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Abstract. Recently, Garg, Gentry, Halevi, Raykova, Sahai, and Wa-
ters (FOCS 2013) constructed a general-purpose obfuscating compiler
for NC1 circuits. We describe a simplified variant of this compiler, and
prove that it is a virtual black box obfuscator in a generic multilinear
map model. This improves on Brakerski and Rothblum (eprint 2013) who
gave such a result under a strengthening of the Exponential Time Hy-
pothesis. We remove this assumption, and thus resolve an open question
of Garg et al. As shown by Garg et al., a compiler for NC1 circuits can
be bootstrapped to a compiler for all polynomial-sized circuits under the
learning with errors (LWE) hardness assumption.
Our result shows that there is a candidate obfuscator that cannot be
broken by algebraic attacks, hence reducing the task of creating secure
obfuscators in the plain model to obtaining sufficiently strong security
guarantees on candidate instantiations of multilinear maps.

1 Introduction

The goal of general-purpose program obfuscation is to make an arbitrary com-
puter program “unintelligible” while preserving its functionality. At least as
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far back as the work of Diffie and Hellman in 1976 [7]5, researchers have con-
templated applications of general-purpose obfuscation. The first mathematical
definitions of obfuscation were given by Hada [11] and Barak, Goldreich, Im-
pagliazzo, Rudich, Sahai, Vadhan, and Yang [2].6 Barak et al. also enumerated
several additional applications of general-purpose obfuscation, ranging from soft-
ware intellectual property protection and removing random oracles, to eliminat-
ing software watermarks. However, until 2013, even heuristic constructions for
general-purpose obfuscation were not known.

This changed with the work of Garg, Gentry, Halevi, Raykova, Sahai, and
Waters in 2013 [9], which gave the first candidate construction for a general-
purpose obfuscator. At the heart of their construction is an obfuscator for log-
depth (NC1) circuits, building upon a simplified subset of the Approximate
Multilinear Maps framework of Garg, Gentry, and Halevi [8] that they call Mul-
tilinear Jigsaw Puzzles. They proved that their construction achieves a notion
called indistinguishability obfuscation (see below for further explanation), under
a complex new intractability assumption. They then used fully homomorphic
encryption to bootstrap this construction to work for all circuits, proving their
transformation secure under the Learning with Error (LWE) assumption, a well-
studied intractability assumption.

Our result— protecting against algebraic attacks. Given the importance of general-
purpose obfuscation, it is imperative that we gain as much confidence as possible
in candidates for general-purpose obfuscation. Potential attacks on the [9] ob-
fuscator can be classified into two types— attacks on the underlying Multilinear
Jigsaw Puzzle construction, and attacks on the obfuscation construction that
treat the Multilinear Jigsaw Puzzle as an ideal black box. [8] gave some cryptan-
alytic evidence for the security of their Approximate Multilinear Maps candidate
(this evidence immediately extends to Mathematical Jigsaw Puzzles, since it is
a weaker primitive), and there is also an alternative candidate [6] for such maps.
Our focus in this paper is to find out whether there exists a purely algebraic at-
tack against the candidate obfuscation schemes, or whether any attack against
the scheme must rely on some weakness of the underlying Multilinear Jigsaw
Puzzle (i.e., some deviation of the implementation from the ideal model). In-
deed, [9] pose the problem of proving that there exist no generic multilinear
attacks against their core NC1 scheme as a major open problem in their work.7

5 Diffie and Hellman suggested the use of general-purpose obfuscation to convert
private-key cryptosystems to public-key cryptosystems.

6 The work of [2] is best known for their constructions of “unobfuscatable” classes of
functions {fs} that roughly have the property that given any circuit evaluating fs,
one can extract the secret s, yet given only black-box access to fs, the secret s is
hidden. We will discuss the implications of this for our setting below.

7 [9] did rule out a certain subset of algebraic attacks which fall under a model they
called the “generic colored matrix model”. However, this model assumes that an
adversary can only attack the schemes by performing a limited subset of matrix
operations, and does not prove any security against an adversary that can perform
algebraic operations on the individual entries of the matrices.



This problem was first addressed in the recent work of Brakerski and Roth-
blum [4], who constructed a variant of the [9] candidate obfuscator, and proved
that it is an indistinguishability obfuscation against all generic multilinear at-
tacks. They also proved that their obfuscator achieves the strongest definition
of security for general-purpose obfuscation — Virtual Black Box (VBB) security
— against all generic multilinear attacks, albeit under an unproven assump-
tion they introduce as the Bounded Speedup Hypothesis, which strengthens the
Exponential Time Hypothesis from computational complexity.8

In this work, we resolve the open problem of [9] completely, by removing the
need for this additional assumption. More specifically, we describe a different
(and arguably simpler) variant of the construction of [9], for which we can prove
that it achieves Virtual Black Box security against all generic multilinear attacks,
with no further assumptions. Our result gives evidence for the soundness of [9]’s
approach for building obfuscators based on Multilinear Jigsaw Puzzles.

Notions of Security and attacks. In this work, we focus on arguing security
against a large class of natural algebraic attacks, captured in the generic mul-
tilinear model. Intuitively speaking, the generic multilinear model imagines an
exponential-size collection of “groups” {GS}, where the subscript S denotes a
subset S ⊆ {1, 2, . . . , k}. Each of these groups is a separate copy of Zp, under
addition, for some fixed large random prime p. The adversary is initially given
some collection of elements from various groups. However, the only way that the
adversary can process elements of these groups is through access to an oracleM
that performs the following three operations9:

– Addition: GS × GS → GS , defined in the natural way over Zp, for all
S ⊂ {1, 2, . . . , k}.

– Negation: GS → GS , defined in the natural way over Zp, for all S ⊂
{1, 2, . . . , k}.

– Multiplication: GS × GT → GS∪T , defined in the natural way over Zp,
for all S, T ⊂ {1, 2, . . . , k}, where S ∩ T = ∅. Note that the constraint that
S ∩ T = ∅ intuitively captures why we call this a multilinear model.

These operations capture precisely the algebraic operations supported by the
Multilinear Jigsaw Puzzles of [9].

With the algebraic attack model defined, the next step is to consider what
security property we would like to achieve with respect to this attack model. We
first recall two security notions for obfuscation – indistinguishability obfuscation

8 Roughly speaking, the Bounded Speedup Hyptothesis says that there is some ε > 0
such that for every subset X of {0, 1}n, any circuit C that solves SAT on all inputs
in X must have size at least |X |ε. The Exponential Time Hypothesis is recovered
by considering X = {0, 1}n. The exponent of the polynomial slowdown of the [4]
simulator is a function of ε.

9 In the technical exposition, we discuss how it is enforced that the adversary can only
access the elements of the group via the oracles. For this intuitive exposition, we ask
the reader to simply imagine that an algebraic adversary is defined to be limited in
this way.



(iO) security and Virtual Black-Box (VBB) security – and state them both in
comparable language, in the generic multilinear model. Below, we write “generic
adversary” or “generic distinguisher” to refer to an algorithm that has access to
the oracle M described above.

Indistinguishability obfuscation10 requires that for every polynomial-time
generic adversary, there exists an computationally unbounded simulator, such
that for every circuit C, no polynomial-time generic distinguisher can distin-
guish the output of the adversary given the obfuscation of C as input, from the
output of the simulator given oracle access to C, where the simulator can make
an unbounded number of queries to C. Virtual Black-Box obfuscation11 requires
that for every polynomial-time generic adversary, there exists a polynomial-time
simulator, such that for every circuit C, no polynomial-time generic distinguisher
can distinguish the output of the adversary given the obfuscation of C as input,
from the output of the simulator given oracle access to C, where the simulator
can make a polynomial number of queries to C.

In our work, we focus on proving the Virtual Black-Box definition of security
against generic attacks. We do so for several reasons:

– Our first, and most basic, reason is that Virtual Black-Box security is the
strongest security notion of obfuscation we are aware of, and so proving VBB
security against generic multilinear attacks is, mathematically speaking, the
strongest result we could hope to prove. As we can see from the definitions
above, the definition of security provided by the VBB definition is signifi-
cantly stronger than the indistinguishability obfuscation definition. As such,
it represents the natural end-goal for research on proving resilience to such
algebraic attacks.
This may seem surprising in light of the negative results of [2], who showed
that there exist (contrived) families of “unobfuscatable” functions for which
the VBB definition is impossible to achieve in the plain model. However, we
stress that this result does not apply to security against generic multilinear
attacks. Thus it does not present a barrier to the goal of proving VBB
security against generic multilinear attacks.

– Given the existence of “unobfuscatable” function families, how can we inter-
pret a result showing VBB security against generic attacks, in terms of the
real-world applicability of obfuscation? One plausible interpretation is that
it offers heuristic evidence that our obfuscation mechanism will offer strong
security for “natural” functions, that do not have the self-referential prop-
erties of the [2] counter-examples. This is similar to the heuristic evidence

10 The formulation of indistinguishability obfuscation sketched here was used, for ex-
ample, in [9].

11 We note that we are referring to a stronger definition of VBB obfuscation than the
one given in [2], which limits the adversary to only outputting one bit. In our defini-
tion, the adversary can output arbitrary length strings. This stronger formulation of
VBB security implies all other known meaningful security definitions for obfuscation,
including natural definitions that are not known to be implied by the one-bit-output
formulation of VBB security.



given by a proof in the Random Oracle Model. We stress, however, that
our result cannot offer any specific theoretical guidance on which function
families can be VBB-obfuscated in the plain model, and which cannot.

– Finally, our VBB result against generic attacks suggests that there is a signif-
icant gap between what security is actually achieved by our candidate in the
plain model, and the best security definitions for obfuscation that we have in
the plain model. This suggests a research program for studying relaxations
of VBB obfuscation that could plausibly be achievable in the plain model.
Indistinguishability Obfuscation is one such example, but other notions have
been suggested in the literature, and it’s quite possible we haven’t yet found
the “right” notion. For every such definition of obfuscation X, one can of
course make the assumption that our candidate is “X secure” in the plain
model, but in fact our VBB proof in the generic multilinear model shows that
“X security” of our candidate will follow from a concrete intractability as-
sumption on the Multilinear Jigsaw Puzzle implementation that is unrelated
to our specific obfuscation candidate (see below for more details).

Remark 1.1 ( Capturing a Generic Model by Meta-Assumptions). While a generic
model allows us to precisely define and argue about large classes of algebraic at-
tacks, it is unsatisfying because any such oracle model, by definition, cannot be
achieved in the plain model. Thus, we would like to capture as much as we can
of a generic model by means of what we would call a “Meta-Assumption.” In-
tuitively, a Meta-Assumption specifies conditions under which the only attacks
that are possible in the plain model with a specific instantiation of the oracle, are
those that are possible in the oracle model itself – where the conditions that the
Meta-Assumption imposes allow the assumption to be plausible. For example,
one can consider the Decisional Diffie Hellman (DDH) assumption as a meta
assumption on the instantiation of the group Zq as a multiplicative subgroup of
Z∗p=kq+1, stipulating that certain attacks that would be infeasible in the ideal
setting, are also infeasible when working with the actual encoding of the group
elements.

1.1 Our Techniques

The starting point for our construction is a simplified form of the construction
of [9]. That work used the fact that one can express an NC1 computation as a
Branching Program, which is a sequence of 2n permutations (or more generally,
functions) {Bi,σ}i∈[n],σ∈{0,1}. The program is evaluated on an input x ∈ {0, 1}`
by applying for i = 1, . . . , n the permutation Bi,xinp(i)

where inp is some map from

[n] to [`] that says which input bit the branching program looks at the ith step.
The output of the program is obtained based on the composition of all these per-
mutations; that is, we have some permutation Paccept (without loss of generality,
the identity) and say that the output is 1 if the composition is equal to Paccept and
the output is 0 otherwise.12 We can identify these permutations with matrices,

12 Barrington’s Theorem [3] shows that these permutations can be taken to have a
finite domain (in fact, 5) but for our construction, a domain of poly(`) size is fine.



and so evaluating the program amounts to matrix multiplication. Matrix multi-
plication is an algebraic (and in fact multilinear) operation, that can be done in
a group supporting multilinear maps. Thus a naive first attempt at obfuscation
of an NC1 computation would be to encode all the elements of the matrices
{Bi,σ}i∈[n],σ∈{0,1} in the multilinear maps setting (using disjoint subsets to en-
code elements of matrices that would be multiplied together, e.g., by encoding
the elements of Bi,σ in the group G{i}). This would allow to run the computation

on every x ∈ {0, 1}`. However, as an obfuscation it would be completely insecure,
since it will also allow an adversary to perform tricks such as “mixing inputs” by
starting the computation on a particular input x and then at some step switching
to a different input x′. Even if it fixes some particular input x ∈ {0, 1}`, the ad-
versary might learn not just the product of the n matrices B1,xinp(1)

, . . . , Bn,xinp(n)

but also information about partial products. To protect against this latter attack,
[9] used a trick of Kilian [12] where instead of the matrices {Bi,σ}i∈[n],σ∈{0,1}
they published the matrices {B′i,σ = R−1i−1Bi,σRi}i∈[n],σ∈{0,1} where R0, Rn are

the identity and R1, . . . , Rn−1 are random permutation matrices.13 We follow
the same approach. The crucial obstacle is that in our setting, because we need
to supply a single program that works on all inputs x ∈ {0, 1}`, we need to reveal
both the matrix Bi,0 and the matrix Bi,1, and will need to multiply them both
with the same random matrix. Unfortunately, Kilian’s trick does not guarantee
security in such a setting. It also does not protect against the “mixed input”
attack described above.

We deviate from the works [9, 4] in the way we handle the above issues.
Specifically, the most important difference is that we employ specially designed
set systems in our use of the generic multilinear model. Roughly speaking, in
the original work of [9], the encoding of the elements of matrix B′i,σ was in the
group G{i}. In contrast, in our obfuscation, while the actual elements from Zp
that we use are very similar to those used in [9], these elements will live in groups
GS where the sets S will come from specially designed set systems. To illustrate
this idea, consider the toy example where ` = 1 and n = 2. That is, we have
a single input bit x ∈ {0, 1} and 4 matrices B′1,0, B

′
1,1, B

′
2,0, B

′
2,1. We want to

supply encodings that will allow computing the products B′1,0B
′
2,0 and B′1,1B

′
2,1,

but not any of the “mixed products” such as B′1,0B
′
2,1 which corresponds to

pretending the input bit is equal to 0 in the first step of the branching program,
and equal to 1 in the second step. The idea is that our groups will be of the form
{GS} where S is a subset of the universe {1, 2, 3}. We will encode the elements
of B1,0 in G{1,2}, the elements of B1,1 in G{1}, the elements of B2,0 in G{3},
and the elements of B2,1 in G{2,3}. One can see that one can use our oracle to
obtain an encoding of the two matrices corresponding to the “proper” products
in G{1,2,3}, but it is not possible to compute the “mixed product” since it would
involved multiplying elements in GS and GT for non-disjoint S and T . This idea

13 Instead of using R0, Rn+1 as the identity, [9] and us added some additional encoding
of elements they called “bookends”. We ignore this detail in this section’s high
level description. We also defer discussion of an additional trick of multiplying each
element in B′

i,σ by a scalar αi,σ.



can be easily extended to the case of larger ` and n, and can be used to rule out
the mixed product attack.

However, the idea above still does not rule out “partial evaluation attacks”,
where the adversary might try to learn, for example, whether the first k steps of
the branching program evaluate to the same permutation regardless of the value
of the first bit of x. To do that we enhance our set system by creating interlock-
ing sets that combine several copies of the straddling set systems above. Roughly
speaking, these interlocking sets ensure that the adversary cannot create “inter-
esting” combinations of the encoded elements, without in effect committing to a
particular input x ∈ {0, 1}`. This prevents the adversary from creating polyno-
mials that combine terms corresponding to a super-polynomial set of different
inputs. In contrast, in the recent work of [4], this was accomplished by means of
a reduction to the Bounded Speedup Hypothesis. In contrast, our generic proof
does not use any assumptions except the properties of our set systems.

The second deviation in our construction from that of [9] is in our usage
of the random scalar values {αi,σ}i∈[n],σ∈{0,1} that are used to multiply every
element in the encoding of B′i,σ. In [9] these random scalars αi,b were used for two
purposes: First, they were chosen with specific multiplicative constraints in order
to prevent “input mixing” attacks as described above (a similar multiplicative
bundling method was used by [4] as well). As noted above, we no longer need this
use of the αi,b values as this is handled by our set systems. The second purpose
these values served was to provide a “per-input” randomization in polynomial
terms created by the adversary. We continue the use of this role of the αi,b values,
leveraging this “per-input” randomization using a method of explicitly invoking
Kilian’s randomization technique. This is similar to (but arguably simpler than)
the beautiful use of Kilian’s randomization technique in the recent work of [4].

Additional Related Work. Our work deals with analyzing candidate general-
purpose obfuscators in an idealized mathematical model (the generic multilinear
model). There has also been recent work suggesting general-purpose obfusca-
tors in idealized mathematical models which currently do not have candidate
instantiations in the standard model: the work of [5] describes a general-purpose
obfuscator for NC1 in a generic group setting with a groupG = G1×G2×G3×G4,
where G1 is a pseudo-free Abelian group, G2 and G3 are pseudo-free non-Abelian
groups, and G4 is a group supporting Barrington’s theorem, such as S5. In this
generic setting, obfuscator described by [5] achieves Virtual Black-Box security.
However, no candidate methods for heuristically implementing such a group G
are known, and therefore, the work of [5] does not describe a candidate general-
purpose obfuscator at this time, though this may change with future work14.

We note that question of whether there exists any oracle with respect to
which virtual black-box obfuscation for general circuits is possible is a trivial
question: one can consider a universal oracle that (1) provides secure encryp-

14 Indeed, one way to obtain a heuristic generic group G is by building it using a
general-purpose obfuscator, but this would not be useful for the work of [5], since
their goal is a general-purpose obfuscator.



tions eC for any circuit C to be obfuscated, and (2) given an encrypted circuit
eC and an input x outputs C(x). The only way we can see this “solution” as
being interesting is if one considers implementing this oracle with trusted hard-
ware. The work of Goyal et al. [10] shows that there exists an oracle that can
be implemented with trusted hardware of size that is only a fixed polynomial
in the security parameter, with respect to which virtual black-box obfuscation
is possible. However, once again, the focus of our paper is to consider oracles
that abstract the natural algebraic functionality underlying actual plain-model
candidates for general-purpose obfuscation.

2 Preliminaries

In this section we define the notion of “virtual black-box” obfuscation in an
idealized model, we recall the definition of branching programs and describe a
“dual-input” variant of branching programs used in our construction.

2.1 “Virtual Black-Box” Obfuscation in an Idealized Model

Let M be some oracle. We define obfuscation in the M-idealized model. In
this model, both the obfuscator and the evaluator have access to the oracle M.
However, the function family that is being obfuscated does not have access toM

Definition 2.1 (“Virtual Black-Box” Obfuscation in an M-idealized
model). For a (possibly randomized) oracle M, and a circuit class {C`}`∈N, we
say that a uniform PPT oracle machine O is a “Virtual Black-Box” Obfuscator
for {C`}`∈N in the M-idealized model, if the following conditions are satisfied:

– Functionality: For every ` ∈ N, every C ∈ C`, every input x to C, and for
every possible coins for M:

Pr[(OM(C))(x) 6= C(x)] ≤ negl(|C|) ,

where the probability is over the coins of O.
– Polynomial Slowdown: there exist a polynomial p such that for every ` ∈ N

and every C ∈ C`, we have that |OM(C)| ≤ p(|C|).
– Virtual Black-Box: for every PPT adversary A there exist a PPT simulator
S, and a negligible function µ such that for all PPT distinguishers D, for
every ` ∈ N and every C ∈ C`:∣∣∣Pr[D(AM(OM(C))) = 1]− Pr[D(SC(1|C|)) = 1]

∣∣∣ ≤ µ(|C|) ,

where the probabilities are over the coins of D,A,S,O and M

Remark 2.1. We note that the definition above is stronger than the definition
of VBB obfuscation given in [2], in that it allows adversaries to output an
unbounded number of bits.



Definition 2.2 (“Virtual Black-Box” Obfuscation for NC1 in an M-
idealized model). We say that O is a “Virtual Black-Box” Obfuscator for
NC1 in the M-idealized model, if for every circuit class C = {C`}`∈N such that
every circuit in C` is of size poly(`) and of depth O(log(`)), O is a “Virtual
Black-Box” Obfuscator for C in the M-idealized model.

2.2 Branching Programs

The focus of this paper is on obfuscating branching programs, which are known
to be powerful enough to simulate NC1 circuits.

A branching program consists of a sequence of steps, where each step is de-
fined by a pair of permutations. In each step the the program examines one input
bit, and depending on its value the program chooses one of the permutations.
The program outputs 1 if and only if the multiplications of the permutations
chosen in all steps is the identity permutation.

Definition 2.3 (Oblivious Matrix Branching Program). A branching pro-
gram of width w and length n for `-bit inputs is given by a permutation matrix
Preject ∈ {0, 1}w×w such that Preject 6= Iw×w, and by a sequence:

BP =
(
inp(i), Bi,0, Bi,1

)n
i=1

,

where each Bi,b is a permutation matrix in {0, 1}w×w, and inp(i) ∈ [`] is the
input bit position examined in step i. The output of the branching program on
input x ∈ {0, 1}` is as follows:

BP (x)
def
=


1 if

∏n
i=1Bi,xinp(i)

= Iw×w

0 if
∏n
i=1Bi,xinp(i)

= Preject

⊥ otherwise

The branching program is said to be oblivious if inp : [n]→ [`] is a fixed function,
independent of the function being evaluated.

Theorem 2.1 ([3]). For any depth-d fan-in-2 boolean circuit C, there exists an
oblivious branching program of width 5 and length at most 4d that computes the
same function as the circuit C.

Remark 2.2. In our obfuscation construction we do not require that the branch-
ing program is of constant width. In particular we can use any reductions that
result in a polynomial size branching program.

In our construction we will obfuscate a variant of branching programs that
we call dual-input branching programs. Instead of reading one input bit in every
step, a dual-input branching program inspects a pair of input bits and chooses
a permutation based on the values of both bits.



Definition 2.4 (Dual-Input Branching Program).
A Oblivious dual-input branching program of width w and length n for `-bit

inputs is given by a permutation matrix Preject ∈ {0, 1}w×w such that Preject 6=
Iw×w, and by a sequence

BP =
(
inp1(i), inp2(i), {Bi,b1,b2}b1,b2∈{0,1}

)n
i=1

,

where each Bi,b1,b2 is a permutation matrix in {0, 1}w×w, and inp1(i), inp2(i) ∈ [`]
are the positions of the input bits inspected in step i. The output of the branching
program on input x ∈ {0, 1}` is as follows:

BP(x)
def
=


1 if

∏n
i=1Bi,xinp1(i),xinp2(i)

= Iw×w

0 if
∏n
i=1Bi,xinp1(i),xinp2(i)

= Preject

⊥ otherwise

As before, the dual-input branching program is said to be oblivious if both inp1 :
[n] → [`] and inp2 : [n] → [`] are fixed functions, independent of the function
being evaluated.

Note that any branching program can be simulated by a dual-input branch-
ing program with the same width and length, since the dual-input branching
program can always “ignore” one input bit in each pair. Moreover, note that
any dual-input branching program can be simulated by a branching program
with the same width and with length that is twice the length of the dual-input
branching program.

3 Straddling Set System

In this section, we define the notion of a straddling set system, and prove combi-
natorial properties regarding this set system. This set system will be an ingredi-
ent in our construction, and the combinatorial properties that we establish will
be used in our generic proof of security.

Definition 3.1. A straddling set system with n entries is a collection of sets
Sn = {Si,b, : i ∈ [n], b ∈ {0, 1}} over a universe U , such that

∪i∈[n]Si,0 = ∪i∈[n]Si,1 = U

and for every distinct non-empty sets C,D ⊆ Sn we have that if:

1. (Disjoint Sets:) C contains only disjoint sets. D contains only disjoint sets.
2. (Collision:) ∪S∈CS = ∪S∈DS

Then, it must be that ∃ b ∈ {0, 1}:

C = {Sj,b}j∈[n] , D = {Sj,(1−b)}j∈[n] .

Therefore, in a straddling set system, the only exact covers of the universe U
are {Sj,0}j∈[n] and {Sj,1}j∈[n].



Construction 3.1. Let Sn = {Si,b, : i ∈ [n], b ∈ {0, 1}}, over the universe
U = {1, 2, . . . , 2n− 1}, where:

S1,0 = {1}, S2,0 = {2, 3}, S3,0 = {4, 5}, . . . , Si,0 = {2i − 2, 2i − 1}, . . . ,
Sn,0 = {2n− 2, 2n− 1}; and,

S1,1 = {1, 2}, S2,1 = {3, 4}, . . . , Si,1 = {2i − 1, 2i}, . . . , Sn−1,1 = {2n −
3, 2n− 2}, Sn,1 = {2n− 1}.

The proof that Construction 3.1 satisfies the definition of a straddling set
system is straightforward and is given in the full version of this work [1].

4 The Ideal Graded Encoding Model

In this section describe the ideal graded encoding model where all parties have
access to an oracle M, implementing an ideal graded encoding. The oracle M
implements an idealized and simplified version of the graded encoding schemes
from [8]. Roughly, M will maintain a list of elements and will allow a user to
perform valid arithmetic operations over these elements. We start by defining
the an algebra over elements.

Definition 4.1. Given a ring R and a universe set U , an element is a pair
(α, S) where α ∈ R is the value of the element and S ⊆ U is the index of the
element. Given an element e we denote by α(e) the value of the element, and
we denote by S(e) the index of the element. We also define the following binary
operations over elements:

– For two elements e1, e2 such that S(e1) = S(e2), we define e1 + e2 to be
the element (α(e1) + α(e2), S(e1)), and e1 − e2 to be the element (α(e1) −
α(e2), S(e1)).

– For two elements e1, e2 such that S(e1) ∩ S(e2) = ∅, we define e1 · e2 to be
the element (α(e1) · α(e2), S(e1) ∪ S(e2)).

Next we describe the oracle M. M is a stateful oracle mapping elements to
“generic” representations called handles. Given handles to elements, M allows
the user to perform operations on the elements.M will implement the following
interfaces:

Initialization. M will be initialized with a ring R, a universe set U , and a list L
of initial elements. For every element e ∈ L, M generates a handle. We do not
specify how the handles are generated, but only require that the value of the
handles are independent of the elements being encoded, and that the handles are
distinct (even if L contains the same element twice).M maintains a handle table
where it saves the mapping from elements to handles. M outputs the handles
generated for all the element in L. After M has been initialize, all subsequent
calls to the initialization interfaces fail.



Algebraic operations. Given two input handles h1, h2 and an operation ◦ ∈
{+,−, ·}, M first locates the relevant elements e1, e2 in the handle table. If any
of the input handles does not appear in the handle table (that is, if the handle
was not previously generated byM) the call toM fails. If the expression e1 ◦ e2
is undefined (i.e., S(e1) 6= S(e2) for ◦ ∈ {+,−}, or S(e1)∩S(e2) 6= ∅ for ◦ ∈ {·})
the call fails. Otherwise,M generates a new handle for e1 ◦e2, saves this element
and the new handle in the handle table, and returns the new handle.

Zero testing. Given an input handle h, M first locates the relevant element e
in the handle table. If h does not appear in the handle table (that is, if h was
not previously generated by M) the call to M fails. If S(e) 6= U the call fails.
Otherwise, M returns 1 if α(e) = 0, and returns 0 if α(e) 6= 0.

5 Obfuscation in the Ideal Graded Encoding Model

In this section we describe our “virtual black-box” obfuscator O for NC1 in the
ideal graded encoding model.

Input. The obfuscator O takes as input a circuit and transforms it into an
oblivious dual-input branching program BP of width w and length n for `-bit
inputs:

BP =
(
inp1(i), inp2(i), {Bi,b1,b2}b1,b2∈{0,1}

)n
i=1

.

Recall that eachBi,b1,b2 is a permutation matrix in {0, 1}w×w, and inp1(i), inp2(i) ∈
[`] are the positions of the input bits inspected in step i. Without loss of gen-
erality, we make the following assumptions on the structure of the brunching
program BP:

– In every step BP inspects two different input bits; that is, for every step
i ∈ [n], we have inp1(i) 6= inp2(i).

– Every pair of different input bits are inspected in some step of BP; that is,
for every j1, j2 ∈ [`] such that j1 6= j2 there exists a step i ∈ [n] such that
(inp1(i), inp2(i)) = (j1, j2).

– Every bit of the input is inspected by BP exactly `′ times. More precisely,
for input bit j ∈ [`], we denote by ind(j) the set of steps that inspect the
j’th bit:

ind(j) = {i ∈ [n] : inp1(i) = j} ∪ {i ∈ [n] : inp2(i) = j} .

We assume that for every input bit j ∈ [`], |ind(j)| = `′. Note that in every
step, the j’th input bit can be inspected at most once.

Randomizing. Next, the Obfuscator O “randomizes” the branching program BP
as follows. First, O samples a prime p of length Θ(n). Then, O samples random
and independent elements as follows:



– Non-zero scalars {αi,b1,b2 ∈ Zp : i ∈ [n], b1, b2 ∈ {0, 1}}.
– Pair of vectors s, t ∈ Zwp .
– n+ 1 random full-rank matrices R0, R1, . . . , Rn ∈ Zw×wp .

Finally, O computes the pair of vectors:

s̃ = st ·R−10 , t̃ = Rn · t ,

and for every i ∈ [n] and b1, b2 ∈ {0, 1}, O computes the matrix:

B̃i,b1,b2 = Ri−1 ·Bi,b1,b2 ·R−1i .

Initialization. For every j ∈ [`], let Sj be a straddling set system with `′ entries
over a set Uj , such that the sets U1, . . . , U` are disjoint. Let U =

⋃
j∈[`] Uj ,

and let Bs and Bt be sets such that U,Bs, Bt are disjoint. We associate the set
system Sj with the j’th input bit. We index the elements of Sj by the steps of
the branching program BP that inspect the j’th input. Namely,

Sj =
{
Sjk,b : k ∈ ind(j), b ∈ {0, 1}

}
.

For every step i ∈ [n] and bits b1, b2 ∈ {0, 1} we denote by S(i, b1, b2) the union
of pairs of sets that are indexed by i:

S(i, b1, b2) = S
inp1(i)
i,b1

∪ S inp2(i)
i,b2

.

Note that by the way we defined the set ind(j) for input bit j ∈ [`], and by the way

the elements of Sj are indexed, indeed, S
inp1(i)
i,b1

∈ Sinp1(i) and S
inp2(i)
i,b2

∈ Sinp2(i).
O initializes the oracleM with the ring Zp, the universe set U ∪Bs∪Bt and

with the following initial elements:

(s · t, Bs ∪Bt),{
(s̃[j], Bs), (t̃[j], Bt)

}
j∈[w]

{(αi,b1,b2 , S(i, b1, b2))}i∈[n],b1,b2∈{0,1}{
(αi,b1,b2 · B̃i,b1,b2 [j, k], S(i, b1, b2))

}
i∈[n],b1,b2∈{0,1},j,k∈[w]

O receives back a list of handles. We denote the handle to the element (α, S)
by [α]S . For a matrix M , [M ]S denotes a matrix of handles such that [M ]S [j, k]
is the handle to the element (M [j, k], S). Using this notation, O receives back
the following handles:

[s̃]Bs
,
[
t̃
]
Bt
, [s · t]Bs∪Bt

,{
[αi,b1,b2 ]S(i,b1,b2) ,

[
αi,b1,b2 · B̃i,b1,b2

]
S(i,b1,b2)

}
i∈[n],b1,b2∈{0,1}

.



Output. The obfuscator O outputs a circuit O(BP) that has all the handles
received from the Initialization stage hardcoded into it. Given access to the
oracle M, O(BP) can add and multiply handles.

Notation. Given two handles [α]S and [β]S , we let [α]S + [β]S denote the handle
obtained fromM upon sending an addition query with [α]S and [β]S . Similarly,
given two handles [α1]S1

and [α2]S2
such that S1 ∩S2 = ∅, we denote by [α1]S1

·
[α2]S2

the handle obtained from M upon sending a multiplication query with
[α1]S1

and [α2]S2
. Given two matrices of handles [M1]S1

, [M2]S2
, we define their

matrix multiplication in the natural way, and denote it by [M1]S1
· [M2]S2

.

For input x ∈ {0, 1}` to O(BP), and for every i ∈ [n] let
(bi1, b

i
2) = (xinp1(i), xinp2(i)). On input x, O(BP) obtains the following handles:

h = [s̃]Bs
·
n∏
i=1

[
αi,bi1,bi2 · B̃i,bi1,bi2

]
S(i,bi1,b

i
2)
·
[
t̃
]
Bt
,

h′ = [s · t]Bs∪Bt
·
n∏
i=1

[
αi,bi1,bi2

]
S(i,bi1,b

i
2)

O(BP) uses the oracle M to subtract the handle h′ from h and performs a zero
test on the result. If the zero test outputs 1 then O(BP) outputs 1, and otherwise
O(BP) outputs 0.

Correctness. By construction we have that as long as none of the calls to the
oracle M fail, subtracting the handle h′ from h results in a handle to 0 if and
only if:

0 = s̃ ·
n∏
i=1

αi,bi1,bi2 · B̃i,bi1,bi2 · t̃− s · t ·
n∏
i=1

αi,bi1,bi2

=

(
s̃ ·

n∏
i=1

B̃i,bi1,bi2 · t̃− s · t

)
·
n∏
i=1

αi,bi1,bi2

=

(
st ·R−10 ·

n∏
i=1

(
Ri−1 ·Bi,b1,b2 ·R−1i

)
·R−1n · t− s · t

)
·
n∏
i=1

αi,bi1,bi2

= st ·

(
n∏
i=1

Bi,b1,b2 − Iw×w

)
· t ·

n∏
i=1

αi,bi1,bi2

From the definition of the branching program we have:

BP(x) = 1⇔
n∏
i=1

Bi,bi1,bi2 = Iw×w

Thus, if BP(x) = 1 then O(BP) outputs 1 with probability 1. If BP(x) = 0
then O(BP) outputs 1 with probability at most 1/p = negl(n) over the choice of
s and t.



It is left to show that none of the calls to the oracle M fail. Note that when
multiplying two matrices of handles [M1]S1

· [M2]S2
, none of the addition or

multiplication calls fail as long as S1 ∩ S2 = ∅. Therefore, to show that none of
the addition or multiplication calls toM fail, it is enough to show that following
sets are disjoint:

Bs, Bt, S(1, b11, b
1
2), . . . , S(n, bn1 , b

n
2 ) .

Their disjointness follows from the fact that U1, . . . , U`, Bs, Bt are disjoint, to-
gether with definition of S(i, bi1, b

i
2) and with the fact that for every set sys-

tem Sj , for every distinct i, i′ ∈ ind(j), and for every b ∈ {0, 1}, we have that
Sji,b ∩ S

j
i′,b = ∅.

To show that the zero testing call to the oracle M does not fail we need to
show that the index set of the elements corresponding to h and h′ is the entire
universe. Namely, we need to show that(

n⋃
i=1

S(i, bi1, b
i
2)

)
∪Bs ∪Bt = U ∪Bs ∪Bt ,

which follows from the following equalities:

n⋃
i=1

S(i, bi1, b
i
2) =

n⋃
i=1

S
inp1(i)

i,bi1
∪ S inp2(i)

i,bi2
=
⋃̀
j=1

⋃
k∈ind(j)

Sjk,xi
=
⋃̀
j=1

Uj = U .

6 Proof of VBB in the The Ideal Graded Encoding Model

In this section we prove that the obfuscator O described in Section 5 is a good
VBB obfuscator for NC1 in the ideal graded encoding model.

Let C = {C`}`∈N be a circuit class such that every circuit in C` is of size poly(`)
and of depth O(log `). We assume WLOG that all circuits in C` are of the same
depth (otherwise the circuit can be padded). It follows from Theorem 2.1 that
there exist polynomial functions n and w such that on input circuit C ∈ C`,
the branching program BP computed by O is of size n(|C|), width w(|C|), and
computes on `(|C|)-bit inputs.

In Section 5 we showed that O satisfies the functionality requirement where
the probability of O computing the wrong output is negligible in n. Since n is a
polynomial function of |C| we get that the functionality error is negligible in |C|,
as required. It is straightforward to verify that O also satisfies the polynomial
slowdown property. In the rest of this section we prove that O satisfies the virtual
black-box property.

The simulator. To prove that O satisfies the virtual black-box property, we
construct a simulator Sim that is given 1|C|, the description of an adversary
A, and oracle access to the circuit C. Sim starts by emulating the obfuscation
algorithm O. Recall that O converts the circuit C into a branching program BP.



However, since Sim is not given C it cannot compute the matrices Bi,b1,b2 in
the description of BP (note that Sim can compute the input mapping functions
inp1, inp2 since the branching program is oblivious). Without knowing the B
matrices, Sim cannot simulate the list of initial elements to the oracleM. Instead
Sim initializes M with formal variables.

Concretely, we extend the definition of an element to allow for values that
are formal variables, as opposed to ring elements. When performing an opera-
tion ◦ on elements e1, e2 that contain formal variables, the value of the resulting
element e1 ◦ e2 is just the formal arithmetic expression α(e1) ◦ α(e2) (assuming
the indexes of the elements are such that the operation is defined). We represent
formal expressions as arithmetic circuits, thereby guaranteeing that the repre-
sentation size remains polynomial. We say that an element is basic if its value
is an expression that contains no gates (i.e., its just a formal variable). We say
that an element e′ is a sub-element of an element e if e was generated from e′

through a sequence of operations.
To emulate O, Sim must also emulate the oracle M that O accesses. Sim

can efficiently emulate all the interfaces of M except for the zero testing. The
problem with simulating zero tests is that Sim cannot test if the value of a
formal expression is 0. Note however that the emulation of O does not make any
zero-test queries to M (zero-test queries are made only by the evaluator).

When Sim completes the emulation of O it obtains a simulated obfuscation
Õ(C). Sim proceeds to emulate the execution of the adversary A on input Õ(C).
When A makes an oracle call that is not a zero test, Sim emulates M’s answer
(note that emulation of the oracleM is stateful and will therefore use the same
handle table to emulate both O and A). Since the distribution of handles gen-
erated during the simulation and during the real execution are identical, and
since the simulated obfuscation Õ(C) consists only of handles (as opposed to el-
ements), we have that the simulation of the obfuscation Õ(C) and the simulation
of M’s answers to all the queries, except for zero-test queries, is perfect.

Simulating zero testing queries. In the rest of the proof we describe how the
simulator correctly simulates zero-test queries made by A. Simulating the zero-
test queries is non-trivial since the handle being tested may correspond to a
formal expression whose value is unknown to Sim. (The “real” value of the formal
variables depend on the circuit C). Instead we show how Sim can efficiently
simulate the zero-test queries given oracle access to the circuit C.

The high-level strategy for simulating zero-test queries is as follows. Given a
handle to some element, Sim tests if the value of the element is zero in two parts.
In the first part, Sim decomposes the element into a sum of polynomial number of
“simpler” elements that we call single-input elements. Each single-input element
has a value that depends on a subset of the formal variables that correspond to a
specific input to the branching program. Namely, for every single-input element
there exists x ∈ {0, 1}` such that the value of the element only depends on the
formal variables in the matrices B̃i,bi1,bi2 , where bi1 = xinp1(i) and bi2 = xinp2(i).
The main difficulty in the first step is to prove that the number of single-input
elements in the decomposition is polynomial.



In the second part, Sim simulates the value of every single-input element
separately. The main idea in this step is to show that the value of a single-
input element for input x can be simulated only given C(x). To this end, we use
Kilian’s proof on randomized encoding of branching programs. Unfortunately,
we cannot simulate all the single-input elements at once (given oracle access
to C), since their values may not be independent; in particular, they all depend
on the obfuscator’s randomness. Instead, we show that it is enough to zero test
every single-input element individually. More concretely, we show that from every
single input element that the adversary can construct, it is possible to factor
out a product of the αi,bi1,bi2 variables. We also show that every single-input
element depends on a different set of the αi,bi1,bi2 variables. Since the values of
the α variables are chosen at random by the obfuscation, it is unlikely that the
adversary makes a query where the value of two single-input elements “cancel
each other” and result in a zero. Therefore, with high probability an element is
zero iff it decomposes into single-input element’s that are all zero individually.

Decomposition to single-input elements. Next we show that every element can
be decomposed into polynomial number of single-input elements. We start by
introducing some notation.

For every element e we assign an input-profile prof(e) ∈ {0, 1, ∗}` ∪ {⊥}.
Intuitively, if we think of e as an intermediate element in the evaluation of the
branching program on some input x, the input-profile prof(e) represents the
partial information that can be inferred about x based on the formal variables
that appear in the value of e. Formally, for every element e and for every j ∈ [`],
we say that the j’th bit of e’s input-profile is consistent with the value b ∈ {0, 1}
if e has a basic sub-element e′ such that S(e′) = S(i, b1, b2) and either j = inp1(i)
and b1 = b, or j = inp2(i) and b2 = b.

For every j ∈ [`] and for b ∈ {0, 1} we set prof(e)j = b if the j’th bit of
e’s input-profile is consistent with b but not with 1 − b. If the j’th bit of e’s
input-profile is not consistent with either 0 or 1 then prof(e)j = ∗. If there exist
j ∈ [`] such that the j’th bit of e’s input-profile is consistent with both 0 and 1,
then prof(e) = ⊥. In this case we say that e is not a single-input element and
that it’s profile is invalid. If prof(e) 6= ⊥ then we say that e is a single-input
element. We say that an input-profile is complete if it is in {0, 1}`.

Next we describe an algorithm D used by Sim to decompose elements into
single-input elements. Given an input element e, D outputs a set of single-input
elements with distinct input-profiles such that e =

∑
s∈D(e) s, where the equality

between the elements means that their values compute the same function (it does
not mean that the arithmetic circuits that represent these values are identical).
Note that the above requirement implies that for every s ∈ D(e), S(s) = S(e).

The decomposition algorithm D is defined recursively, as follows:

– If the input element e is basic, D outputs the singleton set {e}.
– If the input element e is of the form e1 + e2, D executes recursively and

obtains the set L = D(e1) ∪ D(e2). If there exist elements s1, s2 ∈ L with
the same input-profile, D replaces the two elements with a single element



s1 + s2. D repeats this process until all the input-profiles in L are distinct
and outputs L.

– If the input element e is of the form e1 · e2, D executes recursively and
obtains the sets L1 = D(e1), L2 = D(e2). For every s1 ∈ L1 and s2 ∈ L2, D
adds the expression s1 · s2 to the output set L. D then eliminates repeating
input-profiles from L as described above, and outputs L.

The fact that in the above decomposition algorithm indeed e =
∑
s∈D(e) s,

and that the input profiles are distinct follows from a straightforward induction.
The usefulness of the above decomposition algorithm is captured by the following
two claims:

Claim 6.1. If U ⊆ S(e) then all the elements in D(e) are single-input elements.
Namely, for every s ∈ D(e) we have that prof(s) 6= ⊥.

Claim 6.2. D runs in polynomial time, and in particular, the number of ele-
ments in the output decomposition is polynomial.

The proofs of Claims 6.1,6.2 and the formal description of how to simulate
zero tests appear in the full version of this work [1].
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