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1 Introduction

The McEliece cryptosystem and its security. The McEliece encryption scheme [35] which
dates backs to the end of the seventies still belongs to the very few public-key cryptosystems which
remain unbroken. It is based on the famous Goppa codes family. Several proposals which suggested
to replace binary Goppa codes with alternative families did not meet a similar fate. They all focus
on a specific class of codes equipped with a decoding algorithm: generalized Reed–Solomon codes
(GRS for short) [38] or subcodes of them [4], Reed–Muller codes [41], algebraic geometry codes
[22], LDPC and MDPC codes [2, 37] or convolutional codes [28]. Most of them were successfully
cryptanalyzed [42, 46, 36, 19, 39, 13, 24, 14]. Each time a description of the underlying code suitable
for decoding is efficiently obtained. But some of them remain unbroken, namely those relying on
MDPC codes [37] and their cousins [2], the original binary Goppa codes of [35] and their non-binary
variants as proposed in [6, 7].

Concerning the security of the McEliece proposal based on Goppa codes, weak keys were
identified in [21, 27] but they can be easily avoided. There also exist generic attacks by exponential
decoding algorithms [25, 26, 43, 10, 5, 34, 3]. More recently, it was shown in [18, 20] that the secret
structure of Goppa codes can be recovered by an algebraic attack using Gröbner bases. This attack
is of exponential nature and is infeasible for the original McEliece scheme (the number of unknowns
is linear in the length of the code), whereas for variants using Goppa codes with a quasi-dyadic or
quasi-cyclic structure it was feasible due to the huge reduction of the number of unknowns.

Distinguisher for Goppa and Reed-Solomon codes. None of the existing strategies is able to
severely dent the security of [35] when appropriate parameters are taken. Consequently, it has even
been advocated that the generator matrix of a Goppa code does not disclose any visible structure
that an attacker could exploit. This is strengthened by the fact that Goppa codes share many
characteristics with random codes. However, in [16, 17], an algorithm that manages to distinguish
between a random code and a high rate Goppa code has been introduced.

Code product. [33] showed that the distinguisher given in [16] has an equivalent but simpler
description in terms of component-wise product of codes. This product allows in particular to define
the square of a code; This can be used to distinguish a high rate Goppa code from a random one
because the dimension of the square of the dual is much smaller than the one obtained with a
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random code. The notion of component-wise product of codes was first put forward to unify many
different algebraic decoding algorithms [40, 23], then exploited in cryptology in [46] to break a
McEliece variant based on random subcodes of GRS codes [4] and in [30, 32] to study the security
of encryption schemes using algebraic-geometric codes. Component-wise powers of codes are also
studied in the context of secret sharing and secure multi-party computation [11, 12].

Distinguisher-based key-recovery attacks. The works [16, 17], without undermining the se-
curity of [35], prompts to wonder whether it would be possible to devise an attack exploiting the
distinguisher. That was indeed the case in [13] for McEliece-like public-key encryption schemes
relying on modified GRS codes [8, 1, 45]. Additionnally, [13] has shown that the unusually low
dimension of the square code of a generalized GRS code enables to compute a nested sequence of
subcodes – we call this a filtration – allowing the recovery of its algebraic structure. This gives
a completely different attack from [42] of breaking GRS-based encryption schemes. In particular,
compared to the attack of [42] on GRS codes and to the attack of [36, 19] on binary Reed–Muller
codes and low-genus algebraic geometry codes, this new way of cryptanalyzing does not require
as a first step the computation of minimum weight codewords, which is polynomial in time only
for the very specific case of GRS codes.

Our contribution. The purpose of this article is to show that the filtration attack of [13] which
gave a new way of attacking a McEliece scheme based on GRS codes can be generalized to other
families of codes. It leads for instance to a successful attack of McEliece based on high genus
algebraic geometry codes [14]. A tantalizing project would be to attack Goppa code based McEliece
schemes, or more generally alternant code based schemes. The latter family of codes are subfield
subcodes defined over some field Fq of GRS codes defined over a field extension Fqm . Even the
smallest field extension, that is m = 2, for which these subfield subcodes are not GRS codes is a
completely open question. Codes of this kind have indeed been proposed as possible improvements
of the original McEliece scheme, under the form of wild Goppa codes in [6]. Such codes are Goppa
codes associated to polynomials of the form γq−1 where γ is irreducible. Notice that all irreducible
binary Goppa codes of the original McEliece system are actually wild Goppa codes. Interestingly
enough, it turns out that these wild Goppa codes for m = 2 can be distinguished from random
codes for a very large range of parameters by observing that the square code of some of their
shortenings have an abnormally small dimension.

We show here that this distinguishing property can be used to compute a filtration of the
public code, that is to say a family of nested subcodes of the public Goppa code. This filtration
can in turn be used to recover the algebraic description of the Goppa code as an alternant code,
which yields an efficient key recovery attack. This attack has been implemented in Magma [9] and
allowed to break completely all the schemes with a claimed 128 bit security in Table 7.1 of [6]
corresponding to m = 2 when the degree of γ is larger than 3. This corresponds precisely to the
case where these codes can be distinguished from random codes by square code considerations.
The filtration attack has a polynomial time complexity and basically boils down to linear algebra.
This is the first time in the 35 years of existence of the McEliece scheme based on Goppa codes
that a polynomial time attack has been found on it. It questions the common belief that GRS
codes are weak for a cryptographic use while Goppa codes are secure as soon as m > 2 and that
for the latter only generic information-set-decoding attacks apply. It also raises the issue whether
this algebraic distinguisher of Goppa and more generally alternant codes (see [17]) based on square
code considerations can be turned into an attack in the other cases where it applies (for instance
for Goppa codes of rate close enough to 1). Finally, it is worth pointing out that our attack works
against codes without external symmetries confirming that the mere appearance of randomness is
far from being enough to defend codes against algebraic attacks.

Note that due to space constraints, the results are given here without proofs. For more details
we refer to a forthcoming paper.
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2 Notation, Definitions and Prerequisites

We introduce in this section notation we will use in the sequel. We assume that the reader is
familiar with notions from coding theory. We refer to [29] for the terminology.

Star product. Vectors and matrices are respectively denoted in bold letters and bold capital
letters such as a and A. We always denote the entries of a vector u ∈ Fnq by u0, . . . , un−1. Given
a subset I ⊂ {0, . . . , n− 1}, we denote by uI the vector u punctured at I, that is to say, indexes
that are in I are removed. When I = {j} we allow ourselves to write uj instead of u{j}. The

component-wise product u?v of two vectors u,v ∈ Fnq is defined as: u?v
def
= (u0v0, . . . , un−1vn−1).

The i–th power u ? · · · ? u is denoted by ui. When every entry ui of u is nonzero, we denote by

u−1
def
= (u−10 , . . . , u−1n−1), and more generally for all i, we define u−i in the same manner. The

operation ? has an identity element, which is nothing but the all-ones vector (1, . . . , 1) denoted

by 1. To a vector x ∈ Fnq , we associate the set Lx
def
=
{
xi | i ∈ {0, . . . , n − 1}

}
which is defined

as the set of entries of x. We always have |Lx| 6 n and equality holds when the entries of x are
pair-wise distinct.

The ring of polynomials with coefficients in Fq is denoted by Fq[z], while the subspace of
Fq[z] of polynomials of degree less than t is denoted by Fq[z]<t. For every polynomial P ∈ Fq[z],
P (u) stands for (P (u0), . . . , P (un−1)). In particular for all a, b ∈ Fq, au + b is the vector (au0 +
b, . . . , aun−1 + b). To each vector x = (x0, . . . , xn−1) ∈ Fnq , we associate its locator polynomial

denoted as πa and defined as πx(z)
def
=
∏n−1
i=0 (z − xi). Its first derivative is denoted as π′x and one

shows easily that its evaluation at the entries of x yields the vector π′x(x) =
(∏

j 6=i(xi − xj)
)
06i<n

.

The norm and trace from Fq2 to Fq when applied to any x ∈ Fnq2 are respectively N(x) and

Tr(x) with by definition N(x)
def
=
(
xq+1
0 , . . . , xq+1

n−1

)
and Tr(x)

def
=
(
xq0 + x0, . . . , x

q
n−1 + xn−1

)
.

Shortening and Puncturing codes. For a given code D ⊂ Fnq and a subset I ⊂ {0, . . . , n− 1}
the punctured code DI and shortened code DI are defined as:

DI
def
=
{

(ci)i/∈I | c ∈ D
}

;

DI
def
=
{

(ci)i/∈I | ∃c = (ci)i ∈ D such that ∀i ∈ I, ci = 0
}
.

Instead of writing D{j} and D{j} when I = {j} we rather use the notation Dj and Dj . The
following classical results will be used repeatedly.

Lemma 1. Let A ⊂ Fnq be a code and I ⊂ {0, . . . , n− 1} be a set of positions. Then,

(
A I
)⊥

= A ⊥I and (AI)
⊥

=
(
A ⊥

)I
.

Diagonal equivalence of codes. Two q-ary codes A ,B ⊂ Fnq are said to be Fq–diagonally

equivalent, and we will write B ∼Fq
A , if there exists u ∈

(
F×q
)n

such that:

B = u ?A = {u ? a | a ∈ A }.

It is equivalent to say that A and B are Fq–equivalent if B is the image of A by an invertible
diagonal matrix whose diagonal is u.
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Generalized Reed–Solomon, Alternant and Classical Goppa codes.

Definition 1 (Generalized Reed-Solomon code). Let q be a prime power and k, n be integers
such that 1 6 k < n 6 q. Let x and y be two n-tuples such that the entries of x are pairwise
distinct elements of Fq and those of y are nonzero elements in Fq. The generalized Reed-Solomon
code GRSk(x,y) of dimension k associated to (x,y) is the k-dimensional vector space

GRSk(x,y)
def
=
{(
y0p(x0), . . . , yn−1p(xn−1)

)
| p ∈ Fq[z]<k

}
.

Reed-Solomon codes correspond to the case where yi = 1 for all i ∈ {0, . . . , n− 1} and are denoted
as RSk(x). The vector x is called the support of the code.

Proposition 1. Let x,y be as in Definition 1. Then,

GRSk(x,y)⊥ = GRSn−k(x,y−1 ? π′x(x)−1).

This leads to the definition of alternant codes ([29, Chap. 12, §2]).

Definition 2 (Alternant code). Let x,y ∈ Fnqm be two vectors such that the entries of x are
pairwise distinct and those of y are all nonzero. The alternant code Ar(x,y) defined over Fq where
x,y ∈ Fnqm is the subfield subcode over Fq of the code GRSr(x,y)⊥ defined over Fqm , that is:

Ar(x,y)
def
= GRSr(x,y)⊥ ∩ Fnq .

The integer r is referred to as the degree of the alternant code, the integer m as its extension
degree and the vector x as its support.

From this definition, it is clear that alternant codes inherit the decoding algorithms of the under-
lying GRS codes. The key feature of an alternant code is the following fact (see [29, Chap. 12,
§9]):

Fact 1. There exists a polynomial time algorithm decoding all errors of Hamming weight at most
b r2c once the vectors x and y are known.

The following description of alternant codes, will be extremely useful in this article.

Proposition 2.

Ar(x,y) =

{(
f(xi)

yiπ′x(xi)

)
06i<n

∣∣∣∣∣ f ∈ Fqm [z]<n−r

}
∩ Fnq

=
{
f(x) ? y−1 ? π′x(x)−1

∣∣ f ∈ Fqm [z]<n−r
}
∩ Fnq .

Definition 3 (Classical Goppa code). Let x be an n–tuple of distinct elements of Fqm , let
r be a positive integer and Γ ∈ Fqm [z] be a polynomial of degree r such that Γ (xi) 6= 0 for all
i ∈ {0, . . . , n− 1}. The classical Goppa code G (x, Γ ) over Fq associated to Γ and supported by s
is defined as

G (x, Γ )
def
= Ar(x, Γ (x)−1).

We call Γ the Goppa polynomial, x the support and m the extension degree of the Goppa code.

As for alternant codes, the following description of Goppa codes, which is due to Proposition 2
will be extremely useful in this article.

Lemma 2.

G (x, Γ ) =

{(
Γ (xi)f(xi)

π′x(xi)

)
06i<n

∣∣∣∣∣ f ∈ Fq2 [z]<n−deg(Γ )

}
∩ Fnq

=
{
Γ (x) ? f(x) ? (π′x(x))−1

∣∣ f ∈ Fq2 [z]<n−deg(Γ )

}
∩ Fnq
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The interesting point about this subfamily of alternant codes is that under some conditions,
Goppa codes can correct more errors than a generic alternant code.

Proposition 3 ([44]). Let γ be a monic and square free polynomial of degree r. Let x be an
n-tuple of distinct elements of Fqm satisfying γ(xi) 6= 0 for all i in {0, . . . , n− 1}, then:

G
(
x, γq−1

)
= G (x, γq) .

From Fact 1, these Goppa codes correct up to b qr2 c errors in polynomial-time instead of just

b (q−1)r2 c if seen as A(q−1)r(x, γ
−(q−1)(x)). Notice that when q = 2, this amounts to double the

error correction capacity. It is one of the reasons why binary Goppa codes have been chosen in the
original McEliece scheme or why Goppa codes with Goppa polynomials of the form γq−1 (called
wild Goppa codes) are proposed in [6, 7].

McEliece encryption scheme. We recall here the general principle of McEliece’s public-key
scheme [35]. The key generation algorithm picks a random k × n generator matrix G of a code C
over Fq which is itself randomly picked in a family of codes for which t errors can be corrected
efficiently. The secret key is the decoding algorithm D associated to C and the public key is G. To
encrypt u ∈ Fkq , the sender chooses a random vector e in Fnq of Hamming weight t and computes

the ciphertext c
def
= uG + e. The receiver then recovers the plaintext by applying D on c.

This describes the general scheme suggested by McEliece. From now on, we will say that G
is the public generator matrix and that the vector space C spanned by its rows is the public code

i.e. C
def
= {uG | u ∈ Fkq}. McEliece based his scheme solely on binary Goppa codes. In [6, 7], it is

advocated to use q-ary Goppa codes with Goppa polynomials of the form γq−1 because of their
better error correction capability (see Proposition 3). Such codes are then named wild Goppa
codes. In this paper, we precisely focus on these codes but defined over quadratic extensions
(m = 2). We shall see how it is possible to fully recover their secret structure.

3 A Distinguisher Based on Square Codes

From now on, and until the end of the article, C denotes the public code of the wild McEliece

scheme we want to attack, that is C
def
= G

(
x, γq−1

)
and we want to recover the secret support

vector x ∈ Fnq2 and the secret irreducible polynomial γ ∈ Fq2 [z] that is assumed to be of degree
r > 1. Such a Goppa code has extension degree 2 and we will first show in this section that it
displays some peculiarities which allows to distinguish such codes from random ones. As in [16,
33], the main tool for achieving this purpose is given by square product considerations. It will turn
out later on in Section 4 that the very reason which allows to distinguish these wild Goppa codes
is also the fundamental reason which enables to compute a nested family of codes and hence used
to reveal their algebraic structure.

3.1 Square code

One of the keys for the distinguisher presented here and the attack oulined in Section 4 is a special
property of certain alternant codes with respect to the component-wise product.

Definition 4 (Product of codes, square code). Let A and B be two codes of length n. The
star product code denoted by A ? B is the vector space spanned by all products a ? b for all
(a, b) ∈ A ×B. When B = A then A ?A is called the square code of A and is denoted by A ?2.

The dimension of the star product is easily bounded by:

Proposition 4. Let A and B be two linear codes ⊆ Fnq , then

dim (A ?B) 6 min

{
n, dim A dim B −

(
dim(A ∩B)

2

)}
(1)

dim
(
A ?2

)
6 min

{
n,

(
dim(A ) + 1

2

)}
. (2)
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Proof. Let (e1, . . . , es) be a basis of A ∩ B. Complete it as two bases BA = (e1, . . . , es, as+1,
. . . , ak) and BB = (e1, . . . , es, bs+1, . . . , b`) of A and B respectively. The star products u ? v
where u ∈ BA and v ∈ BB span A ? B. The number of such products is k` = dim A dim B
minus the number of products which are counted twice, namely the products ei ? ej with i 6= j.
This proves (1). The inequality given in (2) is a consequence of (1). ut

Most codes of a given length and dimension reach these bounds while GRS codes behave
completely differently when they have the same support.

Proposition 5. Let x be an n–tuple of pairwise distinct elements of Fq and y,y′ be two n–tuples
of nonzero elements of Fq. Then,

(i) GRSk(x,y) ?GRSk′(x,y
′) = GRSk+k′−1(x,y ? y′);

(ii) GRSk(x,y)
?2

= GRS2k−1(x,y ? y).

Remark 1. This proposition shows that the dimension of GRSk(x,y)?GRSk′(x,y
′) does not scale

multiplicatively as kk′ but additively as k+ k′− 1. It has been used the first time in cryptanalysis
in [46] and appears for instance explicitly as Proposition 10 in [31]. We provide the proof here
because it is crucial for understanding why the star products of GRS codes and some alternant
codes behave in a non generic way.

Proof. Let c = (y0f(x0), . . . , yn−1f(xn−1)) ∈ GRSk(x,y) and c′ = (y′0g(x0), . . . , y′n−1g(xn−1))
∈ GRSk′(x,y

′) where deg(f) 6 k − 1 and deg(g) 6 k′ − 1. Then, c ? c′ is of the form:

c ? c′ = (y0y
′
0f(x0)g(x0), . . . , yn−1y

′
n−1f(xn−1)g(xn−1)) = (y0y

′
0r(x0), . . . , yn−1y

′
n−1r(xn−1))

where deg(r) 6 k + k′ − 2. Conversely, any element (y0y
′
0r(x0), . . . , yn−1y

′
n−1r(xn−1)) where

deg(r) 6 k + k′ − 2, is a linear combination of star products of two elements of GRSk(x,y).
Statement (ii) is a consequence of (i) by putting y′ = y and k′ = k. ut

Since an alternant code is a subfield subcode of a GRS code, we might suspect that products
of alternant codes have also an abnormal low dimension. This is is true but in a very attenuated
form as shown by:

Theorem 2. Let x be an n–tuple of distinct elements of Fqm , with m > 1. Let y,y′ be two
n–tuples of nonzero elements of Fqm . There exists then y′′ ∈ Fnqm such that:

As(x,y) ?As′(x,y
′) ⊆ As+s′−n+1(x,y′′). (3)

Proof. Let c, c′ be respective elements of As(x,y) and As′(x,y
′). From Proposition 2,

c = f(x) ? y−1 ? π′x(x)−1 and c′ = g(x) ? y′
−1
? π′x(x)−1

for some polynomials f, g of respective degrees < n− s and < n− s′. This implies that

c ? c′ = h(x) ? y−1 ? y′
−1
? π′x(x)−2

where h
def
= fg is a polynomial of degree < 2n− (s+ s′)−1. Moreover, since c, c′ have their entries

in Fq, then, so has c ? c′. Consequently,

c ? c′ ∈ GRS2n−(s+s′)−1(x,y−1 ? y′
−1
? π′x(x)−2) ∩ Fnq

and, from Definition 2, the above code equals As+s′−n+1(x,y′′) for y′′ = y ? y′ ? π′x(x). ut

Remark 2. This theorem generalizes Proposition 5: it corresponds to the particular case m = 1.
However, when m > 1, the right hand term of (3) is in general the full space Fnq . Indeed, assume
that m > 1 and that the dimension of As(x,y) is n− sm whereas the dimension of As′(x,y

′) is
equal to n − s′m. If we assume that both codes have non trivial dimension then we should have
n− sm > 0 and n− s′m > 0 which implies that s < n

m 6 n/2. Therefore we have s 6 n/2− 1 and
s′ 6 n/2 − 1. This implies that (s + s′) − n + 2 6 0, which entails that As+s′−n+1(x,y′′) is the
full space Fnq .
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However, in the case m = 2 and when either (i) at least one of the codes As(x,y) and As′(x,y
′)

has dimension greater than the designed dimension, or (ii) when one of these codes is actually an
alternant code for a larger degree i.e. As(x,y) = As′′(x,y) for s′′ > s, then the right-hand term
of (3) can be smaller than the full space (at least for small dimensions). This is precisely what
happens for our wild Goppa codes of extension degree 2 as shown by:

Proposition 6 ([15]). Let G
(
x, γq−1

)
be a wild Goppa code of length n, defined over Fq with

support x ∈ Fnq2 where γ ∈ Fq2 [z] is assumed to be irreducible of degree r > 1. Then

(i) G
(
x, γq−1

)
= G

(
x, γq+1

)
;

(ii) dim(G
(
x, γq+1

)
) > n− 2r(q − 1) + r(r − 2);

(iii) G
(
x, γq+1

)
∼Fq

Ar(q+1)(x,1).

The results (i) and (ii) are respective straighforward consequences of Theorems 1 and 24 of
[15]. Only (iii) which is used later on, requires further details, see the forthcoming long version of
this article.

3.2 A distinguisher obtained by shortening

As explained in Remark 2 the square code of an alternant code of extension degree 2 may have
an unusually low dimension when its dimension is larger than its designed rate. This is precisely
what happens for wild Goppa codes as explained by Proposition 6.

Taking directly the square of the Goppa code does not work unless the rate of the code is close
to 0. However, one can reduce to this case by the shortening operation:

Proposition 7. Let x be an n–tuple of pairwise distinct elements in Fqm and let y be an n–tuple
of nonzero elements of Fqm then Ar(x,y)I = Ar(xI ,yI).

Proof. This proposition follows on the spot from the definition of the alternant code Ar(x,y): there
is a parity-check H for it with entries over Fqm which is the generating matrix of GRSr(x,y). A
parity-check matrix of the shortened code Ar(x,y)I is obtained by throwing away the columns of
H that belong to I. That is to say, by puncturing GRSr(x,y) at I. This parity-check matrix is
therefore the generator matrix of GRSr(xI ,yI) and the associated code is Ar(xI ,yI). ut

This shortening trick, together with Proposition 6 (ii) explain that the square of a shortened
wild Goppa code of extension degree 2 is contained in an alternant code of non trivial dimension.

Proposition 8. Let I ⊆ {0, . . . n− 1} and r′
def
= 2r(q+ 1)− (n− |I|) + 1. Then there exists some

y ∈ (F×q2)
n−|I|

such that:

C I ? C I ⊆ Ar′(xI ,y) (4)

Proof. By Proposition 6, we know that C = G
(
x, γq−1

)
= G

(
x, γq+1

)
which can therefore be

viewed as an alternant code Ar(q+1)(x,y) for y = γ(x)−(q+1). By applying Proposition 7 to it, we
know that C I is an alternant code of degree r(q+ 1) and length n− |I|. We then finish the proof
by applying Theorem 2 to it. ut

Let us bring in now the quantities:

k(a)
def
= n− a− 2r(q − 1) + r(r − 2)

kAlt(a)
def
= 3(n− a)− 4r(q + 1)− 2

kRand(a)
def
= min

{
n− a,

(
k(a) + 1

2

)}
a−

def
= n− 2r(q + 1)− 1.

a+
def
= sup

{
a ∈ {0, k(0)− 1} | kAlt(a) 6 kRand(a)

}
.
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Let R be a random code of the same length and dimension as C I . Then for a = |I|, k(a) and
kRand(a) would be the dimensions we expect for C I and R?2. The quantity k(0) is the dimension
we expect for C . In our experiments we never found a case where the dimensions of C I and A ?2

differ from k(a) and kRand(a) respectively. On the other hand, notice that from Proposition 8,
kAlt(a) can be viewed as an upper bound on the dimension of (C I)?2. In other words, as soon as
kAlt(a) < kRand(a), we expect to distinguish C I from R. It also turns out in our experiments that
the observed dimension of (C I)?2 is equal to kAlt(a)−1 when kAlt(a) 6 kRand(a). We can therefore
include the a’s for which kAlt(a) = kRand(a) in the choices for a for which we distinguish C I from
R. This motivates to define the distinguisher interval as the set of a ∈ {0, . . . , k(0)− 1} such that
kAlt(a) 6 kRand(a). Finally a− corresponds to the critical value of a for which kAlt(a) = n− a. It
turns out that there is a simple characterization of the distinguisher interval, namely

Proposition 9. The distinguisher interval is empty if
(
r(r+2)+2

2

)
< 2r(q + 1) + 1. On the other

hand if
(
r(r+2)+2

2

)
> 2r(q+ 1) + 1 and a− > 0, then it is non empty and is an interval of the form

[a−, a+].

We checked that this allows to distinguish all the wild Goppa codes of extension degree 2
suggested in [6] from random codes when r > 3. For instance, consider the first entry in Table
7.1 in [6] which is a code of this kind. It has length 794, dimension 529, is defined over F29 and
is associated to a Goppa polynomial γ(x)29 where γ has degree 5. Table 1 shows that for a in the
range {493, . . . , 506} the dimensions of (C I)?2 differ when C is the aforementioned wild Goppa
code or is a random code with the same parameters. Note that for this example a− = 493. This is
a typical behavior and it is only when the degree of γ is very small and the field size is large that
we cannot distinguish the Goppa code in this way. More precisely, we have gathered in Table 2
upper bounds on the field size for which we expect to distinguish G

(
x, γq−1

)
from a random code

in terms of r, the degree of γ.

Table 1. Dimension of (C I)?2 when C is either the aforementioned wild Goppa code or a random
code of the same length and dimension for various values of the size of I. We can notice that for all
|I| ∈ {493, . . . , 506} the dimension of the square of the random code and that of the square of the Goppa
code differ.

|I| 493 494 495 496 497 498 499 500 501 502 503 504

Goppa 300 297 294 291 288 285 282 279 276 273 270 267
random 301 300 299 298 297 296 295 294 293 292 291 290

|I| 505 506 507 508 509 510 511 512 513 514

Goppa 264 261 253 231 210 190 171 153 136 120
random 289 276 253 231 210 190 171 153 136 120

Table 2. Largest field size q for which we can expect to distinguish G
(
x, γq−1

)
when γ is an irreducible

polynomial in Fq2 [z] of degree r.

r 2 3 4 5

q 9 19 37 64
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4 The Code Filtration

4.1 Main tool

We bring in here the crucial ingredient of our attack which is the following family of nested codes
defined for any a in {0, . . . , n− 1}:

C a(0) ⊇ C a(1) ⊇ · · ·C a(i) ⊇ C a(i+ 1) ⊇ · · · ⊇ C a(q + 1).

Roughly speaking, C a(j) (see Definition 5 below) consists in the codewords of C which correspond
to polynomials which have a zero of order j at position a. Using a common terminology in algebra,
we will call this family of nested codes a filtration. It turns out that the first two elements of this
filtration are just punctured and shortened versions of C and the rest of them can be computed
from C only by computing star products and solving linear systems. The key point is that this
nested family of codes reveals a lot about the algebraic structure of C . In particular, we will be
able to recover the support from it. This is a consequence of the following proposition:

Proposition 10. For all a ∈ {0, . . . , n− 1}, we have4:

(xa − xa)−(q+1) ? C a(q + 1) ⊆ Ca.

Without loss of generality, one can assume that the first two entries of x are x0 = 0 and x1 = 1.

As explained further, this will in particular make possible the computation of the vectors x
−(q+1)
0

and (x1 − 1)q+1 and we prove further that the knowledge of these two vectors provides that of x
up to some Galois action. Let us now define precisely these codes C a(j). They are defined for any
a ∈ {0, . . . , n− 1} and for any integer j as follows:

Definition 5. For all a ∈ {0, . . . , n− 1} and for all j ∈ Z, we define the code C a(j) as:

C a(j)
def
=

{(
γq+1(xi)

π′x(xi)
(xi − xa)jf(xi)

)
i∈{0,...,n−1}\{a}

∣∣∣∣∣ f ∈ Fq2 [z]<n−r(q+1)−j

}
∩ Fn−1q .

The link with C becomes clearer if we use Proposition 6, which gives that C = G
(
x, γq−1

)
=

G
(
x, γq+1

)
. Viewing now C as a subfield subcode of a GRS code, and thanks to Lemma 2, we

have:

C =

{(
γq+1(xi)f(xi)

π′x(xi)

)
06i<n

∣∣∣∣∣ f ∈ Fq2 [z]<n−r(q+1)

}
∩ Fnq . (5)

From this definition, it is clear that C a(1) is C shortened in a.

4.2 The computation of the filtration

This filtration is strongly related to C since, as explained in the following statement, its two first
elements are respectively obtained by puncturing and shortening C at a.

Theorem 3. For all a ∈ {0, . . . , n− 1}, we have:

(i) C a(0) = Ca;
(ii) C a(1) = C a;

(iii) C a(q − r) = C a(q + 1);
(iv) C a(−r) = C a(0).

4 Recall that by (xa − xa)−(q+1) we mean the vector
(

(xi − xa)−(q+1)
)
i∈{0,...,n−1}\{a}

.
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After the computation of the two first elements and for the same reason we need to take
shortened versions of the public code to distinguish it from a random code, the rest of the filtration
relies in a crucial way on taking star products of shortened versions of the codes C 0(s) that
we denote by C 0,I(s) which stands for the code C 0(s) shortened in the positions belonging to
I ⊂ {1, . . . , n− 1}. It is readily checked that such a code can be written as:

C 0,I(s) =

{(
xsiγ

q+1(xi)f(xi)

π′xI
(xi)

)
i∈{1,...,n−1}\I

∣∣∣∣∣ f ∈ Fq2 [z]<n−r(q+1)−s−|I|

}
∩ Fn−1−|I|q (6)

where we recall that xI denotes the vector x punctured at I. From this form, it is clear that by
applying the equivalent definition of an alternant code given in Definition 2, that we have:

Lemma 3. For some y ∈ (F×q2)
n−|I|−1

we have C 0,I(s) = Ar(q+1)+s−1(xI∪{0},y).

Since such codes are alternant codes, a simple consequence of Lemma 3 is:

Proposition 11. Let I be a subset of {1, . . . , n − 1} and let us define r(s, t)
def
= 2r(q + 1) + s +

t− n+ |I| then there exists some y ∈ Fn−1−|I|q2 such that:

C 0,I(s) ? C 0,I(t) ⊆ Ar(s,t)(xI∪{0},y) (7)

Proof. This follows at once from Lemma 3 which says that C 0,I(s) and C 0,I(t) are alternant codes
of respective degrees r(q + 1) + s − 1 and r(q + 1) + t − 1. From Theorem 2, we know that their
star product is included in an alternant code with support xI∪{0} and of degree r′ with:

r′ = r(q + 1) + s− 1 + r(q + 1) + t− 1− (n− |I| − 1) + 1 = r(s, t)

ut

This suggests that the product C 0,I(s) ? C 0,I(t) might only depend on s + t. In order to find
C 0,I(t) once C 0,I(0),C 0,I(1), . . . ,C 0,I(t − 1) have been found, we might be tempted to use the
“Equation”:

C 0,I(0) ? C 0,I(t) = C 0,I(bt/2c) ? C 0,I(dt/2e).

Unfortunately, this equality does not hold in general. However, we have the following related
statement.

Lemma 4. Let I be a subset of {1, . . . , n− 1} such that r′
def
= r(bt/2c, dt/2e) = −n+ |I|+ 2r(q+

1) + t > 0. We have:

(i) Any codeword s in C 0,I(t− 1) such that s ?C 0,I(0) ⊆ C 0,I(bt/2c) ?C 0,I(dt/2e), necessarily
belongs to C 0,I(t).

(ii) Conversely, C 0,I(t) is equal to the set of codewords s in C 0,I(t− 1) such that

s ? C 0,I(0) ⊆ Ar′(xI∪{0},y).

for some y ∈ Fn−1−|I|q .

Thus, one expects to find C 0,I(t) by solving the following problem, which has already been
considered in [13].

Problem 1. Given A , B, and D be three codes in Fnq , find the subcode S of elements s in D
satisfying s ?A ⊆ B.

Such a space can be computed by linear algebra or equivalently by computing dual codes and
code products. More precisely, we have:

Proposition 12. The solution space S of Problem 1 is S =
(
A ?B⊥

)⊥ ∩D .
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Proof. Let s ∈ S , a ∈ A and b⊥ ∈ B⊥. Then s ∈ D and 〈s,a ? b⊥〉 =
∑n−1
i=0 siaib

⊥
i = 〈s ?a, b⊥〉

This last term is zero by definition of S . This proves S ⊆
(
A ?B⊥

)⊥∩D . The converse inclusion
is proved in the same way. ut

This allows to find several of these C 0,I(t)’s associated to different subsets of I. It is straight-
forward to use such sets in order to recover C 0(t). Indeed, from the characterization of C 0,I(t)
given in (6) we clearly expect that:

C 0,I∩J (t) = C 0,J (t) + C 0,I(t) (8)

where with an abuse of notation we mean by C 0,J (t) and C 0,I(t) the code C 0,J (t) and C 0,J (t)
whose set of positions has been completed such as to also contain the positions belonging to I \J
and J \ I respectively and which are set to 0. Such an equality does not always hold of course,
but apart from rather pathological cases it typically holds when dim

(
C 0,I(t)

)
+ dim

(
C 0,J (t)

)
>

dim
(
C 0,I∩J (t)

)
. These considerations suggest the following Algorithm 1 for computing the C 0(t)’s.

Algorithm 1 Algorithm for computing C 0(q + 1).

for t = 2 to q + 1 do
C 0(t)← {0}
while dim C 0(t) 6= k(t) do
{k(t) is obtained “offline” by computing the true dimension of a C 0(t) for an arbitrary choice of γ
and x.}
I ← rand. subset of {1, . . . , n− 1} of size a(t) {We explain in (11) how a(t) is obtained.}
A ← C 0,I(0)
B ← C 0,I(

⌊
t
2

⌋
) ? C 0,I(

⌈
t
2

⌉
)

D ← C 0,I(t− 1)

C 0,I(t)← D ∩
(
A ?B⊥

)⊥ {Problem 1.}
C 0(t)← C 0(t) + C 0,I(t)

end while
end for
return C 0(q + 1)

In Algorithm 1 it is essential to choose the sizes a(t) of the set of indices I used to compute
C 0,I(t) appropriately. Let us denote by k the dimension of C and bring in the quantity:

kAlt(s, t, a)
def
= 3(n− a)− 4r(q + 1)− 2(s+ t)− 1 (9)

kRand(s, t, a)
def
=

1

2
(k − 2s− a+ 1) (k − 4t+ 2s− a+ 2) (10)

then we choose we choose a(t) such that:

a(t) > n− 2r(q + 1)− t (11)

kAlt(dt/2e, bt/2c, a(t)) < kRand(dt/2e, bt/2c, a(t)) (12)

The reasons for this choice are explained in a forthcoming long version of this paper.

5 An Efficient Attack Using the Distinguisher

The attack consists in 5 steps which are outlined below.

Step 1. Compute C 0(q + 1) and C 1(q + 1) using the distinguisher–based methods developed in
Section 4. Thanks to Theorem 3(iii), it is sufficient to compute C 0(q − r) and C 1(q − r).
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Step 2. From C 0(q+1) and C 1(q+1) respectively, we compute two sets of vectors in Fn−1q which
are the respective solution sets of the systems:

(S0) :


z ? C 0(q + 1) ⊆ C0

∀i ∈ {0 . . . n− 2}, zi 6= 0

z0 = 1

and (S1) :


z ? C 1(q + 1) ⊆ C1

∀i ∈ {0 . . . n− 2}, zi 6= 0

z0 = 1

(13)

From Proposition 10, x
−(q+1)
0 is a solution of (S0) and (x1 − 1)−(q+1) is a solution of (S1). In

addition, from Proposition 12, the sets of solutions of the above systems are the respective full-
weight codewords whose first entry is 1 of the following codes:

D
def
=
(
C 0(q + 1) ? (C0)

⊥
)⊥

and D ′
def
=
(
C 1(q + 1) ? (C1)

⊥
)⊥
. (14)

Experimentally we found out that D D ′ have dimension 4. A heuristic explaining this observa-
tion is given in the forthcoming full version of this paper. Therefore an exhaustive search can be
performed to find the full-weight codewords. In addition, we have a complete description of these
sets.

Proposition 13. There are at least q2 − n + 2 solutions for (S0) which are 1, x
−(q+1)
0 and

the following vectors (1 − a)−(q+1)
(

(x0 − a)q+1 ? x
−(q+1)
0

)
obtained with a ∈ Fq2 \ Lx. Simi-

larly, there at least q2 − n + 2 solutions for (S1) which are 1, (x1 − 1)−(q+1) and the vectors
a−(q+1)

(
(x1 − a)q+1 ? (x1 − 1)−(q+1)

)
also obtained with a ∈ Fq2 \ Lx:

Remark 3. It is possible to give a lower-bound for the probability P that (S0) (and (S1)) has no
other solution:

P > 1− (q3 + q)
(q2 − n)!

(q2 − n− q)!
· (q2 − q)!

q2!
·

In [6, Table 7.1], the authors propose a code over F32, with m = 2, t = 4 of length 841. For such
parameters, the above probability is lower than 3.52 10−21. Table 3 summarizes this probability
for other parameters proposed in [6] for m = 2 and t > 3.

q = 29, n = 791 q = 31, n = 892 q = 31, n = 851 q = 31, n = 813 q = 31, n = 795

3.6 10−36 5.5 10−35 3 10−27 1.08 10−22 5.6 10−21

Table 3. Estimates of the probability of Remark 3 for some explicit parameters.

Step 3. First, notice that the vectors x0 and x1 punctured at the first position are both equal to

the vector x01
def
= (x2, . . . , xn−1) ∈ Fn−2q2 . From the previous step, one can obtain the two following

sets of vectors:

L0
def
=
{
xq+1
01

}
∪
{

(1− a)q+1
(
xq+1
01 ? (x01 − a)−(q+1)

) ∣∣∣ a ∈ Fq2 \ Lx

}
L1

def
=
{

(x01 − 1)q+1
}
∪
{
aq+1

(
(x01 − 1)q+1 ? (x01 − a)−(q+1)

) ∣∣∣ a ∈ Fq2 \ Lx

}
.

(15)

They are computed by puncturing the first entry of each solution vector and taking the inverse
for the star product. Note that the trivial solution 1 is always removed. The problem now is to
identify xq+1

0 and (x1 − 1)q+1 among them.

Proposition 14. If n > 2q + 4, then there exists a one-to-one map φ : L0 → L1 such that
φ(xq+1

01 ) = (x01 − 1)q+1 and for all s ∈ L0, the vector φ(s) is the unique element of L1 such that
every element of s ? L1 is collinear to a unique element of φ(s) ? L0.
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The end of the attack works as follows: for s0 ∈ L0, compute s1 = φ(s0), then apply Steps
4 of the attack. If s0 6= xq+1

0 , then the Final Step will fail to find a nontrivial solution. In such
situation, choose another s0 ∈ L0. Therefore, in the worst case, Step 4 and Final Step will be
iterated |L0| = q2 − n+ 1 times.

Step 4. This step is better explained when we have a valid (s0, s1) =
(
xq+1
0 , (x1 − 1)q+1

)
. Recall

that N(t) = tq+1 is the norm of t over Fq for all t ∈ Fq2 . The following lemma shows that the
minimal polynomial Pxi

∈ Fq[z] of xi can be computed using: if N(xi) and N(xi − 1) are known:

Lemma 5. Let t be an element of Fq2 and Pt(z)
def
= z2 − (N(t) − N(t − 1) − 1)z + N(t). Then,

either Pt is irreducible and is the minimal polynomial of t over Fq, or Pt is reducible and in this
case Pt(z) = (z − t)2.

Proof. First, notice that N(t−1) = (t−1)(tq−1) = tq+1− tq− t+1 = NFq2/Fq
(t)−TrFq2/Fq

(t)+1.

Therefore, Pt(z) = z2−Tr(z) + N(z), which is known to be the minimal polynomial of t whenever
t ∈ Fq2 \ Fq. On the other hand, when t ∈ Fq, then Pt(z) = z2 − 2tz + t2 which factorizes as
(z − t)2.

Final Step. For the sake of simplicity we will assume in what follows that x is full, that is to say
that n = q2. Since the support x is known up to Galois action, after applying some permutation
to C , one can assume that

– the q first entries of x are the elements of Fq;
– in the q2−q remaining entries, two conjugated elements a, aq of Fq2 \Fq are consecutive entries

in x.

Next, we compute a vector x′ ∈ Fq
2

q2 such that for all 0 6 i < q2, the minimal polynomial of x′i
equals that of xi. Thus, x′ is the image of x by a product of transpositions with pairwise disjoint
supports. Moreover, the possible supports for these transpositions are pairs (i, i + 1) such that
xqi = xi+1. We denote by τ this permutation. Its matrix is of the form

Rτ
def
=

(
Iq (0)
(0) B

)
, (16)

where B ∈Mq2−q(Fq) is 2× 2–block diagonal with blocks of the form

(
1 0
0 1

)
or

(
0 1
1 0

)
.

From Proposition 6(iii), G
(
x′, γq+1

)
= u?Ar(q+1)(x

′,1) for some vector u with no zero entry.
Therefore, if we denote by Du the diagonal matrix whose diagonal entries are those of u, we see
that

C RτDu = Ar(q+1)(x
′,1). (17)

Thus, since x′ is known, we can recover τ and u by solving

Problem 2. Compute the space of matrices M of the form

M =

(
E (0)
(0) F

)
such that E is diagonal, F si 2× 2 blockdiagonal and which satisfy

C M ⊆ Ar(q+1)(x
′,1). (18)

The solution space is computed by solving a linear system whose unknowns are the entries of M.
Since M is block diagonal, the number of unknowns is linear in n while the number of equations
is dim(C )× dim(Ar(q+1)(x

′,1)⊥) = k(n− k) and hence is quadratic in n. Therefore, the solution
space will have a very low dimension. Experimentally, this dimension is observed to be 2. Therefore,
by exhaustive search in this low-dimensional solution space one finds easily a matrix M of the
form RD, where R is a permutation matrix and D is invertible and diagonal. This yields u and
τ and hence x and the description of C as an alternant code.
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Algorithm 2 Algorithm of the attack.

Compute C 0(q + 1), C 1(q + 1) using Algorithm 1.
L0 ← List of candidates for xq+1

0 (Obtained by solving System (S0) in (13))
L1 ← List of candidates for (x1 − 1)q+1 (Obtained by solving System (S1) in (13))
M0 ← 0
while M0 = 0 and L0 6= ∅ do

Pick a random element a0 in L0.
a1 ← φ(a0){where φ is the map obtained thanks to Proposition 14}
L0 ← L0 \ {a0}
L1 ← L1 \ {a1}
Compute the minimal polynomials Pxi of the positions using Lemma 5.
Compute, an arbitrary vector x′ as explained in Final Step.
V ← Space of solutions of Problem 2.
if dimV > 0 and ∃M ∈ V of the form RD as in Final Step then

M0 ←M
end if

end while
if M0 = 0 then

return “error”
else

Recover x and u from M as described in Final Step.
return x,u

end if

6 Improvement of the Attack.

For some parameters, the computation of the filtration up to C a(q+1) or actually up to C a(q−r)
(thanks to Theorem 3 (iii)) is not possible, while it is still possible to compute the filtration up to
C a(q+ 1− s) for some s satisfying r+ 1 < s 6 (q+ 1)/2. This for instance what happens for codes
over F32, with t = 4. In such situation, C a(s) is known since by assumption s 6 q + 1 − s and
then, we can compute C a(−s) from the knowledge of Ca and C a(s). This computation consists in
solving a problem very similar to Problem 1. Then, as a generalization of Proposition 10, we have
(xa−xa)−(q+1) ?C a(q+ 1− s) ⊆ C a(−s) and the rest of the attack runs in a very same manner.

7 Complexity and Implementation

In what follows, by “O(P (n))” for some function P : N → R, we mean “O(P (n)) operations in
Fq”. We clearly have n 6 q2 and we also assume that q = O(

√
n).

7.1 Computation of a code product

Given two codes A ,B of length n and respective dimensions a and b, the computation of A ?B
consists first in the computation of a generator matrix of size ab × n whose computation costs
O(nab) operations. Then, the Gaussian elimination costs O(nabmin(n, ab)). Thus, the cost of
Gaussian elimination dominates that of the construction step. In particular, for a code A of
dimension k >

√
n, the computation of A ?2 costs O(n2k2). Thanks to Proposition 12, one shows

that the dominant part of the resolution of Problem 1, consists in computing A ?B⊥ and hence
costs O(na(n− b) min(n, a(n− b)))

7.2 Computation of the filtration

Let us first evaluate the cost of computing C a,I(s+1) from C a,I(s). Equations (9) to (12) suggest
that the dimension of C a,I(s) used to compute the filtration is in O(

√
n). From §7.1, the compu-

tation of the square of C a,I(s) costs O(n3) operations in Fq. Then, the resolution of Problem 12
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in the context of Lemma 4, costs O(na(n− b) min(n, a(n− b))), where a = dim C a,I(s) = O(
√
n)

and b = dim Ar′(xI∪{0},y). We have n− b = O(n), hence we get a cost of O(n3
√
n).

The heuristic below Proposition 12, suggests that we need to perform this computation for
O(
√
n) choices of I. Since addition of codes is negligible compared to O(n3

√
n) this leads to a

total cost of O(n4) for the computation of C a(s + 1). This computation should be done q + 1
times (actually q − r times from Theorem 3 (iii)) and, we assumed that q = O(

√
n). Thus, the

computation of C a(q + 1) costs O(n4
√
n).

7.3 Other computations

The resolution of Problems (13) in Step 2, costs O(n4) (see (14)). Since the solution spaces D
and D ′ in (14) have Fq–dimension 4, the exhaustive search in them costs O(q4) = O(n2) which
is negligible. The computation of the map φ and that of minimal polynomials is also negligible.
Finally, the resolution of Problem 2 costs O(n4) since it is very similar to Problem 1. Since Final
step should be iterated q2 − n+ 1 times in the worst case, we see that the part of the attack after
the computation of the filtration costs at worst O(n5). Thus, the global complexity of the attack
is in O(n5) operations in Fq.

7.4 Implementation

This attack has been implemented with Magma [9] and runned over random examples of codes
corresponding to the seven entries [6, Table 1] for which m = 2 and r > 3. For all these parameters,
our attack succeeded. We summarize here the average running times for at least 50 random keys
per 4–tuple of parameters, obtained with an Intel R© Xeon 2.27GHz.

(q, n, k, r) (29,781, 516,5) (29, 791, 575, 4) (29,794,529,5) (31, 795, 563, 4)

Average time 16min 19.5min 15.5min 31.5min

(q, n, k, r) (31,813, 581,4) (31, 851, 619, 4) (32,841,601,4)

Average time 31.5min 27.2min 49.5min

8 Conclusion

The McEliece scheme based on Goppa codes has withstood all cryptanalytic attempts up to
now, even if a related system based on GRS codes [38] was successfully attacked in [42]. Goppa
codes are subfield subcodes of GRS codes and it was advocated that taking the subfield subcode
hides a lot about the structure of the underlying code and also makes these codes more random-
like. This is sustained by the fact that the distance distribution becomes indeed random [29]
by this operation whereas GRS codes behave differently from random codes with respect to this
criterion. We provide the first example of a cryptanalysis which questions this belief by providing an
algebraic cryptanalysis which is of polynomial complexity and which applies to many “reasonable
parameters” of a McEliece scheme when the Goppa code is the Fq-subfield subcode of a GRS code
defined over Fq2 .

It could be argued that this attack applies to a rather restricted class of Goppa codes, namely
wild Goppa codes of extension degree two. This class of codes also presents certain peculiarities as
shown by Proposition 6 which were helpful for mounting an attack. However, it should be pointed
out that the crucial ingredient which made this attack possible is the fact that such codes could
be distinguished from random codes by square code considerations. A certain nested family of
subcodes was indeed exhibited here and it turns out that shortened versions of these codes were
related together by the star product. This allowed to reconstruct the nested family and from here
the algebraic description of the Goppa code could be recovered. The crucial point here is really
the existence of such a nested family whose elements are linked together by the star product. The
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fact that these codes were linked together by the star product is really related to the fact that the
square code of certain shortened codes of the public code were of unusually low dimension which
is precisely the fact that yielded the aforementioned distinguisher. This raises the issue whether
other families of Goppa codes or alternant codes which can be distinguished from random codes
by such square considerations [17] can be attacked by techniques of this kind. This covers high rate
Goppa or alternant codes, but also other Goppa or alternant codes when the degree of extension
is equal to 2. All of them can be distinguished from random codes by taking square codes of a
shortened version of the dual code.
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