
Non-interactive zero-knowledge proofs
in the quantum random oracle model

Dominique Unruh

University of Tartu

Abstract. We present a construction for non-interactive zero-knowledge
proofs of knowledge in the random oracle model from general sigma-
protocols. Our construction is secure against quantum adversaries. Prior
constructions (by Fiat-Shamir and by Fischlin) are only known to be
secure against classical adversaries, and Ambainis, Rosmanis, Unruh
(FOCS 2014) gave evidence that those constructions might not be secure
against quantum adversaries in general.
To prove security of our constructions, we additionally develop new
techniques for adaptively programming the quantum random oracle.

1 Introduction

Classical NIZK proofs. Zero-knowledge proofs are a vital tool in modern cryp-
tography. Traditional zero-knowledge proofs (e.g., [12]) are interactive protocols,
this makes them cumbersome to use in many situations. To circumvent this prob-
lem, non-interactive zero-knowledge (NIZK) proofs were introduced [4]. NIZK
proofs circumvent the necessity for interaction by introducing a CRS, which is a
publicly known value that needs to be chosen by a trusted third party. The ease
of use of NIZK proofs comes at a cost, though: generally, NIZK proofs will be less
efficient and based on stronger assumptions than their interactive counterparts.
So-called sigma protocols (a certain class of three move interactive proofs, see
below) exist for a wide variety of problems and admit very generic operations
for efficiently constructing more complex ones [6,8] (e.g., the “or” of two sigma
protocols). In contrast, efficient NIZK proofs using a CRS exist only for specific
languages (most notably related to bilinear groups, using Groth-Sahai proofs
[14]). To alleviate this, Fiat and Shamir [10] introduced so-called Fiat-Shamir
proofs that are NIZK proofs in the random oracle model.1 Those can transform
any sigma protocol into a NIZK proof. (In fact the construction is even a proof of
knowledge, but we will ignore this distinction for the moment.) The Fiat-Shamir
construction (or variations of it) has been used in a number of notable protocols,
e.g., Direct Anonymous Attestation [5] and the Helios voting system [1]. A second
construction of NIZK proofs in the random oracle model was proposed by Fischlin
1 [10] originally introduced them as a heuristic construction for signatures schemes
(with a security proof in the random oracle model by [15]). However, the construction
can be seen as a NIZK proof of knowledge in the random oracle model.

[11]. Fischlin’s construction is less efficient than Fiat-Shamir (and imposes an
additional condition on the sigma protocol, called “unique responses”), but it
avoids certain technical difficulties that Fiat-Shamir has (Fischlin’s construction
does not need rewinding).

Quantum NIZK proofs. However, if we want security against quantum adver-
saries, the situation becomes worse. Groth-Sahai proofs are not secure because
they are based on hardness assumptions in bilinear groups that can be broken by
Shor’s algorithm [17]. And Ambainis, Rosmanis, and Unruh [2] show that the
Fiat-Shamir construction is not secure in general, at least relative to a specific
oracle. Although this does not exclude that Fiat-Shamir is still secure without
oracle, it at least makes a proof of security less likely – at the least, such a
security proof would be non-relativizing, while all known proof techniques that
deal with rewinding in the quantum case [22,18] are relativizing. Similarly, [2]
also shows Fischlin’s scheme to be insecure in general (relative to an oracle). Of
course, even if Fiat-Shamir and Fischlin’s construction are insecure in general,
for certain specific sigma-protocols, Fiat-Shamir or Fischlin could still be secure.
(Recall that both constructions take an arbitrary sigma-protocol and convert it
into a NIZK proof.) In fact, Dagdelen, Fischlin, and Gagliardoni [7] show that
for a specific class of sigma-protocols (with so-called “oblivious commitments”),
a variant of Fiat-Shamir is secure2. However, sigma-protocols with oblivious
commitments are themselves already NIZK proofs in the CRS model.3 (This is
not immediately obvious from the definition presented in [7], but we show this fact
in Section A.) Also, sigma-protocols with oblivious commitments are not closed
under disjunction and similar operations (at least not using the constructions
from [6]), thus losing one of the main advantages of sigma-protocols for efficient
protocol design. Hence sigma-protocols with oblivious commitments are a much
stronger assumption than just normal sigma-protocols; we lose one of the main
advantages of the classical Fiat-Shamir construction: the ability to transform
arbitrary sigma-protocols into NIZK proofs. Summarizing, prior to this paper,
no generic quantum-secure construction was known to transform sigma-protocols
into NIZK proofs or NIZK proofs of knowledge in the random oracle model. ([7]
left this explicitly as an open problem.)

Our contribution.We present a NIZK proof system in the random oracle model,
secure against quantum adversaries. Our construction takes any sigma protocol
(that has the standard properties “honest verifier zero-knowledge” (HVZK) and
“special soundness”) and transforms it into a non-interactive proof. The resulting
proof is a zero-knowledge proof of knowledge (secure against polynomial-time
quantum adversaries) with the extra property of “online extractability”. This
property guarantees that the witness from a proof can be extracted without
2 Security is shown for Fiat-Shamir as a signature scheme, but the proof technique
most likely also works for Fiat-Shamir as a NIZK proof of knowledge.

3 This observation does not trivialize the construction from [7] because a sigma-protocol
with oblivious commitments is a non-adaptive single-theorem NIZK proof in the CRS
model while the construction from [7] yields an adaptive multi-theorem NIZK proof
in the random oracle model. See Section A.

rewinding. (Fischlin’s scheme also has this property in the classical setting,
but not Fiat-Shamir.) Furthermore the scheme is non-malleable, more precisely
simulation-sound. That is, given a proof for one statement, it is not possible to
create a proof for a related statement. This property is, e.g., important if we
wish to construct a signature-scheme from the NIZK proof.

As an application we show how to use our proof system to get strongly
unforgeable signatures in the quantum random oracle model from any sigma
protocol (assuming a generator for hard instances).

In order to prove the security, we additionally develop a result on random
oracle programming in the quantum setting (see the full version [19]) which
is a strengthening of a lemma from [21,20] to the adaptive case. It allows us
to reduce the probability that the adversary notices that a random oracle has
been reprogrammed to the probability of said adversary querying the oracle at
the programmed location. (This would be relatively trivial in a classical setting
but becomes non-trivial if the adversary can query in superposition.) For space
reasons, in the main body of this paper, we only state two special cases of this
result (Corollaries 6 and 7).

Further related work. Dagdelen, Fischlin, and Gagliardoni [7] show the im-
possibility of proving the quantum security of Fiat-Shamir using a reduction
that does not perform quantum rewinding.4 Ambainis, Rosmanis, and Unruh
[2] show the quantum insecurity of Fiat-Shamir and Fischlin’s scheme relative
to an oracle (and therefore the impossibility of a relativizing proof, even with
quantum rewinding). Faust, Kohlweiss, Marson, and Venturi [9] show that Fiat-
Shamir is zero-knowledge and simulation-sound extractable (not simulation-sound
online-extractable) in the classical setting under the additional assumption of
“unique responses” (a.k.a. computational strict soundness). Fischlin [11] shows that
Fischlin’s construction is zero-knowledge and online-extractable (not simulation-
sound online-extractable) in the classical setting assuming unique responses.

Difficulties with Fiat-Shamir and Fischlin. In order to understand our
protocol construction, we first explain why Fiat-Shamir and Fischlin’s scheme
are difficult to prove secure in the quantum setting. A sigma-protocol consists
of three messages com, ch, resp where the “commitment” com is chosen by the
prover, the “challenge” ch is chosen uniformly at random by the verifier, and
the “response” resp is computed by the prover depending on ch. Given a sigma-
protocol, and a random oracle H, the Fiat-Shamir construction produces the
commitment com, computes the challenge ch := H(com), and computes a
response resp for that challenge. The proof is then π := (com, ch, resp), and
the verifier checks whether it is a valid execution of the sigma-protocol, and
whether ch = H(com). How do we prove that Fiat-Shamir is a proof (or a
proof of knowledge)? (The zero-knowledge property is less interesting for the
present discussion, so we skip it.) Very roughly, given a malicious prover P , we
first execute P to get (com, ch, resp). Then we rewind P to the oracle query
H(com) that returned ch. We then change (“program”) the random oracle such

4 I.e., a reduction that cannot apply the inverse of the unitary describing the adversary.

that H(com) := ch ′ for some random ch ′ 6= ch. And then we then continue the
execution of P with the modified oracle H. Then P will output a new triple
(com ′, ch ′, resp′). And since com was determined before the point of rewinding,
we have com = com ′. (This is a vague intuition. But the “forking lemma” [15]
guarantees that this actually works with sufficiently large probability.) Then
we can use a property of sigma-protocols called “special soundness”. It states:
given valid sigma-protocol interactions (com, ch, resp), (com, ch ′, resp′), one can
efficiently compute a witness for the statement being proven. Thus we have
constructed an extractor that, given a (successful) malicious prover P , finds a
witness. This implies that Fiat-Shamir is a proof of knowledge.

What happens if we try and translate this proof idea into the quantum setting?
First of all, rewinding is difficult in the quantum setting. We can rewind P by
applying the inverse unitary transformation P † to reconstruct an earlier state
of P . However, if we measure the output of P before rewinding, this disturbs
the state, and the rewinding will return to an undefined earlier state. In some
situations this can be avoided by showing that the output that is measured
contains little information about the state and thus does not disturb the state
too much [18], but it is not clear how to do that in the case of Fiat-Shamir. (The
output (com, ch, resp) may contain a lot of entropy due to com, ch, even if we
require resp to be unique.)

Even if we have solved the problem of rewinding, we face a second problem.
We wish to reprogram the random oracle at the input where it is being queried.
Classically, the input of a random oracle query is a well-defined notion. In the
quantum setting, though, the query input may be in superposition, and we cannot
measure the input because this would disturb the state.

So when trying to prove Fiat-Shamir secure, we face two problems to which
we do not have a solution: rewinding, and determining the input to an oracle
query.

We now turn to Fischlin’s scheme. Fischlin’s scheme was introduced in the
classical case to avoid the rewinding used in Fiat-Shamir. (There are certain
reasons why even classically, rewinding leads to problems, see [11].) Here the prover
is supposed to send a valid triple (com, ch, resp) such that H(com, ch, resp) mod
2b = 0 for a certain parameter b. (This is an oversimplification but good enough
for explaining the difficulties.) By choosing b large enough, a prover can only find
triples (com, ch, resp) with H(com, ch, resp) mod 2b = 0 by trying out several
such triples. Thus, if we inspect the list of all query inputs to H, we will
find several different valid triples (com, ch, resp). In particular, there will be
two triples (com, ch, resp) and (com ′, ch ′, resp′) with com = com ′. (Due to the
oversimplified presentation here, the reader will have to take on trust that we can
achieve com = com ′, see [11] for a full analysis.) Again using special soundness,
we can extract a witness from these two triples. So Fischlin’s scheme is a proof of
knowledge with the extra benefit that the extractor can extract without rewinding,
just by looking at the oracle queries (“online-extraction”).

What happens if we try to show the security of Fischlin’s scheme in the
quantum setting? Then we again face the problem that there is no well-defined

notion of “the list of query inputs”. If we measure the query inputs, this disturbs
the malicious prover. If we do not measure the query inputs, they are not
well-defined.

The problems with Fiat-Shamir and Fischlin seem not to be just limitations
of our proof techniques, [2] shows that relative to some oracle, Fiat-Shamir and
Fischlin actually become insecure.

Our protocol. So both in Fiat-Shamir and in Fischlin’s scheme we face the
challenge that it is difficult to get the query inputs made by the malicious prover.
Nevertheless, in our construction we will still try to extract the query inputs, but
with a twist: Assume for a moment that the random oracle G is a permutation.
Then, given G(x) it is, at least in principle, possible to extract x. Can we use
this idea to save Fischlin’s scheme? No, because in Fischlin’s scheme we need
the inputs to queries whose outputs we never learn; inverting G will not help.
So in our scheme, for any query input x we want to learn, we need to include
G(x) in the output. Basically, we sent (com, G(resp1), . . . , G(respn)) where the
respj are the responses for com given different challenges chj . Then, by inverting
two of the G, we can get two triples (com, ch, resp) and (com, ch ′, resp′) which
allows us to extract the witness. However, so far we have not made sure that the
malicious prover indeed puts valid responses into the queries. He could simply
send random values instead of G(respj). To avoid this, we use a cut-and-choose
technique similar to what is done in Fiat-Shamir: We first produce a number
of proofs (comi, G(respi,1), . . . , G(respi,n)). Then we hash all of them with a
second random oracle H (not a permutation). The result of the hashing indicates
for each comi which of the respi,j should be revealed. A malicious prover who
succeeds in this will have to include valid responses in at least a large fraction of
the G(respi,j). Thus by inverting G, we can find two valid triples (com, ch, resp)
and (com, ch ′, resp′) if the malicious prover’s proof passes verification. The full
protocol is described in Figure 1.

We have not discussed yet: What if G is not a permutation (a random function
will usually not be a permutation)? And how to efficiently invert G? The answer to
the first is: as long as domain and range of G are the same, G is indistinguishable
from a random permutation [24]. So although the real protocol execution uses a
G that is a random function, in an execution with the extractor, we simply feed
a random permutation to the prover. To answer the second, we need to slightly
change our approach (but not the protocol): Zhandry [23] shows that a random
function is indistinguishable from a 2q-wise independent function (where q is the
number of oracle queries performed). Random polynomials of degree ≤ 2q − 1
over a finite field are 2q-wise independent.6 So if, during extraction, we replace

5 The values hi,Ji could be omitted since they can be recomputed as hi,Ji = G(respi,Ji).
We include them to keep the notation simple.

6 Proof: Fix distinct x1, . . . , x2q. For any a1, . . . , a2q there exists exactly one polynomial
of degree ≤ 2q−1 with ∀i. f(xi) = ai (by interpolation). Hence, for uniformly random
f of degree ≤ 2q − 1, the tuple (f(x1), . . . , f(x2q)) equals each (a1, . . . a2q) with the
same probability. Hence (f(x1), . . . , f(x2q)) is uniformly distributed, so f is 2q-wise
independent by definition.

POEPOEPOE :

Input: (x,w) with (x,w) ∈ R

// Create t ·m proofs
(comi, chi,j , respi,j)

for i = 1 to t do
comi ← P 1

Σ(x,w)
for j = 1 to m do

chi,j
$← Nch \ {chi,1, . . . , chi,j−1}

respi,j ← P 2
Σ(chi,j)

// Commit to responses
for i = 1 to t do

for j = 1 to m do
hi,j := G(respi,j)

// Get challenge by hashing
J1‖ . . . ‖Jt :=
H(x, (comi)i, (chi,j)i,j , (hi,j)i,j)

// Return proof (only some responses)
return π :=

(
(comi)i, (chi,j)i,j , (hi,j)i,j , (respi,Ji)i

) 5

VOEVOEVOE :

Input: (x, π) with π =
((comi)i, (chi,j)i,j , (hi,j)i,j , (respi)i)

J1‖ . . . ‖Jt :=
H(x, (comi)i, (chi,j)i,j , (hi,j)i,j)

for i = 1 to t do
check chi,1, . . . , chi,m pairwise
distinct

for i = 1 to t do
check
VΣ(x, comi, chi,Ji , respi) = 1

for i = 1 to t do
check hi,Ji = G(respi).

if all checks succeed then
return 1

Fig. 1. Prover PG,HOE (x,w) (left) and verifier V G,HOE (x, π) (right) from Definition 8. The
missing notation will be introduced in Section 2.2.

G not by a random permutation, but by a random polynomial, we can efficiently
invert G. (The preimage will not be unique, but the number of possible preimage
will be small enough so that we can scan through all of them.) This shows that
our protocol is online-extractable: the extractor simply replaces G by a random
polynomial, inverts all G(respi,j), searches for two valid triples (com, ch, resp)
and (com, ch ′, resp′) , and computes the witness. The formal description of the
extractor is given in Section 3.2. Our scheme is then online-extractable.

Of course, we also need that the resulting scheme is zero-knowledge. The
construction of the simulator is quite standard: To be able to create simulated
proofs comi, chi,j , respi,j , the simulator needs to know in advance which of the
G(respi,j) he has to reveal. Since the choice which to reveal is determined by the
result of hashing the proofs using H, the simulator first picks the value that H
should return, creates the proofs using the knowledge of that value, and later
programs H to return the chosen value. In a classical setting, it is quite easy to
see that this simulator works correctly. In the quantum setting, we need to work
harder: we need to generalize a lemma from [20] that shows that the adversary
does not notice when we program the random oracle.

To prove that our scheme is not just online-extractable, but simulation-sound
online-extractable, the same ideas as above can be used, we just need to be
careful to show that proofs produced by the simulator cannot be transformed

length of proof computation
commitments challenges responses commitments responses

Our scheme t tm tm t tm
Fiat-Shamir 1 0 1 1 1
Fischlin r r r r 2tr

Fig. 2. Complexity of our scheme, Fiat-Shamir, and Fischlin. Our parameters t,m must
satisfy that t logm is superlogarithmic. The parameters t, r of Fischlin must satisfy that
there exists some b such that br and 2t−b are both superlogarithmic.

into new valid proofs without changing them completely. This turns out to follow
from the collision-resistance of G (Lemma 11).

Efficiency comparison with Fiat-Shamir and Fischlin. In Figure 2, we
show both the communication complexity (length of proof) and the computational
complexity (in terms of invocations of the prover of the sigma-protocol) of our
scheme, and for comparison of Fiat-Shamir and Fischlin. Notice, however, that
a fair comparison of the efficiency is impossible, because the schemes have
incomparable parameters. If we pick m = 2, our scheme and Fischlin’s scheme
seem comparable both in communication and computational complexity. But
the resulting parameters might not lead to the same security level. For a fair
comparison, we would need to pick parameters with comparable security level,
but for that, we need to know the reduction used in the security proofs of the
schemes that we compare. But Fiat-Shamir and Fischlin have no security proof
in the quantum setting. Even Fiat-Shamir might, given a sufficiently bad security
reduction, be less efficient than our scheme if the reduction forces the security
parameter of the underlying Σ-protocol up. (Although this seems unlikely.)

The runtime of our extractor (which in the end affects the concrete security
level when our protocol is used as a subprotocol) is quadratic in the number of
adversary queries. This is dominated by the time for inverting a polynomial of
degree q. A different implementation of the oracle G (e.g., a strong pseudo-random
permutation) might get rid of this factor altogether. Finding a suitable candidate
is an open problem.

Organization. In Section 2 we introduce the main security notions used in
this paper: those of non-interactive proof systems in the random oracle model
(Section 2.1) and those of sigma-protocols (Section 2.2). In Section 3 we introduce
and prove secure our NIZK proof system. In Section 4 we illustrate the use of our
results and construct a signature scheme in the random oracle model from sigma-
protocols. In Section A we discuss sigma-protocols with oblivious commitments
and their relation to the CRS model. The proofs of our results on adaptive
random oracle programming are given in the full version [19].

1.1 Preliminaries

By x← A(y) we denote the (quantum or classical) algorithm A executed with
(classical) input y, and its (classical) output assigned to x. We write x← AH(y)

if A has access to an oracle H. We stress that A may query the random oracle H
in superposition. By x $←M we denote that x is uniformly randomly chosen from
the set M . Pr[P : G] refers to the probability that the predicate P holds true
when the free variables in P are assigned according to the program (game) in G.
All algorithms implicitly depend on a security parameter η that we never write.
If we say a quantity is negligible or overwhelming , we mean that it is in o(ηc) or
1− o(ηc) for all c > 0 where η denote the security parameter. A polynomial-time
algorithm is a classical one that runs in polynomial-time in its input length and
the security parameter, and a quantum-polynomial-time algorithm is a quantum
algorithm that runs in polynomial-time in input and security parameter.

With {0, 1}n we denote the bitstrings of length n, with {0, 1}≤n the bitstrings
of length at most n, and with {0, 1}∗ those of any length. (M → N) refers to
the set of all functions from M to N . a‖b is the concatenation of bitstrings a
and b. GF(2n) is a finite field of size 2n, and GF(2n)[X] is the set of polynomials
over that field. ∂p refers to the degree of the polynomial p. The collision entropy
of a random variable X is − log Pr[X = X ′] where X ′ is independent of X and
has the same distribution. The min-entropy is minx(− log Pr[X = x]). A family
of functions F is called q-wise-independent if for any distinct x1, . . . , xq and for
f

$← F , f(x1), . . . , f(xq) are independently uniformly distributed. E[X] is the
expected value of the random variable X.

TD(ρ, ρ′) denotes the trace distance between two density operators.

2 Security notions

In the following we present the security notions used in this work. All security
notions capture security against quantum adversaries. To make the notions
strongest possible, we formulate them with respect to quantum adversaries, but
classical honest parties (and classical simulators and extractors).

2.1 Non-interactive proof systems

In the following, we assume a fixed efficiently decidable relation R on bitstrings,
defining the language of our proof systems. That is, a statement x is in the
language iff there exists a witness w with (x,w) ∈ R. We also assume a distribution
ROdist on functions, modeling the distributions of our random oracle. (E.g., for
a random oracle H : {0, 1}∗ → {0, 1}n, ROdist would be the uniform distribution
on {0, 1}∗ → {0, 1}n.)

A non-interactive proof system consists of two polynomial-time oracle al-
gorithms P (x,w), V (x, π). (The argument π of V represents the proof pro-
duced by P .) We require that PH(x,w) = ⊥ whenever (x,w) /∈ R and that
V H(x, π) ∈ {0, 1}. Inputs and outputs of P and V are classical.

Definition 1 (Completeness). (P, V) is complete iff for any quantum-
polynomial-time oracle algorithm A, the following is negligible:

Pr[(x,w) ∈ R ∧ ok = 0 : H ← ROdist, (x,w)← AH(),

π ← PH(x,w), ok ← V H(x, π)].

Zero-knowledge. We now turn to the zero-knowledge property. Zero-knowledge
means that an adversary cannot distinguish between real proofs and proofs
produced by a simulator (that has no access to the witness). In the random
oracle model, we furthermore allow the simulator to control the random oracle.
Classically, this means in particular that the simulator learns the input for each
query, and can decide on the response adaptively. In the quantum setting, this is
not possible: since the random oracle can be queried in superposition, measuring
its input would disturb the state of the adversary. We chose an alternative
route here: the simulator is allowed to output a circuit that represents the
function computed by the random oracle. And he is allowed to update that circuit
whenever he is invoked. However, the simulator is not invoked upon a random
oracle query. (This makes the definition only stronger.) We now proceed to the
formal definition:

A simulator is a pair of classical algorithms (Sinit , SP). Sinit outputs a circuit
H describing a classical function which represents the initial (simulated) random
oracle. The stateful algorithm SP (x) returns a proof π. Additionally SP is given
access to the description H and may replace it with a different description (i.e.,
it can program the random oracle).

Definition 2 (Zero-knowledge). Given a simulator (Sinit , SP), the oracle
S′P (x,w) does: If (x,w) /∈ R, return ⊥. Else return SP (x). (The purpose of S′P
is merely to serve as an interface for the adversary who expects a prover taking
two arguments x,w.)

A non-interactive proof system (P, V) is zero-knowledge iff there is a
polynomial-time simulator (Sinit , SP) such that for every quantum-polynomial-
time oracle algorithm A, the following is negligible:∣∣Pr[b = 1 : H ← ROdist, b← AH,P ()]− Pr[b = 1 : H ← Sinit(), b← AH,S

′
P ()]

∣∣.
(1)

We assume that both Sinit and SP have access to and may depend on a polynomial
upper bound on the runtime of A.

The reason why we allow the simulator to know an upper bound of the
runtime of the adversary is that we use the technique of [23] of using q-wise
independent hash functions to mimic random functions. This approach requires
that we know upper bounds on the number and size of A’s queries; the runtime
of A provides such bounds.

Online-extractability. We will now define online-extractability. Online-
extractable proofs are a specific form of proofs of knowledge where extraction
is supposed to work by only looking at the proofs generated by the adversary

and at the oracle queries performed by him. Unfortunately, in the quantum
setting, it is not possible to generate (or even define) the list of oracle queries
because doing so would imply measuring the oracle input, which would disturb
the adversary’s state. So, different from the classical definition in [11], we do
not give the extractor the power to see the oracle queries. Is it then possible at
all for the extractor to extract? Yes, because we allow the extractor to see the
description of the random oracle H that was produced by the simulator Sinit . If
the simulator produces suitable circuit descriptions, those descriptions may help
the extractor to extract in a way that would not be possible with oracle access
alone. We now proceed to the formal definition:

An extractor is an algorithm E(H,x, π) whereH is assumed to be a description
of the random oracle, x a statement and π a proof of x. E is supposed to output
a witness. Inputs and outputs of E are classical.

Definition 3 (Online extractability). A non-interactive proof system (P, V)
is online extractable with respect to Sinit iff there is a polynomial-time extractor
E such that for any quantum-polynomial-time oracle algorithm A, we have that

Pr[ok = 1 ∧ (x,w) /∈ R : H ← Sinit(), (x, π)← AH(),

ok ← V H(x, π), w ← E(H,x, π)]

is negligible. We assume that both Sinit and E have access to and may depend on
a polynomial upper bound on the runtime of A.

Online-extractability intuitively implies that it is not possible for an adversary
to produce a proof for a statement for which he does not know a witness (because
the extractor can extract a witness from what the adversary produces). However,
it does not exclude that the adversary can take one proof π1 for one statement
x1 and transform it into a valid proof for another statement x2 (even without
knowing a witness for x2), as long as a witness for x2 could efficiently be computed
from a witness for x1. This problem is usually referred to as malleability.

To avoid malleability, one definitional approach is simulation-soundness [16,13].
The idea is that extraction of a witness from the adversary-generated proof should
be successful even if the adversary has access to simulated proofs (as long as the
adversary generated proof does not equal one of the simulated proofs). Adapting
this idea to online-extractability, we get:

Definition 4 (Simulation-sound online-extractability). A non-interactive
proof system (P, V) is simulation-sound online-extractable with respect to sim-
ulator (Sinit , SP) iff there is a polynomial-time extractor E such that for any
quantum-polynomial-time oracle algorithm A, we have that

Pr[ok = 1 ∧ (x, π) /∈ simproofs ∧ (x,w) /∈ R :

H ← Sinit(), (x, π)← AH,SP (), ok ← V H(x, π), w ← E(H,x, π)]

is negligible. Here simproofs is the set of all proofs returned by SP (together with
the corresponding statements).

We assume that Sinit , SP , and E have access to and may depend on a
polynomial upper bound on the runtime of A.

Notice that AH,SP gets access to SP , not to S′P . That is, A can even create
simulated proofs of statements where he does not know the witness.

2.2 Sigma protocols

We now introduce sigma protocols. The notions in this section are standard, all
we do to adopt them to the quantum setting is to make the adversary quantum-
polynomial-time. Note that the definitions are formulated without the random
oracle, we only use the random oracle for constructing a NIZK proof out of the
sigma protocol.

A sigma protocol for a relation R is a three message proof system. It is
described by the domains Ncom , Nch , Nresp of the messages (where |Nch | ≥ 2),
a polynomial-time prover (P1, P2) and a deterministic polynomial-time verifier
V . The first message from the prover is com ← P1(x,w) and is called the
commitment , the uniformly random reply from the verifier is ch $← Nch (called
challenge), and the prover answers with resp ← P2(ch) (the response). We assume
P1, P2 to share state. Finally V (x, com, ch, resp) outputs whether the verifier
accepts.

Definition 5 (Properties of sigma protocols). Let (Ncom , Nch , Nresp , P1,
P2, V) be a sigma protocol. We define:
– Completeness: For any quantum-polynomial-time algorithm A, the follow-
ing is negligible:

Pr[(x,w) ∈ R ∧ ok = 0 : (x,w)← A, com ← P1(x,w), ch
$← Nch ,

resp ← P2(ch), ok ← V (x, com, ch, resp)]

– Computational special soundness: There is a polynomial-time algorithm
EΣ such that for any quantum-polynomial-time A, the following is negligible:

Pr[(x,w) /∈ R ∧ ch 6= ch ′ ∧ ok = ok ′ = 1 : (x, com, ch, resp, ch ′, resp′)← A(),

ok ← V (x, com, ch, resp), ok ′ ← V (x, com, ch ′, resp′),

w ← EΣ(x, com, ch, resp, ch
′, resp′)].

– Honest-verifier zero-knowledge (HVZK): There is a polynomial-time
algorithm SΣ (the simulator) such that for any stateful quantum-polynomial-
time algorithm A the following is negligible for all (x,w) ∈ R:∣∣Pr[b = 1 : (x,w)← A(), com ← P1(x,w), ch

$← Nch , resp ← P2(ch),

b← A(com, ch, resp)]

−Pr[b = 1 : (x,w)← A(), (com, ch, resp)← S(x), b← A(com, ch, resp)]
∣∣

Note that the above are the standard conditions expected from sigma-protocols
in the classical setting. In contrast, for a sigma-protocol to be a quantum proof of
knowledge, a much more restrictive condition is required, strict soundness [18,2].
Interestingly, this condition is not needed for our protocol to be quantum secure.

2.3 Random oracle programming

For space reasons, we just state here the two special cases of our random oracle
programming theorem that we will be using (in the proof of Theorem 10). For
details, refer to the full version [19].

Corollary 6. Let M,N be finite sets and H : M → N be the random oracle.
Let A0, AC , A2 be algorithms, where AH0 makes at most q queries to H, AC is
classical, and the output of AC is in M and has collision-entropy at least k given
AC ’s initial state. A0, AC , A2 may share state.

Then∣∣Pr[b = 1 : H
$← (M → N), AH0 (), x← AC(), B := H(x), b← AH2 (B)]

−Pr[b = 1 : H
$← (M → N), AH0 (), x← AC(), B

$← N,H(x) := B, b← AH2 (B)]
∣∣

≤ (4 +
√
2)
√
q 2−k/4.

Corollary 7. Let M,N be finite sets and H : M → N be the random oracle.
Let A0, A1 be algorithms that perform at most q0, q1 oracle queries, respectively,
and that may share state. Let AC be a classical algorithm that may access (the
classical part of) the final state of A0. (But A1 does not access AC ’s state.)
Assume that the output of AC has min-entropy at least k given its initial state.
Then∣∣Pr[b = 1 : H

$← (M → N), AH0 (), x← AC(), B := H(x), b← AH1 (B)]

−Pr[b = 1 : H
$← (M → N), AH0 (), x← AC(), B

$← N, b← AH1 (B)]
∣∣

≤ (4 +
√
2)
√
q0 2
−k/4 + 2q12

−k/2.

3 Online-extractable NIZK proofs

In the following, we assume a sigma protocol Σ = (Ncom , Nch , Nresp , P
1
Σ , P

2
Σ , VΣ)

for a relation R. Assume that Nresp = {0, 1}`resp for some `resp .7 We use this
sigma protocol to construct the following non-interactive proof system:

Definition 8 (Online-extractable proof system (POE , VOE)). The proof
system (POE , VOE) is parametrized by polynomially-bounded integers t,m where
m is a power of 2 with 2 ≤ m ≤ |Nch |. We use random oracles H : {0, 1}∗ →
{1, . . . ,m}t and G : Nresp → Nresp .8 Prover and verifier are defined in Figure 1.

7 Any Nresp can be efficiently embedded in a set of fixed length bitstrings {0, 1}`resp
(there is no need for this embedding to be surjective). So any sigma protocol can be
transformed to have Nresp = {0, 1}`resp for some `resp .

8 The definitions from Section 2.1 are formulated with respect to only a single random
oracle with distribution ROdist. Having two oracles, however, can be encoded in that
framework by letting ROdist be the uniform distribution over pairs of functions with
the respective domains/ranges.

SPOE
SPOESPOE :

Input: x

for i = 1 to t do
Ji

$← {1, . . . ,m};
(comi, chi,Ji , respi,Ji)← SΣ(x)

for j = 1 to m except j = Ji do
chi,j

$←
Nch \ {chi,Ji , chi,1, . . . , chi,j−1}

for i = 1 to t do
hi,Ji := G(respi,Ji)

for j = 1 to m except j = Ji do
hi,j

$← Nresp

H(x, (comi)i, (chi,j)i,j , (hi,j)i,j) := J1‖ . . . ‖Jt
return π :=(

(comi)i, (chi,j)i,j , (hi,j)i,j , (respi,Ji)i
)

SOE
initSOE
initSOE
init :

Parameters: upper bounds qG, qHqG, qHqG, qH
on the number of queries to G and
H; upper bound `̀̀ on the length of
the inputs to H; embedding ι`ι`ι`

pG
$← GF(2`resp)[X] with

∂pG ≤ 2qG − 1

pH
$← GF(2`

∗
)[X] with

∂pH ≤ 2qH − 1

// Construct circuits G,H:
G(x) := pG(x) for x ∈ {0, 1}`resp
H(x) := pH(ι`(x))1...t logm

for x ∈ {0, 1}≤`

return descriptions of G,H

Fig. 3. The simulator (SPOE , S
OE
init) for (POE , VOE). SΣ is the simulator for (P 1

Σ , P
2
Σ , VΣ),

cf. Definition 5. H(x) := y means the description of H is replaced by a new description
with H(x) = y. Bounds qG, qH , ` include calls made by the adversary and by POE . Such
bounds are known because the runtime of A is known to the simulator (cf. Definition 2). ι`
is an arbitrary efficiently computable and invertible injection ι` : {0, 1}≤` → {0, 1}`

∗
for

some `∗ ≥ t logm. pH(ι`(x))1...t logm denotes pH(ι`(x)) truncated to the first t logm bits.
We assume that GF(2`resp) = {0, 1}`resp and GF(2`

∗
) = {0, 1}`

∗
; such a representation

can be found in polynomial-time [3].

Lemma 9 (Completeness). If Σ is complete, (POE , VOE) is complete.

Proof. Since Σ is complete, VΣ(x, comi, chi,j , respi,j) = 1 for all i, j with over-
whelming probability. Then all checks performed by VOE succeed by construction
of POE . �

3.1 Zero-knowledge

Theorem 10 (Zero-knowledge). Assume that Σ is HVZK, and that the re-
sponse of P 2

Σ has superlogarithmic min-entropy (given its initial state and its
input ch).9

Let κ′ be a lower bound on the collision-entropy of the tuple(
(comi)i, (chi,j)i,j , (hi,j)i,j

)
produced by POE (given its initial state and the

oracle G,H). Assume that κ′ is superlogarithmic.10

9 We can always transform a sigma protocol into one with responses with superloga-
rithmic min-entropy by adding some random bits to the responses.

10 This can always be achieved by adding random bits to the commitments.

Then (VOE , POE) is zero-knowledge with the simulator (SOE
init , SPOE

) from
Figure 3.

Proof. We prove this using a sequence of games. We start with the real model
(first term of (1)) and transform it into the ideal model (second term of (1))
step by step, never changing Pr[b = 1] by more than a negligible amount. In
each game, new code lines are marked with new and changed ones with chg
(removed ones are simply crossed out).

Let ROdist be the uniform distribution on pairs of functions G,H (with the
respective domains and ranges as in Definition 8). Then the first term of (1)
becomes:

Game 1 (Real model) G,H $← ROdist, b← AG,H,POE .

We now modify the prover. Instead of getting J1, . . . , Jt from the random
oracle H, he chooses J1, . . . , Jt at random and programs the random oracle H to
return those values J1, . . . , Jt.

Game 2 G,H
$← ROdist, b← AG,H,P with the following prover P :

...
for i = 1 to t do

new Ji ← {1, . . . ,m}
comi ← P 1

Σ(x,w)
...

J1‖ . . . ‖Jt := H(x, (comi)i, (chi,j)i,j , (hi,j)i,j)
chg H(x, (comi)i, (chi,j)i,j , (hi,j)i,j) := J1‖ . . . ‖Jt

...

By assumption the argument (x, (comi)i, (chi,j)i,j , (hi,j)i,j) to H has super-
logarithmic collision-entropy κ′ (given the state at the beginning of the corre-
sponding invocation of POE). Thus from Corollary 6 we get (using a standard
hybrid argument) that

∣∣Pr[b = 1 : Game 1]− Pr[b = 1 : Game 2]
∣∣ is negligible.

Next, we change the order in which the prover produces the subproofs
(comi, chi,j , respi,j): For each i, the (comi, chi,j , respi,j) with j = Ji is produced
first.

Game 3 G,H
$← ROdist, b← AG,H,P with the P as follows:

...
for i = 1 to t do

Ji ← {1, . . . ,m}; comi ← P 1
Σ(x,w)

new chi,Ji
$← Nch ; respi,Ji ← P 2

Σ(chi,Ji)

chg for j = 1 to m except j = Ji do
chg chi,j

$← Nch \ {chi,Ji , chi,1, . . . , chi,j−1}
respi,j ← P 2

Σ(chi,j)
...

Obviously, changing the order of the P 2
Σ-invocations does not change anything

because P 2
Σ has no side effects. At a first glance, it seems that the values chi,j

are chosen according to different distributions in both games, but in fact in both
games (chi,1, . . . , chi,m) are uniformly distributed conditioned on being pairwise
distinct. Thus Pr[b = 1 : Game 2] = Pr[b = 1 : Game 3].

Now we change how the hi,j are constructed. Those hi,j that are never opened
are picked at random.

Game 4 G,H
$← ROdist, b← AG,H,P with the P as follows:

...
for i = 1 to t do

new hi,Ji := G(respi,Ji)

chg for j = 1 to m except j = Ji do
chg hi,j

$← Nresp

...

Note that the argument respi,j to G has superlogarithmic min-entropy (given
the value of all variables when G(respi,j) is invoked) since we assume that the
responses of P 2

Σ have superlogarithmic min-entropy. Thus from Corollary 7 we get
(using a standard hybrid argument) that

∣∣Pr[b = 1 : Game 3]−Pr[b = 1 : Game 4]
∣∣

is negligible. (H in the corollary is G here, and AC in the corollary is P 2
Σ here.)

Now we omit the computation of the values respi,j that are not used:

Game 5 G,H
$← ROdist, b← AG,H,P with the P as follows:

...
for j = 1 to m except j = Ji do

chi,j
$← Nch \ {chi,Ji , chi,1, . . . , chi,j−1}

respi,j ← P 2
Σ(chi,j)

...

We now replace the honestly generated proof (comi, chi,Ji , respi,Ji) by one
produced by the simulator SΣ (from Definition 5).

Game 6 G,H
$← ROdist, b← AG,H,P with the P as follows:

...
for i = 1 to t do

Ji ← {1, . . . ,m}; comi ← P 1
Σ(x,w)

chi,Ji
$← Nch ; respi,Ji ← P 2

Σ(chi,Ji)

new (comi, chi,Ji , respi,Ji)← SΣ(x)
...

Since Σ is HVZK by assumption,
∣∣Pr[b = 1 : Game 5]− Pr[b = 1 : Game 6]

∣∣
is negligible.

Note that P as defined in Game 6 does not use the witness w any more. Thus
we can replace P by a simulator that depends only on the statement x. That
simulator SPOE

is given in Figure 3.

Game 7 G,H
$← ROdist, b ← AG,H,S

′
POE for SPOE from Figure 3. (Recall that

S′POE
is defined in terms of SPOE , see Definition 2.)

From the definition of SPOE in Figure 3 we immediately get Pr[b = 1 :
Game 6] = Pr[b = 1 : Game 7].

Finally, we replace ROdist by oracles as chosen by SOE
init from Figure 3. (In

general, any construction of SOE
init would do for the proof of the zero-knowledge

property, as long as it returns G,H that are indistinguishable from random.
However, in the proof of extractability we use that G is constructed in this
specific way.)

Game 8 G,H
$← SOE

init , b← AG,H,S
′
POE for (SOE

init , SPOE) from Figure 3.

For the following argument, we introduce the following abbreviation: Given
distributions on functions H,H ′, by H ≈q,` H ′ we denote that H and H ′ are
perfectly indistinguishable by any quantum algorithm making at most q queries
and making no queries with input longer than `. We omit q or ` if q = ∞ or
` =∞. Let pG, pH , `, ι`, `∗ be as defined in Figure 3.

Let GR denote the function G : Nresp → Nresp as chosen by ROdist, and let
GS denote the function G = pG chosen by SOE

init . It is easy to see that a uniformly
random polynomial p of degree ≤ 2q − 1 is 2q-wise independent. [23] shows that
a 2q-wise independent function is perfectly indistinguishable from a random
function by an adversary performing at most q queries (the queries may be in
superposition). Then GR ≈qG GS .

Similarly, let HR and HS denote H : {0, 1}∗ → {0, 1}t logm as chosen by
ROdist or SOE

init , respectively. Then pH ≈2qH H ′ for a uniformly random function

EPOE
EPOEEPOE :

Input: G = pG, H, x, π =(
(comi), (chi,j), (hi,j), (respi)

)
J1‖ . . . ‖Jt := H(x, (comi)i, (chi,j)i,j , (hi,j)i,j)

for i = 1 to t do
for j = 1 to m except Ji do

for each resp′ ∈ p−1
G (hi,j) do

if VΣ(x, comi, chi,j , resp
′) = 1 then

return
EΣ(x, comi, chi,Ji , respi, chi,j , resp

′)

VΣ and EΣ are verifier and
extractor of the sigma pro-
tocol Σ. p−1

G (h) is the set
of preimages of h under
pG. Since pG is a polyno-
mial over GF(2`resp) of de-
gree ≤ 2q, the set p−1

G (h)
is polynomial-time com-
putable, namely in time
O(q2`2resp) [3].

Fig. 4. The extractor EPOE for (POE , VOE).

H ′ : {0, 1}`∗ → {0, 1}`∗ . Hence pH ◦ ι` ≈qH H ′ ◦ ι` ≈ H ′′ for uniformly random
H ′′ : {0, 1}≤` → {0, 1}`∗ . Hence HS = (pH ◦ ι`)1...t logm ≈qH (H ′′)1...t logm
where H1...t logm means H with its output restricted to the first t logm bits.11
And H ′′ ≈` H3 for uniformly random H3 : {0, 1}∗ → {0, 1}`∗ . Thus HS ≈qH
(H ′′)1...t logm ≈` (H3)1...t logm ≈ HR, hence HS ≈qH ,` HR.

Since qH and qG are upper bounds on the number of queries to H and G and `
bounds input length of the H-queries made by A, GR ≈qG GS and HS ≈qH ,` HR

imply that A cannot distinguish the oracles GR, HR produced by ROdist from the
oracles GS , HS produced by SOE

init . Thus Pr[b = 1 : Game 7] = Pr[b = 1 : Game 8].

Summarizing, we have that
∣∣Pr[b = 1 : Game 1] − Pr[b = 1 : Game 8]

∣∣ is
negligible. Since Games 1 and 8 are the games in (1), it follows that (POE , VOE)
is zero-knowledge. �

3.2 Online extractability

We now proceed to prove that (POE , VOE) is simulation-sound online-extractable
using the extractor EPOE from Figure 4.

To analyze EPOE , we define a number of random variables and events that
can occur in the execution of the simulation-soundness game (Definition 4).
Remember, the game in question is G,H ← SOE

init , (x, π) ← AG,H,SPOE , ok ←
V G,HOE (x, π), w ← EPOE

(H,x, π), and simproofs is the set of all proofs returned
by SPOE

(together with the corresponding statements).
– H0: Let H0 denote the initial value of H as returned by SOE

init . (H can change
during the game because SPOE

programs it, see Figure 3. On the other hand,
G does not change.)

– H1: Let H1 denote to the final value of H (as used by VOE for computing
ok).

11 Notice that to see this, we need to be able to implement (H ′′)1...t logm using a single
oracle query to H ′′. This can be done by initializing the output qubits of H ′′ that
shall be ignored with |+〉, see [24, Section 3.2].

– ShouldEx: ok = 1 and (x, π) /∈ simproofs. (I.e., in this case the extractor
should find a witness.)

– ExFail: ok = 1 and (x, π) /∈ simproofs and (x,w) /∈ R. (ExFail represents a
successful attack.)

– MallSim: ok = 1 and (x, π) /∈ simproofs and (x, π∗) ∈ simproofs
for some π∗ =

(
(comi)i, (chi,j)i,j , (hi,j)i,j , (resp

∗
i)i

)
where(

(comi)i, (chi,j)i,j , (hi,j)i,j , (respi)i
)

:= π. (In other words, the adver-
sary produces a valid proof that differs from one of the simulator generated
proofs (for the same statement x) only in the resp-components).

– We call a triple (com, ch, resp) Σ-valid iff VΣ(x, com, ch, resp) = 1 (x will
always be clear from the context). If R is a set, we call (com, ch, R) set-valid
iff there is a resp ∈ R such that (com, ch, resp) is Σ-valid. And Σ-invalid
and set-invalid are the negations of Σ-valid and set-valid.
The following technical lemma establishes that an adversary with access

to the simulator SPOE
cannot produce a new valid proof by just changing the

resp-components of a simulated proof. This will cover one of the attack scenarios
covered in the proof of simulation-sound online-extractability below.

Lemma 11 (Non-malleability). Let κ be a lower bound on the collision-
entropy of the tuple

(
(comi)i, (chi,j)i,j , (hi,j)i,j

)
produced by SPOE (given its

initial state and the oracle G,H). Let qG be an upper bound for the number of
queries to G made by A and SPOE

and VOE together. Let n be an upper bound
on the number of invocations of SPOE

.
Then Pr[MallSim] ≤ n(n+1)

2 2−κ +O
(
(qG + 1)32−`resp

)
.

Proof. First, since G is chosen as a polynomial of degree 2qG − 1 and is thus
2qG-wise independent, by [23] G is perfectly indistinguishable from a uniformly
random G within qG queries. Thus, for the proof of this lemma, we can assume
that G is a uniformly random function.

In the definition of MallSim, since ok = 1, we have that π is accepted by
VOE . In particular, this implies that G(respi) = hi,Ji for all i by definition of
VOE . And J1‖ . . . ‖Jt = H1(x, πhalf) where πhalf :=

(
(comi)i, (chi,j)i,j , (hi,j)i,j

)
is π without the resp-components. Furthermore, by construction of SPOE

, we
have that π∗ satisfies: G(resp∗i) = hi,J∗i for all i and J∗1 ‖ . . . ‖J∗t = H∗(x, πhalf)
where H∗ denotes the value of H directly after SPOE output π∗. (I.e., H∗ might
differ from H1 if further invocations of SPOE programmed H further.) But if
H1(x, πhalf) = H∗(x, πhalf), then Ji = J∗i for all i, and thus G(respi) = G(resp∗i)
for all i. And since π /∈ simproofs and π∗ ∈ simproofs by definition of MallSim,
we have that respi 6= resp∗i for some i.

Thus

Pr[MallSim] ≤ Pr[H1(x, πhalf) 6= H∗(x, πhalf)]

+ Pr[∃i : G(respi) = G(resp∗i) ∧ respi 6= resp∗i].

If we have H1(x, πhalf) 6= H∗(x, πhalf), this implies that SPOE
reprogrammed

H after producing π∗. This implies in particular that in two invocations of SPOE
,

the same tuple πhalf =
(
(comi)i, (chi,j)i,j , (hi,j)i,j

)
was chosen. This happens

with probability at most n(n+1)
2 2−κ because each such tuple has collision-entropy

at least κ.
Finally, since G is a random function that is queried at most qG times,

Pr[∃i : G(respi) = G(resp∗i) ∧ respi 6= resp∗i] ∈ O
(
(qG + 1)32−`resp

)
by [24,

Theorem 3.1] (collision-resistance of the random oracle).
Thus Pr[MallSim] ≤ n(n+1)

2 2−κ +O
(
(qG + 1)32−`resp

)
. �

The following lemma states that, if H is uniformly random, the adversary
cannot produce a valid proof (conditions (i),(ii)) from which is it not possible
to extract a second response for one of the comi by inverting G (condition (iii)).
This lemma already implies online-extractability, because it implies that the
extractor EPOE will get a commitment comi with two valid responses. However,
it does not go the full way to showing simulation-sound online-extractability yet,
because in that setting, the adversary has access to SPOE

which reprograms the
random oracle H, so H cannot be treated as a random function.

Lemma 12. Let G be an arbitrarily distributed function, and let H0 : {0, 1}≤` →
{0, 1}t logm be uniformly random (and independent of G). Then it is hard to find
x and π =

(
(comi), (chi,j), (hi,j), (respi)

)
such that:

(i) hi,Ji = G(respi) for all i with
J1‖ . . . ‖Jt := H0(x, (comi)i, (chi,j)i,j , (hi,j)i,j).

(ii) (comi, chi,Ji , respi) is Σ-valid for all i.
(iii) (comi, chi,j , G

−1(hi,j)) is set-invalid for all i and j with j 6= Ji.
More precisely, if AG,H0 makes at most qH queries to H0, it outputs (x, π) with
these properties with probability at most 2(qH + 1)2−(t logm)/2.

Proof. Without loss of generality, we can assume that G is a fixed function and
that A knows that function. Thus in the following, we only provide oracle access
to H0 to A.

For any given value of H0, we call a tuple
(
x, (comi), (chi,j), (hi,j)

)
an H0-

solution iff:

for each i, j, we have that (comi, chi,j , G
−1(hi,j)) is set-valid iff j = Ji

where J1‖ . . . ‖Jt := H0(x, (comi)i, (chi,j)i,j , (hi,j)i,j).

(The name “H0-solution” derives from the fact that we are trying to solve an
equation in terms of H0.)

It is easy to see that if x and π =
(
(comi), (chi,j), (hi,j), (respi)

)
satisfies

(i)–(iii), then
(
x, (comi), (chi,j), (hi,j)

)
is an H0-solution. (Note for the case

j = Ji that hi,Ji = G(respi) implies respi ∈ G−1(hi,j). With the Σ-validity of
(comi, chi,Ji , respi) this implies the set-validity of (comi, chi,j , G

−1(hi,j)).)
Thus it is sufficient to prove that AH0() making at most qH queries outputs an

H0-solution with probability at most 2(qH +1)2−(t logm)/2. Fix such an adversary
AH0 ; denote the probability that it outputs an H0-solution (for uniformly random
H0) with µ.

We call
(
x, (comi), (chi,j), (hi,j)

)
a candidate iff for each i, there is exactly one

J∗i such that (comi, chi,J∗i , G
−1(hi,J∗i)) is set-valid. Notice that a non-candidate

can never be an H0-solution. (This justifies the name “candidate”, those are
candidates for being an H0-solution, awaiting a test-call to H0.)

For any given candidate c, for uniformly random H0, the probability that
c is an H0-solution is 2−t logm. (Namely c is an H0-solution iff all Ji = J∗i for
all i, i.e., there is exactly one output of H0(c) ∈ {0, 1}t logm that makes c an
H0-solution.)

Let Cand denote the set of all candidates. Let F : Cand→ {0, 1} be a random
function with all F (c) i.i.d. with Pr[F (c) = 1] = 2−t logm.

Given F , we construct HF : {0, 1}∗ → {0, 1}t logm as follows:
– For each c /∈ Cand, assign a uniformly random y ∈ {0, 1}t logm to HF (c).
– For each c ∈ Cand with F (c) = 1, let HF (c) := J∗1 ‖ . . . ‖J∗t where J∗1 , . . . , J∗t

are as in the definition of candidates.
– For each c ∈ Cand with F (c) = 0, assign a uniformly random y ∈ {0, 1}t logm\
{J∗1 ‖ . . . ‖J∗t } to HF (c).

Since F (c) = 1 with probability 2−t logm, HF (c) is uniformly distributed over
{0, 1}t logm for c ∈ Cand. Thus HF is a uniformly random function.

Since AH0() outputs an H0-solution with probability µ and HF has the same
distribution as H0, AHF () outputs an HF -solution c with probability µ. Since
an HF -solution c must be a candidate, we have c ∈ Cand. And c can only be an
HF -solution if HF (c) = J∗1 ‖ . . . ‖J∗t , i.e., if F (c) = 1. Thus AHF () returns some c
with F (c) = 1 with probability µ.

However, to explicitly construct HF , AHF needs to query all values of F , so
the number of F -queries is not bounded by qH . However, AHF can be simulated
by the following algorithm SF :
– Pick uniformly random H1 : {0, 1}≤` → {0, 1}t logm. Set H2(c) := J∗1 ‖ . . . ‖J∗t

for all c ∈ Cand. For all c ∈ Cand, let H3(c) := y for uniformly random
y ∈ {0, 1}t logm \ {J∗1 ‖ . . . ‖J∗t }.

– Let H ′F (c) := H1(c) if c /∈ Cand, let H ′F (c) := H2(c) if c ∈ Cand and F (c) = 1,
let H ′F (c) := H3(c) if c ∈ Cand and F (c) = 0.

– Run AH
′
F ().

The function H ′F constructed by S has the same distribution as HF (given the
same F). Thus S outputs c with F (c) = 1 with probability µ. Furthermore, no
F -queries are needed to construct H1, H2, H3, and a single F -query is needed
for each H ′F -query performed by AHF . Thus S performs at most qH F -queries.
Using the hardness of search in a random function (see the full version [19]), we
get µ ≤ 2(qH + 1)2−(t logm)/2. �

Theorem 13 (Simulation-sound online-extractability). Assume that Σ
has special soundness. Let κ be a lower bound on the collision-entropy of the tuple(
(comi)i, (chi,j)i,j , (hi,j)i,j

)
produced by SPOE (given its input and the oracles

G,H). Assume that t logm and κ and `resp are superlogarithmic.
Then (VOE , POE) is simulation-sound online-extractable with extractor EPOE

from Figure 4 and with respect to the simulator (SPOE
, SOE

init) from Figure 3.
A concrete bound µ on the success probability is given in (6) below.

Proof. Given π =
(
(comi)i, (chi,j)i,j , (hi,j)i,j , (respi)i

)
, let πhalf :=(

(comi)i, (chi,j)i,j , (hi,j)i,j
)
, i.e., π without the resp-components.

Fix an adversary A for the game in Definition 4. Assume A, SPOE
, VOE

together perform at most qG queries to G and qH queries to H, and that at most
n instances of SPOE

are invoked.
Let Ev(i), Ev(ii), Ev(iii) denote the events that conditions (i), (ii), (iii) from

Lemma 12 are satisfied.
Assume that ShouldEx ∧ ¬MallSim ∧ ¬Ev(iii) occurs. Intuitively, this means

that we are in a situation we the extractor should extract (ShouldEx), but cannot
do so (¬Ev(iii)), and the adversary managed to bring this situation about without
using simulator generated proofs, i.e. without using malleability (¬MallSim).
Since we exclude malleability attacks by Lemma 11, this is basically the only
case we will need to worry about.

The event ShouldEx by definition entails ok = 1 and (x, π) /∈ simproofs.
Furthermore, ¬MallSim then implies that for all (x∗, π∗) ∈ simproofs , we have that
(x∗, π∗half) 6= (x, πhalf). In an invocation π∗ ← SPOE

(x∗), SPOE
only reprograms

H at position H(x∗, π∗half), hence H(x, πhalf) is never reprogrammed. Thus
H0(x, πhalf) = H1(x, πhalf). Furthermore ok = 1 implies by definition of VOE (and
the fact that H1 denotes H at the time of invocation of VOE): (comi, chi,Ji , respi)
is Σ-valid for all i and hi,Ji = G(respi) for all i, where J1‖ . . . ‖Jt := H1(x, πhalf).
Since H0(x, πhalf) = H1(x, πhalf), we have J1‖ . . . ‖Jt = H0(x, πhalf) as well. And
¬Ev(iii) implies that (comi, chi,j , G

−1(hi,j)) is set-valid for some i, j with j 6= Ji.
Thus by construction, EPOE

outputs w := EΣ(x, comi, chi,Ji , respi, chi,j , resp
′)

for some resp′ ∈ G−1(hi,j) such that (comi, chi,j , resp
′) is Σ-valid. Furthermore,

ok = 1 implies by definition of VOE that chi,1, . . . , chi,t are pairwise distinct, in
particular chi,j 6= chi,Ji . And ok = 1 implies that (comi, chi,Ji , respi) is Σ-valid.
On such inputs, the special soundness of EΣ (cf. Definition 5) implies that
(x,w) ∈ R with probability at least 1− εsound for negligible εsound . Thus

Pr[ShouldEx ∧ (x,w) ∈ R ∧ ¬MallSim ∧ ¬Ev(iii)]

≥ Pr[ShouldEx ∧ ¬MallSim ∧ ¬Ev(iii)]− εsound . (2)

Then since ExFail ⇐⇒ ShouldEx ∧ (x,w) /∈ R,

Pr[ExFail ∧ ¬MallSim ∧ ¬Ev(iii)]

= Pr[ShouldEx ∧ ¬MallSim ∧ ¬Ev(iii)]

− Pr[ShouldEx ∧ (x,w) ∈ R ∧ ¬MallSim ∧ ¬Ev(iii)]
(2)

≤ εsound . (3)

Then

Pr[ExFail ∧ ¬MallSim]

= Pr[ExFail ∧ ¬MallSim ∧ Ev(iii)] + Pr[ExFail ∧ ¬MallSim ∧ ¬Ev(iii)]
(3)

≤ Pr[ExFail ∧ ¬MallSim ∧ Ev(iii)] + εsound . (4)

Assume ExFail ∧ ¬MallSim. As seen above (in the case ShouldEx ∧
¬MallSim ∧ ¬Ev(iii)), this implies that H0(x, πhalf) = H1(x, πhalf) and that

(comi, chi,Ji , respi) is Σ-valid for all i and hi,Ji = G(respi) for all i, where
J1‖ . . . ‖Jt := H1(x, πhalf). This immediately implies Ev(i) and Ev(ii). Thus

Pr[ExFail ∧ ¬MallSim]
(4)

≤ Pr[ExFail ∧ ¬MallSim ∧ Ev(iii)] + εsound
(∗)
= Pr[ExFail ∧ ¬MallSim ∧ Ev(i) ∧ Ev(ii) ∧ Ev(iii)] + εsound

≤ Pr[Ev(i) ∧ Ev(ii) ∧ Ev(iii)] + εsound (5)

where (∗) uses ExFail ∧ ¬MallSim⇒ Ev(i) ∧ Ev(ii).
As already seen in the proof of Theorem 10, H = H0 as chosen by SOE

init is
perfectly indistinguishable from a uniformly random H0 : {0, 1}≤` → {0, 1}t logm
using only qH queries. Thus we can apply Lemma 12, and get Pr[Ev(i) ∧ Ev(ii) ∧
Ev(iii)] ≤ 2(qH + 1)2−(t logm)/2.

And by Lemma 11, we have Pr[MallSim] ≤ n(n+1)
2 2−κ +O

(
(qG + 1)32−`resp

)
.

We have

Pr[ExFail] ≤ Pr[ExFail ∧ ¬MallSim] + Pr[MallSim]
(5)

≤ Pr[Ev(i) ∧ Ev(ii) ∧ Ev(iii)] + εsound + Pr[MallSim]

≤ 2(qH + 1)2−(t logm)/2 + εsound +
n(n+ 1)

2
2−κ +O

(
(qG + 1)32−`resp

)
=: µ.

(6)

Since the adversary A is polynomial-time, qH , qG, n are polynomially-bounded.
Furthermore t logm and κ and `resp are superlogarithmic by assumption. Thus
µ is negligible. And since ExFail is the probability that the adversary wins in
Definition 4, it follows that (POE , VOE) is simulation-sound online-extractable. �

Corollary 14. If there is a sigma-protocol Σ that is complete and HVZK and
has special soundness, then there exists a non-interactive zero-knowledge proof
system with simulation-sound online extractability in the random oracle model.

Proof. Without loss of generality, we can assume that the commitments and
the responses of Σ have at least superlogarithmic collision-entropy κ′. (This
can always be achieved without losing completeness, HVZK, or special sound-
ness by adding κ′ random bits to the commitments and the responses of Σ.)
This also implies that `resp is superlogarithmic. And it implies that the tuples(
(comi)i, (chi,j)i,j , (hi,j)i,j , (respi)i

)
produced by POE have superlogarithmic

collision-entropy ≥ κ′.
Fix polynomially-bounded t,m such that m is a power of two with 2 ≤ m ≤

|Nresp | and such that t logm is superlogarithmic. (E.g., t superlogarithmic and
m = 2.) and let (VOE , POE) be as in Definition 8 (with parameters t,m).

Then by Theorem 10, (VOE , POE) is zero-knowledge.
The collision-entropy κ of the tuples

(
(comi)i, (chi,j)i,j , (hi,j)i,j , (respi)i

)
produced by SPOE

is superlogarithmic. (Otherwise one could distinguish between

POE and SPOE
by invoking it twice with the same argument and checking if they

result in the same tuple.)
Then by Theorem 13, (VOE , POE) is simulation-sound online-extractable. �

4 Signatures

A typical application of non-interactive zero-knowledge proofs of knowledge
are signature schemes. E.g., the Fiat-Shamir construction [10] was originally
described as a signature scheme. As a litmus test whether our security defi-
nitions (Definition 2 and Definition 4) are reasonable in the quantum setting,
we demonstrate how to construct signatures from non-interactive simulation-
sound online-extractable zero-knowledge protocols (in particular the protocol
(POE , VOE) from Definition 8). The construction is standard, and the proof
simple, but we believe that such a sanity check for the definitions is necessary,
because sometimes a definition is perfectly reasonable in the classical setting
while its natural quantum counterpart is almost useless. (An example is the
classical definition of “computationally binding commitments” which was shown
to imply almost no security in the quantum setting [2].)

The basic idea of the construction is that to sign a message m, one needs
to show the knowledge of one’s secret key. Thus, we need a relation R between
public and secret keys, and we need an algorithm G to generate public/secret
key pairs such that it is hard to guess the secret key. The following definition
formalizes this:

Definition 15 (Hard instance generators). We call an algorithm G a hard
instance generator for a relation R iff
– Pr[(p, s) ∈ R : (p, s)← G()] is overwhelming and
– for any polynomial-time A, Pr[(p, s′) ∈ R : (p, s) ← G(), s′ ← A(p)] is
negligible.

An example of a hard instance generator would be: R := {(p, s) : p = f(s)} for a
one-way function f , and G picks s uniformly from the domain of f , sets p := f(s),
and returns (p, s).

Now a signature is just a proof of knowledge of the secret key. That is, the
statement is the public key, and the witness is the secret key. However, a signature
should be bound to a particular message. For this, we include the message m
in the statement that is proven. That is, the statement that is proven consists
of a public key and a message, but the message is ignored when determining
whether a given statement has a witness or not. (In the definition below, this is
formalized by considering an extended relation R′.) The simulation-soundness of
the proof system will then guarantee that a proof/signature with respect to one
message cannot be transformed into a proof/signature with respect to another
message because this would mean changing the statement.

A signature scheme consists of a key generation algorithm (pk , sk) ←
KeyGen(). The secret key sk is used to sign a message m using the signing

algorithm σ ← Sign(sk ,m) to get a signature σ. And the signature is valid iff
Verify(pk , σ,m) = 1.

Definition 16 (Signatures from non-interactive proofs). Let G be a hard
instance generator for a relation R. Let R′ := {((p,m), s) : (p, s) ∈ R}. Let (P, V)
be a non-interactive proof system for R′ (in the random oracle model). Then we
construct the signature scheme (KeyGen,Sign,Verify) as follows:
– KeyGen(): Pick (p, s)← G(). Let pk := p, sk := (p, s). Return (pk , sk).
– Sign(sk ,m) with sk = (p, s): Run σ ← P (x,w) with x := (p,m) and w := s.
Return σ.

– Verify(pk , σ,m) with pk = y: Run ok ← V (x, σ) with x := (p,m). Return
ok .

Notice that if we use the scheme (POE , VOE) from Definition 8, we do not
need to explicitly find a sigma-protocol for the relation R′. This is because an
HVZK sigma protocol with special soundness for R will automatically also be
an HVZK sigma protocol with special soundness for R′. Thus, the only effect of
considering the relation R′ is that in POE , the message m will be additionally
included in the hash query H(x, (comi), (chi), (hi,j)) as part of x = (p,m).

Definition 17 (Strong unforgeability). A signature scheme
(KeyGen,Sign,Verify) is strongly unforgeable iff for all polynomial-time
adversaries A,

Pr[ok = 1 ∧ (m∗, σ∗) /∈ Q : H ← ROdist, (pk , sk)← KeyGen(),

(σ∗,m∗)← AH,Sig(pk), ok ← Verify(pk , σ∗,m∗)]

is negligible. Here Sig is a classical oracle that upon classical input m returns
Sign(sk ,m). (But queries to H are quantum.) And Q is the list of all queries
made to Sig. (I.e., when Sig(m) returns σ, (m,σ) is added to the list Q.)

If we replace (m∗, σ∗) /∈ Q by ∀σ.(m∗, σ) /∈ Q, we say the signature scheme
is unforgeable.

Theorem 18 (Unforgeability). If (P, V) is zero-knowledge and
has simulation-sound online-extractability, then the signature scheme
(KeyGen,Sign,Verify) from Definition 16 is strongly unforgeable.

Proof. Fix a quantum-polynomial-time adversary A. We need to show that the
following probability P1 is negligible.

P1 := Pr[ok = 1 ∧ (m∗, σ∗) /∈ Q : H ← ROdist, (pk , sk)← KeyGen(),

(σ∗,m∗)← AH,Sig(pk), ok ← Verify(pk , σ∗,m∗)]

By definition of the signature scheme,

P1 = Pr[ok = 1 ∧ (m∗, σ∗) /∈ Q : H ← ROdist, (p, s)← G(),

(σ∗,m∗)← AH,Sig(p), ok ← V ((p,m∗), σ∗)]

And Sig(m) returns the proof P ((p,m), s). And G is the hard instance generator
used in the construction of the signature scheme.

Since G is a hard instance generator, we have that (p, s) ∈ R with overwhelm-
ing probability. Thus, with overwhelming probability, for all m, ((p,m), s) ∈
R′. Thus, with overwhelming probability, Sig invokes P ((p,m), s) only with
((p,m), s) ∈ R′. Since (P, V) is zero-knowledge (Definition 2), we can replace
H ← ROdist by H ← Sinit() and P ((p,m), s) by SP ((p,m)) where (Sinit , SP) is
the simulator for (P, V). That is, |P1 − P2| is negligible where:

P2 := Pr[ok = 1 ∧ (m∗, σ∗) /∈ Q : H ← Sinit(), (p, s)← G(),

(σ∗,m∗)← AH,Sig
′
(p), ok ← V ((p,m∗), σ∗)]

and Sig′(m) returns SP ((p,m)).
Let E be the extractor whose existence is guaranteed by the simulation-sound

online-extractability of (P, V), see Definition 4. Consider the following game G:

G := H ← Sinit(), (p, s)← G(), (σ∗,m∗)← AH,Sig
′
(p),

ok ← V ((p,m∗), σ∗), s′ ← E(H, (p,m∗), σ∗).

That is, we perform the same operations as in P2, except that we additionally try
to extract a witness for the statement (p,m∗). Since the output of E is simply
ignored, Pr[ok = 1 ∧ (m∗, σ∗) /∈ Q : G] = P2.

Let simproofs denote the list of queries made to SP , i.e., whenever Sig′(m)
queries SP ((p,m)) resulting in proof/signature σ, (p,m, σ) is appended to
simproofs. Note that whenever some (p,m, σ) is appended to simproofs, (m,σ)
is appended to Q. Thus (m∗, σ∗) /∈ Q implies (p,m∗, σ∗) /∈ simproofs.

Since (P, V) is simulation-sound online-extractable, P3 := Pr[ok = 1 ∧
(p,m∗, σ∗) /∈ simproofs ∧ ((p,m∗), s′) /∈ R′ : G] is negligible.

Since (m∗, σ∗) /∈ Q implies (p,m∗, σ∗) /∈ simproofs, and ((p,m∗), s′) ∈ R′ iff
(p, s′) ∈ R, we have P3 ≥ P4 with P4 := Pr[ok = 1∧(m∗, σ∗) /∈ Q∧(p, s′) /∈ R : G].
Hence P4 is negligible.

And since G is a hard instance generator and s is never given to any algorithm
in G, P5 := Pr[ok = 1 ∧ (m∗, σ∗) /∈ Q ∧ (p, s′) ∈ R : G] is negligible.

Thus P2 = P4 + P5 is negligible. And since |P1 − P2| is negligible, P1 is
negligible. Since this holds for any quantum-polynomial-time A, the signature
scheme is strongly unforgeable. �

Note that this proof is exactly as it would have been in the classical case (even
though the adversary A was quantum). This is due to the fact that simulation-
sound online-extractability as defined in Definition 4 allows us to extract a witness
in a non-invasive way: we do not need to operate in any way on the quantum state
of the adversary (be it by measuring or by rewinding); we get the witness purely
by inspecting the classical proof/signature σ∗. This avoids the usual problem of
disturbing the quantum state while trying to extract a witness.

Acknowledgments. We thank Marc Fischlin and Tommaso Gagliardoni for
valuable discussions and the initial motivation for this work. This work was

supported by the Estonian ICT program 2011-2015 (3.2.1201.13-0022), the Eu-
ropean Union through the European Regional Development Fund through the
sub-measure “Supporting the development of R&D of info and communication
technology”, by the European Social Fund’s Doctoral Studies and International-
isation Programme DoRa, by the Estonian Centre of Excellence in Computer
Science, EXCS.

A Sigma-protocols with oblivious commitments

In this section we review the definition of sigma-protocols with oblivious com-
mitments [7] and explain why they directly imply NIZK proofs in the CRS
model.

Definition 19 (Sigma-protocols with oblivious commitments, follow-
ing [7]). A sigma-protocol Σ = (Ncom , Nch , Nresp , P

1
Σ , P

2
Σ , VΣ) has oblivious

commitments if P 1
Σ simply chooses and return a uniformly random bitstring from

Ncom .12

In other words, in a sigma-protocol with oblivious commitments, the first
message (the commitment) is uniformly random. (While normally, we only require
the second message to be uniformly random.)

Note that [7] defines oblivious commitments slightly differently: the prover
does not have to send a uniformly random commitment. Instead, given its
commitment, it should be efficiently feasible to find randomness that leads to
that commitment. But [7] points out that that definition is equivalent to what we
wrote in Definition 19 (in the sense that a protocol satisfying one definition can
easily be transformed into one satisfying the other). Furthermore, [7] actually
assumes Definition 19 in their construction, so we give and discuss that definition
here. [7] proves (restated using the language from our paper):

Theorem 20 (Fiat-Shamir-like signatures, [7]). Assume a hard instance
generator G and a sigma-protocol Σ with oblivious commitments, completeness,
special-soundness, and HVZK.

Then there is an unforgeable signature scheme (build in an efficient way from
G and Σ).

The actual construction used [7] is not Fiat-Shamir, but only inspired by Fiat-
Shamir. The crucial difference is that the commitments are not chosen by the
prover, but instead are hash values output by the random oracle (the same way
as the challenges are output by the random oracle in normal Fiat-Shamir).

At the first glance this theorem might seem unrelated to the problem of
constructing NIZK proofs. However, their proof of unforgeability implicitly proves
12 We stress that P 1

Σ needs to directly output its randomness. For example, if P 1
Σ

produces com := f(r) with random r using a one-way permutation f , then P 1
Σ does

not have oblivious commitments, even though com is uniformly distributed. (Because
P 1
Σ additionally produces a preimage of com under f .)

the existence of an extractor (though not of a simulation-sound extractor) because
it works by extracting two sigma-protocol executions and then computing a
witness from those.

Note however that the proof from [7] does not show that their construction is
zero-knowledge. Yet, we conjecture that with the random oracle programming
techniques presented here, one can show that their construction is zero-knowledge
using a proof similar to ours.

Relation to CRS NIZK proofs. We now argue why sigma-protocols with
oblivious commitments are quite a strong assumption. Namely, they are by
themselves (without any use of a random oracle) already NIZK proofs of knowledge
in the CRS model.

Given a sigma-protocol Σ = (Ncom , Nch , Nresp , P
1
Σ , P

2
Σ , VΣ) with oblivious

commitments, we construct a proof system ΠΣ = (CRS , P, V) in the CRS model
as follows: The CRS crs is uniformly random from the set crs := Ncom×Nch . The
prover P (crs, x, w) splits crs =: (com, ch), runs P 1

Σ(x,w) with the randomness
that would yield com (this is possible because in a sigma-protocol with oblivious
commitments, P 1

Σ just outputs its randomness), and runs resp ← P 2
Σ(ch). The

proof is π := resp. The verifier V (crs, x, π) splits crs =: (com, ch) and resp := π
and runs VΣ(x, com, ch, resp) and accepts if VΣ accepts.

We now show that (P, V) is both zero-knowledge and a proof of knowledge in
the CRS model.

Definition 21 (Zero-knowledge in the CRS model). A non-interactive
protocol (CRS , P, V) is (single-theorem, non-adaptive) zero-knowledge in the
CRS model for relation R iff there exists a polynomial-time simulator S such that
for any quantum-polynomial-time adversary (A1, A2), the following is negligible:∣∣Pr[(x,w) ∈ R ∧ b = 1 : (x,w)← A1(), crs

$← CRS , π ← P (crs, x, w),

b← A2(crs, π)]

−Pr[(x,w) ∈ R ∧ b = 1 : (x,w)← A1(), crs, π
$← S(x), b← A2(crs, π)]

∣∣
Notice that we have chosen the variant of zero-knowledge that is usually

called single-theorem, non-adaptive zero-knowledge. That is, given one CRS, one
is allowed to produce only a single proof. And the statement x that is to be
proven may not depend on the CRS.

Lemma 22. If Σ is a zero-knowledge sigma-protocol with oblivious commitments,
then ΠΣ is zero-knowledge in the CRS model.

Proof. Let S(x) be a simulator that runs (com, ch, resp) := SΣ(x) where
SΣ is the simulator of the sigma-protocol (see Definition 5). Then S com-
putes crs := (com, ch) and π := resp and returns (crs, π). Note that crs =

(com, ch)
$← CRS = Ncom × Nch yields the same distribution of (com, ch) as

com ← P 1
Σ(x), ch

$← Nch . Together with the fact that Σ is zero-knowledge,
one easily sees that the probability difference in Definition 21 is negligible for
quantum-polynomial-time (A1, A2). �

Definition 23 (Proofs of knowledge in the CRS model). A non-
interactive protocol (CRS , P, V) is a (single-theorem, non-adaptive) proof of
knowledge in the CRS model for relation R iff there exists a polynomial-time
extractor (E1, E2) such that the output of E1 is quantum-computationally indis-
tinguishable from crs

$← CRS , and such that for any quantum-polynomial-time
adversary (A1, A2), the following probability is negligible:

Pr[ok = 1∧(x,w) /∈ R : x← A1(), crs ← E1(x), π ← A2(crs), w ← E2(π)]. (7)

Note that again, we have defined a weak form of proofs of knowledge: single-
theorem and non-adaptive.

Lemma 24. Let Σ be a sigma-protocol with oblivious commitments. Assume
that Σ is zero-knowledge with the following extra properties: for (com, ch, resp)←
SΣ(x), (com, ch) is quantum-computationally indistinguishable from uniform,
and VΣ(com, ch, resp) = 1 with overwhelming probability.13

Then ΠΣ is a proof of knowledge in the CRS model.

Proof. Let E1(x) run the simulator (com, ch, resp) ← SΣ(x) of the sigma-
protocol Σ. Then E1 picks ch ′ $← Nch \ ch. Then E1 outputs crs := (com, ch ′).

Since (com, ch) chosen as (com, ch, resp)← SΣ(x) is indistinguishable from
uniform, so is (com, ch ′) as chosen by E1. Thus crs = (com, ch ′) as picked
by E1(x) is quantum-computationally indistinguishable from crs

$← CRS =
Ncom ×Nch .

The second part of the extractor, E2(π), sets resp′ := π. This yields two
executions of the sigma-protocol: (com, ch, resp) and (com, ch ′, resp′) with ch 6=
ch ′. Then E2 runs w ← EΣ(x, com, ch, resp, ch

′, resp′) (the extractor of Σ) to
get a witness w and returns that witness.

The first execution (com, ch, resp) is valid (i.e., VΣ accepts it) with over-
whelming probability, since (com, ch, resp) was produced by the simulator and
thus passes verification with overwhelming probability (by assumption in the
lemma). If additionally the second execution (com, ch ′, resp′) is valid (i.e., if
ok = 1 in (7)), then EΣ returns a correct witness with overwhelming probability
(i.e., (x,w) ∈ R). Thus the case ok = 1 ∧ (x,w) /∈ R occurs with negligible
probability, hence the probability in (7) is negligible. �

Summarizing, a sigma-protocol with oblivious commitments is already a
NIZK proof of knowledge in the CRS model in itself. Hence sigma-protocols
13 At the first glance, those properties already follow from zero-knowledge and com-

pleteness of Σ. However, zero-knowledge and completeness do not apply when there
exists no witness for x. So we need to explicitly require those conditions to also hold
when x has no witness.

Note that the proof in [7] does not need these conditions because in their setting,
the statement x is the honestly generated public key of the signature scheme, and
thus always has a witness. If, however, one would adapt their proof to show that
their construction is actually a NIZK proof of knowledge, those conditions would be
needed for the same reasons as in our proof of Lemma 24.

with oblivious commitments seem to be a much stronger assumption that just
sigma-protocols. (At least we are not aware of any generic construction, classical
or quantum, that transforms a sigma-protocols into a NIZK proof/proof of
knowledge in the CRS model, without using random oracles.)

One may ask why the fact that sigma-protocols with oblivious commitments
are already NIZK proofs of knowledge does not trivialize the construction from
[7] since it converts a NIZK proof of knowledge into a NIZK proof of knowledge.
The crucial point is that sigma-protocols with oblivious commitments are only
single-theorem non-adaptive NIZK proofs. So one can interpret the construction
from [7] as a way of strengthening a specific kind of NIZK proofs to become multi-
theorem adaptive ones.14 (Actually, seen like this, their construction becomes a
very natural one: the statement is hashed using the random oracle, and the hash
is used as a CRS for the proof.)

Sigma-protocols with oblivious commitments and efficient protocols.
One major advantage of sigma-protocols is that they allow for very efficient
constructions of sigma-protocols for complex relations from simpler ones [6,8].
For example, given sigma-protocols for two relations R1, R2, it is possible to build
a sigma-protocol for the disjunction R := {((x1, x2), w) : (x1, w) ∈ R1 ∨ (x2, w) ∈
R2}. Unfortunately, even when starting with sigma-protocols with oblivious
commitments for R1, R2, the resulting sigma-protocol for R will not have oblivious
commitments any more. This is because the protocol for R sends a commitment
(com1, com2) where com1 is generated by the prover of R1, and com2 by the
simulator of R2 (or vice versa). Since given the output of the simulator, it is
in general hard to determine its randomness, it will not be possible to find
the randomness that lead to com2. Hence the protocol does not have oblivious
commitments.

References

1. B. Adida. Helios: Web-based open-audit voting. In P. C. van Oorschot, editor,
USENIX Security Symposium 08, pages 335–348. USENIX, 2008. Online at http:
//www.usenix.org/events/sec08/tech/full_papers/adida/adida.pdf.

2. A. Ambainis, A. Rosmanis, and D. Unruh. Quantum attacks on classical proof
systems (the hardness of quantum rewinding). In FOCS 2014, pages 474–483. IEEE,
October 2014.

3. M. Ben-Or. Probabilistic algorithms in finite fields. In FOCS 1981, pages 394–398.
IEEE, 1981.

4. M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge and its
applications. In Proceedings of the Twentieth Annual ACM Symposium on Theory
of Computing, STOC ’88, pages 103–112, New York, NY, USA, 1988. ACM.

5. E. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation. In ACM
CCS ’04, pages 132–145, New York, NY, USA, 2004. ACM.

14 Assuming that their construction can indeed be proven secure as a NIZK proof of
knowledge in the random oracle model.

http://www.usenix.org/events/sec08/tech/full_papers/adida/adida.pdf
http://www.usenix.org/events/sec08/tech/full_papers/adida/adida.pdf

6. R. Cramer, I. Damgård, and B. Schoenmakers. Proofs of partial knowledge and
simplified design of witness hiding protocols. In Y. Desmedt, editor, Crypto 94,
volume 839 of Lecture Notes in Computer Science, pages 174–187. Springer, 1994.

7. Ö. Dagdelen, M. Fischlin, and T. Gagliardoni. The Fiat-Shamir transformation in
a quantum world. In Asiacrypt 2013, volume 8270 of LNCS, pages 62–81. Springer,
2013. Online version IACR ePrint 2013/245.

8. I. Damgård. On σ-protocols. Course notes for “Cryptologic Protocol Theory”,
http://www.cs.au.dk/~ivan/Sigma.pdf, 2010. Retrieved 2014-03-17. Archived at
http://www.webcitation.org/6O9USFecZ.

9. S. Faust, M. Kohlweiss, G. A. Marson, and D. Venturi. On the non-malleability of
the Fiat-Shamir transform. In INDOCRYPT 2012, volume 7668 of LNCS, pages
60–79. Springer, 2012. Preprint on IACR ePrint 2012/704.

10. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Crypto ’86, number 263 in LNCS, pages 186–194.
Springer, 1987.

11. M. Fischlin. Communication-efficient non-interactive proofs of knowledge with
online extractors. In Crypto 2005, volume 3621 of LNCS, pages 152–168. Springer,
2005.

12. O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their
validity or all languages in NP have zero-knowledge proof systems. J ACM, 38(3):690–
728, 1991.

13. J. Groth. Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In X. Lai and K. Chen, editors, Asiacrypt 2006, volume 4284 of
LNCS, pages 444–459. Springer, 2006.

14. J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups.
In N. Smart, editor, Eurocrypt 2008, volume 4965 of Lecture Notes in Computer
Science, pages 415–432. Springer, 2008.

15. D. Pointcheval and J. Stern. Security proofs for signature schemes. In U. Maurer,
editor, Eurocrypt 96, volume 1070 of LNCS, pages 387–398. Springer, 1996.

16. A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In FOCS ’99, pages 543–553. IEEE, 1999.

17. P. W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring.
In FOCS 1994, pages 124–134. IEEE, 1994.

18. D. Unruh. Quantum proofs of knowledge. In Eurocrypt 2012, volume 7237 of LNCS,
pages 135–152. Springer, April 2012. Preprint on IACR ePrint 2010/212.

19. D. Unruh. Non-interactive zero-knowledge proofs in the quantum random oracle
model. IACR ePrint 2014/587, 2014. Full version of this paper.

20. D. Unruh. Quantum position verification in the random oracle model. In Crypto
2014, LNCS. Springer, February 2014. To appear, preprint on IACR ePrint 2014/118.

21. D. Unruh. Revocable quantum timed-release encryption. In Eurocrypt 2014, volume
8441 of LNCS, pages 129–146. Springer, 2014. Full version on IACR ePrint 2013/606.

22. J. Watrous. Zero-knowledge against quantum attacks. SIAM J. Comput., 39(1):25–
58, 2009.

23. M. Zhandry. Secure identity-based encryption in the quantum random oracle model.
In Crypto 2012, volume 7417 of LNCS, pages 758–775. Springer, 2012.

24. M. Zhandry. A note on the quantum collision and set equality problems.
arXiv:1312.1027v3 [cs.CC], Dec. 2013.

https://eprint.iacr.org/2013/245
http://www.cs.au.dk/~ivan/Sigma.pdf
http://www.webcitation.org/6O9USFecZ
http://eprint.iacr.org/2012/704
http://eprint.iacr.org/2014/587
http://arxiv.org/abs/1312.1027v3

	Non-interactive zero-knowledge proofsin the quantum random oracle model

