probability 2−p. [30] shows that this leakage can be tolerated
by increasing the number of base-OTs from κ to d 4

3κe. Overall, their approach
increases the number of base-OTs that has to be performed by a multiplicative
factor of 8

3 . The [30] protocol has been optimized and implemented on a GPU
in [11]. We give a full description of the [30] protocol with optimizations of [11]
in Appendix §B.

An approach for achieving actively-secure OT extension that works in the
standard model has recently been introduced in [20]. Their approach achieves less
overhead in the base-OTs at the expense of substantially more communication

during the check routine (cf. Table 1), and is therefore considerably less efficient.
Nevertheless, we point out that the work of [20] is of independent interest since
it is based on the original correlation robustness assumption only.

Since it is the previous best, we compare our protocol to that of [30]. Our
approach reduces the number of base-OTs by removing the “sacrifice” step of [30]
(where one out of every 2 base-OTs are opened) but increases the workload in
the consistency check routine. Indeed, we obtain an additive factor of a statistical
security parameter, instead of the multiplicative increase of [30]. This can be seen
as a trade-off between reducing communication through fewer base-OTs while
increasing computation through more work in the consistency check routine. We
empirically show that this results in a more efficient actively secure OT extension
protocol, which only has 20% more time and 50% more communication than the
passively secure OT extension protocol of [16] in the local setting.

The above works all consider the concrete efficiency of OT extensions. The
theoretical feasibility of OT extensions was established in [4], and further theo-
retical foundations were laid in [26].

2 Preliminaries

2.1 Notation

Our protocol uses a computational (symmetric) security parameter κ and a
statistical security parameter ρ. Asymptotically, this means that our protocols
are secure for any adversary running in time poly(κ), except with probability
µ(κ) + 2−ρ. (Formally, the output distribution of a real protocol execution can
be distinguished from the output distribution of an ideal execution of the OT
functionality with probability at most µ(κ) + 2−ρ. See [23] for a formal defini-
tion of secure computation with both a statistical and computational security
parameter.) In our experiments we set κ = 128 and ρ = 40, which is considered
to be secure beyond 20205.

2.2 Oblivious Transfer

Oblivious transfer (OT) was first introduced by Rabin [33] as a function where
a receiver receives a message, sent by a sender, with probability 1/2, while the
sender remains oblivious whether the message was received. It was later re-
defined to the functionality more commonly used today by [9], where a sender
inputs two messages (x0, x1) and the receiver inputs a choice bit r and obliviously
receives xr without learning any information about x1−r. Formally, the 1-out-of-
2 OT functionality on n bit strings is defined as OTn((x0, x1), r) = (λ, xr) where
λ denotes the empty string and x0, x1 ∈ {0, 1}n. In this paper we focus on the
general (and most applicable) functionality, which is equivalent to m invocations
of the 1-out-of-2 OT functionality on n bit strings. That is, the sender holds as

5 According to the summary of cryptographic key length recommendations at http:

//keylength.com.

http://keylength.com
http://keylength.com

input m pairs of n-bit strings (x0
j , x

1
j) for 1 ≤ j ≤ m and the receiver holds m

selection bits r = (r1, . . . , rm). The output of the receiver is (xr11 , . . . , x
rm
m) while

the sender has no output. We denote this functionality as m×OTn. The parties
are called sender PS and receiver PR.

Several protocols for OT based on different cryptographic assumptions and
attacker models were introduced. Most notable are the passive-secure OT proto-
col of [28] and the active-secure OT protocol of [31], which are among the most
efficient today. However, the impossibility result of [15] showed that OT protocols
require costly asymmetric cryptography, which greatly limits their efficiency.

2.3 OT Extension

In his seminal work, Beaver [4] introduced OT extension protocols, which ex-
tend few costly base-OTs using symmetric cryptography only. While the first
construction of [4] was inefficient and mostly of theoretical interest, the protocol
of [16] showed that OT can be extended efficiently and with very little overhead.

Recently, the passively secure OT extension protocol of [16] was improved
by [18, 1] who showed how the communication from PR to PS can be reduced
by a factor of two. Furthermore, [1] implemented and optimized the protocol
and demonstrated that the main bottleneck for semi-honest OT extension has
shifted from computation to communication. We give the passively secure OT
extension protocol of [16] with optimizations from [1, 18] in Protocol 1.

2.4 On the Malicious Security of [16]

The key insight to understanding how to secure OT extension against mali-
cious adversaries is to understand that a malicious party only has very limited
possibilities for an attack. In fact, the original OT extension protocol of [16]
already provides security against a malicious PS . In addition, the only attack
for a malicious PR is in Step 2a of Protocol 1, where PR computes and sends
ui = ti ⊕ G(k1

i) ⊕ r (cf. [16]). A malicious PR could choose a different r for
each ui (for 1 ≤ i ≤ `), and thereby extract PS ’s choice bits s. Hence, malicious
security can be obtained if PR can be forced to use the same choice bits r in all
messages u1, . . . ,u`.

3 Our Protocol

All we add to the semi-honest protocol (Protocol 1) is a consistency check for
the values r that are sent in Step 2a, and increase the number of base-OTs.
Let ri = ti ⊕ G(k1

i) ⊕ ui, i.e., the value that is implicitly defined by ui. We
observe that if the receiver PR uses the same choice bits ri and rj for some
distinct i, j ∈ [`]2, they cancel out when computing their XOR, i.e., ui ⊕ uj =
(ti ⊕G(k1

i)⊕ ri)⊕ (tj ⊕G(k1
j)⊕ rj) = G(k0

i)⊕G(k1
i)⊕G(k0

j)⊕G(k1
j). After

the base-OTs, PS holds G(ksii) and G(k
sj
j) and in Step 2a of Protocol 1, PR

computes and sends ui = G(k0
i)⊕G(k1

i)⊕ri and uj = G(k0
j)⊕G(k1

j)⊕rj . Now

PROTOCOL 1 (Passive-secure OT extension protocol of [16])

– Input of PS: m pairs (x0j , x
1
j) of n-bit strings, 1 ≤ j ≤ m.

– Input of PR: m selection bits r = (r1, . . . , rm).
– Common Input: Symmetric security parameter κ and ` = κ.
– Oracles and cryptographic primitives: The parties use an ideal ` ×
OTκ functionality, pseudorandom generator G : {0, 1}κ → {0, 1}m and a
correlation robust-function H : [m]× {0, 1}` → {0, 1}n (see §3.3).

1. Initial OT Phase:
(a) PS initializes a random vector s = (s1, . . . , s`) ∈ {0, 1}` and PR

chooses ` pairs of seeds k0
i ,k

1
i each of size κ.

(b) The parties invoke the ` × OTκ-functionality, where PS acts as the
receiver with input s and PR acts as the sender with inputs (k0

i ,k
1
i)

for every 1 ≤ i ≤ `.
For every 1 ≤ i ≤ `, let ti = G(k0

i). Let T = [t1| . . . |t`] denote the m× `
bit matrix where its ith column is ti for 1 ≤ i ≤ `. Let tj denote the jth
row of T for 1 ≤ j ≤ m.

2. OT Extension Phase:
(a) PR computes ti = G(k0

i) and ui = ti ⊕ G(k1
i) ⊕ r, and sends ui to

PS for every 1 ≤ i ≤ `.
(b) For every 1 ≤ i ≤ `, PS defines qi = (si · ui) ⊕ G(ksii). (Note that

qi = (si · r)⊕ ti.)
(c) Let Q = [q1| . . . |q`] denote the m× ` bit matrix where its ith column

is qi. Let qj denote the jth row of the matrix Q. (Note that qi =
(si · r)⊕ ti and qj = (rj · s)⊕ tj .)

(d) PS sends (y0j , y
1
j) for every 1 ≤ j ≤ m, where:

y0j = x0j ⊕H(j,qj) and y1j = x1j ⊕H(j,qj ⊕ s)

(e) For 1 ≤ j ≤ m, PR computes xj = y
rj
j ⊕H(j, tj).

3. Output: PR outputs (xr11 , . . . , x
rm
m); PS has no output.

note that PS can compute the XOR of the strings he received in the base-OTs
G(ksii)⊕G(k

sj
j) as well as the “inverse” XOR of the strings received in the base-

OTs G(ksii)⊕G(k
sj
j) = G(ksii)⊕G(k

sj
j)⊕ui⊕uj if and only if PR has correctly

used ri = rj . However, PS cannot check whether the “inverse” XOR is correct,

since it has no information about G(ksii) and G(k
sj
j) (this is due to the security of

the base-OTs that guarantees that PS receives the keys ksii ,k
sj
i only, and learns

nothing about ksii ,k
sj
j). We solve this problem by having PR commit to the

XORs of all strings hp,qi,j = H(G(kpi)⊕G(kqj)), for all combinations of p, q ∈ {0, 1}.
Now, given h

si,sj
i,j , h

si,sj
i,j , PS checks that h

si,sj
i,j = H(G(ksii)⊕G(k

sj
j)), and that

h
si,sj
i,j = H(G(ksii)⊕G(k

sj
i)⊕ui⊕uj) = H(G(ksii)⊕G(k

sj
j)). This check passes

if ri = rj and hp,qi,j were set correctly.

If a malicious PR tries to cheat and has chosen ri 6= rj , it has to convince PS
by computing hp,qi,j = H(G(kpi)⊕G(kqj)⊕ri⊕rj) for all p, q ∈ {0, 1}. However, PS
can check the validity of h

si,sj
i,j = H(G(ksii)⊕G(k

sj
j)) while PR remains oblivious

to si, sj . Hence, PR can only convince PS by guessing si, sj , computing h
si,sj
i,j

correctly and h
si,sj
i,j = H(G(ksii)⊕G(k

sj
j)⊕ ri⊕ rj), which PR cannot do better

than with probability 1/2. This means that PR can only successfully learn ρ bits
but will be caught except with probability 2−ρ. The full description of our new
protocol is given in Protocol 2. We give some more explanations regarding the
possibility of the adversary to cheat during the consistency check in §3.1.

We note that learning few bits of the secret s does not directly break the
security of the protocol once |s| > κ. In particular, the values {H(tj ⊕ s)}j
are used to mask the inputs {x1−rj

j }j . Therefore, when H is modelled as a
random oracle and enough bits of s remain hidden from the adversary, each
value H(tj ⊕ s) is random, and the adversary cannot learn the input x

1−rj
j . For

simplicity we first prove security of our protocol in the random-oracle model.
We later show that H can be replaced with a variant of a correlation-robustness
assumption.

The advantage of our protocol over [30] is that PS does not need to reveal
any information about si, sj when checking the consistency between ri and rj

(as long as PR does not cheat, in which case it risks getting caught). Hence, it
can force PR to check that ri equals any rj , for 1 ≤ j ≤ ` without disclosing any
information.

Section outline. In the following, we describe our basic protocol and prove its
security (§3.1). We then show how to reduce the number of consistency checks
to achieve better performance (§3.2), and how to replace the random oracle with
a weaker correlation robustness assumption (§3.3). Finally, we show how our
protocol can be used to achieve covert security (§3.4).

3.1 The Security of Our Protocol

Malicious sender. The original OT extension protocol of [16] already provides
security against a malicious PS . Our checks do not add any capabilities for a
malicious sender, since they consist of messages from the receiver to the sender
only. Thus, by a simple reduction to the original protocol, one can show that
our protocol is secure in the presence of a malicious sender.

Simulating a malicious receiver. In the case of a malicious receiver, the
adversary may not use the same r in the messages u1, . . . ,u`, and as a result
learn some bits from the secret s. Therefore, we add a consistency check of r to
the semi-honest protocol of [16]. However, this verification of consistency of r is
not perfectly sound, and the verification may still pass even when the receiver
sends few u’s that do not define the same r. This makes the analysis a bit more
complicated.

For every 1 ≤ i ≤ `, let ri
def
= ui ⊕ G(k0

i) ⊕ G(k1
i) that is, the “input” ri

which is implicitly defined by ui and the base-OTs.

PROTOCOL 2 (Our active-secure OT extension protocol)

– Input of PS: m pairs (x0j , x
1
j) of n-bit strings, 1 ≤ j ≤ m.

– Input of PR: m selection bits r = (r1, . . . , rm).
– Common Input: Symmetric security parameter κ and statistical security

parameter ρ. It is assumed that ` = κ+ ρ.
– Oracles and cryptographic primitives: The parties use an ideal ` ×
OTκ functionality, pseudorandom generator G : {0, 1}κ → {0, 1}m, and
random-oracle H (see §3.3 for instantiation of H.)

1. Initial OT Phase:
(a) PS initializes a random vector s = (s1, . . . , s`) ∈ {0, 1}` and PR

chooses ` pairs of seeds k0
i ,k

1
i each of size κ.

(b) The parties invoke the `×OTκ-functionality, where PS acts as the
receiver with input s and PR acts as the sender with inputs (k0

i ,k
1
i)

for every 1 ≤ i ≤ `.
For every 1 ≤ i ≤ `, let ti = G(k0

i). Let T = [t1| . . . |t`] denote the m× `
bit matrix where its ith column is ti for 1 ≤ i ≤ `. Let tj denote the jth
row of T for 1 ≤ j ≤ m.

2. OT Extension Phase (Part I):
(a) PR computes ti = G(k0

i) and ui = ti ⊕ G(k1
i) ⊕ r, and sends ui to

PS for every 1 ≤ i ≤ `.
3. Consistency Check of r: (the main change from Protocol 1)

(a) For every pair α, β ⊆ [`]2, PR defines the four values:

h0,0
α,β = H(G(k0

α)⊕G(k0
β)) h0,1

α,β = H(G(k0
α)⊕G(k1

β)) ,

h1,0
α,β = H(G(k1

α)⊕G(k0
β)) h1,1

α,β = H(G(k1
α)⊕G(k1

β)) .

It then sends Hα,β = (h0,0
α,β , h

0,1
α,β , h

1,0
α,β , h

1,1
α,β) to PS .

(b) For every pair α, β ⊆ [`]2, PS knows sα, sβ ,k
sα
α ,k

sβ
β ,u

α,uβ and checks
that:

i. h
sα,sβ
α,β = H(G(ksαα)⊕G(k

sβ
β)).

ii. h
sα,sβ
α,β = H(G(ksαα) ⊕ G(k

sβ
β) ⊕ uα ⊕ uβ) (= H(G(ksαα) ⊕

G(k
sβ
β)⊕ rα ⊕ rβ)).

iii. uα 6= uβ .
In case one of these checks fails, PS aborts and outputs ⊥.

4. OT Extension Phase (Part II):
(a) For every 1 ≤ i ≤ `, PS defines qi = (si · ui) ⊕ G(ksii). (Note that

qi = (si · r)⊕ ti.)
(b) Let Q = [q1| . . . |q`] denote the m× ` bit matrix where its ith column

is qi. Let qj denote the jth row of the matrix Q. (Note that qi =
(si · r)⊕ ti and qj = (rj · s)⊕ tj .)

(c) PS sends (y0j , y
1
j) for every 1 ≤ j ≤ m, where:

y0j = x0j ⊕H(j,qj) and y1j = x1j ⊕H(j,qj ⊕ s)

(d) For 1 ≤ j ≤ m, PR computes xj = y
rj
j ⊕H(j, tj).

5. Output: PR outputs (xr11 , . . . , x
rm
m); PS has no output.

We now explore how the matrices Q,T are changed when the adversary uses
inconsistent r’s. Recall that when the receiver uses the same r, then qi = (si ·
r)⊕ti and qj = (rj ·s)⊕tj . However, in case of inconsistent r’s, we get that qi =
(si · ri)⊕ ti. The case of qj is rather more involved; let R =

[
r1 | . . . | r`

]
denote

the m× ` matrix where its ith column is ri, and let rj denote the jth row of the
matrix R. For two strings of the same length a = (a1, . . . , ak),b = (b1, . . . , bk),
let a ∗ b define the entry-wise product, that is a ∗ b = (a1 · b1, . . . , ak · bk). We
get that qj = (rj ∗ s)⊕ tj (note that in an honest execution, rj is the same bit
everywhere). The sender masks the inputs (x0

j , x
1
j) with (H(j,qj), H(j,qj ⊕ s)).

In order to understand better the value qj , let r = (r1, . . . , rm) be the string
that occurs the most from the set {r1, . . . , r`}, and let U ⊂ [`] be the set of all
indices for which ri = r for all i ∈ U . Let B = [`] \ U be the complementary set,
that is, the set of all indices for which for every i ∈ B it holds that ri 6= r. As
we will see below, except with some negligible probability, the verification phase
guarantees that |U| ≥ `− ρ. Thus, for every 1 ≤ j ≤ m, the vector rj (which is
the jth row of the matrix R), can be represented as rj = (rj ·1)⊕ej , where 1 is
the all one vector of size `, and ej is some error vector with Hamming distance
at most ρ from 0. Note that the non-zero indices in ej are all in B. Thus, we
conclude that:

qj = (s ∗ rj)⊕ tj = (s ∗ (rj · 1⊕ ej))⊕ tj = (rj · s)⊕ tj ⊕ (s ∗ ej) .

Recall that in an honest execution qj = (rj · s) ⊕ tj , and therefore the only
difference is the term (s∗ej). Moreover, note that s∗ej completely hides all the
bits of s that are in U , and may expose only the bits that are in B. Thus, the
consistency check of r guarantees two important properties: First, that almost
all the inputs are consistent with some implicitly defined string r, and thus the
bits rj are uniquely defined. Second, the set of inconsistent inputs (i.e., the set
B) is small, and thus the adversary may learn only a limited amount of bits of s.

The consistency checks of r. We now examine what properties are guaranteed
by our consistency check, for a single pair (α, β). The malicious receiver PR first
sends the set of keys K = {k0

i ,k
1
i } to the base-OT protocol, and then sends all

the values (u1, . . . ,u`) and the checks H = {Hα,β}α,β . In the simulation, the
simulator can choose s only after it receives all these messages (this is because
the adversary gets no output from the invocation of the OT primitive). Thus,
for a given set of messages that the adversary outputs, we can ask what is the
number of secrets s for which the verification will pass, and the number for which
it will fail. If the verification passes for some given T = (K,u1, . . . ,u`,H) and
some secret s, then we say that T is consistent with s; In case the verification
fails, we say that T is inconsistent.

The following Lemma considers the values that the adversary has sent re-
garding some pair (α, β), and considers the relation to the pair of bits (sα, sβ)
of the secret s. We have:

Lemma 31 Let Tα,β = {Hα,β ,uα,uβ , {kbα}b, {kbβ}b} and assume that H is a
collision-resistant hash-function. We have:

1. If rα 6= rβ and Tα,β is consistent with (sα, sβ), then it is inconsistent with
(sα, sβ).

2. If rα = rβ and Tα,β is consistent with (sα, sβ), then it is consistent also with
(sα, sβ).

Proof: For the first item, assume that rα 6= rβ and that Tα,β is consistent both
with (sα, sβ) and (sα, sβ). Thus, from the check of consistency of (sα, sβ):

h
sα,sβ
α,β = H

(
G(ksαα)⊕G(k

sβ
β)
)
, h

sα,sβ
α,β = H

(
G(ksαα)⊕G(k

sβ
β)⊕ uα ⊕ uβ

)
,

and that uα 6= uβ . In addition, from the check of consistency of (sα, sβ) it holds
that:

h
sα,sβ
α,β = H

(
G(ksαα)⊕G(k

sβ
β)
)
, h

sα,sβ
α,β = H

(
G(ksαα)⊕G(k

sβ
β)⊕ uα ⊕ uβ

)
,

and that uα 6= uβ . This implies that:

H
(
G(ksαα)⊕G(k

sβ
β)
)

= h
sα,sβ
α,β = H

(
G(ksαα)⊕G(k

sβ
β)⊕ uα ⊕ uβ

)
,

and from the collision resistance property of H we get that:

G(ksαα)⊕G(k
sβ
β) = G(ksαα)⊕G(k

sβ
β)⊕ uα ⊕ uβ .

Recall that rα
def
= uα⊕G(k0

α)⊕G(k1
α), and rβ

def
= uβ⊕G(k0

β)⊕G(k1
β). Combining

the above, we get that rα = rβ , in contradiction.

For the second item, once rα = rβ , we get that uα ⊕uβ = G(k0
α)⊕G(k1

α)⊕
G(k0

β)⊕G(k1
β) and it is easy to see that if the consistency check of (sα, sβ) holds,

then the consistency check of (sα, sβ) holds also.

Lemma 31 implies what attacks the adversary can do, and what bits of s
it can learn from each such an attack. In the following, we consider a given
partial transcript Tα,β = ((k0

α,k
1
α,k

0
β ,k

1
β), (uα,uβ),Hα,β) and analyze what the

messages might be, and what the adversary learns in case the verification passes.
Let rα = uα ⊕G(k0

α)⊕G(k1
α) and rβ defined analogously. We consider 4 types:

1. Type 1: correct. In this case, it holds that rα = rβ , and for every (a, b) ∈
{0, 1}2: ha,bα,β = H

(
G(kaα)⊕G(kbβ)

)
. The verification passes for every possi-

ble value of (sα, sβ).
2. Type 2: rα = rβ, but Hα,β is incorrect. In this case, the adversary

sent uα,uβ that define the same r. However, it may send hashes Hα,β that

are incorrect (i.e., for some (a, b) ∈ {0, 1}2, it may send: ha,bα,β 6= H(G(kaα)⊕
G(kbβ))). However, from Lemma 31, if rα = rβ and Hα,β is consistent with
(sα, sβ) then it is also consistent with (sα, sβ).
Thus, a possible attack of the adversary, for instance, is to send correct
hashes for some bits (0, 0) and (1, 1), but incorrect ones for (0, 1) and (1, 0).

The verification will pass with probability 1/2, exactly if (sα, sβ) are either
(0, 0) or (1, 1), but it will fail in the other two cases (i.e., (1, 0) or (0, 1)). We
therefore conclude that the adversary may learn the relation sα ⊕ sβ , and
gets caught with probability 1/2.

3. Type 3: rα 6= rβ and Hα,β is incorrect in two positions. In this

case, for instance, the adversary can set the values h0,0
α,β , h

0,1
α,β correctly (i.e.,

h0,0
α,β = H(G(k0

α) ⊕ G(k0
β)) and h0,1

α,β = H(G(k0
α) ⊕ G(k1

β))) and set values

h1,0
α,β , h

1,1
α,β , accordingly, such that the verification will pass for the cases of

(sα, sβ) = (0, 0) or (0, 1). That is, it sets:

h1,0
α,β = H(G(k0

α)⊕G(k1
β)⊕ uα ⊕ uβ)

(and it sets h1,1
α,β in a similar way). In this case, the adversary succeeds

with probability 1/2 and learns that sα = 0 in case the verification passes.
Similarly, it can guess the value of sβ and set the values accordingly. For
conclusion, the adversary can learn whether its guess was correct, and in
which case it learns exactly one of the bits sα or sβ but does not learn
anything about the other bit.

4. Type 4: rα 6= rβ and Hα,β is incorrect in three positions. In this case,

the adversary may guess both bits (sα, sβ) = (a, b) and set ha,bα,β correctly,

set ha,bα,β accordingly (i.e., such that the verification will pass for (a, b)), but
will fail for any one of the other cases. In this case, the adversary learns the
values (sα, sβ) entirely, but succeeds with probability of at most 1/4.

Note that whenever rα 6= rβ , the adversary may pass the verification of
the pair (α, β) with probability of at most 1/2. This is because it cannot send
consistent hashes for all possible values of (sα, sβ), and must, in some sense,
“guess” either one of the bits, or both (i.e., Type 3 or Type 4). However, an
important point that makes the analysis more difficult is the fact that the two
checks are not necessarily independent. That is, in case where rα 6= rβ and
rβ 6= rγ , although the probability to pass each one of the verification of (α, β)
and (β, γ) separately is at most 1/2, the probability to pass both verifications
together is higher than 1/4, and these two checks are not independent. This is
because the adversary can guess the bit sβ , and set the hashes as in Type 3 in
both checks. The adversary will pass these two checks if it guesses sβ correctly,
with probability 1/2.

Theorem 32 Assuming that H is a random oracle, G is a pseudo-random gen-
erator, Protocol 2 with ` = κ+ρ securely computes the m×OTn functionality in
the `×OTκ-hybrid model in the presence of a static malicious adversary, where
κ is the symmetric security parameter and ρ is the statistical security parameter.

Proof Sketch: The simulator S invokes the malicious receiver and plays the
role of the base-OT trusted party and the honest sender. It receives from the
adversary its inputs to the base-OTs, and thus knows the values {k0

i ,k
1
i }`i=1.

Therefore, it can compute all the values r1, . . . , r` when it receives the messages

u1, . . . ,u`. It computes the set of indices U , and extracts r. It then performs
the same checks as an honest sender, in Step 3 of Protocol 2, and aborts the
execution if the adversary is caught cheating. Then, it sends the trusted party
the value r that it has extracted, and learns the inputs xr11 , . . . , x

rm
m . It computes

qj as instructed in the protocol (recall that these qj may contain the additional

“shift” s ∗ ej) and use some random values for all {yrjj }mj=1. The full description
of the simulator is given in the full proof in the full version [2].

Since the values {yrjj }mj=1 are random in the ideal execution, and equal {xrjj ⊕
H(j,qj ⊕ s)} in the real execution, a distinguisher may distinguish between the
real and ideal execution once it makes a query of the form (j,qj ⊕ s) to the
random oracle. We claim, however, that the probability that the distinguisher
will make such a query is bounded by (t+1)/|S|, where t is the number of queries
it makes to the random oracle, and S is the set of all possible secrets s that are
consistent with the view that it receives. Thus, once we show that |S| > 2κ,
the probability that it will distinguish between the real and ideal execution is
negligible in κ.

However, the above description is too simplified. First, if the adversary per-
forms few attacks of Type 2, it learns information regarding s from the mere
fact that the verification has passed. Moreover, recall that y

rj
j = x

rj
j ⊕H(j, tj ⊕

(s ∗ ej)), and that the adversary can control the values tj and ej . Recall that ej
is a vector that is all zero in positions that are in U , and may vary in positions
that are in B. This implies that by simple queries to the random oracle, and
by choosing the vectors ej cleverly, the adversary can totally reveal the bits sB
quite easily. We therefore have to show that the set B is small, while also showing
that the set of consistent secrets is greater than 2κ (that is, |S| ≥ 2κ).

Let T = {{k0
i ,k

1
i }`i=1,u

1, . . . ,u`, {Hα,β}α,β}, i.e., the values that the ad-
versary gives during the execution of the protocol. Observe that the simulator
chooses the secret s only after T is determined (since the adversary receives no
output from the execution of the base-OT primitive, we can assume that). We
divide all possible T into two sets, Tgood and Tbad, defined as follows:

Tgood =
{
T | Pr

s
[consistent(T , s) = 1] > 2−ρ

}
and

Tbad =
{
T | Pr

s
[consistent(T , s) = 1] ≤ 2−ρ

}
,

where consistent(T , s) is a predicate that gets 1 when the verification passes for
the transcript T and the secret s, and 0 otherwise. The probability is taken
over the choice of s. For a given T , let S(T) be the set of all possible se-
crets s ∈ {0, 1}`, that are consistent with T . That is: S(T) = {s ∈ {0, 1}` |
consistent(T , s) = 1}. Therefore, it holds that: Prs [consistent(T , s) = 1] = |S(T)|

2`
,

and thus |S(T)| = 2` · Pr [consistent(T , s) = 1]. As a result, for every T ∈ Tgood,
it holds that |S(T)| > 2` · 2−ρ = 2`−ρ. This already guarantees that once the
adversary sends transcript T that will pass the verification with high probability,
then the number of possible secrets that are consistent with this transcript is
quite large, and therefore it is hard to guess the exact secret s that was chosen.

We claim that if |U| ≤ `−ρ (i.e., |B| > ρ), then it must hold that T ∈ Tbad and
the adversary gets caught with high probability. Intuitively, this is because we
have ρ independent checks, {(u, b)}, where u ∈ U and b ∈ B, which are pairwise
disjoint. As we saw, here we do have independency between the checks, and the
adversary can pass this verification with probability at most 2−ρ. Thus, once the
adversary outputs transcript T for which |B| > ρ, we have that T ∈ Tbad.

We conclude that if the adversary outputs T for which T ∈ Tbad then it gets
caught both in the ideal and the real execution, and the simulation is identical.
When T ∈ Tgood, we get that the number of possible secrets is greater than
2`−ρ, and in addition, |B| < ρ. This already gives us a proof for the case where
` = κ + 2ρ: Even if we give the distinguisher all the bits sB (additonal ρ bits),
the set of all possible secrets that are consistent with T is of size 2`−2ρ ≥ 2κ.

In the full proof in the full version [2], we show that ` = κ + ρ base-OTs
are sufficient. In particular, we show that for a given transcript T ∈ Tgood the
bits sB are exactly the same for all the secrets that are consistent with T . As a
result, the at most ρ bits sB that we give to the distinguisher do not give it any
new information, and we can set ` = κ+ ρ.

3.2 Reducing the Number of Checks

In Protocol 2, in the consistency check of r, we check all possible pairs (α, β) ∈
[`]2. In order to achieve higher efficiency, we want to reduce the number of checks.

Let G = (V,E) be a graph for which V = [`], and an edge (α, β) represents
a check between rα and rβ . In Protocol 2 the receiver asks for all possible edges
in the graph (all pairs). In order to achieve better performance, we would like to
reduce the number of pairs that we check. In particular, the protocol is changed
so that in Step 3 of Protocol 2 the sender chooses some set of pairs (edges)
E′ ⊆ V 2, and the receiver must respond with the quadruples Hα,β for every
(α, β) ∈ E′ that it has been asked for. The sender continues with the protocol
only if all the checks have passed successfully.

Observe that after sending the values u1, . . . ,u`, the sets U and B (which
are both subsets of [`]) are implicitly defined. In case that the set B is too large,
we want to catch the adversary cheating with probability of at least 1− 2−ρ. In
order to achieve this, we should have ρ edges between B and U that are pairwise
non-adjacent. That is, in case the adversary defines B that is “too large”, we
want to choose a set of edges E′ that contains a matching between B and U of
size of at least ρ.

Note, however, that the sender chooses the edges E′ with no knowledge what-
soever regarding the identities of U and B, and thus it needs to choose a graph
such that (with overwhelming probability), for any possible choice of a large B,
there will be a ρ-matching between B and U .

In protocol 3 we modify the consistency check of r that appears in Step 3 of
Protocol 2. The sender chooses for each vertex α ∈ [`] exactly µ out-neighbours
uniformly at random. We later show that with high probability the set E′ that
is chosen contains a ρ-matching between the two sets B and U , even for a very
small value of µ (for instance, µ = 3 or even µ = 2).

PROTOCOL 3 (Modification for Protocol 2, Fewer Checks)
The parties run Protocol 2 with the following modifications:
Step 3 – Consistency Check of r: (modified)

1. PS chooses µ functions φ0, . . . , φµ−1 uniformly at random, where φi : [`]→
[`]. It sends φ0, . . . , φµ−1 to the receiver PR.

2. For every pair α ∈ [`], i ∈ [µ], let (α, β) = (α, φi(α)). PR defines the four
values:

h0,0
α,β = H(G(k0

α)⊕G(k0
β)) h0,1

α,β = H(G(k0
α)⊕G(k1

β)) ,

h1,0
α,β = H(G(k1

α)⊕G(k0
β)) h1,1

α,β = H(G(k1
α)⊕G(k1

β)) .

It then sends Hα,β = (h0,0
α,β , h

0,1
α,β , h

1,0
α,β , h

1,1
α,β) to PS .

3. PS checks that it receives Hα,φi(α) for every α ∈ [`] and i ∈ [µ]. Then, for
each pair (α, β) = (α, φ(α)) it checks that:
(a) h

sα,sβ
α,β = H(G(ksαα)⊕G(k

sβ
β)).

(b) h
sα,sβ
α,β = H(G(ksαα)⊕G(k

sβ
β)⊕uα⊕uβ) (= H(G(ksαα)⊕G(k

sβ
β)⊕

rα ⊕ rβ)).
(c) uα 6= uβ .
In case one of these checks fails, PS aborts and outputs ⊥.

In our modified protocol, the adversary again first outputs T = {{k0
i ,k

1
i }`i=1,

u1, . . . ,u`}. Then, the set of checks Φ = {φ0, . . . , φµ−1} is chosen, and the adver-
sary responds with H = {{Hα,φi(α)}α,φi}. We can assume that the actual secret
s is chosen only after T , Φ and H are determined. Similarly to the proof of The-
orem 32, for a given transcript (T , Φ,H) and a secret s, we define the predicate
consistent((T , Φ,H), s) that gets 1 if and only if the verification is passed for the
secret s (that is, that the sender does not output ⊥). For a given T and set of
checks Φ, let HT ,Φ be the set of responds that maximizes the probability to pass
the verification, that is:

HT ,Φ
def
= argmaxH{Pr [consistents((T , Φ,H), s) = 1]} .

We separate all possible transcripts (T , Φ) to two sets Tgood and Tbad such
that:

Tgood = {(T , Φ) | Prs [consistent((T , Φ,HT ,Φ), s) = 1] > 2−ρ} and

Tbad = {(T , Φ) | Prs [consistent((T , Φ,HT ,Φ), s) = 1] ≤ 2−ρ} .

Observe that if a pair (T , Φ) ∈ Tbad, then no matter what set H the adversary
sends, it gets caught with probability of at least 1− 2−ρ.

The following claim bounds the size of the setB. It states that if the adversary
A outputs T that defines |U| < κ, then with probability 1− 2−ρ the sender will
choose Φ such that (T , Φ) ∈ Tbad.

Claim 33 Let T be as above, and let U be the largest set of indices such that
for every α, β ∈ U , rα = rβ. Assume that |U| < κ. Then, for appropriate choice
of parameters |B|, µ, it holds that:

Pr
Φ

[(T , Φ) ∈ Tbad] ≥ 1− 2−ρ.

Proof: The partial transcript T defines the two sets B and U . Viewing the
base-OTs [`] as vertices in a graph, and the pairs of elements that are being
checked as edges E′ = {(α, φi(α)) | α ∈ [`], i ∈ [µ]}, we have a bipartite graph
(B ∪ U,E′) where each vertex has at least µ out edges. We want to show that
with probability 1−2−ρ (over the choice of Φ), there exists a ρ-matching between
U and B. Once there is a ρ-matching, the adversary passes the verification phase
with probability of at most 2−ρ, and thus the pair (T , Φ) is in Tbad.

In order to show that in a graph there is a ρ-matching between B and U , we
state the following theorem which is a refinement of Hall’s well-known theorem
(see [27]). Let NU (S) denote the set of neighbours in U , for some set of vertices
S ⊆ B, that is, NU (S) = {u ∈ U | ∃v ∈ S, s.t. (u, v) ∈ E′}. We have:

Theorem 34 There exists a matching of size ρ between B and U if and only if,
for any set S ⊆ B, |NU (S)| ≥ |S| − |B|+ ρ.

Note that we need to consider only subsets S ⊆ B for which |S| ≥ |B| − ρ
(otherwise, the condition holds trivially).

The choice of Φ is equivalent to choosing µ out edges for each vertex uni-
formly. We will show that for every subset of S ⊆ B with |S| ≥ |B| − ρ, it holds
that |NU (S)| ≥ |S| − |B|+ ρ.

Let S ⊆ B and T ⊂ U . Let XS,T be an indicator random variable for the
event that all the out-edges from S go to B ∪ T , and all the out-edges of U \ T
do not go to S (we use the term “out edges” even though the graph is not
directed; our intention is simply the edges connecting these parts). As a result,
|NU (S)| ≤ |T |. Then, the probability that XS,T equals 1 is the probability that
all the µ · |S| out edges of S go to B∪T only, and all the µ · (|U|− |T |) out edges
of U \ T go to {`} \ S only. Since we have independency everywhere, we have:

Pr [XS,T = 1] =

(
|B|+ |T |

`

)|S|·µ
·
(
`− |S|
`

)(|U|−|T |)·µ

We are interested in the event
∑
XS,T for all S ⊆ B, T ⊆ U s.t. |B| − ρ ≤

|S| ≤ |B|, |T | ≤ |S| − |B| + ρ (denote this condition by (?)), and we want to
show that it is greater than 0 with very low probability. We have:

Pr

 ∑
S,T, s.t. (?)

XS,T > 0

 ≤ ∑
S,T s.t. (?)

Pr [XS,T = 1] (1)

≤
∑

S,T s.t. (?)

(
|B|+ |T |

`

)|S|·µ
·
(
`− |S|
`

)(|U|−|T |)·µ

(2)

=

|B|∑
|S|=|B|−ρ

|S|−|B|+ρ∑
|T |=0

(
|B|
|S|

)
·
(
|U|
|T |

)
·
(
|B|+ |T |

`

)|S|·µ
·
(
`− |S|
`

)(|U|−|T |)·µ

We do not provide an asymptotic analysis for this expression since we loose
accuracy by using any upper bound for any one of the terms in it. We next
compute this expression for some concrete choice of parameters. We note that the
use of the union bound in Eq. (2) already reduces the tightness of our analysis,
which may cause more redundant checks or base-OTs than actually needed.

Concrete choice of parameters. Claim 33 states that the bound is achieved
for an appropriate choice of parameters. We numerically computed the proba-
bility in Eq. (1) for a variety of parameters, and obtained that the probability
is less than 2−ρ with ρ = 40, for the following parameters:

κ 128 80

|B| 62 49 46 44 43 42 41 53 48 46 42

µ 2 3 4 5 6 8 15 3 4 5 10

` 190 177 174 172 171 170 169 133 128 125 122

#-checks 380 531 696 860 1,026 1,360 2,535 399 512 625 1,220

In Section 4.2, we run empirical tests to see which parameters perform best
in which setting. We recall that in case we check all pairs (i.e., Protocol 2), we
have either ` = κ + ρ = 128 + 40 = 168 base-OTs with

(
`
2

)
= 14,028 checks, or

` = κ+ ρ = 80 + 40 = 120 base-OTs with 7,140 checks.

3.3 Correlation Robustness Instead of a Random Oracle

In this section, we show how a correlation robustness assumption (with respect
to a high min-entropy source) suffices for proving the security of our protocol.

Correlation robust function. We first recall the standard definition of a corre-
lation robust function from [16], as well as a stronger version of the assumption.
Let U` denote the uniform distribution over strings of length `.

Definition 35 (Correlation Robustness) An efficiently computable function
H : {0, 1}κ → {0, 1}n is correlation robust if it holds that:

{t1, . . . , tm, H(t1 ⊕ s), . . . ,H(tm ⊕ s)} c≡ {Um·κ+m·n}

where t1, . . . , tm, s ∈ {0, 1}κ are uniformly and independently distributed. H is
strongly correlation robust if for every t1, . . . , tm ∈ {0, 1}κ it holds that:

{H(t1 ⊕ s), . . . ,H(tm ⊕ s)} c≡ {Um·n}

where s ∈ {0, 1}κ is uniform.

Another way of looking at this is as a type of pseudorandom function. Specif-
ically, define Fs(t) = H(t⊕ s). Then, H is correlation robust if and only if F is
a weak pseudorandom function, and H is strongly correlation robust if and only
if F is a (non-adaptive) pseudorandom function. For proving the security of our
protocol, we need to consider the above notions but where s is chosen from a
high min-entropy source. Thus, we consider the case where H is also somewhat
an extractor.

Let X be a random variable taking values from {0, 1}`. The min-entropy of X ,

denotedH∞(X), is:H∞(X)
def
= minx

{
log 1

Pr[X=x]

}
= − log (maxx {Pr [X = x]}) .

If a source X has a min entropy κ we say that X is a “κ-source”. For instance, a
κ-source may be κ uniform and independent bits, together with some `−κ fixed
bits (in an arbitrary order), or κ uniform bits with some `− κ bits that depen-
dent arbitrarily on the first random bits. We are now ready to define min-entropy
correlation robustness.

Definition 36 (Min-Entropy Correlation Robustness) An efficiently com-
putable function H : {0, 1}` → {0, 1}n is κ-min-entropy correlation robust if for
all (efficiently samplable) κ-sources X on {0, 1}` it holds that:

{t1, . . . , tm, H(t1 ⊕ s), . . . ,H(tm ⊕ s)} c≡ {Um·`+m·n}

where t1, . . . , tm are chosen uniformly and independently at random from {0, 1}`,
and s ← X . H is κ-min-entropy strongly correlation robust if for all (efficiently
samplable) κ-sources X on {0, 1}` and every (distinct) t1, . . . , tm ∈ {0, 1}` it
holds that:

{H(t1 ⊕ s), . . . ,H(tm ⊕ s)} c≡ {Um·n}
where s← X .

In Protocol 2, the values that are used to mask the inputs of the sender are
H(tj), H(tj ⊕ s) (or, H(tj ⊕ (s ∗ ej)), H(tj ⊕ (s ∗ ej)⊕ s) in case the adversary
uses different ri’s). Since the receiver is the one that effectively chooses the tj ’s
values, it may choose values that are not distributed uniformly or even choose
them maliciously. As a result, we prove the security of Protocol 2 in its current
form using the strong κ-min-entropy correlation robustness assumption.

However, it is also possible to modify the protocol and rely only on κ-min-
entropy correlation robustness, as follows. In Step 4c (of Protocol 2), in each
iteration 1 ≤ j ≤ m, the sender chooses a random value dj ∈ {0, 1}`, and sends
the values (dj , y

0
j , y

1
j), where:

y0
j = x0

j ⊕H(j,qj ⊕ dj) and y1
j = x1

j ⊕H(j,qj ⊕ dj ⊕ s) .

Then, PR computes xj = y
rj
j ⊕ H(j, tj ⊕ dj). Since the dj values are chosen

last, this ensures that the values used inside H are always uniformly distributed.
Thus, κ-min-entropy correlation robustness suffices.

In Step 3 of Protocol 2 we also use the function H; however, the property that
is needed from H for these invocations is collision resistance and not correlation
robustness. Therefore, to explicitly emphasize the differences between the two
assumptions, we say that the parties use a collision resistant function h in Step 3
of the protocol, and a (variant of) correlation robust function in Step 4c.

Theorem 37

1. Assume that H is strongly κ-min-entropy correlation robust, h is a collision
resistant function and G is a pseudo-random generator. Then, Protocol 2
securely computes the m×OTn functionality in the `×OTκ-hybrid model in
the presence of a static malicious adversary.

2. Assume that H is κ-min-entropy correlation robust, h is a collision resistant
function and G is a pseudo-random generator. Then, the above-described
modified protocol securely computes the m×OTn functionality in the `×OTκ-
hybrid model in the presence of a static malicious adversary.

A proof for this theorem appears in the full version [2].

3.4 Achieving Covert Security

In this section, we present a more efficient protocol (with fewer base-OTs and
checks) with the property that any deviation from the protocol that can result
in a breach of security will be detected with probability at least 1/2. For details
on the definition of covert security, we refer to [3]. Our protocol below is secure
under the strong explicit-cheat formulation with deterrent factor ε = 1

2 .
As in the malicious case, given the set of keys {k0

i ,k
1
i }, and the messages

u1, . . . , u`, the sets B and U are implicitly defined, and we want to catch the ad-
versary if its behavior defines a set B with “high” cardinality. Here, in contrast
to the malicious case, we will be content with catching the adversary with prob-
ability 1/2, instead of 1− 2−ρ as in the case of malicious adversaries. As we will
show below, our approach for the consistency check of r enables us to achieve a
deterrent factor of 1/2 at the cost of very few consistency checks. Concretely, it
will be enough to use 7 checks of pairs only.

The protocol. In Step 3 of Protocol 2, the sender chooses t random pairs
{(αi, βi)}ti=1 uniformly and independently at random, and sends them to the
receiver. The receiver sends Hαi,βi for each pair (αi, βi) that it was asked. Then,
the sender performs the same checks as in the previous protocol: It checks that
the receiver replied with hashes for all the pairs (αi, βi) that it was asked for,
and that the hashes that were sent are correct (i.e., as in Step 3b of Protocol 2).

The analysis. Although at first sight the analysis below ignores attacks of
Type 2, these attacks are still taken into consideration. This is because when-
ever the adversary tries to cheat and learn bits of s where rα = rβ , it gets

caught doing so with probability 1/2, which is exactly the deterrent factor. The
analysis therefore focuses on the case that the adversary cheats when |B| is “too
large”, and shows that when we have t checks and |B| is large enough, then the
probability that the adversary passes the verification is less than 1/2.

We again consider the graph of checks, and let V = [`] and the edges are
all possible checks. We divide [`] to B and U , and we show that when using t
checks, the probability that the adversary succeeds to pass the verification when
B is “large” is less than 1/2.

There are `2 edges overall, where 2|B| · |U| are edges between B and U , and
|B|2 + |U|2 edges are between B and B, or U and U . We say that an edge is
“good” if it goes between B and U . Recall that in such a check, the adversary
is caught with probability at least 1/2.

For the first edge that is chosen, the probability that it is a good edge is
2|B| · |U|/`2. However, once this specific edge between B and U is chosen, an
edge between B and U that is pairwise non-adjacent with the previously chosen
edge is not longer good, since the probability that the adversary will get caught
here is not 1/2. Therefore, we denote by goodi the probability of choosing the
(i+ 1)th “good” edge. That is, the probability that edge ej is good, conditioned
on the event that i good edges were previously chosen in the set {e1, . . . , ej−1}.
We have that:

goodi =
2 · (|B| − i) · (|U| − i)

`2
.

This holds because once a good edge is chosen, we do not want to choose an
edge that is adjacent to it. As a result, with each good edge that is chosen, the
effective size of the set B and U is decreased by 1.

In contrast, we denote by badi the probability that the next chosen edge is
bad, given that there were i previous good edges. That is, a bad edge is either
an edge between B and B, an edge between U and U , or is adjacent to one of the
2i vertices of the previously chosen good edges. This probability is as follows:

badi =
|B|2 + |U|2 + 2i · |U|+ 2i · |B| − 2i2

`2
=
|B|2 + |U|2 + 2i(`− i)

`2

That is, a bad edge can be either an edge from B to B, U to U , or an edge
between the i vertices that were chosen with any other vertex. Note, however,
that there are some edges that are counted twice and thus we remove 2i2. In
addition, observe that goodi + badi = 1.

When we have t checks, we may have between 0 to t good edges. In case
there are d good edges, the probability that the adversary succeeds to cheat is
2−d. In order to ease the calculation, let good be the maximal probability of
good0, . . . , goodt−1, and let bad be the maximal probability of bad0, . . . , badt.
We get that:

good =
2 · |B| · |U|

`2

and for t < `/2:

bad =
|B|2 + |U|2 + 2t(`− t)

`2
.

Now, consider the edges e1, . . . , et. The probability that the adversary succeeds
in its cheating is the union of succeeds in cheating in each possible combination
of checks. In particular, we may have d = 0, . . . , t good edges, and for each d,
there are

(
t
d

)
possible ways to order d good edges and t−d “bad” edges. Finally,

when we have d good edges, the probability that the adversary succeeds to cheat
is 2−d. We therefore have that the probability that the adversary successfully
cheats without being caught is less than:

t∑
d=0

(
t

d

)
·goodd·badt−d·2−d =

t∑
d=0

(
t

d

)
·
(

1

2
· good

)d
·badt−d =

(
1

2
· good + bad

)t
.

It is easy to verify that this probability is less than 0.5 for |B| = 38, |U| =
128 (and so overall ` = 166), with only 7 checks. In which case, we have that
good = 0.353, bad = 0.728, and the probability is less than 0.495.

4 Performance Evaluation

We experimentally compare the performance of our protocols to previous works
using the same programming language and running benchmarks on the same
machines: We first describe our implementation (§4.1), empirically evaluate and
compare the identified active and covert parameters of §3.2 and §3.4 (§4.2), and
compare our work to the active-secure protocol of [30] with optimizations of [11]
and to the passive-secure protocol of [16] with optimizations from [1] (§4.3).

Benchmarking Environment: We run our experiments in two settings: a local
setting and a cloud setting. In the local setting, the sender and receiver routines
run on two Desktop PCs which each have 16 GB RAM, an Intel Haswell i7-
4770K CPU with 4 cores and AES-NI support, and are connected via Gigabit
Ethernet. In the cloud setting, we run the OT sender routine on an Amazon
EC2 m3.medium instance with a 2.5 GHz, Intel Xeon E5-2670v2 CPU and 3.75
memory located in North Virginia (US East) and run the OT receiver routine on
one of our Desktop PCs in Europe. The average bandwidth usage in the cloud
setting was 52 MBit/s and the average ping latency (round-trip-time) was 95 ms.

4.1 Implementation

We build on the passive-secure and publicly available OT extension C++ imple-
mentation of [1]. We perform the OT extension protocol and consistency checks
block-wise, i.e., we split m OTs into b blocks of size w = 218, with b = dmw e.
These blocks can be processed independently of each other and using multiple
threads. For all experiments we evaluate the random OT version of [1], since the
additional overhead to obtain the traditional OT functionality is equal for all
protocols, and output n = 8-bit strings. For the base-OTs we use [28] for the
passive-secure OT extension protocol and [31] in decryption mode with security
based on the Decisional Diffie-Helmann (DDH) assumption for the covert- and

active-secure OT extension protocols; we implement both using elliptic curves.
We assume κ = 128-bit long-term security with ρ = 40 statistical security. Fur-
ther implementation details are given in Appendix §A.

4.2 Parameter Evaluation

We evaluate the asymptotic communication and run-time in the local and cloud
setting on 223 random OTs for our most promising active security (cf. Table 3.2)
and covert security (cf. §3.4) parameters, and compare them to the active-secure
protocol of [30] with ` = d 8

3κe = 342 base-OTs and `/2 = 171 checks, and to the
passive-secure protocol of [16] with ` = 128 base-OTs and no checks. The results
are depicted in Table 2 where the parameters are given as (#base-OTs;#checks).
We also include the pairwise comparison Protocol 2 (which performs all pos-
sible checks) with parameters (168;14,028) and discuss its special features in
Appendix §A.3.

Security Active Covert Passive
Parameters [30] 190;380 177;531 174;696 170;1,360 168;14,028 166;7 [16]

Comm. [MB] 342 191 178 175 173 195 166 128

Local Setting
Run-time [s] 16.988 11.938 13.201 18.218 25.918 221.382 10.675 9.579
Cloud Setting
Run-time [s] 110.223 64.698 63.845 63.712 83.414 454.595 46.718 33.838

Table 2. Run-time and communication for active, covert, and passive security using
different parameters (#base-OTs;#checks) on 223 random OTs. Minimum values are
marked in bold.

For the communication we can observe that our parameter sets have 50%−
55% of the communication of [30]. Furthermore, while decreasing the number of
base-OTs reduces the overall communication until 170 base-OTs, the overhead
in communication for sending the consistency check hashes outweighs the gains
from the reduced number of base-OTs. Hence, using less than 170 base-OTs
for block-size w = 218 would increase both communication and computation
complexity.

For the run-time we can observe that our best-performing parameter has
70% of the run-time of [30] in the local setting and 58% of the run-time in
the cloud setting. Furthermore, the best-performing parameter differs between
the local and cloud setting: while the (190;380) parameter performs best in the
local setting, the (174;696) parameter achieves the lowest run-time in the cloud
setting. This can be explained by the smaller bandwidth of the cloud setting,
which influences the run-time of all parameters differently. For instance, when
switching from the local to the cloud setting, the run-time of [30] increases by
factor 6.5, whereas that of our pairwise comparison Protocol 2 with parameter
(168;14,028) only increases by factor 2. As expected, the covert parameter (166;7)
performs better than the parameters for active security.

4.3 Comparison with Related Work

We empirically evaluate and compare our protocol on a varing number of OTs in
its active and covert versions to the passive-secure OT extension protocol of [16]
with optimizations of [18, 1], and the active-secure OT extension protocol of [30]
with optimizations of [11]. The results for the local and cloud setting are given
in Figure 1. We benchmark the protocols on an exponentially increasing number
of OTs: from 210 to 229 for the local setting and from 210 to 226 for the cloud
setting. The passive-secure [16] serves as bottom-line for the performance of the
other protocols to show the (small) gap to the covert- and active-secure protocols.
For our protocol we use the parameters from our parameter evaluation in §4.2
which were shown to perform best in the respective setting, i.e., (190;380) for
the local setting, (174;696) for the cloud setting, and (166;7) for covert security.
For the [30] protocol we use ` = d 8

3κe = 342 base-OTs and `/2 = 171 checks.
We excluded the active-secure protocol of [20], since its communication overhead
is at least two orders of magnitude higher than for the evaluated protocols and
simply transferring the required data would result in higher run-times than those
of the other protocols.

For the results in the local setting we can observe that our active-secure
OT extension protocol outperforms the [30] protocol for all OTs tested on and
scales better with increasing number of OTs. Furthermore, our active-secure
protocol converges towards the passive-secure [16] protocol when more OTs are
performed, decreasing the overhead for active security down to 121% for 226

OTs, compared to an overhead of 171% for the [30] protocol. The convergence of
our protocol can be explained by the amortizing costs of the consistency checks.
Since the consistency checks are performed on blocks of fixed width 218, their
amortization happens for a larger number of OTs. The covert version of our
protocol has only 111% overhead compared to the passive-secure protocol.

In the cloud setting, the performance of all protocols decreases, as expected.
However, the performance of the passive-secure protocol decreases less signifi-
cantly compared to the covert- and active-secure protocols. This can be explained
by the smaller communication complexity of the passive-secure protocol, since
the run-time overhead scales with the communication overhead of the respective
protocol. For the active-secure protocol of [30] with communication overhead
of 267% compared to the passive-secure protocol, the run-time overhead in-
creases from 171% to 294%. In comparison, for our active-secure protocol with
communication overhead of 136%, the run-time overhead increases from 121%
to 163%. Finally, for our covert protocol with communication overhead of 129%,
the run-time overhead increases from 111% to 129%.

(a) Local Setting

 0.1

 1

 10

 100

 1000

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226

R
un

-ti
m

e
(s

)

Number of OTs

 [NNOB12] (active)
This work (active)
This work (covert)

[IKNP03] (passive)

{840 s}
{465 s}
{369 s}
{286 s}

(b) Cloud Setting

Fig. 1. Run-time for random OT extension protocols for 8-bit strings with active,
covert, and passive security in the local- and cloud setting. Time for 226 OTs given
in {}.

References

1. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer
and extensions for faster secure computation. In: ACM Computer and Communi-
cations Security (CCS’13). pp. 535–548. ACM (2013), code: http://encrypto.de/
code/OTExtension

2. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer
extensions with security for malicious adversaries (full version). IACR Cryptology
ePrint Archive 2015, 061 (2015), online: http://eprint.iacr.org/2015/061

3. Aumann, Y., Lindell, Y.: Security against covert adversaries: Efficient protocols
for realistic adversaries. Journal of Cryptology 23(2), 281–343 (2010)

4. Beaver, D.: Correlated pseudorandomness and the complexity of private computa-
tions. In: Symposium on the Theory of Computing (STOC’96). pp. 479–488. ACM
(1996)

http://encrypto.de/code/OTExtension
http://encrypto.de/code/OTExtension
http://eprint.iacr.org/2015/061

5. Damg̊ard, I., Lauritsen, R., Toft, T.: An empirical study and some improvements
of the MiniMac protocol for secure computation. In: Security and Cryptography
for Networks (SCN’14). LNCS, vol. 8642, pp. 398–415. Springer (2014)

6. Damg̊ard, I., Zakarias, S.: Constant-overhead secure computation of Boolean cir-
cuits using preprocessing. In: Theory of Cryptography Conference (TCC’13).
LNCS, vol. 7785, pp. 621–641. Springer (2013)

7. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: An
efficient and scalable protocol. In: ACM Computer and Communications Security
(CCS’13). pp. 789–800. ACM (2013)

8. Ejgenberg, Y., Farbstein, M., Levy, M., Lindell, Y.: SCAPI: the secure computation
application programming interface. IACR Cryptology ePrint Archive 2012, 629
(2012), http://eprint.iacr.org/2012/629

9. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Communications of the ACM 28(6), 637–647 (1985)

10. Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B.: Faster maliciously secure two-
party computation using the GPU. In: Security and Cryptography for Networks
(SCN’14). LNCS, vol. 8642, pp. 358–379. Springer (2014)

11. Frederiksen, T.K., Nielsen, J.B.: Fast and maliciously secure two-party computa-
tion using the GPU. In: Applied Cryptography and Network Security (ACNS’13).
LNCS, vol. 7954, pp. 339–356. Springer (2013)

12. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Symposium on Theory
of Computing (STOC’87). pp. 218–229. ACM (1987)

13. Harnik, D., Ishai, Y., Kushilevitz, E., Nielsen, J.B.: OT-combiners via secure com-
putation. In: Theory of Cryptography Conference (TCC’08). LNCS, vol. 4948, pp.
393–411. Springer (2008)

14. Huang, Y., Katz, J., Kolesnikov, V., Kumaresan, R., Malozemoff, A.J.: Amortizing
garbled circuits. In: Advances in Cryptology – CRYPTO’14. LNCS, vol. 8617, pp.
458–475. Springer (2014)

15. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: Advances in Cryptology (CRYPTO’88). LNCS, vol. 403, pp. 8–26.
Springer (1988)

16. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Advances in Cryptology – CRYPTO’03. LNCS, vol. 2729, pp. 145–161.
Springer (2003)

17. Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled circuits:
How to prove non-algebraic statements efficiently. In: ACM Computer and Com-
munications Security (CCS’13). pp. 955–966. ACM (2013)

18. Kolesnikov, V., Kumaresan, R.: Improved OT extension for transferring short se-
crets. In: Advances in Cryptology – CRYPTO’13. LNCS, vol. 8043, pp. 54–70.
Springer (2013)

19. Kreuter, B., Shelat, A., Shen, C.: Billion-gate secure computation with malicious
adversaries. In: USENIX Security Symposium’12. pp. 285–300. USENIX (2012)

20. Larraia, E.: Extending oblivious transfer efficiently, or - how to get active secu-
rity with constant cryptographic overhead. In: Progress in Cryptology – LATIN-
CRYPT’14. LNCS, Springer (2014), to appear. Online: http://eprint.iacr.org/
2014/692

21. Larraia, E., Orsini, E., Smart, N.P.: Dishonest majority multi-party computation
for binary circuits. In: Advances in Cryptology – CRYPTO’14. LNCS, vol. 8617,
pp. 495–512. Springer (2014)

http://eprint.iacr.org/2012/629
http://eprint.iacr.org/2014/692
http://eprint.iacr.org/2014/692

22. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In: Advances in Cryptology – EURO-
CRYPT’07. LNCS, vol. 4515, pp. 52–78. Springer (2007)

23. Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious
transfer. In: Theory of Cryptography Conference (TCC’11). LNCS, vol. 6597, pp.
329–346. Springer (2011)

24. Lindell, Y., Pinkas, B., Smart, N.P.: Implementing two-party computation effi-
ciently with security against malicious adversaries. In: Security and Cryptography
for Networks (SCN’08). LNCS, vol. 5229, pp. 2–20. Springer (2008)

25. Lindell, Y., Riva, B.: Cut-and-choose Yao-based secure computation in the on-
line/offline and batch settings. In: Advances in Cryptology – CRYPTO’14. LNCS,
vol. 8617, pp. 476–494. Springer (2014)

26. Lindell, Y., Zarosim, H.: On the feasibility of extending oblivious transfer. In:
Theory of Cryptography Conference (TCC’13). LNCS, vol. 7785, pp. 519–538.
Springer (2013)

27. Lovász, L., Plummer, M.: Matching Theory. Akadémiai Kiadó, Budapest (1986),
also published as Vol. 121 of the North-Holland Mathematics Studies, North-
Holland Publishing, Amsterdam

28. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Symposium on
Discrete Algorithms (SODA’01). pp. 448–457. ACM/SIAM (2001)

29. Nielsen, J.B.: Extending oblivious transfers efficiently - how to get robustness al-
most for free. IACR Cryptology ePrint Archive 2007, 215 (2007), online: http:

//eprint.iacr.org/2007/215

30. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical
active-secure two-party computation. In: Advances in Cryptology – CRYPTO’12.
LNCS, vol. 7417, pp. 681–700. Springer (2012)

31. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and com-
posable oblivious transfer. In: Advances in Cryptology – CRYPTO’08. LNCS, vol.
5157, pp. 554–571. Springer (2008)

32. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party computa-
tion is practical. In: Advances in Cryptology – ASIACRYPT’09. LNCS, vol. 5912,
pp. 250–267. Springer (2009)

33. Rabin, M.O.: How to exchange secrets with oblivious transfer, TR-81 edn. (1981),
Aiken Computation Lab, Harvard University

34. Shelat, A., Shen, C.H.: Fast two-party secure computation with minimal assump-
tions. In: ACM Computer and Communications Security (CCS’13). pp. 523–534.
ACM (2013)

35. Yao, A.C.: How to generate and exchange secrets. In: Foundations of Computer
Science (FOCS’86). pp. 162–167. IEEE (1986)

http://eprint.iacr.org/2007/215
http://eprint.iacr.org/2007/215

A Implementation Details

In this section we provide details about the architecture of our implementa-
tion (§A.1), the method we use to allow block-wise evaluation of our protocol
and [30] (§A.2), and discuss the benefits of the pairwise-comparison method
described in Protocol 2 (§A.3).

A.1 Architecture

We designed the architecture of the active-secure OT extension implementations
such that the communication-intensive passive-secure OT extension routine and
the computation-intensive checks on receiver side are performed by separate
threads and can be further parallelized independently of each other. This ar-
chitecture allows us to instantiate the implementation specifically to the avail-
able resources of the deployment scenario. More detailed, we can perform the
communication-intensive operations with as many threads as required to fully
utilize the bandwidth and can then focus the remaining processing power on the
computationally-intensive operations. This kind of parallelization offers bene-
fits especially for deployment scenarios of OT extension with small bandwidth,
where the network is the bottle-neck for OT extension and where further paral-
lelization of communication-intensive operations would only result in congestion
on the network interface. Although this architecture favors our protocol which
is computationally more intensive than the protocols of [16] and [30], we argue
that it nicely fits to today’s increasing number of CPU cores.

A.2 3-Step OT Extension

Note that in order to allow block-wise evaluation of our protocol and [30], the
base-OTs have to be renewed. For the block-wise evaluation of m × OTn in b
blocks of width w bits (b = dmw e), we perform a 3-step OT extension: In the first
step, we perform ` × OTb` base-OTs using the protocol of [31]. In the second
step, we extend ` × OTb` to b` × OTw using the respective active secure OT
extension protocol. In the third step, we again perform the OT extension step
b-times on each `-bit interval, i.e., we extend ` × OTw to w × OTn b-times and
thereby obtain bw ≥ m OTs on n-bit strings.

A.3 Advantages of the Pairwise Comparison Protocol

Although the pairwise comparison Protocol 2 with parameter (168;14,028) is the
slowest in our evaluation in §4.2, we stress that it has several advantages which
make it favorable in settings with high computation power. The main advantage
is that the receiver can pre-compute all checks directly after the base-OTs, since
all combinations are checked and hence the sender does not need to send a
mapping to the receiver. Additionally, if a computationally powerful device such
as a GPU is present, the receiver can use it for computing the checks in parallel.

B Active Secure OT Extension of [30]

In Protocol 4 we depict the actively-secure OT extension protocol of [30] with
optimizations from [11].

PROTOCOL 4 (Active secure OT extension protocol of [30])

– Input of PS: m pairs (x0j , x
1
j) of n-bit strings, 1 ≤ j ≤ m.

– Input of PR: m selection bits r = (r1, . . . , rm).
– Common Input: Symmetric security parameter κ and ` = d 8

3
κe.

– Oracles and primitives: Ideal ` × OTκ functionality, pseudorandom
generator G, correlation-robust function H, and random-oracle H ′.

1. Initial OT Phase:
(a) PS initializes a random vector s = (s1, . . . , s`) ∈ {0, 1}` and PR

chooses ` pairs of seeds k0
i ,k

1
i each of size κ.

(b) The parties invoke the ` × OTκ-functionality, where PS acts as the
receiver with input s and PR acts as the sender with inputs (k0

i ,k
1
i)

for every 1 ≤ i ≤ `.
For every 1 ≤ i ≤ `, let ti = G(k0

i). Let T = [t1| . . . |t`] denote the m× `
bit matrix where its ith column is ti for 1 ≤ i ≤ `. Let tj denote the jth
row of T for 1 ≤ j ≤ m.

2. OT Extension Phase:
(a) PR computes ti = G(k0

i) and ui = ti ⊕ G(k1
i) ⊕ r, and sends ui to

PS for every 1 ≤ i ≤ `.
(b) For every 1 ≤ i ≤ `, PS defines qi = (si ·ui)⊕G(ksii). qi = (si ·r)⊕ti.)

3. Consistency Check of r:

(a) PS chooses a uniform random permutation π : {1, ..., `} 7→ {1, ..., `}
with π(π(i)) = i and sends π to Bob. Let Π(π) = {i|i ≤ π(i)}.

(b) For all i ∈ Π(π), PS computes di = si ⊕ sπ(i) and zi = qi ⊕ qπ(i)

sends di to PR.
(c) PR computes z′i = (di · r)⊕ ti ⊕ tπ(i).
(d) PS and PR check equality between Z = z1||...||zb`/2c and Z′ =

z′1||...||zb`/2c as follows:
i. PS samples w ∈R {0, 1}κ, computes c = H ′(Z||w), sends c to PR.

ii. PR then sends Z′ to PS .

iii. PS checks Z
?
= Z′ and aborts on failure. Else sends (Z,w) to PR.

iv. PR checks that Z
?
= Z′ and c

?
= H ′(Z′||w) and aborts on failure.

(e) For all b`/2c indices in i ∈ Π(π) where i is the kth index with 1 ≤
k ≤ b`/2c, PS sets q′k = qi and s′k = si and PR sets t′k = ti.

4. OT Extension (continue):
(a) Let Q′ = [q′1| . . . |q′b`/2c] denote the m × b`/2c bit matrix where its

ith column is q′i. Let q′j denote the jth row of the matrix Q′. (Note
that q′i = (s′i · r)⊕ t′i and q′j = (rj · s′)⊕ t′j .)

(b) PS sends (y0j , y
1
j) for every 1 ≤ j ≤ m, where y0j = x0j ⊕H(j,q′j) and

y1j = x1j ⊕H(j,q′j ⊕ s′).
(c) For 1 ≤ j ≤ m, PR computes xj = y

rj
j ⊕H(j, t′j).

5. Output: PR outputs (xr11 , . . . , x
rm
m); PS has no output.

	More Efficient Oblivious Transfer Extensions with Security for Malicious Adversaries

