
Efficient Non-Malleable Codes and
Key-Derivation for Poly-Size Tampering Circuits

Sebastian Faust1, Pratyay Mukherjee2?, Daniele Venturi3, and Daniel Wichs4??

1 EPFL Switzerland
2 Aarhus University

3 Sapienza University of Rome
4 Northeastern University

Abstract. Non-malleable codes, defined by Dziembowski, Pietrzak and
Wichs (ICS ’10), provide roughly the following guarantee: if a codeword c
encoding some message x is tampered to c′ = f(c) such that c′ 6= c, then
the tampered message x′ contained in c′ reveals no information about
x. Non-malleable codes have applications to immunizing cryptosystems
against tampering attacks and related-key attacks.
One cannot have an efficient non-malleable code that protects against
all efficient tampering functions f . However, in this work we show “the
next best thing”: for any polynomial bound s given a-priori, there is
an efficient non-malleable code that protects against all tampering func-
tions f computable by a circuit of size s. More generally, for any family
of tampering functions F of size |F| ≤ 2s, there is an efficient non-
malleable code that protects against all f ∈ F . The rate of our codes,
defined as the ratio of message to codeword size, approaches 1. Our re-
sults are information-theoretic and our main proof technique relies on a
careful probabilistic method argument using limited independence. As a
result, we get an efficiently samplable family of efficient codes, such that a
random member of the family is non-malleable with overwhelming prob-
ability. Alternatively, we can view the result as providing an efficient
non-malleable code in the “common reference string” (CRS) model.
We also introduce a new notion of non-malleable key derivation, which
uses randomness x to derive a secret key y = h(x) in such a way that,
even if x is tampered to a different value x′ = f(x), the derived key
y′ = h(x′) does not reveal any information about y. Our results for non-
malleable key derivation are analogous to those for non-malleable codes.
As a useful tool in our analysis, we rely on the notion of “leakage-resilient
storage” of Dav̀ı, Dziembowski and Venturi (SCN ’10) and, as a result
of independent interest, we also significantly improve on the parameters
of such schemes.

1 Introduction

Non-malleable codes were introduced by Dziembowski, Pietrzak and Wichs [18].
They provide meaningful guarantees on the integrity of an encoded message in

? Research supported by a European Research Commission Starting Grant (no.
279447), the CTIC and CFEM research center.

?? Research supported by NSF grant 1314722.

the presence of tampering, even in settings where error-correction and error-
detection may not be possible. Intuitively, a code (Enc,Dec) is non-malleable
w.r.t. a family of tampering functions F if the message contained in a codeword
modified via a function f ∈ F is either the original message, or a completely
unrelated value. For example, it should not be possible to just flip 1 bit of
the message by tampering the codeword via a function f ∈ F . More formally,
we consider an experiment Tamperfx in which a message x is (probabilistically)
encoded to c ← Enc(x), the codeword is tampered to c′ = f(c) and, if c′ 6= c,
the experiment outputs the tampered message x′ = Dec(c′), else it outputs a
special value same?. We say that the code is non-malleable w.r.t. some family of
tampering functions F if, for every function f ∈ F and every messages x, the
experiment Tamperfx reveals almost no information about x. More precisely, we
say that the code is ε-non-malleable if for every pair of messages x, x′ and every
f ∈ F , the distributions Tamperfx and Tamperfx′ are statistically ε-close. The
encoding/decoding functions are public and do not contain any secret keys. This
makes the notion of non-malleable codes different from (but conceptually related
to) the well-studied notions of non-malleability in cryptography, introduced by
the seminal work of Dolev, Dwork and Naor [16].

Relation to Error Correction/Detection. Notice that non-malleability is
a weaker guarantee than error correction/detection; the latter ensure that any
change in the codeword can be corrected or at least detected by the decoding
procedure, whereas the former does allow the message to be modified, but only
to an unrelated value. However, when studying error correction/detection we
usually restrict ourselves to limited forms of tampering which preserve some
notion of distance (e.g., usually hamming distance) between the original and
tampered codeword. (One exception is [12], which studies error-detection for
more complex tampering.) For example, it is already impossible to achieve error
correction/detection for the simple family of functions Fconst which, for every
constant c∗, includes a “constant” function fc∗ that maps all inputs to c∗. There
is always some function in Fconst that maps everything to a valid codeword c∗.
In contrast, it is trivial to construct codes that are non-malleable w.r.t Fconst ,
as the output of a constant function is clearly independent of its input. The
prior works on non-malleable codes, together with the results from this work,
show that one can construct non-malleable codes for highly complex tampering-
function families F for which error correctin/detection are unachievable.

Applications to Tamper-Resilience. The fact that non-malleable codes can
be built for large and complex families of functions makes them particularly
attractive as a mechanism for protecting memory against tampering attacks,
known to be a serious threat for the security of cryptographic schemes [7,2,29,11].
As shown in [18], to protect a scheme with some secret state against memory-
tampering, we simply encode the state via a non-malleable code and store the
encoding in the memory instead of the original secret. One can show that if the
code is non-malleable with respect to function family F , the transformed system

is secure against tampering attacks carried out by any function in F . See [18]
for a discussion of the application of non-malleable codes to tamper resilience.

Limitations & Possibility. It is impossible to have codes that are non-
malleable for all possible tampering functions. For any coding scheme (Enc,Dec),
there exists a tampering function fbad(c) that recovers x = Dec(c), creates x′ by
(e.g.,) flipping the first bit of x, and outputs a valid encoding c′ of x′. Notice
that if Enc,Dec are efficient, then the function fbad is efficient as well. Thus,
it is also impossible to have an efficient code which is non-malleable w.r.t all
efficient functions. Prior works [26,10,17,1,9,19] (discussed shortly) constructed
non-malleable codes for several rich and interesting function families. In all cases,
the families are restricted through their granularity rather than their computa-
tional complexity. In particular, these works envision that the codeword is split
into several (possibly just 2) components, each of which can only be tampered
independently of the others. The tampering function therefore only operates on
a “granular” rather than “global” view of the codeword.

1.1 Our Contribution

In this work, we are interested in designing non-malleable codes for large families
of functions which are only restricted by their “computational complexity” rather
than “granularity”. As we saw, we cannot have a single efficient code that is non-
malleable for all efficient tampering functions. However, we show the following
positive result, which we view as the “next best thing”:

Main Result: For any polynomial bound s = s(n) in the codeword size n,
and any tampering family F of size |F| ≤ 2s, there is an efficient code of
complexity poly(s, log(1/ε)) which is ε-non-malleable w.r.t. F . In particular,
F can be the family of all circuits of size at most s.

The code is secure in the information theoretic setting, and achieves optimal
rate (message/codeword size) arbitrarily close to 1. It has a simple construction
relying only on t-wise independent hashing.

The CRS Model. In more detail, if we fix some family F of tampering func-
tions (e.g., circuits of bounded size), our result gives us a family of efficient
codes, such that, with overwhelming probability, a random member of the fam-
ily is non-malleable w.r.t F . Each code in the family is indexed by some hash
function h from a t-wise independent family of hash functions H. This result
already shows the existence of efficient non-malleable codes with some small
non-uniform advice to indicate a “good” hash function h.

However, we can also efficiently sample a random member of the code family
by sampling a random hash function h. Therefore, we find it most appealing
to think of this result as providing a uniformly efficient construction of non-
malleable code in the “common reference string (CRS)” model, where a random
public string consisting of the hash function h is selected once and fixes the

non-malleable code. We emphasize that, although the family F (e.g., circuits of
bounded size) is fixed prior to the choice of the CRS, the attacker can choose the
tampering function f ∈ F (e.g., a particular small circuit) adaptively depending
on the choice of h.

We argue that it is unlikely that we can completely de-randomize our con-
struction and come up with a fixed uniformly-efficient code which is non-malleable
for all circuits of size (say) s = O(n2). In particular, this would require a cir-
cuit lower bound, showing that the function fbad (described above) cannot be
computed by a circuit of size O(n2).

Non-Malleable Key-Derivation. As an additional contribution, we intro-
duce a new primitive called non-malleable key derivation. Intuitively, a function
h : {0, 1}n → {0, 1}k is a non-malleable key derivation for tampering-family F
if it guarantees that for any tampering function f ∈ F , if we sample uniform
randomness x← {0, 1}n, the “derived key” y = h(x) is statistically close to uni-
form even given y′ = h(f(x)) derived from “tampered” randomness f(x) 6= x.
Our positive results for non-malleable key derivation are analogous to those for
non-malleable codes. One difference is that the rate k/n is now at most 1/2
rather than 1, and we show that this is optimal.

While we believe that non-malleable key derivation is an interesting notion on
its own (e.g., it can be viewed as a dual version of non-malleable extractors [15]),
we also show it has useful applications for tamper resilience. For instance, con-
sider some cryptographic scheme G using a uniform key in y ← {0, 1}k. To
protect G against tampering attacks, we can store a bigger key x ← {0, 1}n on
the device and temporarily derive y = h(x) each time we want to execute G.
In the full version of this paper [20], we show that this approach protects any
cryptographic scheme with a uniform key against one-time tampering attacks.
The main advantage of using a non-malleable key-derivation rather than non-
malleable codes is that the key x stored in memory is simply a uniformly random
string with no particular structure (in contrast, the codeword in a non-malleable
code requires structure).

In the full version, we also show how to use non-malleable key derivation to
build a tamper-resilient stream cipher. Our construction is based on a PRG prg :
{0, 1}k → {0, 1}n+v and a non-malleable key derivation function h : {0, 1}n →
{0, 1}k. For an initial key s0 ← {0, 1}n, sampled uniformly at random, the output
of the stream cipher at each round i ∈ [q] is (si, xi) := prg(h(si−1)).

1.2 Our Techniques

Non-Malleable Codes. Our construction of non-malleable codes is incredi-
bly simple and relies on t-wise independent hashing, where t is proportional to
s = log |F|. In particular, if h1, h2 are two such hash functions, we encode a
message x into a codeword c = (r, z, σ) where r is randomness, z = x ⊕ h1(r)
and σ = h2(r, z). The security analysis, on the other hand, requires two indepen-
dently interesting components. Firstly, we rely on the notion of leakage-resilient

encodings, proposed by Dav̀ı, Dziembowski and Venturi [14]. These provide a
method to encode a secret in such a way that a limited form of leakage on the
encoding does not reveal anything about the secret. One of our contributions is
to significantly improve the parameters of the construction from [14] by using a
fresh and more careful analysis, which gives us such schemes with an essentially
optimal rate. Secondly, we analyze a simpler/weaker notion of bounded non-
malleability, which intuitively guarantees that an adversary seeing the decoding
of a tampered codeword can learn only a bounded amount of information on the
encoded value. This notion of bounded non-malleability is significantly simpler
to analyze than full non-malleability. Finally, we show how to carefully combine
leakage-resilient encodings with bounded non-malleability to get our full con-
struction of non-malleable codes. On a very high (and not entirely precise) level,
we can think of h1 above as providing “leakage resilience” and h2 as providing
“bounded non-malleability”.

We stress that the fact that t has to be proportional to s is not an artefact of
our proof. In fact, one can see that whenever the hash function has seed size s,
there is a family of 2s functions that breaks the construction with probability 1:
For each seed, just have a new function that decodes with that seed and encodes
a related value. This shows that the t has to be proportional to log |F|.

Non-Malleable Key-Derivation. Our construction of non-malleable key-
derivation functions is even simpler: a random t-wise independent hash function
h already satisfies the definition with overwhelming probability, where t is pro-
portional to s = log |F|. The analysis is again subtle and relies on a careful
probabilistic method argument.

Similar to the case of non-malleable codes, the fact that t has to be propor-
tional to s is necessary.

1.3 Related Works

Granular Tampering. Most of the earlier works on non-malleable codes focus
on granular tampering models, where the tampering functions are restricted
to act on individual components of the codeword independently. The original
work of [18] gives an efficient construction for bit-tampering (i.e., the adversary
can tamper with each bit of the codeword independently of every other bit).
Very recently, Cheraghchi and Guruswami [9] gave a construction with improved
rate and better efficiency for the same family. Choi et al. [10] considered an
extended tampering family, where the tampering function can be applied to a
small (logarithmic in the security parameter) number of blocks independently.

Perhaps the least granular and most general such model is the so-called split-
state model, where the encoding consists of two parts L (left) and R (right), and
the adversary can tamper L and R arbitrarily but independently. Starting with
the random oracle construction of [18], a few other constructions of non-malleable
split-state codes have been proposed, both in the computational setting [26,19]
and in the information theoretic setting [17,1,9]. Notice that the family Fsplit

of all split-state tampering functions (without restricting efficiency), has doubly

exponential size 2O(2n/2) in the codeword size n, and therefore it is not covered by
our results, which can efficiently handle at most singly-exponential-size families
2poly(n). On the other hand, the split-state model doesn’t cover “computationally
simple” functions, such as the function computing the XOR or the bit-wise inner-
product of L,R. Therefore, although the works are technically orthogonal, we
believe that looking at computational complexity may be more natural.

Global Tampering. The work of [18] gives an existential (inefficient) con-
struction of non-malleable codes for doubly-exponential sized function families.
More precisely, for any constant 0 < α < 1 and any family F of functions of
size |F| ≤ 22

αn

in the codeword size n, there exists an inefficient non-malleable
code w.r.t. F ; indeed a completely random function gives such a code with high
probability. The code is clearly not efficient, and this should be expected for such
a broad result: the families F can include all circuits of size (e.g.,) s(n) = 2n/2,
which means that the efficiency of the code must exceed O(2n/2). Unfortunately,
there is no direct way to “scale down” the result in [18] so as to get an effi-
cient construction for singly-exponential-size families. (One can view our work
as providing such “scaled down” result.) Moreover, the analysis only yielded a
rate of at most (1− α)/3 < 1/3, and it was previously not known if such codes
can achieve a rate close to 1, even for “small” function families. We note that
[18] also showed that the probabilistic method construction can yield efficient
non-malleable codes for large function families in the random-oracle model. How-
ever, this only considers function families that don’t have access to the random-
oracle. For example, one cannot interpret this as giving any meaningful result
for tampering-functions with bounded complexity.

Concurrent and Independent Work. In a concurrent and independent
work, Cheraghchi and Guruswami [8] give two related results. Firstly, they im-
prove the probabilistic method construction of [18] and show that, for families
F of size |F| ≤ 22

αn

, there exist (inherently inefficient) non-malleable codes
with rate 1 − α, which they also show to be optimal. This gives the first char-
acterization of the rate of non-malleable codes. Secondly, similar to our results,
they use limited independence to construct efficient non-malleable codes when
restricted to tampering families F of size |F| ≤ 2s(n) for a polynomial s(n). How-
ever, the construction of [8] is not “efficient” in the usual cryptographic sense:
to get error-probability ε, the encoding and decoding procedures require com-
plexity poly(1/ε). If we set ε to be negligible, as usually desired in cryptography,
then the encoding/decoding procedures would require super-polynomial time. In
contrast, the encoding/decoding procedures in our construction have efficiency
poly(log(1/ε)), and therefore we can set ε to be negligible while maintaining
polynomial-time encoding/decoding.

Other Approaches to Achieve Tamper Resilience. There is a vast body
of literature that considers tampering attacks using other approaches besides

non-malleable codes. See, e.g., [5,22,24,4,21,25,3,23,27,30,6,13]. The reader is
referred to (e.g.,) [18] for a more detailed comparison between these approaches
and non-malleable codes.

2 Preliminaries

Notation. We denote the set of first n natural numbers, i.e. {1, . . . , n}, by [n].
Let X,Y be random variables with supports S(X), S(Y), respectively. We define

SD(X,Y)
def
=

1

2

∑
s∈S(X)∪S(Y)

|Pr[X = s]− Pr[Y = s]|

to be their statistical distance. We write X ≈ε Y and say that X and Y are
ε-statistically close to denote that SD(X,Y) ≤ ε. We let Un denote the uniform
distribution over {0, 1}n. We use the notation x ← X to denote the process
of sampling a value x according to the distribution X. If f is a randomized
algorithm, we write f(x; r) to denote the execution of f on input x with random
coins r. We let f(x) denote a random variable over the random coins.

2.1 Definitions of Non-Malleable Codes

Definition 1 (Coding Scheme). A (k, n)-coding scheme consists of two func-

tions: a randomized encoding function Enc : {0, 1}k → {0, 1}n, and deter-

ministic decoding function Dec : {0, 1}n → {0, 1}k ∪ {⊥} such that, for each

x ∈ {0, 1}k, Pr[Dec(Enc(x)) = x] = 1.

We now define non-malleability w.r.t. some family F of tampering functions.
The work of [18] defines a default and a strong version of non-malleability. The
main difference is that, in the default version, the tampered codeword c′ 6= c
may still encode the original message x whereas the strong version ensures that
any change to the codeword completely destroys the original message. We only
define the strong version below. We then add an additional strengthening which
we call super non-malleability.

Definition 2 (Strong Non-Malleability [18]). Let (Enc,Dec) be a (k, n)-
coding scheme and F be a family of functions f : {0, 1}n → {0, 1}n. We

say that the scheme is (F , ε)-non-malleable if for any x0, x1 ∈ {0, 1}k and any
f ∈ F , we have Tamperfx0

≈ε Tamperfx1
where

Tamperfx
def
=

{
c← Enc(x), c′ := f(c), x′ = Dec(c′)

Output same? if c′ = c, and x′ otherwise.

}
. (1)

For super non-malleable security (defined below), if the tampering manages
to modify c to c′ such that c′ 6= c and Dec(c′) 6= ⊥, then we will even give the
attacker the tampered codeword c′ in full rather than just giving x′ = Dec(c′).
We do not immediately see a concrete application of this strengthening, but it
seems sufficiently interesting to define explicitly.

Definition 3 (Super Non-Malleability). Let (Enc,Dec) be a (k, n)-coding
scheme and F be a family of functions f : {0, 1}n → {0, 1}n. We say that the

scheme is (F , ε)-super non-malleable if for any x0, x1 ∈ {0, 1}k and any f ∈ F ,
we have Tamperfx0

≈ε Tamperfx1
where:

Tamperfx
def
=

 c← Enc(x), c′ := f(c)
Output same? if c′ = c, output ⊥ if Dec(c′) = ⊥,

and else output c′.

 . (2)

3 Improved Leakage-Resilient Codes

We will rely on leakage-resilience as an important tool in our analysis. The
following notion of leakage-resilient codes was defined by [14]. Informally, a code
is leakage resilience w.r.t some leakage family F if, for any f ∈ F , “leaking” f(c)
for a codeword c does not reveal anything about the encoded value.

Definition 4 (Leakage-Resilient Codes [14]). Let (LREnc, LRDec) be a (k, n)-
coding scheme. For a function family F , we say that (LREnc, LRDec) is (F , ε)-
leakage-resilient, if for any f ∈ F and any x ∈ {0, 1}k we have SD(f(LREnc(x)),
f(Un)) ≤ ε.

The work of [14] gave a probabilistic method construction showing that such
codes exist and can be efficient when the size of the leakage family |F| is singly-
exponential. However, the rate k/n was at most some small constant (< 1

4),
even when the family size |F| and the leakage size ` are small. Here, we take the
construction of [14] and give an improved analysis with improved parameters,
showing that the rate can approach 1. In particular, the additive overhead of
the code is very close to the leakage-amount `, which is optimal. Our result
and analysis are also related to the “high-moment crooked leftover hash lemma”
of [28], although our construction is somewhat different, relying only on high-
independence hash-functions rather than permutations.

Construction. Let H be a t-wise independent function family consisting of
functions h : {0, 1}v → {0, 1}k. For any h ∈ H we define the (k, n = k + v)-
coding scheme (LREnch, LRDech) where: (1) LREnch(x) := (r, h(r)⊕ x) for r ←
{0, 1}v; (2) LRDech((r, z)) := z ⊕ h(r).

Theorem 1. Fix any function family F consisting of functions f : {0, 1}n →
{0, 1}`. With probability 1 − ρ over the choice of a random h ← H, the coding
scheme (LREnch, LRDech) is (F , ε)-leakage-resilient as long as:

t ≥ log |F|+ `+ k + log(1/ρ) + 3 and v ≥ `+ 2 log(1/ε) + log(t) + 3.

For space reasons, the proof of Theorem 1 is deferred to the full version [20].

4 Non-Malleable Codes

We now construct a non-malleable code for any family F of sufficiently small
size. We will rely on leakage-resilience as an integral part of the analysis.

Construction. Let H1 be a family of hash functions h1 : {0, 1}v1 → {0, 1}k,

and H2 be a family of hash functions h2 : {0, 1}k+v1 → {0, 1}v2 such that
H1 and H2 are both t-wise independent. For any (h1, h2) ∈ H1 × H2, define
Ench1,h2(x) = (r, z, σ) where r ← {0, 1}v1 is random, z := x ⊕ h1(r) and σ :=
h2(r, z). The codewords are of size n := |(r, z, σ)| = k+v1 +v2. Correspondingly

define Dec((r, z, σ)) which first checks σ
?
= h2(r, z) and if this fails, outputs ⊥,

else outputs z ⊕ h1(r). Notice that, we can think of (r, z) as being a leakage-
resilient encoding of x; i.e., (r, z) = LREnch1

(x; r).

Theorem 2. For any function family F , the above construction (Ench1,h2 ,Dech1,h2)
is an (F , ε)-super non-malleable code with probability 1 − ρ over the choice of
h1, h2 as long as:

t ≥ t∗ for some t∗ = O(log |F|+ n+ log(1/ρ))

v1 > v∗1 for some v∗1 = 3 log(1/ε) + 3 log(t∗) +O(1)

v2 > v1 + 3.

For example, in the above theorem, if we set ρ = ε = 2−λ for “security parame-
ter” λ, and |F| = 2s(n) for some polynomial s(n) = nO(1) ≥ n ≥ λ, then we can
set t = O(s(n)) and the message length k := n − (v1 + v2) = n − O(λ + log n).
Therefore the rate of the code k/n is 1−O(λ+ log n)/n which approaches 1 as
n grows relative to λ.

4.1 Proof of Theorem 2

Useful Notions. For a coding scheme (Enc,Dec), we say that c ∈ {0, 1}n
is valid if Dec(c) 6= ⊥. For any function f : {0, 1}n → {0, 1}n, we say that
c′ ∈ {0, 1}n is δ-heavy for f if Pr[f(Enc(Uk)) = c′] ≥ δ. Define

Hf (δ) = {c′ ∈ {0, 1}n : c′ is δ-heavy for f}.

Notice that |Hf (δ)| ≤ 1/δ.

Definition 5 (Bounded-malleable). We say that a coding scheme (Enc,Dec)

is (F , δ, τ)-bounded-malleable if for all f ∈ F , x ∈ {0, 1}k we have

Pr[c′ 6= c ∧ c′ is valid ∧ c′ 6∈ Hf (δ) | c← Enc(x), c′ = f(c)] ≤ τ,

where the probability is over the randomness of the encoding.

Intuition. The above definition says the following. Take any message x ∈
{0, 1}k, tampering function f ∈ F and do the following: choose c← Enc(x), set
c′ = f(c), and output: (1) same? if c′ = c, (2) ⊥ if c′ is not valid, (3) c′ otherwise.
Then, with probability 1 − τ the output of the above experiment takes on one
of the values: {same?,⊥}∪Hf (δ). Therefore, the output of the above tampering
experiment only leaks a bounded amount of information about c; in particular
it leaks at most ` = dlog(1/δ + 2)e bits. Furthermore the “leakage” on c is
independent of the choice of the code, up to knowing which codewords are valid
and which are δ-heavy. In particular, in our construction, the “leakage” only
depends on the choice of h2 but not on the choice of h1. This will allow us to
then rely on the fact that LREnch1

(x; r) = (r, h1(r) ⊕ x) is a leakage-resilient
encoding of x to argue that the output of the above experiment is the same for
x as for a uniformly random value. We formalize this intuition below.

From Bounded-Malleable to Non-Malleable. For any “tampering func-
tion” family F consisting of functions f : {0, 1}n → {0, 1}n, any δ > 0, and any
h2 ∈ H2 we define the “leakage function” family G = G(F , h2, δ) which consists

of the functions gf : {0, 1}k+v1 → Hf (δ) ∪ {same?,⊥} for each f ∈ F . The
functions are defined as follows:

– gf (c1): Compute σ = h2(c1). Let c := (c1, σ), c′ = f(c). If c′ is not valid
output ⊥. Else if c′ = c output same?. Else if c′ ∈ Hf (δ) output c′. Lastly, if
none of the above cases holds, output ⊥.

Notice that the notion of “δ-heavy” and the set Hf (δ) are completely specified
by h2 and do not depend on h1. This is because the distribution Ench1,h2(Uk)
is equivalent to (Uk+v1 , h2(Uk+v1)) and therefore c′ is δ-heavy if and only if
Pr[f(Uk+v1 , h2(Uk+v1)) = c′] ≥ δ. Therefore the family G = G(F , h2, δ) is fully
specified by F , h2, δ. Also notice that |G| = |F| and that the output length of
the functions gf is given by ` = dlog(|Hf (δ)|+ 2)e ≤ dlog(1/δ + 2)e.

Lemma 1. Let F be any function family and let δ > 0. Fix any h1, h2 such that
(Ench1,h2 ,Dech1,h2) is (F , δ, ε/4)-bounded-malleable and (LREnch1 , LRDech1) is
(G(F , h2, δ), ε/4)-leakage-resilient, where the family G = G(F , h2, δ), with size
|G| = |F|, is defined above, and the leakage amount is ` = dlog(1/δ + 2)e. Then
(Ench1,h2

,Dech1,h2
) is (F , ε)-non-malleable.

Proof. For any x0, x1 ∈ {0, 1}k and any f ∈ F :

Tamperfx0
=

 c← Ench1,h2(x0), c′ := f(c)
Output : same? if c′ = c,⊥ if Dech1,h2(c′) = ⊥,

c′ otherwise.

stat
≈ ε/4

{
c1 ← LREnch1

(x0)
Output : gf (c1)

}
(3)

stat
≈ ε/4

{
c1 ← LREnch1

(Uk)
Output : gf (c1)

}
(4)

stat
≈ ε/4

{
c1 ← LREnch1

(x1)
Output : gf (c1)

}
(5)

stat
≈ ε/4

 c← Ench1,h2
(x1), c′ := f(c)

Output : same? if c′ = c,⊥ if Dech1,h2
(c′) = ⊥,

c′ otherwise.

 (6)

= Tamperfx1

Eq. (3) and Eq. (6) follows as (Ench1,h2
,Dech1,h2

) is an (F , δ, ε/4)-bounded-
malleable code, and Eq. (4) and Eq. (5) follow as the code (LREnch1 , LRDech1)
is (G(F , δ), ε/4)-leakage-resilient.

We can use Theorem 1 to show that (LREnch1
, LRDech1

) is (G(F , h2, δ), ε/4)-
leakage-resilient with overwhelming probability. Therefore, it remains to show
that our construction is (F , δ, τ)-bounded-malleable, which we do below.

Analysis of Bounded-Malleable Codes. We now show that the code (Ench1,h2 ,
Dech1,h2) is bounded-malleable with overwhelming probability. As a very high-
level intuition, if a tampering function f can often map valid codewords to other
valid codewords (and many different ones), then it must guess the output of h2
on many different inputs. If the family F is small enough, it is highly improb-
able that it would contain some such f . For more detailed intuition, we show
that the following two properties hold for any message x and any function f
with overwhelming probability: (1) there is at most some “small” set of q valid
codewords c′ that we can hit by tampering some encoding of x via f (2) for
each such codeword c′ which is not in δ-heavy, the probability of landing in c′

after tampering an encoding of x cannot be higher than 2δ. This shows that the
total probability of tampering an encoding of x and landing in a valid codeword
which not δ-heavy is at most 2qδ, which is small. Property (1) roughly follows by
showing that f would need to “predict” the output of h2 on q different inputs,
and property (2) follows by using “leakage-resilience” of h1 to argue that we
cannot distinguish an encoding of x from an encoding of a random message, for
which the probability of landing in c′ is at most δ.

Lemma 2. For any function family F , any δ > 0, the code (Ench1,h2 ,Dech1,h2)
is (F , δ, τ)-bounded-malleable with probability 1− ψ over the choice of h1, h2 as
long as:

τ ≥ 2(log |F|+ k + log(1/ψ) + 2)δ

t ≥ log |F|+ n+ k + log(1/ψ) + 5

v1 ≥ 2 log(1/δ) + log(t) + 4 and v2 ≥ v1 + 3.

Proof. Set q := dlog |F| + k + log(1/ψ) + 1e. For any f ∈ F , x ∈ {0, 1}k define

the events Ef,x1 and Ef,x2 over the random choice of h1, h2 as follows:

1. Ef,x1 occurs if there exist at least q distinct values c′1, . . . , c
′
q ∈ {0, 1}

n
such

that each c′i is valid and c′i = f(ci) for some ci 6= c′i which encodes the
message x (i.e., ci = Ench1,h2(x; ri) for some ri).

2. Ef,x2 occurs if there exists some c′ ∈ {0, 1}n \Hf (δ) such that

Pr
r←{0,1}v1

[f(Ench1,h2
(x; r)) = c′] ≥ 2δ.

Let E1 =
∨
f,xE

f,x
1 , E2 =

∨
f,xE

f,x
2 and Bad = E1 ∨ E2. Assume (h1, h2) are

any hash functions for which the event Bad does not occur. Then, for every
f ∈ F , x ∈ {0, 1}k:

Pr[f(C) 6= C ∧ f(C) is valid ∧ f(C) 6∈ Hf (δ)]

=
∑

c′: c′valid and c′ 6∈Hf (δ)

Pr[f(C) = c′ ∧ C 6= c′] < 2qδ ≤ τ, (7)

where C = Ench1,h2(x;Uv1) is a random variable. Eq. (7) holds since (1) given
that E1 does not occur, there are fewer than q values c′ that are valid and for
which Pr[f(C) = c′ ∧C 6= c′] > 0, and (2) given that E2 does not occur, for any
c′ 6∈ Hf (δ), we also have Pr[f(C) = c′ ∧ C 6= c′] ≤ Pr[f(C) = c′] < 2δ.

Therefore, if the event Bad does not occur, then the code is (F , δ, τ)-bounded-
malleable. This means:

Pr
h1,h2

[(Ench1,h2 ,Dech1,h2) is not (F , δ, τ)-bounded-malleable]

≤ Pr[Bad] ≤ Pr[E1] + Pr[E2]

So it suffices to show that Pr[E1] and Pr[E2] are both bounded by ψ/2, which
we do next.

Claim. Pr[E1] ≤ ψ/2.

Proof. Fix some message x ∈ {0, 1}k and some function f ∈ F . Assume that the

event Ef,x1 occurs for some choice of hash functions (h1, h2). Then there must
exist some values {r1, . . . , rq} such that: if we define ci := Enc(x; ri), c

′
i := f(ci)

then c′i 6= ci, c
′
i is valid, and |{c′1, . . . , c′q}| = q. The last condition also implies

|{c1, . . . , cq}| = q. However, it is possible that ci = c′j for some i 6= j. We claim
that we can find a subset of at least s := dq/3e of the indices such that the
2s values {ca1 , . . . , cas , c′a1 , . . . , c

′
as} are all distinct. To do so, notice that if we

want to keep some index i corresponding to values ci, c
′
i, we need to take out at

most two indices j, k if c′j = ci or ck = c′i.
5 To summarize, if Ef,x1 occurs, then

(by re-indexing) there is some set R = {r1, . . . , rs} ⊆ {0, 1}v1 of size |R| = s
satisfying the following two conditions:

(1) If we define ci := Enc(x; ri), c
′
i 6= ci and c′i is valid meaning that c′i =

(r′i, z
′
i, σ
′
i) where σ′ = h2(r′, z′).

5 In other words, if we take any set of tuples {(ci, c′i)} such that all the left components
are distinct ci 6= cj and all the right components are distinct c′i 6= c′j , but there may
be common values ci = c′j , then there is a subset of at least 1/3 of the tuples such
that all left and right components in this subset are mutually distinct.

(2) |{c1, . . . , cs, c′1, . . . , c′s}| = 2s.

Therefore we have:

Pr[Ef,x1] ≤ Pr
h1,h2

[∃R ⊆ {0, 1}v1 , |R| = s,R satisfies (1) and (2)]

≤
∑
R

Pr
h1,h2

[R satisfies (1) and (2)]

≤
∑

R={r1,...,rs}

max
h1,σ1,...,σs

Pr
h2

∀i , c′i valid

∣∣∣∣∣∣
ci := (ri, zi = h1(ri)⊕ x, σi),

c′i := f(ci), c
′
i 6= ci

|{c1, . . . , cs, c′1, . . . , c′s}| = 2s

≤
(

2v1

s

)
2−sv2 ≤

(
e2v1

s

)s
2−sv2 ≤ 2s(v1−v2) ≤ 2q(v1−v2)/3 ≤ 2−q, (8)

where Eq. (8) follows from the fact that, even if we condition on any choice of
the hash function h1 which fixes zi = h1(ri)⊕ x, and any choice of the s values
σi = h2(ri, zi), which fixes ci := (ri, zi = h1(ri) ⊕ x, σi), c′i := f(ci) such that
c′i 6= ci and |{c1, . . . , cs, c′1, . . . , c′s}| = 2s, then the probability that h2(r′i, z

′
i) = σ′i

for all i ∈ [s] is at most 2−sv2 . Here we use the fact that H2 is t-wise independent
where t ≥ q ≥ 2s. Now, we calculate

Pr[E1] ≤
∑
f∈F

∑
x∈{0,1}k

Pr[Ef,x1] ≤ |F|2k−q ≤ ψ/2,

where the last inequality follows from the assumption, q = dlog |F| + k +
log(1/ψ) + 1e.

Claim. Pr[E2] ≤ ψ/2.

Proof. For this proof, we will rely on the leakage-resilience property of the code
(LREnch1 , LRDech1) as shown in Theorem 1. First, let us write:

Pr[E2] = Pr
h1,h2

[
∃(f, x, c′) ∈ F × {0, 1}k × {0, 1}n \Hf (δ) :

Pr[f(Ench1,h2
(x;Uv1)) = c′] ≥ 2δ

]
≤ Pr
h1,h2

[
∃(f, x, c′) ∈ F × {0, 1}k × {0, 1}n \Hf (δ) : (9)

∣∣∣∣ Pr[f(Ench1,h2(x;Uv1)) = c′]
−Pr[f(Ench1,h2

(Uk;Uv1)) = c′]

∣∣∣∣ ≥ δ
]

since, for any c′ 6∈ Hf (δ), we have Pr[f(Ench1,h2
(Uk;Uv1)) = c′] < δ by definition.

Notice that we can write Ench1,h2
(x; r) = (c1, c2) where c1 = LREnch1

(x; r), c2 =
h2(c1). We will now rely on the leakage-resilience of the code (LREnch1

, LRDech1
)

to bound the above probability by ψ/2. In fact, we show that the above holds
even if we take the probability over h1 only, for a worst-case choice of h2.

Let us fix some choice of h2 and define the family G = G(h2) of leakage-

functions G = {gf,c′ : {0, 1}k+v1 → {0, 1} | f ∈ F , c′ ∈ {0, 1}n} with output
size ` = 1 bits as follows:

– gf,c′(c1): Set c = (c1, c2 = h2(c1)). If f(c) = c′ output 1, else output 0.

Notice that the size of the family G is 2n|F| and the family does not depend on
the choice of h1. Therefore, continuing from inequality (9), we get:

Pr[E2] ≤ Pr
h1,h2

[
∃(f, x, c′) ∈ F × {0, 1}k × {0, 1}n \Hf (δ) :

∣∣∣∣ Pr[f(Ench1,h2(x;Uv1)) = c′]
−Pr[f(Ench1,h2(Uk;Uv1)) = c′]

∣∣∣∣ ≥ δ
]

≤ max
h2

Pr
h1

[
∃(gf,c′ , x) ∈ G(h2)× {0, 1}k :

∣∣∣∣ Pr[gf,c′(LREnch1
(x;Uv1)) = 1]

−Pr[gf,c′(LREnch1
(Uk;Uv1)) = 1]

∣∣∣∣ ≥ δ
]

= max
h2

Pr
h1

[
∃(gf,c′ , x) ∈ G(h2)× {0, 1}k :

∣∣∣∣Pr[gf,c′(LREnch1(x;Uv1)) = 1]
−Pr[gf,c′(Uk+v1) = 1]

∣∣∣∣ ≥ δ
]

≤ max
h2

Pr
h1

[(LREnch1 , LRDech1) is not (G(h2), δ)-Leakage-Resilient]

≤ ψ/2,

where the last inequality follows from Theorem 1 by the choice of parameters.

Putting it All Together. Lemma 1 tells us that for any δ > 0 and any
function family F :

Pr[(Ench1,h2 ,Dech1,h2) is not (F , ε)-super-non-malleable]

≤ Pr[(Ench1,h2 ,Dech1,h2) is not (F , δ, ε/4)-bounded-malleable] (10)

+ Pr[(LREnch1 , LRDech1) is not (G(F , h2, δ), ε/4)-leakage-resilient], (11)

where G = G(F , h2, δ) is of size |G| = |F| and consists of function with output
size ` = dlog(1/δ + 2)e.

Let us set δ := (ε/8)(log |F|+k+ log(1/ρ) + 3)−1. This ensures that the first
requirement of Lemma 2 is satisfied with τ = ε/4. We choose t∗ = O(log |F| +
n + log(1/ρ)) such that log(1/δ) ≤ log(1/ε) + log(t∗) + O(1). Notice that the
leakage amount of G is ` = dlog(1/δ+2)e ≤ log(1/ε)+log(t∗)+O(1). With v1, v2
as in Theorem 2, we satisfy the remaining requirements of Lemma 2 (bounded-
malleable codes) and Theorem 1 (leakage-resilient codes) to ensure that the
probabilities (10), (11) are both bounded by ρ/2, which proves our theorem.

Experiment Realh(f) vs. Simh(f)

Experiment Realh(f):
Sample x← Un.
If f(x) = x:

Output
(
h(x), same?)

)
.

Else
Output

(
h(x), h(f(x))

)
.

Experiment Simh(f):
Sample x← Un; y ← Uk

If f(x) = x:
Output

(
y, same?

)
.

Else
Output

(
y, h(f(x))

)
.

Fig. 1. Experiments defining a non-malleable key derivation function h

5 Non-malleable Key-derivation

In this section we introduce a new primitive, which we name non-malleable key
derivation. Intuitively a function h is a non-malleable key derivation function if
h(x) is close to uniform even given the output of h applied to a related input
f(x), as long as f(x) 6= x.

Definition 6 (Non-malleable Key-Derivation). Let F be any family of func-

tions f : {0, 1}n → {0, 1}n. We say that a function h : {0, 1}n → {0, 1}k
is an (F , ε)-non-malleable key derivation function if for every f ∈ F we have
SD
(
Realh(f); Simh(f)

)
≤ ε where Realh(f) and Simh(f) denote the output dis-

tributions of the corresponding experiments described in Fig. 1.

Note that the above definition can be interpreted as a dual version of the
definition of non-malleable extractors [15].6 The theorem below states that by
sampling a function h from a set H of t-wise independent hash functions, we
obtain a non-malleable key derivation function with overwhelming probability.

Theorem 3. Let H be a 2t-wise independent function family consisting of func-
tions h : {0, 1}n → {0, 1}k and let F be some function family as above. Then
with probability 1− ρ over the choice of a random h← H, the function h is an
(F , ε)-non-malleable key-derivation function as long as:

n ≥ 2k + log(1/ε) + log(t) + 3 and t > log(|F|) + 2k + log(1/ρ) + 5.

Proof. For any h ∈ H and f ∈ F , define a function hf : {0, 1}n → {0, 1}k∪same?

such that if f(x) = x then hf (x) = same? otherwise hf (x) = h(f(x)). Fix a
function family F . Now, taking probabilities (only) over the choice of h, let
Bad be the event that h is not an (F , ε)-non-malleable-key-derivation function.
Then:

Pr[Bad] = Pr
h←H

[
∃f ∈ F : SD(Realh(f) , Simh(f)) > ε

]
6 The duality comes from the fact that the output of a non-malleable extractor is

close to uniform even given a certain number of outputs computed with related
seeds (whereas for non-malleable key derivation the seed is unchanged but the input
can be altered).

= Pr
h←H

[
∃f ∈ F : SD((h(X), hf (X)) , (Uk, hf (X))) > ε

]
≤
∑
f∈F

Pr
h←H

[∑
y∈{0,1}k

∑
y′∈{0,1}k∪same?

∣∣∣∣Pr[h(X) = y ∧ hf (X) = y′]

−Pr[Uk = y ∧ hf (X) = y′]

∣∣∣∣ > 2ε

]
≤
∑
f∈F

Pr
h←H

[
∃ y ∈ {0, 1}k, y′ ∈ {0, 1}k ∪ same? :∣∣∣∣ Pr[h(X) = y ∧ hf (X) = y′]

−Pr[Uk = y ∧ hf (X) = y′]

∣∣∣∣ > 2−2kε

]
≤
∑
f∈F

∑
y∈{0,1}k

∑
y′∈{0,1}k∪same?

Pr
h←H

[∣∣∣∣Pr[h(X) = y ∧ hf (X) = y′]
−2−k Pr[hf (X) = y′]

∣∣∣∣ > 2−2kε

]
(12)

Fix f, y, y′. For every x ∈ {0, 1}n, define a random variable Cx over the choice
of h← H, such that

Cx =

1− 2−k if h(x) = y ∧ hf (x) = y′

−2−k if h(x) 6= y ∧ hf (x) = y′

0 otherwise.

Notice that each Cx is 0 on expectation. However, the random variables Cx
are not even pairwise independent.7 In the full version of this paper [20], we
prove the following lemma about the variables Cx.

Lemma 3. There exists a partitioning of {0, 1}n into four disjoint subsets {Aj}4j=1,
such that for any A > 0 and for all j = 1, . . . , 4:

Pr

[∣∣∣∣ ∑
x∈Aj

Cx

∣∣∣∣ > A

]
< Kt

(
t

A

)t
,

where Kt ≤ 8.

Continuing from Eq. (12), we get:

Pr
h←H

[∣∣Pr[h(X) = y ∧ hf (X) = y′]− 2−k Pr[hf (X) = y′]
∣∣ > 2−2kε

]
= Pr
h←H

[∣∣∣∣ ∑
x∈{0,1}n

Cx

∣∣∣∣ > 2n−2kε

]
(13)

≤
4∑
j=1

Pr
h←H

[∣∣∣∣ ∑
x∈Aj

Cx

∣∣∣∣ > 2n−2k−2ε

]
< 4Kt

(
t

2n−2k−2ε

)t
. (14)

7 For example if f(x) = f(x′) and Cx = 0 then Cx′ = 0 as well.

Eq. (13) follows from the definitions of the variables Cx and Eq. (14) follows
by applying Lemma 3 to the sum. Combining Eq. (12) and Eq. (14), we get

Pr[Bad] < |F|22k
[
4Kt

(
t

2n−2k−2ε

)t]
. In particular, it holds that Pr[Bad] ≤ ρ as

long as:

n ≥ 2k + log(1/ε) + log(t) + 3 and t > log(|F|) + 2k + log(1/ρ) + 5.

Optimal Rate of Non-Malleable Key-Derivation. We can define the rate
of a key derivation function h : {0, 1}n → {0, 1}k as the ratio k/n. Notice that our
construction achieves rate arbitrary close to 1/2. We claim that this is optimal
for non-malleable key derivation. To see this, consider a tampering function
f : {0, 1}n → {0, 1}n which is a permutation and never identity: f(x) 6= x. In
this case the joint distribution (h(X), h(f(X))) is ε-close to (Uk, h(f(X))) which
is ε-close to the distribution (Uk, U

′
k) consisting of 2k random bits. Since all of

the randomness in (h(X), h(f(X))) comes from X, this means that X must
contain at least 2k bits of randomness, meaning that n > 2k.

Acknowledgements

We thank Ivan Damg̊ard for useful discussions at the early stages of this research.

References

1. Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett. Non-malleable codes
from additive combinatorics. Electronic Colloquium on Computational Complexity
(ECCC), 20:81, 2013.

2. Ross Anderson, Markus Kuhn, and England U. S. A. Tamper resistance — a
cautionary note. In In Proceedings of the Second Usenix Workshop on Electronic
Commerce, pages 1–11, 1996.

3. Benny Applebaum, Danny Harnik, and Yuval Ishai. Semantic security under
related-key attacks and applications. In ICS, pages 45–60, 2011.

4. Mihir Bellare and David Cash. Pseudorandom functions and permutations prov-
ably secure against related-key attacks. In CRYPTO, pages 666–684, 2010.

5. Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-key attacks:
RKA-PRPs, RKA-PRFs, and applications. In EUROCRYPT, pages 491–506, 2003.

6. Mihir Bellare, Kenneth G. Paterson, and Susan Thomson. RKA security beyond
the linear barrier: IBE, encryption and signatures. In ASIACRYPT, pages 331–348,
2012.

7. Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of
eliminating errors in cryptographic computations. J. Cryptology, 14(2):101–119,
2001.

8. Mahdi Cheraghchi and Venkatesan Guruswami. Capacity of non-malleable codes.
Electronic Colloquium on Computational Complexity (ECCC), 20:118, 2013.

9. Mahdi Cheraghchi and Venkatesan Guruswami. Non-malleable coding against bit-
wise and split-state tampering. IACR Cryptology ePrint Archive, 2013:565, 2013.

10. Seung Geol Choi, Aggelos Kiayias, and Tal Malkin. BiTR: Built-in tamper re-
silience. In ASIACRYPT, pages 740–758, 2011.

11. Jean-Sébastien Coron, Antoine Joux, Ilya Kizhvatov, David Naccache, and Pascal
Paillier. Fault attacks on rsa signatures with partially unknown messages. In
Christophe Clavier and Kris Gaj, editors, CHES, volume 5747 of Lecture Notes in
Computer Science, pages 444–456. Springer, 2009.

12. Ronald Cramer, Yevgeniy Dodis, Serge Fehr, Carles Padró, and Daniel Wichs.
Detection of algebraic manipulation with applications to robust secret sharing and
fuzzy extractors. In Nigel P. Smart, editor, EUROCRYPT, volume 4965 of Lecture
Notes in Computer Science, pages 471–488. Springer, 2008.

13. Ivan Damg̊ard, Sebastian Faust, Pratyay Mukherjee, and Daniele Venturi. Bounded
tamper resilience: How to go beyond the algebraic barrier. In ASIACRYPT (2),
pages 140–160, 2013.

14. Francesco Dav̀ı, Stefan Dziembowski, and Daniele Venturi. Leakage-resilient stor-
age. In Juan A. Garay and Roberto De Prisco, editors, SCN, volume 6280 of
Lecture Notes in Computer Science, pages 121–137. Springer, 2010.

15. Yevgeniy Dodis and Daniel Wichs. Non-malleable extractors and symmetric key
cryptography from weak secrets. In STOC, pages 601–610, 2009.

16. Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM
J. Comput., 30(2):391–437, 2000.

17. Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Non-malleable codes
from two-source extractors. In CRYPTO (2), pages 239–257, 2013.

18. Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes.
In ICS, pages 434–452, 2010.

19. Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele Venturi.
Continuous non-malleable codes. In TCC, 2014. To appear.

20. Sebastian Faust, Pratyay Mukherjee, Daniele Venturi, and Daniel Wichs. Efficient
non-malleable codes and key-derivation for poly-size tampering circuits. IACR
Cryptology ePrint Archive, 2013:702, 2013.

21. Sebastian Faust, Krzysztof Pietrzak, and Daniele Venturi. Tamper-proof circuits:
How to trade leakage for tamper-resilience. In ICALP (1), pages 391–402, 2011.

22. Rosario Gennaro, Anna Lysyanskaya, Tal Malkin, Silvio Micali, and Tal Rabin.
Algorithmic tamper-proof (ATP) security: Theoretical foundations for security
against hardware tampering. In TCC, pages 258–277, 2004.

23. Vipul Goyal, Adam O’Neill, and Vanishree Rao. Correlated-input secure hash
functions. In TCC, pages 182–200, 2011.

24. Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and David Wagner. Private circuits
II: Keeping secrets in tamperable circuits. In EUROCRYPT, pages 308–327, 2006.

25. Yael Tauman Kalai, Bhavana Kanukurthi, and Amit Sahai. Cryptography with
tamperable and leaky memory. In CRYPTO, pages 373–390, 2011.

26. Feng-Hao Liu and Anna Lysyanskaya. Tamper and leakage resilience in the split-
state model. In CRYPTO, pages 517–532, 2012.

27. Krzysztof Pietrzak. Subspace LWE. In TCC, pages 548–563, 2012.
28. Ananth Raghunathan, Gil Segev, and Salil P. Vadhan. Deterministic public-key

encryption for adaptively chosen plaintext distributions. In Thomas Johansson
and Phong Q. Nguyen, editors, EUROCRYPT, volume 7881 of Lecture Notes in
Computer Science, pages 93–110. Springer, 2013.

29. Sergei P. Skorobogatov and Ross J. Anderson. Optical fault induction attacks.
pages 2–12. Springer-Verlag, 2002.

30. Hoeteck Wee. Public key encryption against related key attacks. In Public Key
Cryptography, pages 262–279, 2012.

	Efficient Non-Malleable Codes and Key-Derivation for Poly-Size Tampering Circuits

