
Dual System Encryption via Doubly Selective
Security: Framework, Fully Secure Functional
Encryption for Regular Languages, and More

Nuttapong Attrapadung

National Institute of Advanced Industrial Science and Technology (AIST).
n.attrapadung@aist.go.jp

Abstract. Dual system encryption techniques introduced by Waters in
Crypto’09 are powerful approaches for constructing fully secure func-
tional encryption (FE) for many predicates. However, there are still some
FE for certain predicates to which dual system encryption techniques
seem inapplicable, and hence their fully-secure realization remains an
important problem. A notable example is FE for regular languages, in-
troduced by Waters in Crypto’12.
We propose a generic framework that abstracts the concept of dual sys-
tem encryption techniques. We introduce a new primitive called pair
encoding scheme for predicates and show that it implies fully secure
functional encryption (for the same predicates) via a generic construc-
tion. Using the framework, we obtain the first fully secure schemes for
functional encryption primitives of which only selectively secure schemes
were known so far. Our three main instantiations include FE for reg-
ular languages, unbounded attribute-based encryption (ABE) for large
universes, and ABE with constant-size ciphertexts.
Our main ingredient for overcoming the barrier of inapplicability for the
dual system techniques to certain predicates is a computational security
notion of the pair encoding scheme which we call doubly selective se-
curity. This is in contrast with most of the previous dual system based
schemes, where information-theoretic security are implicitly utilized. The
doubly selective security notion resembles that of selective security and
its complementary notion, co-selective security, and hence its name. Our
framework can be regarded as a method for boosting doubly selectively
security (of encoding) to full security (of functional encryption).
Besides generality of our framework, we remark that improved security is
also obtained, as our security proof enjoys tighter reduction than previous
schemes, notably the reduction cost does not depend on the number of
all queries, but only that of pre-challenged queries.

1 Introduction

Dual system encryption techniques introduced by Waters [33] have been suc-
cessful approaches for proving adaptive security (or called full security) for func-
tional encryption (FE) schemes that are based on bilinear groups. These include
adaptively-secure schemes for (hierarchical) id-based encryption (HIBE) [33,
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20, 22, 19], attribute-based encryption (ABE) for Boolean formulae [24, 28, 23],
inner-product encryption [24, 28, 1, 29, 30], and spatial encryption [1, 17].

Due to structural similarities between these fully secure schemes obtained via
the dual system encryption paradigm and their selectively secure counterparts
previously proposed for the same primitive1, it is perhaps a folklore that the
dual system encryption approach can somewhat elevate the latter to achieve
the former. This is unfortunately not so, or perhaps not so clear, as there are
some functional encryption schemes that are only proved selectively secure at
the present time and seem to essentially encounter problems when applying dual
system proof techniques. A notable example is FE for regular languages proposed
by Waters [34], for which fully secure realization remains an open problem.

In this paper, we affirmatively solve this by proposing the first fully secure
functional encryption for regular languages. Towards solving it, we provide a
generic framework that captures the core concept of the dual system encryption
techniques. This gives us an insight as to why it was not clear in the first place
that dual system encryption techniques can be successfully applied to certain
primitives, but not others. Such an insight leads us not only to identify the
obstacle when applying the techniques and then to find a solution that overcomes
it, but also to improve the performance of security proofs in a generic way.
Namely, our framework allows tighter security reduction.

We summarize our contributions below. We first recall the notion of func-
tional encryption, formulated in [7]. Well-known examples of functional encryp-
tion such as ABE and the more recent one for regular languages can be considered
as “public-index” predicate encryption, which is a class of functional encryption.
We focus on this class in this paper.2 A primitive in this class is defined by a
predicate R. In such a scheme, a sender can associate a ciphertext with a cipher-
text attribute Y while a secret key is associated with a key attribute X. Such a
ciphertext can then be decrypted by such a key if R(X,Y ) holds.

1.1 Summary of Our Main Contributions

In this paper, we propose a generic framework that captures the concept of
dual system encryption techniques. It is generic in the sense that it can be ap-
plied to arbitrary predicate R. The main component in our framework is a new
notion called pair encoding scheme defined for predicate R. We formalize its
security properties into two notions called perfectly master-key hiding, which is
an information-theoretic notion, and doubly selectively master-key hiding, which
is a computational notion. The latter consists of two notions which are selec-
tive master-key hiding and its complementary one called co-selective master-key
hiding (and hence is named doubly). Our main results are summarized as follows.

Generic Construction. We construct a generic construction of fully secure
functional encryption for predicate R from any pair encoding scheme for R which

1One explicit example is the fully secure HIBE of Lewko and Waters [20], which has the
structure almost identical to the selectively secure HIBE by Boneh, Boyen, Goh [5].

2In this paper, the term “functional encryption” refers to this class.
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is either perfectly master-key hiding or doubly selectively master-key hiding. Our
construction is based on composite-order bilinear groups.

Instantiations. We give concrete constructions of pair encoding schemes for
notable three predicates of which there is no known fully-secure functional en-
cryption realization. By using the generic construction, we obtain fully secure
schemes. These include the following.

− The first fully-secure functional encryption for regular languages. Only a
selectively-secure scheme was known [34]. We indeed improve not only se-
curity but also efficiency: ours will work on unbounded alphabet universe, as
opposed to small universe as in the original construction.

− The first fully-secure unbounded key-policy ABE with large universes. Such
a system requires that no bound should be posed on the sizes of attribute
set and policies. The available schemes are either selectively-secure [22, 26] or
small-universe [23] or restricted for multi-use of attributes [30].

− The first fully-secure key-policy ABE with constant-size ciphertexts. The
available schemes are either only selectively-secure scheme [2], or restricted
to small classes of policies [9].

Our three underlying pair encoding schemes are proved doubly selectively secure
under new static assumptions, each of which is parameterized by the sizes of
attributes in one ciphertext or one key, but not by the number of queries. These
can be considered comparable to those assumptions for the respective selectively
secure counterparts ([34, 26, 2], resp.).

Improved Security Reduction. By starting from a pair encoding scheme
which is doubly selectively master-key hiding, the resulting functional encryption
can be proved fully secure with tighter security reduction to subgroup decision
assumptions (and the doubly selective security). More precisely, it enjoys reduc-
tion cost of O(q1), where q1 is the number of pre-challenged key queries. This
improves all the previous works based on dual system encryption (except only
one recent work on IBE by [8]) of which reduction encumbers O(qall) security
loss, where qall is the number of all key queries. As an instantiation, we propose
an IBE scheme with O(q1) reduction, while enjoys similar efficiency to [20].

More Results. We also obtain some more results, which could not fit in the
space here. These include a generic conversion for dual primitives (i.e., key-
policy to ciphertext-policy and vice-versa) for perfectly secure encoding, the
first dual FE for regular languages, a unified treatment for existing FE schemes
and improvements for ABE scheme of [24] (reducing key sizes to half for free, and
a large-universe variant), a new primitive called key-policy over doubly spatial
encryption, which unifies KP-ABE and (doubly) spatial encryption [17].

1.2 Related Work

Chen and Wee [8] recently proposed the notion of dual system groups. It can be
seen as a complementary work to ours: their construction unifies group struc-
tures where dual system techniques are applicable (namely, composite-order and
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prime-order groups) but for specific primitives (namely, IBE and HIBE), while
our construction unifies schemes for arbitrary predicate but over specific groups
(namely, composite-order bilinear groups). It is also worth mentioning that the
topic of functional encryption stems from many research papers: we list some
more here [3, 6, 16, 18, 27, 32]. Recent results give very general FE primitives such
as ABE or FE for circuits [15, 11, 13, 12], and for Turing Machines [14], but most
of them might still be considered as proofs of concept, since underlying crypto-
graphic tools such as multilinear maps [10] seem still inefficient. Constructing
fully secure ABE for circuits without complexity leveraging is an open problem.

2 An Intuitive Overview of Our Framework

In this section, we provide an intuition for our formalization of the dual system
techniques and describe how we define pair encoding schemes. In our framework,
we view a ciphertext (C, C0) (encrypting M), and a key K as

C = g
c(s,h)
1 , C0 = Me(g1, g1)αs; K = g

k(α,r,h)
1

where c and k are encoding functions of attributes Y,X associated to ciphertext
and key, respectively. The bold font represents vectors. Our aim is to formal-
ize such functions by providing sufficient conditions so that the scheme can be
proved fully-secure in a generic way. We call such functions pair encoding for
predicate R, since they encode a pair of attributes which are inputs to predicate
R. They can be viewed as (multi-variate) polynomials in variables from s (which
includes s), h, r, and α. Intuitively, α corresponds to a master key, h corresponds
to parameter that will define public key gh1 , and s, r correspond to randomness
in ciphertexts and keys, respectively. We would require the following: (1) cor-
rectness, stating that if R(X,Y ) = 1 then both encoding functions can be paired
to obtain αs; and (2) security, which is the property when R(X,Y ) = 0, and we
show how to define it below. The key novelty of our abstraction stems from the
way we define the security of encoding. Along the discussion, for a better under-
standing, a reader may think of the equality predicate and the Boneh-Boyen [4]
IBE as a concrete example. Their encoding would be: c(s,h) = (s, s(h1 + h2Y ))
and k(α, r,h) = (α+ r(h1 + h2X), r), where h = (h1, h2).

We first recall how dual system encryption techniques can be used to achieve
adaptive security. The idea is to mimic the functionality of the encryption scheme
in the semi-functional space, and to define the corresponding parameter ĥ in the
semi-functional space to be independent from that of normal space, h. Adaptive
security is then obtained by observing that ĥ will not appear anywhere until the
first query, which means that the reduction algorithm in the proof can adaptively
deal with the adversary since it does not have to fix ĥ in advance. This is in
contrast with h, which is fixed in the public key gh1 . In the case of composite-
order groups, the semi-functional space is implemented in a subgroup Gp2 of a
group G of composite order p1p2p3 (and the normal space is in Gp1).

Our purpose of abstraction is to capture the above mechanism in a generic
way, while at the same time, to incorporate the security of encoding. Our main
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Table 1: Summary for properties used in each transition for C,K.

Transition Changes in Gp2 Indistinguishability Other properties of
under pair encoding

C : 0→ 1 g
c(0,0)
2 → g

c(ŝ,ĥ)
2 subgroup decision linearity, param-vanishing

K : 0→ 1 g
k(0,0,0)
2 → g

k(0,r̂,ĥ)
2 subgroup decision linearity, param-vanishing

K : 1→ 2 g
k(0,r̂,ĥ)
2 → g

k(α̂,r̂,ĥ)
2 security of encoding none

K : 2→ 3 g
k(α̂,r̂,ĥ)
2 → g

k(α̂,0,0)
2 subgroup decision linearity, param-vanishing

idea for doing this is to define semi-functional types of ciphertexts and keys
explicitly in terms of pair encoding functions, so that the scheme structure would
be copied to the semi-functional space. More precisely, we define semi-functional
ciphertexts and keys as follows: C0 is unmodified, and let

C =

{
g
c(s,h)
1 · gc(0,0)

2 (normal)

g
c(s,h)
1 · gc(ŝ,ĥ)

2 (semi)
, K =


g
k(α,r,h)
1 · gk(0,0,0)

2 (normal)

g
k(α,r,h)
1 · gk(0,r̂,ĥ)

2 (semi type 1)

g
k(α,r,h)
1 · gk(α̂,r̂,ĥ)

2 (semi type 2)

g
k(α,r,h)
1 · gk(α̂,0,0)

2 (semi type 3)

where ‘·’ denotes the component-wise group operation. The “semi-functional
variables” (those with the hat notation) are defined to be independent from the
normal part. (We neglect mask elements from Gp3 now for simplicity).

We then recall that the proof strategy for the dual system techniques uses
hybrid games that modifies ciphertexts and keys from normal to semi-functional
ones, and proves indistinguishability between each transition. By defining semi-
functional types as above, we can identify which transition uses security of en-
coding and which one uses security provided by composite-order groups (namely,
subgroup decision assumptions). We provide these in Table 1. In particular, we
identify that the security of encoding is used in the transition from type 1 to
type 2 semi-functional keys. We note that how to identify this transition was
unclear in the first place, since in all the previous dual system based schemes
(to the best of our knowledge), the indistinguishability of this form is implicitly
employed inside another transition (cf. nominally semi-functional keys in [24]).

We explore both types of transitions and define properties needed, as follows.

Transition Based on the Security of Encoding. We simply define the
security of encoding to be just as what we need for the transition definition.
More precisely, the security of encoding (in the “basic” form) requires that, if
R(X,Y ) = 0, then the following distributions are indistinguishable:{

g
c(ŝ,ĥ)
2 , g

k(0,r̂,ĥ)
2

}
and

{
g
c(ŝ,ĥ)
2 , g

k(α̂,r̂,ĥ)
2

}
,

where the probability taken over random ĥ (and others). We remark a crucial
point that the fact that we define keys of normal types and semi-functional type 3
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Table 2: Summary of approaches for defining the security of encoding.

Indistinguishability between Security Implicit in{
c(ŝ, ĥ),k(0, r̂, ĥ)

}
,
{
c(ŝ, ĥ),k(α̂, r̂, ĥ)

}
info-theoretic all but [23, 8]{

g
c(ŝ,ĥ)
2 , g

k(0,r̂,ĥ)
2

}
,
{
g
c(ŝ,ĥ)
2 , g

k(α̂,r̂,ĥ)
2

}
computational [23]{

g
c(ŝ,ĥ)
2 , {gki(0,r̂i,ĥ)

2 }i∈Q
}

,
{
g
c(ŝ,ĥ)
2 , {gki(α̂,r̂i,ĥ)

2 }i∈Q
}

computational new

to not depend on ĥ allows us to focus on the distribution corresponding to only
one key at a time, while “isolating” other keys. (This is called key isolation
feature in [23]). We provide more flavors of the definition below. Indeed, the
computational variant is what makes our framework powerful.

Transitions Based on Subgroup Decision Assumptions. We require all
pair encoding schemes to satisfy some properties in order to use subgroup deci-
sion assumptions. We identify the following two properties: parameter-vanishing
and linearity.

(Param-Vanishing) k(α,0,h) = k(α,0,0).

(Linearity) k(α1, r1,h) + k(α2, r2,h) = k(α1 + α2, r1 + r2,h),

c(s1,h) + c(s2,h) = c(s1 + s2,h).

Linearity makes it possible to indistinguishably change the randomness between
0 and r̂ (in the case of k), and between 0 and ŝ (in the case of c) under sub-
group decision assumptions, but without changing the other variables (i.e., α̂, ĥ).
Parameter-vanishing can then “delete” ĥ when r̂ = 0. The latter makes it pos-
sible to obtain the key isolation, required for the previous type of transition. A
subgroup decision assumption states that it is hard to distinguish if t2 = 0 or
t2

$← Zp2 in T = gt11 g
t2
2 . The intuition of how to use this assumption in con-

junction with linearity is, for example, to simulate a key as g
k(α,0,h′)
1 Tk(0,r′,h′),

for known α, r′,h′ chosen randomly. This is a normal key if t2 = 0 and semi-
functional type-1 if t2

$← Zp2 . In doing so, we implicitly set h = h′ mod p1 and

ĥ =h′ mod p2, but these are independent exactly due to the Chinese Remain-
der Theorem. (The last property is referred as parameter-hiding in prior work).
We also note that linearity implies homogeneity: c(0,0) = 0,k(0,0,0) = 0, and
hence we can write the normal ciphertext and key as above.

Perfect Security of Pair Encoding. We identify three flavors for the security
of encoding that imply the basic form of security defined above. We list them
in Table 2. We refer the first notion as the perfectly master-key hiding security,
which is an information-theoretic notion. All the previous dual system based
schemes (except [23, 8]) implicitly employed this approach. For some esoteric
predicates (e.g., the regular language functionality), the amount of information
from ĥ needed for hiding α̂ is not sufficient. This is exactly the reason why the
“classical” dual system approach is inapplicable to FE for regular languages.
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Computational Security of Pair Encoding. The second flavor (the second
line of Table 2, which is exactly the same as the aforementioned basic form) em-
ploys computational security argument to hide α̂, and can overcome the obstacle
of insufficient entropy, suffered in the first approach. This approach was intro-
duced by Lewko and Waters [23] to overcome the obstacle of multi-use restriction
in KP-ABE. We generalize their approach to work for any predicate.

When considering computational approaches, the ordering of queries from
the adversary becomes important since the challenger is required to fix the value
of ĥ after receiving the first query. This is reminiscent of the notion of selective
security for FE, where the challenger would fix public parameters after seeing
the challenge ciphertext attribute. To this end, we refer this notion as selective
master-key hiding, if a query for Y (corresponding to the encoding c) comes
before that of X (for the encoding k), and analogously, co-selective master-key
hiding if a query for X comes before that of Y , where we recall that co-selective
security [1] is a complementary notion of selective security.3

Tighter Reduction. The classical dual system paradigm requires O(qall) tran-
sition steps, hence results in O(qall) loss for security reduction, where qall is the
number of all key queries. This is since each step is reduced to its underlying
security: subgroup indistinguishability or the security of encoding. This is the
case for all the previous works except the IBE scheme of [8].4 To overcome this
obstacle, we propose the third flavor for security of encoding, shown in the third
line of Table 2. This new approach is unique to our framework (no implicit use in
the literature before). The idea is to observe that, for the selective security proof,
the reduction can program the parameter once by using the information of the
ciphertext attribute Y , and after that, any keys for X such that R(X,Y ) = 0
can be produced. Therefore, we can organize all the post-challenged keys into
the correlated distribution (hence, in Table 2, we set Q to be this set of queries).
This has a great benefit since we can define a new type of transition where
all these post-challenged keys are simultaneously modified from semi-functional
type-1 to type-2 all at once, which results in tighter reduction, O(q1), where q1 is
the number of pre-challenged queries. On the other hand, one could try to do the
same by grouping also all the pre-challenged queries and mimicking co-selective
security, so as to obtain tight reduction (with O(1) cost). However, this will not
work since the parameter must be fixed already after only the first query.

3 Preliminaries

3.1 Functional Encryption

Predicate Family. We consider a predicate family R = {Rκ}κ∈Nc , for some
constant c ∈ N, where a relation Rκ : Xκ × Yκ → {0, 1} is a predicate function

3As a result, this also clarifies why [23] uses selective security techniques of KP-ABE
and CP-ABE to prove the full security of KP-ABE. This is since selective security of
an FE (CP-ABE, in their case) resembles co-selective security of its dual (KP-ABE).

4The IBE of [8] used a technique from Naor and Reingold [25] PRFs for their compu-
tational argument, which is different from ours.
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that maps a pair of key attribute in a space Xκ and ciphertext attribute in a
space Yκ to {0, 1}. The family index κ = (n1, n2, . . .) specifies the description of
a predicate from the family.

Predicate in Different Domains. We mandate the first entry n1 in κ to
specify some domain; for example, the domain ZN of IBE (the equality predi-
cate), where we let n1 = N . In what follows, we will implement our scheme in
composite-order groups and some relations among different domains in the same
family will be used. We formalize them here. We omit κ and write simply RN .
We say that R is domain-transferable if for p that divides N , we have projection
maps f1 : XN → Xp, f2 : YN → Yp such that for all X ∈ XN , Y ∈ YN :

• Completeness. If RN (X,Y ) = 1 then Rp(f1(X), f2(Y )) = 1.
• Soundness. (1) If RN (X,Y ) = 0 then Rp(f1(X), f2(Y )) = 0, or (2) there

exists an algorithm that takes (X,Y ) where (1) does not hold, and outputs a
non-trivial factor F , where p|F, F |N .

The completeness will be used for correctness of the scheme, while the sound-
ness will used in the security proof. All the predicates in this paper are domain-
transferable. As an example, in the equality predicate (for IBE), RN and Rp
are defined on ZN and Zp respectively. The projective maps are simply mod-
ulo p. Completeness holds straightforwardly. Soundness holds since for X 6= Y
(mod N) but X = Y (mod p), we set F = X − Y . The other predicates in this
paper can be proved similarly and we omit them here.

Functional Encryption Syntax. A functional encryption (FE) scheme for
predicate family R consists of the following algorithms.

• Setup(1λ, κ) → (PK,MSK): takes as input a security parameter 1λ and a
family index κ of predicate family R, and outputs a master public key PK and
a master secret key MSK.
• Encrypt(Y,M,PK) → CT: takes as input a ciphertext attribute Y ∈ Yκ, a

message M ∈M, and public key PK. It outputs a ciphertext CT.
• KeyGen(X,MSK,PK) → SK: takes as input a key attribute X ∈ Xκ and the

master key MSK. It outputs a secret key SK.
• Decrypt(CT,SK) → M : given a ciphertext CT with its attribute Y and the

decryption key SK with its attribute X, it outputs a message M or ⊥.

Correctness. Consider all indexes κ, all M ∈ M, X ∈ Xκ, Y ∈ Yκ such that
Rκ(X,Y ) = 1. If Encrypt(Y,M,PK) → CT and KeyGen(X,MSK,PK) → SK
where (PK,MSK) is generated from Setup(1λ, κ), then Decrypt(CT,SK)→M .

Security Notion. A functional encryption scheme for predicate family R is
fully secure if no probabilistic polynomial time (PPT) adversary A has non-
negligible advantage in the following game between A and the challenger C. For
our purpose of modifying games in next sections, we write some in the boxes.
Let q1, q2 be the numbers of queries in Phase 1,2, respectively.

1 Setup: C runs (1) Setup(1λ, κ)→ (PK,MSK) and hands PK to A.
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2 Phase 1: A makes a j-th private key query for Xj ∈ Xκ. C returns SKj by

computing (2) SKj ← KeyGen(Xj ,MSK,PK) .

3 Challenge: A submits equal-length messages M0,M1 and a target cipher-
text attribute Y ? ∈ Yκ with the restriction that Rκ(Xj , Y

?) = 0 for all

j ∈ [1, q1]. C flips a bit b
$← {0, 1} and returns the challenge ciphertext

(3) CT? ← Encrypt(Y ?,Mb,PK) .

4 Phase 2: A continues to make a j-th private key query for Xj ∈ Xκ under

the restriction Rκ(Xj , Y
?) = 0. C returns (4) SKj ← KeyGen(Xj ,MSK,PK) .

5 Guess: The adversary A outputs a guess b′ ∈ {0, 1} and wins if b′ = b. The
advantage ofA against the scheme FE is defined as AdvFEA (λ) := |Pr[b = b′]− 1

2 |.

3.2 Definitions for Some Concrete Functional Encryption

FE for Regular Languages (DFA-based FE). In this primitive, we have a
key associated to the description of a deterministic finite automata (DFA) M ,
while a ciphertext is associated to a string w, and R(M,w) = 1 if the automata
M accepts the string w. A DFA M is a 5-tuple (Q,Λ, T , q0, F ) in which Q is
the set of states Q = {q0, q1, . . . , qn−1}, Λ is the alphabet set, T is the set of
transitions, in which each transition is of the form (qx, qy, σ) ∈ Q × Q × Λ,
q0 ∈ Q is the start state, and F ⊆ Q is the set of accepted states. We say that
M accepts a string w = (w1, w2, . . . , w`) ∈ Λ∗ if there exists a sequence of states
ρ0, ρ1, · · · , ρn ∈ Q such that ρ0 = q0, for i = 1 to ` we have (ρi−1, ρi, wi) ∈ T ,
and ρ` ∈ F . This primitive is important since it has a unique unbounded feature
that one key for machine M can operate on input string w of arbitrary sizes.
We note that it is wlog if we consider machines such that |F | = 1 (see the full
version), and we will construct our scheme with this wlog condition.

Attribute Based Encryption for Boolean Formulae. Let U be a universe of
attributes. In Key-Policy ABE, a key is associated to a policy, which is described
by a boolean formulae Ψ over U , while a ciphertext is associated to an attribute
set S ⊆ U . We have R(Ψ, S) = 1 if the evaluation of Ψ returns true when setting
attributes in S as true and the others (in Ψ) as false.

ABE with large-universe is a variant where U is of super-polynomial size.
Unbounded ABE is a variant where there is no restriction on any sizes of policies
Ψ , attribute sets S, or the maximum number of attribute repetition in a policy.
In a bounded ABE scheme, the corresponding bounds (e.g., the maximum size
of S) will be described as indexes inside κ for the predicate family.

A boolean formulae can be equivalently described by a linear secret sharing
(LSS) scheme (A, π) over ZN , where A is a matrix in Zm×kN and π : [1,m] →
U , for some m, k. We briefly review the definition of LSS. It consists of two
algorithms. First, Share takes as input s ∈ ZN (a secret to be shared), and

chooses v2, . . . , vk
$← ZN , sets v = (s, v2 . . . , vk), and outputs Aiv

> as the i-th
share, where Ai is the i-th row of A, for i ∈ [1,m]. Second, Reconstruct takes as
input S such that (A, π) accepts S, and outputs a set of constants {µi}i∈I , where
I := { i | π(i) ∈ S }, which has a reconstruction property:

∑
i∈I µi(Aiv

>) = s.
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3.3 Bilinear Groups of Composite Order

In our framework, we consider bilinear groups (G,GT ) of composite order N =
p1p2p3, where p1, p2, p3 are distinct primes, with an efficiently computable bilin-
ear map e : G×G→ GT . For our purpose, we define a bilinear group generator
G(λ) that takes as input a security parameter λ and outputs (G,GT , e,N, p1, p2,
p3). For each d|N , G has a subgroup of order d denoted by Gd. We let gi denote a
generator of Gpi . Any h ∈ G can be expressed as ga11 ga22 ga33 , where ai is uniquely
determined modulo pi. We call gaii the Gpi component of h. We recall that e has
the bilinear property: e(ga, gb) = e(g, g)ab for any g ∈ G, a, b ∈ Z and the non-
degeneration property: e(g, h) 6= 1 ∈ GT whenever g, h 6= 1 ∈ G. In a bilinear
group of composite order, we also have orthogonality: for g ∈ Gpi , h ∈ Gpj where
pi 6= pj we have that e(g, h) = 1 ∈ GT . The Subgroup Decision Assumptions
1,2,3 [33, 20] and the 3DH assumption in a subgroup [23] are given below.

Definition 1 (Subgroup Decision Assumptions ). Subgroup Decision Prob-

lem 1,2,3 are defined as follows. Each starts with (G,GT , e,N, p1, p2, p3)
$← G(λ).

1. Given g1
$← Gp1 , Z3

$← Gp3 , and T ∈ G, decide if T = T1
$← Gp1p2 or

T = T2
$← Gp1 .

2. Let g1, Z1
$← Gp1 , Z2,W2

$← Gp2 , Z3,W3
$← Gp3 . Given g1, Z1Z2, Z3,W2W3,

and T ∈ G, decide if T = T1
$← Gp1p2p3 or T = T2

$← Gp1p3 .

3. Let g1
$← Gp1 , g2,W2, Y2

$← Gp2 , Z3
$← Gp3 and α, s

$← ZN . Given g1, g2, Z3,

gα1 Y2, g
s
1W2, and T ∈ GT , decide if T = T1 = e(g1, g1)αs or T = T2

$← GT .
We define the advantage of an adversary A against Problem i for G as the
distance AdvSDiA (λ) := |Pr[A(D, T1) = 1]− Pr[A(D, T2) = 1]|, where D denotes
the given elements in each assumption excluding T . We say that the Assumption
i holds for G if AdvSDiA (λ) is negligible in λ for any poly-time algorithm A.

Definition 2 (3-Party Diffie Hellman Assumption, 3DH). The 3DH As-
sumption in a subgroup assumes the hardness of the following problem: let (G,GT ,
e,N, p1, p2, p3)

$← G(λ), g1
$← Gp1 , g2

$← Gp2 , g3
$← Gp3 , a, b, z

$← ZN , given

D = (g2, g
a
2 , g

b
2, g

z
2 , g1, g3) and T , decide whether T = gabz2 or T

$← Gp2 .

Notation. In general, we treat a vector as a horizontal vector. For g ∈ G and
c = (c1, . . . , cn) ∈ Zn, we denote gc = (gc1 , . . . , gcn). Denote ‘·’ as the pairwise
group operation on vectors. Consider M ∈ Zd×nN . We denote its transpose as
M>. We denote by gM the matrix in Gd×n of which its (i, j) entry is gMi,j . For
Q ∈ Z`×dN , we denote (gQ)M = gQM . Note that from M and gQ ∈ G`×d, we can

compute gQM without knowing Q, since its (i, j) entry is
∏d
k=1(gQi,k)Mk,j . (This

will be used in §4.3). For gc, gv ∈ Gn, we denote e(gc, gv) = e(g, g)cv
> ∈ GT .

4 Our Generic Framework for Dual-System Encryption

4.1 Pair Encoding Scheme: Syntax

In this section we formalize our main component: pair encoding scheme. It follows
the intuition from the overview in §2. We could abstractly define it purely by
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the described properties; however, we opted to make a more concrete definition,
which seems not to lose much generality (we discuss this below).

Syntax. A pair encoding scheme for predicate family R consists of four deter-
ministic algorithms given by P = (Param,Enc1,Enc2,Pair):

• Param(κ) → n. It takes as input an index κ and outputs an integer n, which
specifies the number of common variables in Enc1, Enc2. For the default no-
tation, let h = (h1, . . . , hn) denote the the list of common variables.
• Enc1(X,N)→ k = (k1, . . . , km1

) and m2. It takes as inputs X ∈ Xκ, N ∈ N,
and outputs a sequence of polynomials (kz)z∈[1,m1] with coefficients in ZN ,
and m2 ∈ N. We require that each polynomial kz is a linear combination of
monomials α, ri, rihj , where α, r1, . . . , rm2

, h1, . . . , hn are variables.
• Enc2(Y,N) → c = (c1, . . . , cw1) and w2. It takes as inputs Y ∈ Yκ, N ∈ N,

and outputs a sequence of polynomials (cz)z∈[1,w1] with coefficients in ZN ,
and w2 ∈ N. We require that each polynomial cz is a linear combination of
monomials s, si, shj , sihj , where s, s1, . . . , sw2

, h1, . . . , hn are variables.
• Pair(X,Y,N)→ E. It takes as inputs X,Y,N , and output E ∈ Zm1×w1

N .

Correctness. The correctness requirement is defined as follows.
1. For any N ∈ N, let (k;m2) ← Enc1(X,N), (c;w2) ← Enc2(Y,N), and

E ← Pair(X,Y,N), we have that if RN (X,Y ) = 1, then kEc> = αs, where
the equality holds symbolically.

2. For p|N , we have Enci(X,N)1 mod p = Enci(X, p)1, for i = 1, 2.

Note that since kEc> =
∑
i∈[1,m1],j∈[1,w1]Ei,jkicj , the first correctness amounts

to check if there is a linear combination of kicj terms summed up to αs.

Remark 1. We mandate that the variables used in Enc1 and those in Enc2 are
different except only those common variables in h. We remark that in the syntax,
all variables are only symbolic: no probability distributions have been assigned to
them yet. (We will eventually assign these in the security notion and the generic
construction). Note that m1,m2 can depend on X and w1, w2 can depend on Y .
We also remark that each polynomial in k, c has no constant terms.

Terminology. In what follows, we often omit N as input if the context is clear.
We denote k = k(α, r,h) or kX(α, r,h), and c = c(s,h) or cY (s,h), where we
let h = (h1, . . . , hn), r = (r1, . . . , rm2

), s = (s, s1, . . . , sw2
). We remark that s in s

is treat as a special symbol among the others in s, since it defines the correctness.
We always write s as the first entry of s. In describing concrete schemes in §5,
we often use symbols that deviate from the default notation (hi, ri, si in h, r, s,
respectively). In such a case, we will write h, r, s explicitly and omit writing the
output m2, w2 since they merely indicate the sizes m2 = |r|, w2 = |s| − 1.

Remark 2. It is straightforward to prove that the syntax of pair encoding implies
linearity and parameter-vanishing, symbolically. We opted to define the syntax
this way (concrete, instead of abstract based on properties only) since for the
generic construction (cf. §4.3) to work, we need one more property stating that c
can be computed from h by a linear (or affine) transformation. This is for ensur-
ing computability of ciphertext from the public key, since the public key will be
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of the form gh1 and we can only do linear transformations in the exponent. This,
together with linearity in s, prompts to define linear-form monomials in Enc2 as
above. Contrastingly, there is no similar requirement for Enc1; however, we de-
fine linear-form monomials similarly so that the roles of both encoding functions
can be exchangeable in the dual scheme conversion (see the full version).

4.2 Pair Encoding Scheme: Security Definitions

Security. We define the security notions of pair encoding schemes as follows.

(Perfect Security). The pair encoding scheme P is perfectly master-key hiding
if the following holds. For N ∈ N, if RN (X,Y ) = 0, let (k;m2) ← Enc1(X,N),
(c;w2)← Enc2(Y,N), then the following two distributions are identical:

{c(s,h), k(0, r,h)} and {c(s,h), k(α, r,h)},

where the probability is taken over h
$← ZnN , α

$← ZN , r $← Zm2

N , s
$← Z(w2+1)

N .

(Computational Security). We define two flavors: selectively secure and co-
selectively secure master-key hiding (SMH,CMH) in a bilinear group generator G.
We first define the game template, ExpG,G,b,A(λ), for the flavor G ∈ {CMH,SMH},
b ∈ {0, 1}. It takes as input the security parameter λ and does the experiment
with the adversary A = (A1,A2), and outputs b′. The game is defined as:

ExpG,G,b,A(λ) : (G,GT , e,N, p1, p2, p3)← G(λ); g1
$← Gp1 , g2

$← Gp2 , g3
$← Gp3 ,

α
$← ZN ,h $← ZnN ; st← AO

1
G,b,α,h(·)

1 (g1, g2, g3); b′ ← AO
2
G,b,α,h(·)

2 (st),

where st denotes the state information and the oracles O1,O2 in each state are
defined below. The subscripts α,h for each oracle are omitted for simplicity.

• Selective Security (SMH). O1 can be queried once while O2 can be queried
polynomially many times.

O1
SMH,b(Y

?): (c;w2)← Enc2(Y ?, p2); s
$← Z(w2+1)

p2 ; return C ← g
c(s,h)
2 .

O2
SMH,b(X) : If Rp2(X,Y ?) = 1, then return ⊥;

else, (k;m2)← Enc1(X, p2); r
$← Zm2

p2 ; return K ←

{
g
k(0,r,h)
2 if b = 0

g
k(α,r,h)
2 if b = 1

• Co-selective Security (CMH). Both O1,O2 can be queried once.

O1
CMH,b(X

?): (k;m2)← Enc1(X?, p2); r
$← Zm2

p2 ; return K ←

{
g
k(0,r,h)
2 if b = 0

g
k(α,r,h)
2 if b = 1

O2
CMH,b(Y ) : If Rp2(X?, Y ) = 1, then return ⊥;

else, (c;w2)← Enc2(Y, p2); s
$← Z(w2+1)

p2 ; return C ← g
c(s,h)
2 .

We define the advantage of A in the game G ∈ {SMH,CMH} relative to G
as AdvGA(λ) := |Pr[ExpG,G,0,A(λ) = 1]− Pr[ExpG,G,1,A(λ) = 1]|. We say that the
pair encoding scheme P is selectively (resp., co-selectively) master-key hiding in
G if AdvSMH

A (λ) (resp., AdvCMH
A (λ)) is negligible for all PPT attackers A. If both

hold, we say that it is doubly selectively master-key hiding.
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Remark 3. The terms corresponding to parameter h (in particular, gh2 ) need not
be given out to the adversary. Intuitively, this is since the security of encoding will
be employed in the semi-functional space, and the parameter then corresponds
to semi-functional parameter ĥ, which needs not be sent (cf. §2).

4.3 Generic Construction for Functional Encryption from Encoding

Construction. From a pair encoding scheme P for predicate R, we construct a
functional encryption scheme for R, denoted FE(P), as follows.

• Setup(1λ, κ): Run (G,GT , e,N, p1, p2, p3)
$← G(λ). Pick generators g1

$← Gp1 ,

Z3
$← Gp3 . Run n← Param(κ). Pick h

$← ZnN and α
$← ZN . The public key is

PK =
(
g1, e(g1, g1)α, gh1 , Z3

)
. The master secret key is MSK = α.

• Encrypt(Y,M,PK): Upon input Y ∈ YN , run (c;w2) ← Enc2(Y,N). Pick

s = (s, s1, . . . , sw2)
$← Zw2+1

N . Output the ciphertext as CT = (C, C0):

C = g
c(s,h)
1 ∈ Gw1 , C0 = (e(g1, g1)α)sM ∈ GT .

Note that C can be computed from gh1 and s since c(s,h) contains only linear
combinations of monomials s, si, shj , sihj .
• KeyGen(X,MSK,PK): Upon input X ∈ XN , run (k;m2)← Enc1(X,N). Parse

MSK = α. Recall that m1 = |k|. Pick r
$← Zm2

N ,R3
$← Gm1

p3 . Output SK as

K = g
k(α,r,h)
1 ·R3 ∈ Gm1 .

• Decrypt(CT,SK): Obtain Y,X from CT,SK. Suppose R(X,Y ) = 1. Run E ←
Pair(X,Y ). Compute e(g1, g1)αs ← e(KE ,C), and obtainM ← C0/e(g1, g1)αs.

Correctness. For RN (X,Y ) = 1, we have Rp1(X,Y ) = 1 from the domain-

transferability. Then, e(KE ,C) = e((gk1 ·R3)E , gc1) = e(g1, g1)kEc> = e(g1, g1)αs,
where the last equality comes from the correctness of the pair encoding scheme.

Semi-Functional Algorithms. These will be used in the proof only.

• SFSetup(1λ, κ): This is exactly the same as Setup(1λ, κ) except that it addi-

tionally outputs a generator g2
$← Gp2 and ĥ

$← ZnN .
• SFEncrypt(Y,M,PK, g2, ĥ): Upon inputs Y,M,PK, g2 and ĥ, first run (c;w2)←
Enc2(Y ). Pick s = (s, s1, . . . , sw2), ŝ

$← Zw2+1
N Output CT = (C, C0) as

C = g
c(s,h)
1 g

c(ŝ,ĥ)
2 ∈ Gw1 , C0 = (e(g1, g1)α)sM ∈ GT .

• SFKeyGen(X,MSK,PK, g2, type, α̂, ĥ): Upon inputs X,MSK,PK, g2, and type

∈ {1, 2, 3}, α̂ ∈ ZN , run (k;m2) ← Enc1(X). Pick r, r̂
$← Zm2

N ,R3
$← Gm1

p3 .
Output SK as

K =


g
k(α,r,h)
1 · gk(0,r̂,ĥ)

2 ·R3 if type = 1

g
k(α,r,h)
1 · gk(α̂,r̂,ĥ)

2 ·R3 if type = 2

g
k(α,r,h)
1 · gk(α̂,0,0)

2 ·R3 if type = 3

Note that the input α̂ (resp., ĥ) is not needed for type 1 (resp., type 3).
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Gres :The restriction becomes Rp2(Xj , Y
?) = 0. (Instead of RN (Xj , Y

?) = 0).

G0 :Modify (1) SFsetup(1λ, κ)→ (PK,MSK, g2, ĥ) in the Setup phase.

Modify (3) CT? ← SFEncrypt(Y,Mb,PK, g2, ĥ) .

Gk,1 :Modify (2) α̂j
$← ZN , SKj ←


SFKeyGen(Xj ,MSK,PK, g2, 3, α̂j ,0) if j < k

SFKeyGen(Xj ,MSK,PK, g2, 1, 0, ĥ) if j = k

KeyGen(Xj ,MSK,PK) if j > k

Gk,2 :Modify (2) α̂j
$← ZN , SKj ←


SFKeyGen(Xj ,MSK,PK, g2, 3, α̂j ,0) if j < k

SFKeyGen(Xj ,MSK,PK, g2, 2, α̂j , ĥ) if j = k

KeyGen(Xj ,MSK,PK) if j > k

Gk,3 :Modify (2) α̂j
$← ZN , SKj ←

{
SFKeyGen(Xj ,MSK,PK, g2, 3, α̂j ,0) if j ≤ k

KeyGen(Xj ,MSK,PK) if j > k

Gq1+1:Modify (4) SKj ← SFKeyGen(Xj ,MSK,PK, g2, 1, 0, ĥ)

Gq1+2:Insert α̂
$← ZN at the begin of Phase 2.

Modify (4) SKj ← SFKeyGen(Xj ,MSK,PK, g2, 2, α̂, ĥ)

Gq1+3:Modify (4) SKj ← SFKeyGen(Xj ,MSK,PK, g2, 3, α̂,0)

Gfinal :Modify (3) M
$←M, CT? ← SFEncrypt(Y,M,PK, g2, ĥ) .

Fig. 1: The sequence of games in the security proof.

Theorem 1. Suppose that a pair encoding scheme P for predicate R is selec-
tively and co-selectively master-key hiding in G, and the Subgroup Decision As-
sumption 1,2,3 hold in G. Also, suppose that R is domain-transferable. Then
the construction FE(P) in G of function encryption for predicate R is fully se-
cure. More precisely, for any PPT adversary A, there exist PPT algorithms
B1,B2,B3,B4,B5, whose running times are essentially the same as A, such that
for any λ, we have AdvFEA (λ) ≤ 2AdvSD1

B1
(λ) + (2q1 + 3)AdvSD2

B2
(λ) + AdvSD3

B3
(λ) +

q1Adv
CMH
B4

(λ) + AdvSMH
B5

(λ), where q1 is the number of queries in phase 1.

Security Proof. We use a sequence of games in the following order:

Greal Gres G0 G1,1

· · ·
Gk−1,3 Gk,1 Gk,2 Gk,3

· · ·
Gq1,3 Gq1+1 Gq1+2 Gq1+3 Gfinal

SD1, 2 SD1 SD2 CMH SD2 SD2 SMH SD2 SD3

where each game is defined as follows. Greal is the actual security game, and
each of the following game is defined exactly as its previous game in the sequence
except the specified modification that is defined in Fig. 1. For notational purpose,
let G0,3 := G0. In the diagram, we also write the underlying assumptions used for
indistinguishability between adjacent games. The proofs are in the full version.
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We also obtain the theorem for the case where the encoding is perfectly secure.

Theorem 2. Suppose that a pair encoding scheme P for predicate R is perfectly
master-key hiding, and the Subgroup Decision Assumption 1,2,3 hold in G. Sup-
pose also that R is domain-transferable. Then FE(P) is fully secure. Indeed, let
qall = q1 +q2 be the number of all queries. For any PPT adversary A, there exist
PPT algorithms B1,B2,B3, whose running times are essentially the same as A,
such that for any λ, AdvFEA (λ) ≤ 2AdvSD1

B1
(λ) + (2qall + 1)AdvSD2

B2
(λ) +AdvSD3

B3
(λ).

5 Instantiations

5.1 Efficient Fully Secure IBE with Tighter Reduction

We first construct an encoding scheme for the simplest predicate, namely the
equality relation, and hence obtain a new IBE scheme. This is shown as Scheme 1.
It is similar to the Boneh-Boyen IBE [4] (and Lewko-Waters IBE [20]), with the
exception that we have one more element in each of ciphertext and key. Their
roles will be explained below. The encoding scheme can be proved perfectly
master-key hiding due to the fact that f(x) = h1 + h2x is pairwise independent
function (this is also used in [20]). The novelty is that we can prove the SMH
security (with tight reduction to 3DH). Note that the CMH security is implied
by perfect master-key hiding. Hence, from Theorem 1, we obtain a fully secure
IBE with O(q1) reduction to SD2 (plus tight reduction to 3DH, SD1, SD3). 5

Pair Encoding Scheme 1: IBE with Tighter Reduction

Param → 3. Denote h = (h1, h2, h3).

Enc1(X)→ k(α, r,h) = (α+ r(h1 + h2X) + uh3, r, u) where r = (r, u).

Enc2(Y ) → c(s,h) = (s, s(h1 + h2Y ), sh3) where s = s.

Theorem 3. Scheme 1 is selectively master-key hiding under 3DH.

Proof. Suppose we have an adversary A with non-negligible advantage in the
SMH game against Scheme 1. We construct a simulator B that solves 3DH. B
takes as an input the 3DH challenge, D = (g2, g

a
2 , g

b
2, g

z
2 , g1, g3) and T = gτ+abz

2 ,

where either τ = 0 or τ
$← Zp2 . B first gives (g1, g2, g3) to A.

Ciphertext Query (to O1). The game begins with A making a query for iden-

tity Y ? to O1. B picks h′1, h
′
2, h
′
3

$← ZN and defines h = (h1, h2, h3) by implicitly

setting gh1
2 = g2

h′1g−Y
?za

2 , gh2
2 = g2

h′2gza2 , gh3
2 = g2

h′3gz2 . Note that only the last

term is computable. B picks s
$← ZN and computes C = g2

c(s,h) = (C1, C2, C3)

as: C1 = gs2, C2 = g
s(h′1+h′2Y

?)
2 , C3 = (gh3

2 )s. Obviously, C1, C3 are properly dis-
tributed. C2 is properly distributed due to the cancellation of unknown za in
the exponent: h1 + h2Y

? = (h′1 − Y ?za) + (h′2 + za)Y ? = h′1 + h′2Y
?.

5Compared to the recent IBE of [8], their scheme has the reduction cost that does not
depend on the number of queries; they achieved O(`) reduction to DLIN, while the
public key size is O(`), where ` is the identity length. Ours has O(1) public key size.
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Key Query (to O2). When A makes the j-th key query for Xj( 6= Y ?), B first

computes a temporary key K ′ = (K ′1,K
′
2,K

′
3) whereK ′1 = T ((gb2)

1
Xj−Y ? )h

′
1+h′2Xj ,

K ′2 = (gb2)
1

Xj−Y ? , and K ′3 = 1. We then claim that K ′ = g2
kXj (τ,r′j ,h), where

r′j = (r′j , u
′
j) = ( b

Xj−Y ? , 0). This holds since K ′1 = g2
(τ+abz)+( b

Xj−Y ?
)(h′1+h′2Xj) =

g2
τ+( b

Xj−Y ?
)((h′1−Y

?za)+(h′2+za)Xj)
= g2

τ+r′j(h1+h2Xj), where the unknown ele-
ment abz in the exponent term r′j(h1 + h2Xj) is simulated by using abz from T .
A crucial point here is that K ′ is not properly distributed yet as r′j is not indepen-
dent among j (since all r′j are determined from b). We re-randomize it by picking

r′′j , u
′′
j

$← ZN and computing K1 = K ′1(g2
r′′j )h

′
1+h′2Xj (gz2)u

′′
j ,K2 = K ′2g2

r′′j , and

K3 = K ′3g2
u′′j (ga2 )−r

′′
j (Xj−Y ?). This is a properly distributed K = g2

kXj (τ,rj ,h)

with rj = (rj , uj) = ( b
Xj−Y ? + r′′j , u

′′
j − ar′′j (Xj − Y ?)).

Guess. The algorithm B has properly simulated K = g2
kXj (α,rj ,h) with α = 0

if τ = 0, and α is random if τ is random (since α = τ). B thus outputs the
corresponding guess from A. The advantage of B is thus equal to that of A. ut

Remark 4 (Randomizer Technique). Our proof much resembles the Boneh-Boyen
technique [4], with a crucial exception that here we need to establish the indis-
tinguishability in G (for our purpose of master-key hiding notion), instead of GT
(for the purpose of proving security for BB-IBE). Therefore, intuitively, instead
of embedding only ga to the parameter gh as usual, we need to embed gaz so as
to obtain the target element gabz in G when combining with r (which uses b).
This is in contrast to BB-IBE, where the target e(g, g)abz is in GT . Now that gh

contains non-trivial term gaz, we cannot re-randomize r in keys. To solve this,
we introduce u as a “randomizer” via ga. This is why we need one more element
than BB-IBE. This technique is implicit in ABE of [23].

5.2 Fully Secure FE for Regular Languages

Waters [34] proposed a selective secure FE scheme for regular languages. No
fully secure realization has been known so far. 6 Our scheme is built upon [34].

Motivation for Large Universe. Waters’ scheme operates over small-universe
alphabet sets, i.e., |Λ| is of polynomial size. We argue that this small-universe
nature makes the system less efficient than other less-advanced FE for the same
functionality. For example, we consider IBE, of which predicate determines equal-
ity over two identity X,Y ∈ {0, 1}`. To construct DFA that operates over small-
size universe to determine if X = Y would require Θ(log `) transition, which
might not be so satisfactory for such a simple primitive.

Our Fully Secure FE for Regular Languages. We propose a new scheme
which is fully secure and operates over large-universe alphabet sets, i.e., |Λ| is

6Waters also suggested that dual system techniques could be used, but only with the
restricted version of the primitive where some bounds must be posed. This is not
satisfactory since the bound would negate the motivation of having arbitrary string
sizes for the ciphertext attribute. A recent work [31] proposes such a bounded scheme.
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of super-polynomial size, namely we use Λ = ZN . This is also called unbounded
alphabet universe (since the parameter size will not depend on the alphabet
universe). Our encoding scheme is shown as Scheme 2.

Pair Encoding Scheme 2: FE for Regular Languages

Param → 8. Denote h = (h0, h1, h2, h3, h4, φ1, φ2, η).

For any DFA M = (Q,ZN , T , q0, qn−1), where n = |Q|,
let m = |T |, and parse T = {(qxt , qyt , σt)|t ∈ [1,m]}.

Enc1(M)→ k(α, r,h) =
(
k1, k2, k3, k4, k5, {k6,t, k7,t, k8,t}t∈[1,m]

)
:

k1 = α+ rφ1 + uη, k2 = u, k3 = r,

k4 = r0, k5 = −u0 + r0h0, k6,t = rt,

k7,t = uxt + rt(h1 + h2σt), k8,t = −uyt + rt(h3 + h4σt)


where un−1 := φ2r and r = (r, u, r0, r1, . . . , rm, {ux}qx∈Qr{qn−1}).

For w ∈ (ZN )∗, let ` = |w|, and parse w = (w1, . . . , w`).
Enc2(w) → c(s,h) =

(
c1, c2, c3, c4, {c5,i}i∈[0,`], {c6,i}i∈[1,`]

)
:{

c1 = s, c2 = sη, c3 = −sφ1 + s`φ2,

c4 = s0h0, c5,i = si, c6,i = si−1(h1 + h2wi) + si(h3 + h4wi)

}
where s = (s, s0, s1, . . . , s`).

The correctness can be shown by providing linear combination of kιcj which
summed up to αs. When R(M,w) = 1, we have that there is a sequence of states
ρ0, ρ1, · · · , ρn ∈ Q such that ρ0 = q0, for i = 1 to ` we have (ρi−1, ρi, wi) ∈ T ,
and ρ` ∈ F . Let (qxti , qyti , σti) = (ρi−1, ρi, wi). Therefore, we have the following
bilinear combination: k1c1 − k2c2 + k3c3 − k4c4 + k5c5,0 +

∑
i∈[1,`](−k6,tic6,i +

k7,tic5,i−1 +k8,tic5,i) = αs. This holds since for any i ∈ [1, `], we have −k6,tic6,i+
k7,tic5,i−1 + k8,tic5,i = si−1uxti − siuyti . The sum of these terms for all i ∈ [1, `]
will form chaining cancelations and results in s0uxt1 − s`uyt` = s0u0− s`un−1 =
s0u0 − s`φ2r. Adding this to the rest, we obtain αs.

We prove that Scheme 2 does not satisfy the perfectly master-key hiding
security, by using some basic properties of DFA (see the full version). We then
prove its SMH security under a new static assumption, EDHE1 (see below), which
is similar to the assumption for Waters’ scheme [34]. A notable difference is that
the target element will be in G instead of GT (similar to [23]). This is analogous
to our IBE, where we use 3DH. The proof strategy for SMH of our encoding
naturally follows from the selective security proof of Waters’. The harder part
is to prove the CMH security (under another new static assumption), where we
use completely new techniques. This is since there has been no known selectively
secure FE for the dual predicate of regular languages functionality. One of our
techniques is that we construct the scheme in such a way that both terms related
to transitions in DFA (i.e., k7,t, k8,t) are functions of the corresponding alphabet
σt. This is in contrast with Waters’ scheme where only one of them is a function
of σt. The intuition is to perform a certain type of cancellation that comes
from both terms, in the CMH proof. We state here only the assumption and the
theorem for SMH, and postpone those for CMH to the full version.
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Definition 3 (`-EDHE1). The `-Expanded Diffie-Hellman Exponent Assump-

tion-1 in subgroup Gp2 is defined as follows. Let (G,GT , e,N, p1, p2, p3)
$← G(λ)

and gi
$← Gpi . Let a, b, c, d1, . . . , d`+1, f, z

$← ZN . Suppose that an adversary is

given g1, g2, g3, T , and D consisting of the following: ga2 , g
b
2, g

a/f
2 , g

1/f
2 , g

a`c/z
2 ,

∀i∈[1,`+1] g
ai/di
2 , ga

ibf
2 ; ∀i∈[0,`] g

aic
2 , gbdi2 , g

bdi/f
2 , g

abdi/f
2 ; ∀i∈[1,2`+1],i6=`+1, j∈[1,`+1]

g
aic/dj
2 ; ∀i∈[2,2`+2], j∈[1,`+1] g

aibf/dj
2 ; ∀i,j∈[1,`+1],i6=j g

aibdj/di
2 . Then, it is hard for

any PPT adversary to distinguish whether T = gabz2 or T
$← Gp2 .

Theorem 4. Scheme 2 is selectively master-key hiding under `-EDHE1 with
tight reduction, where ` is the length of the ciphertext query w?.

5.3 Fully Secure ABE

Fully-Secure Unbounded ABE with Large Universes. Our pair encoding
scheme for unbounded KP-ABE with large universes is shown as Scheme 3. We
can see that the parameter size is constant, and we can deal with any sizes of at-
tribute policies, attribute sets, while the attribute universe is ZN . The structure
of our scheme is similar to the selectively secure ABE of [26]. The correctness
can be shown as follows. When R((A, π), S) = 1, let I = { i ∈ [1,m] | π(i) ∈ S },
we have reconstruction coefficients {µi}i∈I such that

∑
i∈I µiAiv

> = v1 =
rφ2. Therefore, we have the following linear combination of the kιcj terms:
k1c1 − k2c2 − k3c3 +

∑
i∈I µi

(
k4,ic4 − k5,ic5,π(i) + k6,ic6,π(i)

)
= αs.

Pair Encoding Scheme 3: Unbounded KP-ABE with Large Universes

Param → 6. Denote h = (h0, h1, φ1, φ2, φ3, η).

For LSS A ∈ Zm×kN , π : [1,m]→ ZN (π needed not be injective).
Enc1(A, π)→ k(α, r,h) =

(
k1, k2, k3, {k4,i, k5,i, k6,i}i∈[1,m]

)
:{

k1 = α+ rφ1 + uη, k2 = u, k3 = r,

k4,i = Aiv
> + riφ3, k5,i = ri, k6,i = ri(h0 + h1π(i))

}
where v1 = rφ2, r = (r, u, r1, . . . , rm, v2, . . . , vk), v = (v1, . . . , vk).

For S ⊆ ZN .
Enc2(S) → c(s,h) =

(
c1, c2, c3, c4, {c5,y, c6,y}y∈S

)
:{

c1 = s, c2 = sη, c3 = sφ1 + wφ2,

c4 = w, c5,y = wφ3 + sy(h0 + h1y), c6,y = sy

}
where s = (s, w, {sy}y∈S).

Fully-Secure ABE with Short Ciphertexts. Our encoding for this primitive
is shown as Scheme 4. Denote by T the maximum size for attribute sets S. No
further restriction is required. We can see that the ciphertext contains only 6
elements. The scheme is a reminiscent of the selectively secure ABE of [2]. The
correctness can be shown as follows. When R((A, π), S) = 1, we have coefficients
{µi}i∈I similarly as above. Hence, we have k1c1−k2c2−k3c3 +

∑
i∈I µi

(
k4,ic4−

k5,ic5 + (k6,i(1,a)>)c6
)

= αs, where (1,a) := (1, a1, . . . , aT ) and ai is the coef-
ficient of zi in p(z) =

∏
y∈S(z − y). Note that π(i) ∈ S implies p(π(i)) = 0.
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Pair Encoding Scheme 4: KP-ABE with Short Ciphertexts

Param(T ) → T + 6. Denote h = (h0, h1, . . . , hT+1, φ1, φ2, φ3, η).

For LSS A ∈ Zm×kN , π : [1,m]→ ZN (π needed not be injective).
Enc1(A, π)→ k(α, r,h) =

(
k1, k2, k3, {k4,i, k5,i,k6,i}i∈[1,m]

)
:

k1 = α+ rφ1 + uη, k2 = u, k3 = r,

k4,i = Aiv
> + riφ3, k5,i = ri,

k6,i =
(
rih0, ri

(
h2 − h1π(i)

)
, . . . , ri

(
hT+1 − h1π(i)T

))


where v1 = rφ2, r = (r, u, r1, . . . , rm, v2, . . . , vk), v = (v1, . . . , vk).

For S ⊆ ZN such that |S| ≤ T ,
let ai be the coefficient of zi in p(z) :=

∏
y∈S(z − y).

Enc2(S) → c(s,h) =
(
c1, c2, c3, c4, c5, c6

)
:{

c1 = s, c2 = sη, c3 = sφ1 + wφ2,

c4 = w, c5 = wφ3 + s̃(h0 + h1a0 + · · ·+ hT+1aT ), c6 = s̃

}
where s = (s, w, s̃).

Both ABE schemes are special cases of our another new primitive called
key-policy over doubly spatial encryption. We prove their SMH, CMH security
under new static assumptions that are similar to those used for proving selective
security of KP-ABE, CP-ABE of [26] respectively. Theses are provided in the
full version. All the assumptions hold in the generic (bilinear) group model.

Acknowledgement. I would like to thank Michel Abdalla, Takahiro Matsuda,
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