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Abstract. We provide the first provable-security analysis of the Intel
Secure Key hardware RNG (ISK-RNG), versions of which have appeared
in Intel processors since late 2011. To model the ISK-RNG, we generalize
the PRNG-with-inputs primitive, introduced by Dodis et al. at CCS’13
for their /dev/[u]random analysis. The concrete security bounds we un-
cover tell a mixed story. We find that ISK-RNG lacks backward-security
altogether, and that the forward-security bound for the “truly random”
bits fetched by the RDSEED instruction is potentially worrisome. On the
other hand, we are able to prove stronger forward-security bounds for the
pseudorandom bits fetched by the RDRAND instruction. En route to these
results, our main technical efforts focus on the way in which ISK-RNG
employs CBCMAC as an entropy extractor.
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1 Introduction

In late 2011, Intel began production of Ivy Bridge processors, which in-
troduced a new pseudorandom number generator (PRNG), fully imple-
mented in hardware. Access to this PRNG is through the RDRAND instruc-
tion (pronounced “read rand”), and benchmarks demonstrate a through-
put of over 500 MB/s on a quad-core Ivy Bridge processor [10]. The
forthcoming Broadwell architecture will support an additional instruc-
tion, RDSEED (“read seed”), which delivers true random bits, as opposed
to cryptographically pseudorandom ones. Both RDRAND and RDSEED fall
under the Intel Secure Key umbrella, so we will refer to the new hardware
as the ISK-RNG [11].

The ISK-RNG has received a third-party lab evaluation [8], commis-
sioned by Intel, but has yet to receive an academic, provable-security
treatment along the lines of that given the /dev/[u]random software RNGs
by a line of papers [7,1,5,13]. We provide such a treatment.

Our abstract model for the ISK-RNG is that of a PRNG-with-input
(PWI), established by Barak and Halevi [1] and extended by Dodis et



al. [5]. To better capture important design features of the ISK-RNG we
make several improvements to the PWI abstraction, which have signif-
icant knock-on effects for the associated security notions. Our results
establish the security of the ISK-RNG relative to these notions. Our find-
ings are mixed, suggesting that in some cases RDSEED may not be as secure
as one might hope, but with stronger results for RDRAND.
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Fig. 1: Overview of the ISK-RNG.

The ISK-RNG architecture. A
detailed description of the ISK-
RNG can be found in Sec-
tion 3, but we’ll provide a short
sketch here. At a high-level,
the ISK-RNG consists of four
main components, as shown
in Figure 1. At the heart is
the hardware entropy source,
which uses thermal noise to
generate random bits and then
writes them into a 256-bit raw-
sample buffer. This buffer is subjected to a battery of heuristic health tests,
which try to determine if the buffer contents are sufficiently random. The
raw entropy bits are not assumed to be uniformly random — they may
be biased or correlated. So a conditioner (i.e. an entropy extractor), re-
peatedly reads from this buffer, combining multiple 256-bit samples and
compressing them into a single 128-bit string, hopefully one that is close
to uniformly random.

These uniform bit strings then periodically reseed a deterministic
PRNG (based on CTR-AES), providing a high-speed source of pseudo-
random bits. Calls to the RDRAND instruction read from these bits, whereas
calls to RDSEED will read directly from the conditioner output.

1.1 Security findings for the ISK-RNG

We consider security of the ISK-RNG relative to four PWI-security no-
tions, adopted (with modifications) from Dodis, Pointcheval, Ruhault,
Vergniaud and Wichs [5] (hereafter DPRVW): resilience, the apparent
randomness of RDRAND and RDSEED outputs; forward security, the appar-
ent randomness of previous RDRAND and RDSEED outputs once the PWI
state is revealed; backward security, the apparent randomness of future
RDRAND and RDSEED outputs from a corrupted PWI state; and robustness,



the apparent randomness of RDRAND and RDSEED outputs when state ob-
servation and corruption may happen at arbitrary times.

Using estimates for the quality of the entropy source derived from the
findings of [8], we are able to show the following results (in a random
permutation model):

1. As far as the resilience of RDRAND and RDSEED is concerned, RDRAND
delivers pseudorandom bits with a comfortable security margin. On
the other hand, RDSEED delivers truly random bits but with a security
margin that becomes worrisome if an adversary can see a large number
of outputs from either interface. If he controls an unprivileged process
on the same physical machine, this could happen very quickly.

2. For forward security, RDRAND and RDSEED also provide these respective
security margins, as long as one is willing to make some reasonable
assumptions about the adversary’s limitations.

3. The ISK-RNG does not provide backward security because the hard-
ware indefinitely retains stale state when the ISK-RNG is not in active
use. However, we are able to quantify the lifespan of this information
when the ISK-RNG is in active use, thus proving backwards security
and a read-only form of robustness against a class of “slow” adver-
saries.

Interpretation. In this context, forward security, backward security, and
robustness are only relevant to those concerned about attackers who (1)
are able to obtain physical access to the machine and (2) sophisticated
enough to read or tamper with registers directly (the registers in ques-
tion are not accessible through software, even by the operating system).
Moreover, the window of opportunity for an attacker trying to compro-
mise forward security (i.e., trying to reconstruct past random values given
current access to the machine) is under a millisecond, barring patholog-
ical failures of the entropy source. Hence we suspect most practitioners
will be concerned only with resilience.

As far as resilience, then, we prove RDRAND to be secure under a rea-
sonable set of assumptions regarding the quality of the entropy source and
a reasonable but heuristic assumption regarding AES-128: namely that
it can be modeled as a random permutation when used with a specific
fixed, publicly known key. We provide concrete, quantitative analysis in
Section 7.3; the results are encouraging.

The situation with RDSEED is more complicated, because the security
bounds become quantitatively quite weak in this context. We believe, but
cannot prove, that this weakness does not correspond to a practical at-



tack. Our suspicion is that an actual attack would require the adversary
to have a precise physical model of the entropy source (the exact param-
eters of which appear to change from chip to chip [8]), and compute, by
brute force, the distribution induced by processing streams from this en-
tropy source using CBC-MAC under the previously mentioned AES key.
Such an attack would clearly be computationally infeasible as long as the
number of possible streams is large, but the relevant portion of the se-
curity bound is for computationally unbounded adversaries. (Recall that
RDSEED is designed to provide truly random bits, rather than “merely”
cryptographically pseudorandom ones.)

The stronger RDRAND results hold even if an attacker can access both
interfaces.

Analyzing the ISK-RNG entropy extractor. The core technical results of
the paper are concerned with analyzing the ISK-RNG entropy extractor,
which employs CBC-MAC over AES-128, using the fixed string AES0(1)
as the AES key. Although Intel documents [17] appeal to a CRYPTO’02
paper by Dodis, Gennaro, H̊astad and Krawcyzk [4] for support, this di-
rect appeal is not well founded. There are significant technical obstacles
to overcome before these CBC-MAC results can be applied. For exam-
ple, because extractor-dependent state is maintained across extractions
(including state revealed to the adversary by RDSEED), a crucial “seed
independence” assumption is violated. The CRI report [8], on the other
hand, ignores the issue entirely by making an implicit assumption that ap-
plying CBC-MAC-AES to an arbitrary input with 128 bits of min-entropy
will produce an output close to a uniformly random 128-bit string, an as-
sumption known to be false with respect to any entropy extractor (not
just CBC-MAC) [15]. We discuss and resolve these issues in Section 4.

1.2 Improvements to the PWI model

For our abstract model, we take the pseudorandom number generator with
input (PWI) primitive, formalized by DPRVW as a model for /dev/[u]random.
At a high level, a PWI surfaces three algorithms: one to initialize the in-
ternal state of the primitive, one that produces an output for use by
calling applications (updating the state in the process), and one that up-
dates the state as a function of an externally provided input. Exposing an
external input captures the practical situation in which PRNG outputs
may depend upon external sources of (assumed) entropy.

One contribution of this paper is to generalize the PWI abstraction
in ways that better capture not only the ISK-RNG, but also, we hope,



other real-world PWIs. These include allowances for: non-uniform state,
as is common in real-world PRNGs; realistic modeling of state setup pro-
cedures such as those in ISK-RNG1; multiple external interfaces to the
underlying state (e.g. RDRAND and RDSEED, as well as /dev/[u]random); and
blocking behaviors.

To deal with non-uniform state, we introduce an analytical tool called
a masking function. Loosely speaking, a masking function M is a tool
for specifying what the “ideal” version M(S) of any given PWI state S
would be. This allows us to give general results about PWI security (e.g.
what can be achieved when the state is ideal), yet admits per-scheme
specification of what “ideal” means. We define masking functions, and
incorporate them into the DPRVW’s security notions in such a way that
their results can be quickly lifted to our setting. Masking functions also
allow us to frame an appropriate definition for secure initialization: i.e.e
does the setup procedure produce a state S that is indistinguishable from
M(S)?

2 Preliminaries

Notation. We denote the set of all n-bit strings as {0, 1}n, and the set
of all (finite) binary strings as {0, 1}∗. Given x, y ∈ {0, 1}∗, both xy and
x ‖ y denote their concatenation, and |x| is the length of x. If |x| = |y|,
x⊕ y is the bitwise XOR of x and y. The symbol ε denotes the empty
string. The set Perm (n) denotes the set of permutations on {0, 1}n.

When S is a finite set, we assume that it is equipped with the uni-
form distribution unless otherwise specified. For any distribution S, the

notation X
$←−S indicates X is a random variable sampled from S. Simi-

larly, if F is a randomized algorithm, X
$←− F(x1, . . . , xn) means that X is

sampled from the distribution induced by providing F with the indicated
arguments. An adversary A is a randomized algorithm, and we adopt the
shorthand A⇒ y to mean that when its execution halts, it outputs y.
When an algorithm P is provided oracle (black-box, unit-time) access to
an algorithm Q, we write PQ.

Entropy and Sources. If X and X ′ are random variables, their statistical
distance is ∆(X,X ′) = 1

2

∑
x |Pr [X = x ]−Pr [X ′ = x ] |, where the sum

is over the union of the supports of X and X ′. The min-entropy of X
is H∞ (X) = −maxx (log Pr [X = x ]), and the worst-case min-entropy
of X given X ′ is H∞ (X | X ′) = − log

(
maxx,x′ Pr [X = x | X ′ = x′ ]

)
.

1 See [9,6] for examples of what can go wrong when state initialization is weak.



When X is a random variable and E is some event, we denote by X|E the
random variable X conditioned on E ; i.e., for any x in the support of X,
Pr [ X|E = x ] = Pr [X = x | E ].

An entropy source D is a randomized algorithm that, given a state
string σ ∈ {0, 1}∗, samples a tuple (σ′, I, γ, z) ∈ {0, 1}∗×{0, 1}p×R≥0×
{0, 1}∗. Let (σi, Ii, γi, zi)

$←−D(σi−1) be a sequence of samples, where σ0 =
ε, and i = 1, . . . , qD for some integer qD. We say that entropy source D
is legitimate if H∞(Ij | (Ii, zi, γi)i 6=j) ≥ γj . In this paper, we assume all
entropy sources are legitimate.

In this definition, σ, σ′ ∈ {0, 1}∗ represent the current and new states
for D, respectively. The string I ∈ {0, 1}p is what will be to be fed as input
to the PWI, and should provide fresh entropy. The quantity γ ∈ R≥0 is
an estimate for the amount of entropy contained in I. We note that γ is
strictly a convenient book-keeping device in the PWI model, and is not
intended to reflect an actual output of the entropy source being modeled.
Our security notions will formalize attacker capabilities of interest, but
we also allow for side-information (about I) that an attacker might obtain
through means not otherwise explicit in the model (e.g. timing or power
side-channels). This side information will be encoded in the string z.

Cryptographic building blocks. A blockcipher is a function E : {0, 1}κ ×
{0, 1}n → {0, 1}n such that for each key K ∈ {0, 1}κ, E(K, ·), written
EK(·), is a permutation on {0, 1}n. Given IV ∈ {0, 1}n, K ∈ {0, 1}κ, and
Xi ∈ {0, 1}n for i ∈ [0..ν], define

CTRIV
K (X0 · · ·Xν) = (X0 ⊕ EK(IV)) ‖ · · · ‖ (Xν ⊕ EK(IV + ν)).

(We define the + operator on {0, 1}n as addition modulo 2n on the un-
signed integers encoded by the operands.) Further define

CBCMACIV
K (X0 · · ·Xν) = CBCMAC

EK(IV ⊕X0)
K (X1 · · ·Xν),

and CBCMACIV
K (ε) = IV. Describing the standard CBCMAC algorithm in

this manner simplifies descriptions of programs that compute CBCMAC
online. We omit an explicit IV from the notation when IV = 0n. In this
paper, the implicit blockcipher E will always be AES-128 (κ = n = 128).

The pseudorandom-permutation (PRP) advantage of an adversary A
attacking a blockcipher E : {0, 1}κ × {0, 1}n → {0, 1}n is defined as
Advprp

E (A) = Pr
[
AEK ⇒ 1

]
− Pr [Aπ⇒ 1 ], with probabilities over the

coins of A and the random variables K
$←− {0, 1}κ and π

$←− Perm (n).
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Fig. 2: Block diagram for Intel’s RDRAND implementation. The CBCMAC computation uses
AES-128 with the fixed key K′ = AES0(1). The DRBG runs AES-128 in counter mode to
produce {0, 1}128·3 bits of output; the first 256 bits are used to update the key K and IV; the
final 128 bits are sent to the output buffer, which is read by the RDRAND instruction.

3 The ISK-RNG architecture

This section describes the design of the ISK-RNG. Unless otherwise noted,
this information comes from the CRI report [8]. The design can be di-
vided roughly into three phases: entropy generation, entropy extraction,
and expansion. Raw bits from the generation phase are fed into an en-
tropy extractor, which is tasked with turning biased or correlated bits
into uniform random strings. The expansion step uses these strings to
seed a deterministic PRNG, which can produce cryptographically pseu-
dorandom outputs at high speeds.

The design is shown in Figure 2. In this figure, rectangular boxes
indicate values we consider part of the ISK-RNG state, hexagons indicate
procedures that read and modify the state, and the shaded arrows indicate
assembly instructions that allow (unprivileged) processes to read from the
indicated buffer.

Entropy generation, Health Tests, and “Swellness”. The hardware en-
tropy source (labeled ES) is a dual differential jamb latch with feedback;
thermal noise resolves a latch formed by two cross-coupled inverters, gen-
erating a random bit before the system is reset. Bits from the entropy
source are written into a 256-bit shift register.

Every 256 writes, the contents of the register are subjected to a se-
ries of health tests. These count how many times certain specified bit
strings appear, and verify that the results are within normal limits. For
example, the substring 010 may occur between 9 and 57 times, inclusive.
These substrings and the corresponding numbers of allowable occurrences
are intended to catch pathologically bad failures while keeping the false-
positive rate low. (For reference, a uniformly random 256-bit string would



be flagged as unhealthy approximately 1% of the time.) If the current ES
register fails one of the tests, that 256-bit source-sample is flagged as
unhealthy. We refer interested readers to the CRI report [8] for a more
detailed description; for our purposes, it suffices to say there is some fixed
set H ⊆ {0, 1}256 of strings that pass the health tests. The health-history
register tracks how many of the last 256 samples passed the health test.
This is a first-in first-out buffer, where a 1-bit means that a sample was
deemed healthy, and a 0-bit mean that a sample was deemed unhealthy.
The global health of the ISK-RNG is captured by a property call swell-
ness.

Definition 1 (Swell ISK-RNG). The ISK-RNG is said to be swell if
at least 128 of the last 256 samples were healthy, i.e. if the health-history
register contains at least 128 1s. ut

Whether or not the current sample passes the health test, it is ap-
pended to the Online Self-Tested Entropy (OSTE) queue, and it is the
OSTE queue that provides input to the extraction phase.

Extraction. Strings in the OSTE queue are not assumed to be uniformly
random. Instead, each 256-bit entry is assumed to have a certain amount
of min-entropy. The CBCMAC construction, over AES with key K ′ =
AES0(1) [12], is employed as an entropy extractor, in order to turn strings
in the OSTE queue into two 128-bit conditioned entropy (CE) strings.
These are held in the CE buffer, which is initially all zeros, and are used
to service RDSEED instructions and to reseed the DRBG. An important
property of the CE buffer is its availability.

Definition 2 (CE buffer availability). The CE buffer is available if
(1) the ISK-RNG is swell, and (2) both 128-bit halves of the CE buffer
(CE0 and CE1) have been updated using m healthy OSTE values since the
most recent RDSEED call and the most recent DRBG reseeding. For Ivy
Bridge chips, m = 2; for Broadwell chips, m = 3 [12]. ut

When the CE buffer is not available, the hardware will replenish the
OSTE buffers with fresh entropy and feed them into a running CBCMAC
calculation until a sufficient number of healthy samples have been con-
ditioned. So if at some point CE0 = X and then the CE buffer is used
to service a RDSEED instruction (making the CE buffer unavailable), the
hardware will collect entropy strings I1, I2, I3, . . . ∈ {0, 1}256 and reassign
CE0 ← CBCMAC0(XI1I2I3 · · · ) online until there exist i1 < i2 < · · · < im



such that Iij ∈ H for j ∈ [1..m] and the ISK-RNG is swell. Then the pro-
cesses will repeat for CE1.

The particulars of the way CBCMAC is used in the ISK-RNG extrac-
tor, along with the notions of swellness and availability, play a large role
in Section 4.

Expansion. To reseed the DRBG, the contents of CE0 and CE1 are used
to generate a key and IV (respectively) for counter mode encryption over
AES. This reseeding process only happens when the CE buffer is available.
It takes the current key and IV, (K, IV), and updates them by computing
K ‖ IV← CTRIV

K (CE1‖CE2). Initially, K = IV = 0128. However, using CTR
with this non-random key is not a problem as long as the CE buffer is
(close to) uniformly random: since the CE buffer is XORed into the CTR
keystream, it can act as a one-time pad.

A pseudorandom value R is generated by computing R ‖ K ‖ IV ←
CTRIV

K (03·128). (Note that this process also irreversibly updates K and
IV, which helps provide forward security.) The ISK-RNG writes R to an
output buffer, which is read by RDRAND. This FIFO output buffer [10] can
contain up to eight 64-bit values. ISK-RNG allows a maximum of 511
64-bit values to be generated between reseeding operations; after this, it
will only return 0s and will clear the carry bit to signal an error.

Setup. When the ISK-RNG powers on, the ISK-RNG performs a series
of known-answer, built-in self-tests. Then the conditioned entropy (CE)
buffer is cleared and the deterministic random bit generator (DRBG) is
reseeded four times [12]. Each reseeding operation requires reconditioning
the CE buffer until it is available. Finally, the system populates the eight
output buffers using the DRBG.

Standards compliance. Intel states [14] that ISK-RNG is compliant with
NIST’s SP800-90B & C draft standards. Whereas RDRAND can provide bit
strings with “only” a 128-bit security level (since it uses AES-128 in CTR
mode), RDSEED has no such limitation.

4 Analysis of the ISK-RNG extractor

As we will see, some of the PWI-security results for the ISK-RNG are
not as strong as one might hope. Much of this is due to weak concrete
bounds on its CBCMAC entropy extractor, which is tasked with turning
the presumably biased and correlated bits from the entropy source into
uniformly distributed strings. Let us explain.



Previous CBC-MAC results are not (directly) helpful. A paper by Dodis,
Gennaro, H̊astad, Krawcyzk and Rabin [4] analyzes the security of CBC-
MAC as an entropy extractor, and their results are cited by Intel doc-
uments [17] to support the ISK-RNG design. Because generic PRFs-as-
entropy-extractors results [3] are too weak to be useful, the analysis of [4]
takes place in the random permutation model. That is, instead of con-
sidering CBC-MAC over a blockcipher with a random key, they consider
CBC-MAC over a random permutation. This model is a heuristic: even,
say, AES equipped with a random key would not be a random permuta-
tion. In fact, CBC-MAC within the ISK-RNG uses AES with the fixed key
K ′ = AES0(1) (on all chips). This fact may strike one as alarming. But
we believe that a “nothing-up-my-sleeve” value for the extractor seed is a
reasonable choice. (Generating the seed from the entropy source would be
highly suspect from a theoretical perspective, because one requires that
the extractor seed be “independent” of the entropy distribution.)

Anyway, our primary goal here is to identify what we can say about
ISK, even if we’re forced to use a heuristic model. Dodis et al.[4] provide
the following theorem:

Theorem 1 (CBCMAC entropy extractor [4]). Fix positive integers k

and L. Let I ∈ {0, 1}Lk be a random variable, R
$←− {0, 1}k be a uniform

random string, and let π
$←− Perm (k) be a random permutation. Then

∆((π,R), (π,CBCMACπ(I)) ≤ 1
2

√
2k−H∞(I) + O(L2)

2k
.

Unfortunately, one cannot simply apply this theorem to the CBC-
MAC-based extractor used in ISK-RNG, without attending to the fol-
lowing two significant obstacles:

(1) As we noted in Section 3, the CBCMAC-based extractor uses its
own previous output as the first block of its next input. Consequently, the
CBCMAC inputs are not independent of the seed. This pushes leftover-
hash-lemma style results like Theorem 1 out of scope, and furthermore
prevents us from employing a black-box hybrid argument to lift the results
to the multiple-query setting.

(2) The O(L2) term is problematic, contributing a O(L/2k/2) term
to bound.2 We note that this is significantly worse than the familiar
O(L2/2k) “birthday bound” — although the two both become vacuous

2 A set of slides published by Intel [17] claims a much stronger result based on The-
orem 1. However, in addition to failing to account for point (1) above, the differ-
ence appears to stem from a mistake in translating notation. Specifically, the above
theorem from [4] writes the second term under the radical as K · ε(L,K), where
ε(L,K) = O(L2/K2) and in our notation K = 2k. The Intel slides, however, ap-



when L ≈ 2k/2, the former violates a desired security level ε � 1 much
sooner (hidden constants being equal). The weak bound is exacerbated
by the fact that L may grow very quickly in the ISK-RNG during periods
of time when the CE buffer is not available.

Analyzing the CBC-MAC extractor. In this section we present results
that allow us to overcome these hurdles, bringing Theorem 1 into scope.
In particular, the main technical result of this section is the following
theorem. Loosely, it says that we can still obtain a hybrid-like bound,
even though a black-box hybrid argument isn’t possible. Moreover, we
can avoid the problem of “runaway” input strings (resulting in large L)
by, in effect, only counting a fixed-length prefix of such strings.

Theorem 2. Fix positive integers L, k, q and n with q ≤ n. For i ∈
[1..n], let Ii ∈ {0, 1}∗ be random variables with lengths divisible by k,

and sample Ri
$←− {0, 1}k. Fix π

$←− Perm (k). Define IL
i and IR

i to be the
unique strings such that

∣∣IL
i

∣∣ = min {|Ii| , Lk} and Ii = IL
i I

R
i . Let Ci =

CBCMACπ(Ci−1 ‖ Ii), where C0 is a random variable independent of π
and each Ii and Ri. Then ∆((π,C1, . . . , Cq, I>q), (π,R1, . . . , Rq, I>q)) ≤
1
2

∑q
i=1

√
2k−H∞(IL

i | I>i,IR
i ) + O((L+1)2)

2k
, where I>m = (Im+1, . . . , In) for

integer m.

The proof is available in the full version of this document [16]

It remains to show that, with high probability, the (potentially) trun-
cated extractor input contains sufficient min-entropy. Note that mak-
ing reasonable min-entropy assumptions regarding the entropy source is
not sufficient; for example, the approximate 1% false-positive rate of the
health tests on uniformly random 256-bit strings implies that there are at
least 2249 unhealthy strings. Therefore the entropy source could produce
only unhealthy samples, resulting in unbounded L, and still have high
min-entropy. In order to avoid such pathological behavior, we will later
(in Section 7.2) need to introduce additional assumptions regarding the
rate at which the entropy source produces healthy samples. Ultimately,
we will choose L such that we have a high probability of never needing
more that L/2 samples, but such that L/2k/2 is small, as this term will
dominate our security bounds.

pear to have mistranscribed this term as L · ε(L,K) (in their notation, L = b and
K = 2n). Since L � K for values of interest, Intel’s claim significantly underesti-
mates the concrete security bound.



5 Modeling the ISK-RNG as a PWI

Building upon DPRVW, here we define the syntax of a PWI. We give the
syntax first, and then discuss what it captures, pointing out where our
definition differs from DPRVW.

5.1 The PWI model

Definition 3 (PWI). Let p, and ` be non-negative integers, and let
IFace,Seed, State be non-empty sets. A PRNG with input (PWI) with
interface set IFace, seed space Seed, and state space State is a tuple of
deterministic algorithms G = (setup, refresh, next, tick), where

– setup takes no input, and generates an initial PWI state S0 ∈ State.
Although setup itself is deterministic, it may be provided oracle access
to an entropy source D, in which case its output S0 will be a random
variable determined by the coins of D.

– refresh : Seed× State× {0, 1}p → State takes a seed seed ∈ Seed, the
current PWI state S ∈ State, and string I ∈ {0, 1}p as input, and a
returns new state.

– next : Seed × IFace × State → State × ({0, 1}` ∪ {⊥}) takes a seed,
the current state, and an interface label m ∈ IFace, and returns a
new state, and either `-bit output value or a distinguished, non-string
symbol ⊥.

– tick : Seed×State→ State takes a seed and the current state as input,
and returns a new state. ut

We will typically omit explicit mention of the the seed argument to
refresh, next and tick, unless it is needed for clarity

The setup algorithm captures the initialization of the PWI, in partic-
ular its internal state. Unlike DPRVW, whose syntax requires setup to
generate the PWI seed, we view the seed as something generated exter-
nally and provided to the PWI. Permitting an explicit setup procedure is
necessary to correctly model ISK-RNG and, more generally, allows us to
formulate an appropriate security definition for PWI initialization.

The refresh algorithm captures the incorporation of new entropy into
the PWI state. Like DPRVW, we treat the entropy source as external.
This provides a clean and general way to model the source as untrusted
to provide consistent, high-entropy outputs.

Our next algorithm captures the interface exposed to (potentially ad-
versarial) parties that request PWI outputs. By embellishing the DPRVW



syntax for next with the interface set interface, we model APIs that ex-
pose multiple functionalities that access PWI state. This is certainly the
case for the ISK-RNG, via the RDRAND and RDSEED instructions, as well
as /dev/[u]random. We also model blocking by letting next return ⊥.

The tick algorithm is entirely new, and requires some explanation.
In the security notions formalized by DPRVW, the passage of “time”
is implicitly driven by adversarial queries. (This is typical for security
notions, in general.) But real PRNGs like the ISK-RNG may have behav-
iors that update the state in ways that are not cleanly captured by an
execution model that is driven by entropy-input events (refresh calls), or
output-request events (next calls). The tick algorithm handles this, while
allowing our upcoming security notions to retain the tradition of being
driven by adversarial queries: the adversary will be allowed to “query”
the tick oracle, causing one unit of time to pass and state changes to
occur.

5.2 Mapping ISK-RNG into the PWI model

We now turn our attention to mapping the ISK-RNG specification into
the PWI model. Figure 3 summarizes the state that our model tracks.
Figure 4 provides our model for the PWI setup, refresh, next, and tick
oracles. Two additional procedures, DRBG and reseed, are used internally.

Variable Bits Description

ESSR 256 Entropy source shift register
window 8 Counts new bits in the ESSR
OSTE1 256

}
Online self-tested entropy buffers

OSTE2 256
CE0 128

}
Conditioned entropy buffers

CE1 128
ptr 1 Tracks CE buffer to condition next
health 256 Tracks health of last 256 ES samples
K 128 DRBG key (For AES-CTR)
IV 128 DRBG IV (For AES-CTR)
out1,...,8 512 Eight 64-bit output buffers
outcount ≥ 4 Counts number of full output buffers
count ≥ 9 Counts DRBG calls since reseeding
CEfull 1 Set if CE buffers are available
block 1 Set if reseed has priority over RDSEED

Fig. 3: State variables of the ISK-RNG



Oracle setup(ES):

01 for i = 1, 2, 3, 4 do
02 S.CE0 ← CBCMACK′ (S.CE0)
03 while S.ptr = 0 do

04 I
$←− ES

05 S ← refresh(S, I)
06 S.CE1 ← CBCMACK′ (S.CE1)
07 while S.ptr = 1 do

08 I
$←− ES

09 S ← refresh(S, I)
10 S ← reseed(S)
11 for i = 1, 3, 5, 7 do
12 (S,R)← DRBG(S)
13 S.outi ‖ S.outi+1 ← R
14 S.outcount← 8
15 return S

Oracle DRBG(S):

16 S.IV← S.IV + 1
17 R← CTRV

K(0128)
18 if S.CEfull then
19 S ← reseed(S)
20 else if S.count < 512
21 S.K ‖ S.V ← CTRS.V +1

S.K (0256)
22 S.count← S.count + 1
23 else
24 return (S,⊥)
25 return (S,R)

Oracle tick(S):

26 if S.CEfull and S.count > 0 then
27 S ← reseed(S)
28 return S
29 if S.count < 512 then
30 if S.outcount < 8 then
31 S.outcount← S.outcount + 1
32 (S,R) = DRBG(S)
33 S.outoutcount ← R
34 return S
35 return S

Oracle refresh(S, I):

36 shift(S.ESSR, I)
37 S.window← S.window + 1 mod 256
38 if S.window = 0 then
39 shift(S.health, isHealthy(S.ESSR))
40 S.OSTE2 ← S.OSTE1

41 S.OSTE1 ← S.ESSR
42 i← S.ptr
43 Iij ← Iij ‖ S.OSTE2 // Record-keeping

44 S.CEi ← CBCMACS.CEi
K′ (OSTE2)

45 if sum(S.health) ≥ 128 then
46 if isHealthy(OSTE2) then
47 S.samples← S.samples + 1
48 if S.samples = m then
49 S.samples← 0
50 if S.ptr = 0 then
51 S.ptr← 1
52 else
53 S.ptr← 0; S.CEfull← 1
54 C0

j ‖ C1
j ← S.CE // Record-keeping

55 j ← j + 1; // Record-keeping
56 return S

Oracle reseed(S):

57 S.K ‖ S.V ← CTRV +1
K (S.CE)

58 S.CE0 ← CBCMACK′ (S.CE0)
59 S.CE1 ← CBCMACK′ (S.CE1)
60 S.count← 0; S.CEfull← 0
61 S.ptr← 0; S.block← 0
62 return S

Oracle next(interface, S):

63 if interface = RDRAND then
64 if S.outcount = 0 then return (S,⊥)
65 R← LSB64(S.out1)
66 for i = 1, . . . , 7 do
67 S.outi ← S.outi+1

68 S.outcount← S.outcount− 1
69 return (S,R)
70 else if interface = RDSEED

71 if S.CEfull = 0 then
72 return (S,⊥)
73 if S.block = 1, S.count > 0 then
74 return (S,⊥)
75 R← S.CE0 ‖ S.CE1

76 S.CEfull← 0; S.ptr← 0
77 S.CE0 ← CBCMACK′ (S.CE0)
78 S.CE1 ← CBCMACK′ (S.CE1)
79 S.block← 1
80 return (S,R)

Fig. 4: The above oracles describe the behavior of ISK-RNG from within the PWI model. See
Table 3 for a description of the state variables S.∗. All bits are initially zero. For Ivy Bridge
chips, m = 2, and for Broadwell chips m = 3. The key K′ = AES0(1) is fixed across all chips.
The function shift(x, y) sets value of x to the right-most |x| bits of x ‖ y. Lines marked with a
“Record-keeping” comment are there to aid in proofs and exposition.



6 PWI Security

Having defined the syntax for PWIs, we can now introduce correspond-
ing security notions. The basic notions are those of DPRVW, with a few
notable alterations. To handle issues of non-uniform state and (more) real-
istic initialization procedures, we introduce a new technical tool, masking
functions, that allows us to cleanly address these issues.

6.1 Basic notions

Here we define four PWI-security notions, in the game-playing frame-
work [2]. In each there is a (potentially adversarial) entropy source D,
and an adversary A. The latter is provided access to the oracles detailed
in Figure 5 (top), and what distinguishes the four notions are restrictions
applied to the queries of the adversary A. In particular, we consider the
following games:

Robustness (ROB): no restrictions on queries.

Forward security (FWD): no queries to set-state are allowed; and a
single query to get-state is allowed, and this must be the final query.

Backward security (BWD): no queries to get-state are allowed; a single
query to set-state is allowed, and this must be the first query.

Resilience (RES): no queries to get-state or set-state are allowed.

See DPRVW for additional discussion. We note that all games share
common initialize and finalize procedures, shown in Figure 5 (bottom).
Thus, the robustness-advantage of A in attacking G is defined to be
Advrob

G,D(A) = 2 Pr [ ROBG,D(A) = 1 ] − 1. The forward security, back-

ward security, and resilience advantages Advfwd
G,D(A), Advbwd

G,D (A), and
Advres

G,D(A) are similarly defined. It is clear that robustness implies for-
wards and backwards security, and both of these independently imply
resilience.

We note that, because the PRNG cannot reasonably be expected
to produce random-looking outputs without sufficient entropy or with
a known or corrupted state, the various security experiments track (1) a
boolean variable corrupt and (2) a value γ measuring the total entropy
that has been fed into the PRNG since corrupt was last set. These serve
as book-keeping devices to prevent trivial wins. The corrupt flag is cleared
whenever γ exceeds some specified threshold γ∗.



Oracle D-refresh:

(σ, I, γ, z)
$←−D(σ)

S ← refresh(S, I)
c← c+ γ
if c ≥ γ∗ then

corrupt← false
return (γ, z)

Oracle next-ror(m):

if corrupt then
return ⊥

(S,R0)← next(m,S)
if R0 = ⊥ then
R1 ← ⊥

else

R1
$←− {0, 1}`

return Rb

Oracle get-next(m):

(S,R)← next(m,S)
if corrupt then
c← 0

return R

Oracle wait:

S ← tick(S)
return ε

Oracle get-state:

c← 0
corrupt← true
return S

Oracle set-state(S∗):

c← 0
corrupt← true
S ← S∗

Procedure initialize:

σ ← 0; seed
$←− Seed; i← 0

S ← setupES

c← n; corrupt← false

b
$←− {0, 1}

return (seed, (γj , zj)ij=1)

Oracle ES:

i← i+ 1

(σ, I, γi, zi)
$←−D(σ)

return I

Procedure finalize(b):

if b = b∗ then
return 1

else
return 0

Fig. 5: Top: Oracles for the PWI security games. Bottom: the shared intialize and finalize
procedures for the PWI security games. Recall that the output of initialize is provided to
adversary A as input, and the output of finalize is the output of the game.

6.2 Masking functions and updated security notions

As noted earlier, the DPRVW security definitions assume the PWI state is
initially uniformly random. However, this does not realistically model the
behavior of real-world PWIs, notably ISK-RNG, which do not attempt
to reach a pseudorandom state; for example, they may maintain coun-
ters. (Indeed one can construct PWIs that would be deemed secure when
starting from a uniformly random state, but that would not be secure in
actuality; the reverse is also true. See the full version of this paper [16]
for examples.) Yet, clearly, some portion of the PWI state must be un-
predictable to an attacker, as otherwise one cannot expect PWI outputs
to look random.

To better capture real-world characteristics of PWI state, we intro-
duce the idea of a masking function. A masking function M over state
space State is a randomized algorithm from State to itself. As an exam-
ple, if states consist of a counter c, a fixed identifier id, and a buffer B of
(supposedly) entropic bits, then M(c, id, B) might be defined to return
(c, id, B′) where B′ is sampled by M from some distribution.

A masked state is meant to capture whatever characterizes a “good”
state of a PWI, i.e. after it has accumulated a sufficient amount of ex-
ternally provided entropy. Informally, for any state S, we want that (1)



a PWI with state M(S) should produce pseudorandom outputs, and (2)
after the PWI has gathered sufficient entropy, its state S should be indis-
tinguishable from M(S).

To the second point, the initial PWI state S0 is of particular impor-
tance. In the following definition, we characterize masking functions M
such that the initial S0 and M(S0) are indistinguishable.

Definition 4 (Honest-initialization masking functions). Let D be
an entropy source, G = (setup, refresh, next) be a PWI with state space State,
A be an adversary, and M : State → State be a masking function. Let
(seed, Z) be the random variable returned by running the initialize() (Fig-
ure 5) using G and D, and let S0 be the state produced by this procedure.
Set Advinit

G,D,M (A) = Pr [A(S0, seed, Z)⇒ 1 ]−Pr [A(M(S0), seed, Z)⇒ 1 ] .

If Advinit
G,D,M (A) ≤ ε for any adversary A running in time t, then M is a

(G,D, t, ε)-honest-initialization masking function. ut

Note that the above definition is made with respect to a specific D.
The assumptions required of D (e.g., that it will provide a certain amount
of entropy within a specified number of queries) will depend on the PWI
in question, but should be as weak as possible.

We now define “bootstrapped” versions of the PWI security goals,
which always begin from a masked state. This will allow us to reason
about security when the PWI starts from an “ideal” state, i.e. what we
expect after an secure initialization of the system.

Definition 5 (Bootstrapped security). Let G be a PWI and M be

a masking function. For x ∈ {fwd,bwd, res, rob}, let Adv
x/M
G,D (A) be de-

fined as AdvxG,D(A), except with line 02 of the initialize procedure (Fig. 5)

changed, to execute instead S′
$←− setupES;S

$←−M(S′). ut

6.3 PWI-Security Theorems

Bootstrapped security notions are useful, because they allow the analysis
to begin with an idealized state. However, this comes at a cost: we need to
ensure that the masking function is honest in the sense that it accurately
reflects the result of running the setup procedure. The following theorem
states the intuitive result that if the masking function is secure (and
honest), then security when the PWI begins in a masked state M(S)
implies security when the PWI begins in state S. We omit the simple
proof, which follows from a standard reduction argument.



Theorem 3. Let G be a PWI, D be an entropy source, and M be a mask-
ing function. Suppose M is a (G,D, t, ε)-honest initialization mask. Then
for any x ∈ {fwd,bwd, res, rob} there exists some adversary B(·) such

that for any adversary A, AdvxG,D(A) ≤ Adv
x/M
G,D (B(A)) + ε. Further, if

it takes time t′ to compute M , and A makes q queries and runs in time t,
then B(A) makes q queries and runs in time O(t) + t′.

For a second general result, we revisit a nice theorem by DPRVW
and adapt it to our model. The theorem states that if a PWI possesses
two weaker security properties — roughly, the ability to randomize a cor-
rupted state after harvesting sufficient entropy and the ability to keep
its state pseudorandom in the presence of adversarial entropy — then it is
robust. These definitions, however, again assume that a state “should” ap-
pear uniformly random. We present modified definitions that instead use
masking functions, and prove an analogous theorem. While the transition
involves a couple subtleties — in particular, we require an idempotence
property of the masking function — the proof is essential identical to the
one in [5]; therefore we make an informal statement here and defer the
formal treatment to the full version [16].

Theorem 4 (Informal). Let G be a PWI. Suppose there exists a mask
M such that: (1) When starting from an arbitrary initial state S of the ad-
versary’s choosing, the final PWI state S′ is indistinguishable from M(S′)
provided the PWI obtains sufficient entropy; (2) When starting from an
initial state M(S) (for adversarially chosen S), the final PWI state S′ is
indistinguishable from M(S′), even if the adversary controls the interven-
ing entropy input strings; (3) G produces pseudorandom outputs when in
a masked state. Then G is robust.

7 Security of the ISK-RNG as a PWI

We are now positioned to analyze the security of ISK-RNG. To begin, we
demonstrate some simple attacks that violate both forwards and back-
wards security (hence robustness, too). Next, we show that by placing
a few additional restrictions on adversaries — restrictions that are well-
motivated by the hardware — we can recover forward security. As we said
in our introduction, the concrete security bounds we prove are not as
strong as one might hope, due to some limitations of CBCMAC’s effec-
tiveness as an entropy extractor in the ISK-RNG. However, we are able
to prove somewhat better results when legitimate parties use only the
RDRAND interface, even when attackers also have access to RDSEED. This



means that, e.g., a hostile process can’t use its access to RDSEED to learn
information about RDRAND return values used by a would-be victim; the
result also implies stronger results for Ivy Bridge chips, where RDSEED is
not available.

For the remainder of Section 7, we fix the following constants: p = 1 is
the length of each entropy input; k = 128 is the length of each CBCMAC
input block (since ISK-RNG uses AES); IFace = {RDSEED, RDRAND} are
the ISK-RNG interfaces; m = 2, 3 is the number of healthy samples re-
quired by Ivy Bridge and Broadwell, respectively, before the CE buffer is
available; and ` = 64 is the length of the PWI outputs. Although RDRAND

also allows programs to request 16 or 32 bits, this is implemented by
fetching then truncating a 64-bit output, and similarly with RDSEED [12].
Therefore we assume without loss of generality that the adversary only
requests the full 64 bits.

Recall that in the PWI model, the entropy source leaks information
γ about each input string. We assume that every 256th such string (each
one a single bit, p = 1) leaks the health of the corresponding 256 bit
string (as determined by the online health test). Hence the adversary will
always know the health of the OSTE buffers and the value of the health
buffer. This is not simply a convenience: because the CE buffer is not
available until it has been reconditioned with m healthy samples, RDSEED
may leak health information through a timing side channel.

When the CE buffer is available, it can be used to reseed the DRBG
or to service a RDSEED instruction. Priority is given to whichever was not
last used [12]. However, because the PWI model cannot describe pending
RDSEED instructions, the adversary must explicitly use its wait oracle to
yield when it has priority: a wait invocation uses the CE to reseed, while
a RDSEED invocation returns its contents.

The adversary’s wait oracle also allows us to account for the fact that
updating the eight 64-bit output buffers is not an atomic operation. By
using the tick function (invoked by wait) to only fill one at a time, we
conservatively allow the adversary to control if a reseeding operation in-
tervenes. Note that tick will reseed rather than fill an output buffer if
reseeding is desired (S.count > 0) and possible (S.CEfull = 1). This re-
flects the priorities of the hardware [12].

In order to save power, the entropy source goes to sleep if all the output
buffers are full, the CE buffer is available, and no RDRAND instructions
have been processed since the last reseed [12]. The PWI model, however,
requires that we continue to provide D-refresh access to the adversary.
Our decision to leak health information to the adversary allows us to



avoid any problems here: the adversary knows when the entropy source
sleeps, so we can restrict the adversary to not make D-refresh calls when
it does.

To make this power-saving hardware constraint “work” with the PWI
model, we assume that each healthy 256-bit block produced by the en-
tropy source contains at least γ bits of min-entropy. Formally, define
(σi, bi, γi, zi) = D(σi−1) for i ≥ 1 (where σ0 = ε), and let Ii = b256ib256i+1

· · · b256i+255. We assume H∞ (Ii | (σj , Ij , γj , zj)j 6=i, Ii ∈ H) ≥ γ, for some

γ > 0, and require that
∑256i+255

j=256i γi ≥ γ whenever Ii ∈ H. We set
γ∗ = mγ to demand, in effect, that ISK-RNG delivers on its implicit
promise that m healthy entropy samples are sufficient. At the end of this
section, we will draw from the CRI report’s analysis to find reasonable
estimates for γ and discuss the implications.

7.1 Negative Results

We begin with some quick negative results, showing that the ISK-RNG
achieves neither forward nor backwards security. This immediately rules
out robustness, too. We again emphasize that these negative results will
be followed by positive results for realistic classes of restricted adversaries;
we present them primarily to motivate the coming restrictions.

Theorem 5 (ISK-RNG lacks forward security). There exists an
adversary A making one next-ror query and one get-state query such that
for any entropy source D, Advfwd

ISK,D(A) = 1− 2−128.

Theorem 6 (ISK-RNG lacks backward security). There exists an
adversary A making one next-ror query and one set-state query such that
for any entropy source D, Advbwd

ISK,D(A) = 1− 2−128.

In the case of backwards security, the adversary sets some initial
state S with S.samples = 0, makes a sequence of D-refresh calls to clear
the corrupt flag (which, by our previously state assumptions, will hap-
pen as soon as the CE buffer becomes available), and finally assigns
X ← next-ror(RDRAND). The adversary then checks if X = S.out1, and
outputs 0 if this is the case and 1 otherwise. For forward security, the
adversary assigns X ← next-ror(RDSEED), then learns the resulting state
S using get-state(). If X = AES−1

0 (S.CE0) ‖ AES−1
0 (S.CE1), the adversary

outputs 0; otherwise, the it outputs 1. (Here, 0 = 0128.)

However, these results are very conservative. In the case of forward
security, the hardware will quickly recondition the CE buffer and refill the



output buffers, effectively erasing all state that could be used to compute
previous outputs. Backwards security is more complicated because not
only do future outputs persist in the output buffer indefinitely, but future
DRBG keys are leaked via the ESSR, OSTE, and CE buffers. Once the
output buffers are flushed, though, these other buffers will quickly be
overwritten with fresh entropy.

7.2 Positive results

We now turn our attention to restricted, but still conservative, classes of
adversary in order to produce positive results.

Additional assumptions. We further assume that in the forward-security
game, adversaries do not make their get-state query until they have al-
lowed the output buffers to be refilled. This assumption is motivated by
the speed with which the hardware will automatically accomplish this: at
the reported RDRAND throughput of 500 MB/s, all eight 64-bit buffers can
be refilled around 8 million times per second. Formally:

Definition 6 (Delayed adversaries). An adversary A attacking ISK-
RNG in the forward-security game is delayed if after making its last
get-next and next-ror queries, A calls D-refresh until the CE buffer is
available, then calls wait nine times before making its get-state query. ut

This will trigger a reseed and then refill any empty output buffers.
Moreover, we will assume there is some positive probability β such

that each 256-bit block of bits from the entropy source is healthy with
probability at least β. Formally (recall that H ⊆ {0, 1}256 is the set of
strings deemed healthy by ISK-RNG’s online health tests):

Definition 7 (β-healthy). Let D be an entropy source and fix β > 0.
Let H ⊆ {0, 1}256 be the set of strings deemed healthy by the ISK-RNG.
For i = 1, 2, 3, . . . define (σi, bi, γi, zi) = D(σi−1) (where σ0 = ε), and for
j = 0, 1, 2, . . ., define Bj = b256j ‖ b256j+1 ‖ · · · ‖ b256j+255. Let Hj = 1 if
Bj ∈ H, and set Hj = 0, otherwise. Then D is β-healthy if for all such
j and all H ∈ {0, 1}j−1, Pr [Bj ∈ H | (H`)`<j = H ] ≥ β. ut

So for any positive integers ` and Lm, we can upper bound the probability
that the sequence (Bi)

`+Lm−1
i=` contains fewer than m healthy values using:

Pr [ |{j : Bj ∈ H, ` ≤ j < `+ Lm}| < m ] ≤
∑m−1

i=0

(
Lm

i

)
βi(1− β)Lm−i.

Remark 1. Our goal is to identify under what reasonable assumptions
ISK-RNG could be deemed secure, and, as we argued at the end of Sec-
tion 4, this requires making an assumption about the entropy source’s



ability to produce “healthy” samples (a min-entropy assumption is too
weak). We settled on the above β-healthy assumption because it is sim-
ple and fairly broad: we do not assume the probabilities of samples being
healthy are constant or even independent, just that the conditional prob-
abilities don’t dip below the β threshold. Moreover, we later show that
the “unhealthy sample rate” could easily be fifty times the ideal 1% false-
positive base rate without significantly damaging our bounds. Finally,
even the β-healthy assumption is more than we need. We require an up-
perbound on the probability on the left-hand side of the above equation,
and the β-healthy assumption provides a natural, concrete way to think
about this probability.

Rigorously testing the β-healthy assumptiton without access to the
entropy source is problematic. That being said, barring such access, we
doubt it would be possible to do significantly better.

With these assumptions, we are ready to continue on to our positive
results. Our first step is to define an appropriate masking function that
describes an “ideal” state, and then to prove that setup creates such a
state. This lets later proofs simply assume we begin in an idealized state
(see Theorem 3).

ISK-RNG masking function. Fix the masking function M : {0, 1}n →
{0, 1}n that on input S, overwrites S.CE, S.K, S.IV, and S.out1,...,8 with
independent, uniformly random strings of the appropriate lengths, leaves
all other portions of the state untouched, and returns the result (refer
back to Fig. 3 for a listing of the components of the ISK-RNG state S).
This is the ISK-RNG masking function.

Recall the results of Theorem 2. For convenience, we define ε(Lm) =
O(Lm+1)/2k/2 and ε̂(Lm) =

∑m−1
i=0

(
Lm

i

)
βi(1−β)Lm−i, where ε(Lm)

is from Theorem 2 and ε̂(Lm) is the above bound on the probability of
obtaining fewer than m healthy samples from a β-healthy entropy source
within Lm trials. Our theorem statements refer to various previously de-
fined values, summarized in Figure 6

The following lemma says that if AES is a secure PRP (against adver-
saries making three queries) and each healthy sample from the entropy
source has sufficiently large min-entropy, then the ISK-RNG masking
function is honest. That is, that the ISK-RNG setup procedure success-
fully places the hardware in a state where (we will show) it can begin
producing pseudorandom outputs.

Lemma 1 (ISK-RNG masking function is honest). Fix positive
integers k and m, and fix 0 < β ≤ 1. Let Lm be a positive integer.



k CBCMAC blocksize (128 bits)
m Number of “healthy” 2k-bit strings that need to be conditioned before the

CE buffer becomes available (m = 2, 3 for Ivy Bridge and Broadwell chips,
respectively).

Lm Parameter we can freely choose to keep both ε̂(Lm) and ε(Lm) small.
γ An assumed lower bound on the conditional min-entropy of healthy strings.

Fig. 6: Summary of values used for theorem statements.

Let M be the ISK-RNG masking function. Let D be a β-healthy entropy
source. Then for any adversary A, there exists an adversary B running
in the same time and making three queries such that Advinit

ISK,D,M (A) ≤
2(k−mγ)/2+2 + 4ε(Lm) + 8ε̂(Lm) + 5

(
Advprp

AES(B) + 3
2k

)
.

The proof is deferred to the full version of this paper [16]. Using rea-
sonable estimates for the big-O constant and γ (discussed in Section 7.3)
provides us with an upper bound of roughly 2−60 for the first three terms
of the security bound for both m = 2, 3.

Remark 2. The PRP term may be problematic if one takes the view
that RDSEED should offer information-theoretic security. That is, Lemma
2 says that the ISK-RNG initialization procedure yields state — which
includes the CE buffers — that is only computationally indistinguishable
from “ideal”. However, we observe that if one adjusts the masking func-
tion to leave the output buffers unchanged, and demands a post-setup
reconditioning (which the hardware endeavors to provide, anyway), one
could indeed use the result to prove information-theoretic RDSEED security.
However, this would be at the expense of not being able to prove security
of the RDRAND interface, a task which necessarily requires computational
assumptions.

Forward security. Our exploration of forward security proceeds in two
steps. To begin, we introduce a new game, M -RDRAND, which differs
from M -FWD in that the next-ror oracle always returns the “real” value
R0 when queried on the RDSEEDinterface, but behaves normally during
queries to the RDRAND interface. Define

Adv
fwd−RDRAND/M
G,D (A) = 2 Pr [M -RDRAND(A)⇒ 1 ]− 1.

Proving the security of this game is not only a useful intermediate step in
proving the security of M -FWD, but also can be interpreted as measuring
the strength of RDRAND return values when an adversary also has access
to the RDSEED instruction (which can be used to learn information about



the ISK-RNG state, but that we do not require to return pseudorandom
values). This distinction is valuable, because the concrete bounds on the
M -FWD experiment are not as strong as one would hope.

Theorem 7 (M -RDRAND). Let A be a delayed adversary making q queries
to RDRAND and running in time t. Then there exists an adversary B mak-

ing three queries and running in time O(t) such that Adv
fwd−RDRAND/M
ISK,D (A) ≤

2(q + 4)
(
Advprp

AES(B) + 3
2k

)
.

The proof appears in the full version [16]. Barring an efficient attack
on AES (that only uses three queries!) this bound is quite strong. If q
were to grow quite large, say on the order of q ≈ 280, then the bound
might begin to approach 2−40, which seems a reasonable safety margin.
However, even at the reported rate of around 500 MB/s, ISK-RNG would
take over 70 years to reach this point. Moreover, the hybrid factor of q is
likely a conservative artifact of the proof.

Note, however, that this bound applies to ISK-RNG when starting in
an “ideal” masked state; one needs to add in the bound from Lemma 1 to
account for initialization. As we mentioned earlier, reasonable estimates
for the big-O constant and γ (see Section 7.3) place this term at roughly
2−60.

We now proceed to the “full” forward-security result, where both the
RDRAND and the RDSEED interfaces are required to produce indistinguishable-
from-random outputs. Since RDSEED reads directly from the CE buffer,
this bound relies more heavily on the entropy source and CBCMAC ex-
tractor (and less on the computational security of AES). Again, see the
full version [16] for a proof.

Theorem 8 (ISK-RNG’s masked forward security). Fix a positive
integers k and m, and fix 0 < β ≤ 1. Let Lm be a positive integer. Let
A be a delayed adversary making a combined q queries to get-next and
next-ror. Then if D is β-healthy, there exists some adversary B making
three queries and running in the same time as A such that

Adv
fwd/M
ISK,D (A) ≤ (q + 1)

(
2(k−mγ)/2 + ε(Lm) + 2ε̂(Lm)

)
+ 2(q + 4)

(
Advprp

AES(B) +
3

2k

)
.

Corollary 1. Let A be a delayed adversary making a combined q queries
to its get-next and next-ror oracles. If D is β-healthy, then there exists



and adversary B making three queries and running in the same time as
A such that

Advfwd
ISK,D(A) ≤ (q + 5)

(
2(k−mγ)/2 + ε(Lm) + 2ε̂(Lm)

)
+ (2q + 13)

(
Advprp

AES(B) +
3

2k

)
,

where the remaining quantities are defined as in Theorem 8.

The corollary follows from applying Theorem 3 to Theorem 8 and
Lemma 1. We defer our discussion of this bound to Section 7.3. First,
we briefly turn our attention to the questions of backwards security and
robustness.

Backwards security and Robustness. The issue with obtaining backwards
security (and hence robustness) is that future outputs can linger in the
output buffers indefinitely: the hardware will shutdown the entropy source
after all the buffers are full and the CE buffer is available. Hence, state
remains compromised until fresh entropy filters through the ESSR →
OSTE1 → OSTE2 → CE buffers and is used to reseed the DRBG, without
first being siphoned off by RDSEED.

Consider the worst-case scenario for Ivy Bridge chips, where only the
RDRAND interface is available. Following a state compromise, the next eight
outputs are revealed by the output buffers, the next 511 may be computed
using the compromised DRBG seed, the next 511 may be computed using
a DRBG seed determined by the compromised CE buffer, and the next
511 may be computed using a DRBG key determined by the compromised
OSTE and ESSR buffers. This amounts to slightly more than 12 KB of
outputs that an adversary could potentially predict.

However, we show in the full version [16] that if one restricts the model
to “read-only” adversaries (by denying adversaries access to set-state but
permitting access to get-state) and one discounts wins based on the above
attacks (by denying adversaries access to next-ror until after the “cor-
rupted” values have already been replaced) then ISK-RNG is secure. The
concrete bounds we obtain are essentially identical to those provided by
Theorems 7 and 8, depending on whether or not one requires the RDSEED

interface to be secure. See the appendix for further discussion of how these
restrictions can be interpreted along with a formal theorem statement and
proof.



7.3 Discussion of results

Let us examine the bound of Corollary 1 in detail. We specialize to the
parameters used by Intel: k = 128 (a consequence of using AES), m = 2
for Ivy Bridge chips, and m = 3 for Broadwell chips.

To estimate γ, we turn to the CRI report [8]. Hamburg, Kocher, and
Marson subjected raw entropy source bits (using data provided by Intel)
to a battery of statistical tests. Using a Markov model with 12 bits of
state, they estimate the entropy source produces approximately 0.65 bits
of min-entropy per bit of output. However, this was an average (some
states of the Markov model resulted in more predictable bits), and a
12-bit state, though perhaps necessary to collect enough samples for a
meaningful empirical analysis, is not enough for our purposes. Therefore
let us suppose a more conservative rate of 0.5, leading to γ = 128.

This sets the (q+5)2(k−mγ)/2 term of our bound to (q+5)2−64 for Ivy
Bridge (where m = 2) and (q+5)2−128 for Broadwell (where m = 3). The
latter bound is quite strong, but, given how quickly q can grow, the former
may be worrisome if one wishes to maintain strong security guarantees
(e.g., one wishes to cap an adversary’s advantage at 2−40). But this is not
the dominate term.

We next consider the term (q + 5)(ε(Lm) + 2ε̂(Lm)). If we set the
big-O constant of ε to c (so ε(Lm) = cL/264) then we can choose Lm to
optimize this expression. Taking β = 1/2, c =

√
10, which we believe to be

conservative,3 gives an upper bound of (q+ 5)2−56; a more generous β =
0.99, c = 1 improves the upper bound to about (q+5)2−60. (These bounds
are accurate for both m = 2 and m = 3, although the corresponding
values for Lm differ considerably.)

At this point, limiting an adversary’s advantage to 2−40 is difficult —
an adversarial process gathering random bits at the benchmarked rate
of 500 MB/s could issue the maximum allowable number of queries in
under one millisecond. Or at least, this is the case if we demand that
RDSEED produces uniform random outputs. On the other hand, if one
only needs RDRAND to be secure, then Theorem 7 suggests that limiting
an adversary’s advantage to 2−40 is entirely reasonable; in this setting,
we only pick up a single 4(ε(Lm)+2ε̂(Lm)) term even after moving to the
unmasked forward-security setting, with no troublesome multiplicative
factor of q.

3 An author of [4] assures us that the asymptotic constant is “certainly less than 10”
(and our c is the square root of this constant). A perfect entropy source would give
β = 0.99 since the health tests have a 0.01 false-positive rate.



The remaining term, (2q + 13)(Advprp
AES(B) + 3/2128), is likely to be

negligible (recall that B is permitted only three queries).
Our analysis does not point to any obvious, practical attacks (aside

from the trivial ones that exploit the output buffers, though it seems
a stretch to deem those practical). However, it exposes the CBCMAC
extraction process as the likely weakest link, and quantifies the extent of
that weakness. An actual attack would need to exploit how the specific
output distribution of the entropy source interacts with CBCMAC under
the fixed key K ′.

7.4 Discussion of the attack model

The DPRVW syntax and security notions, which we take as our starting
point, assume a strongly adversarial operating environment. They treat
the entropy source as adversarial (although not pathologically bad), and
allow attackers to observe, even corrupt, the full internal state of the PWI.
One might argue that these choices are inappropriate in the case of ISK-
RNG. After all, the entire RNG is implemented in 22-32nm hardware, so
direct observation of the internal state should require the use of expensive
and highly technical equipment, e.g. a state of the art scanning/tunnelling
electron microscope.

We are sympathetic to this argument, but still find value in adopting
the strong attack model. Even if the entropy source is beyond attacker
influence, treating it as adversarial can bee seen as a mathematical tool
for minimizing the assumptions we make regarding its behavior. More-
over, the model allows us to explore the limits of ISK-RNG’s security,
providing analysis of less pessimistic settings (i.e. resilience security) as a
byproduct.
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