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Abstract. The notion of garbled random-access machines (garbled RAMs)
was introduced by Lu and Ostrovsky (Eurocrypt 2013). It can be seen
as an analogue of Yao’s garbled circuits, that allows a user to garble a
RAM program directly, without performing the expensive step of con-
verting it into a circuit. In particular, the size of the garbled program
and the time it takes to create and evaluate it are only proportional to
its running time on a RAM rather than its circuit size. Lu and Ostrovsky
gave a candidate construction of this primitive based on pseudo-random
functions (PRFs).
The starting point of this work is pointing out a subtle circularity hard-
ness assumption in the Lu-Ostrovsky construction. Specifically, the con-
struction requires a complex “circular” security assumption on the un-
derlying Yao garbled circuits and PRFs. We then proceed to abstract,
simplify and generalize the main ideas behind the Lu-Ostrovsky con-
struction, and show two alternatives constructions that overcome the
circularity of assumptions. Our first construction breaks the circularity
by replacing the PRF-based encryption in the Lu-Ostrovsky construc-
tion by identity-based encryption (IBE). The result retains the same
asymptotic performance characteristics of the original Lu-Ostrovsky con-
struction, namely overhead of O(poly(κ)polylog(n)) (with κ the security
parameter and n the data size). Our second construction breaks the cir-
cularity assuming only the existence of one way functions, but with over-
head O(poly(κ)nε) for any constant ε > 0. This construction works by
adaptively “revoking” the PRFs at selected points, and using a delicate
recursion argument to get successively better performance characteris-
tics. It remains as an interesting open problem to achieve an overhead
of poly(κ)polylog(n) assuming only the existence of one-way functions.

1 Introduction

Garbled Circuits. Since their introduction by Yao [19], garbled circuits have
found countless applications in cryptography, most notably for secure computa-
tion. On a basic level, garbled circuits allow a user to convert a circuit C into
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a garbled version C̃ and an input x into a garbled version x̃, so that C̃ can be
evaluated on x̃ to reveal the output C(x), but nothing else is revealed. As with
most secure computation protocols, this technique crucially works at the level
of “circuits” and the first step toward using it is to convert a desired program
into a circuit representation.

Circuits vs. RAMs. Converting a program into a circuit often presents a major
source of inefficiency. We naturally think of programs in the the random-access
machine (RAM) model of computation. It is known that a RAM with run-time
T can be converted into a Turing Machine with run-time O(T 3) which can in
turn be converted into the circuit of size O(T 3 log T ) [8, 16]. This is a significant
amount of overhead. Perhaps an even more striking efficiency loss occurs in the
setting of “big data”, where the data is given in random-access memory. In this
case, efficient programs can run in time which is sub-linear in the size of the
data (e.g., binary search), but converting any such a program into a circuit
representation incurs a cost which is (at the very least) linear in the size of the
data. This exponential gap can mean the difference between an efficient Internet
search and having to read the entire Internet!

Garbled RAMs. Motivated by the above considerations, Lu and Ostrovsky [14]
proposed the notion of a garbled RAM, whose goal is to garble a RAM program
directly without first converting it into a circuit. In particular, the size of the
garbled program as well as the evaluation time should only be proportional to
the running-time of the program on a RAM (up to poly-logarithmic factors),
rather than the size of its circuit representation.

In more detail, we will use the notation PD(x) to denote the execution of
some program P with random-access memory initially containing some data D
and a “short” input x (e.g., P could be some complex query over a database D
with search-terms x). A garbled RAM scheme can be used to garble the data D
into D̃, the program P into P̃ , and the input x into x̃ in such a way that P̃ , D̃, x̃
reveals PD(x), but nothing else is revealed. Furthermore, the size of the garbled
data D̃ is only proportional to that of D, the size of x̃ is only proportional to
that of x, and the size and evaluation-time of the garbled program P̃ are only
proportional to the run-time of PD(x) on a RAM.

Lu and Ostrovsky proposed a construction of garbled RAMs, relying on a
clever use of Yao garbled circuits and oblivious RAM (ORAM), and using for
security only pseudo-random functions (PRFs) (which can be constructed from
any one-way function).

A Circularity Problem. It turns out that the Lu-Ostrovsky construction has a
subtle yet difficult-to-overcome issue that prevents a proof of security from go-
ing through, in that it requires a complex “circular” use of Yao garbled circuits
and PRF-based encryption. To understand the issue, recall that Yao garbled
circuits assign two labels for each wire, corresponding to bits 0, 1, and security
relies heavily on the evaluator only learning one of these two labels. The Lu-
Ostrovsky construction provides encryptions of both labels of an input wire w,



under some secret-key K, and this secret key K is also hard-coded into the de-
scription of the circuit itself. This introduces the following circularity: to use the
security of the encryption scheme we must rely on the security of the garbled
circuit to hide the key K, but to use the security of the garbled circuit we must
rely on the security of the encryption scheme so that the attacker cannot learn
both wire labels. We emphasize that we do not have a concrete attack on the
construction of Lu and Ostrovsky, and it may even seem reasonable to conjecture
its security when instantiated with real-world primitives (e.g., AES). Unfortu-
nately, we don’t see much hope for proving the security of the scheme under
standard assumptions. One could draw an analogy to other “subtle” difficulties
in cryptography such as circular security [5, 17], selective-opening security [4, 2],
or adaptively-chosen inputs of garbled circuits [3], where it may be reasonable to
assume that standard constructions are secure (and it’s a challenge to come up
with insecure counterexamples), but it doesn’t seem that one can prove security
of standard constructions under standard assumptions.

Our Results. In this work we abstracts, simplifies, and generalizes the main ideas
behind the Lu-Ostrovsky construction, and give two solutions to the circularity
problem. Our first construction essentially replaces the PRF-based encryption in
the construction from [14] by identity-based encryption (IBE). This breaks the
circularity since we only need to embed in the circuit the public key of the IBE,
not the secret key. This scheme can be proved secure under the security of the
underlying IBE (and garbled circuits), and its overhead is only poly(κ)polylog(n),
where κ is the security parameter and n is the size of the data. (The overhead is
measured as the evaluation time of a garbled programs vs. the original program.)
This construction is described in detail in [9].

In the second construction, we break the circularity using revocable PRFs
that enables adaptive revocation of the ability to compute the PRF on certain
values.5 Namely, from a PRF key K and a subset X of the domain, we can
construct a weaker key KX that enables the computation of FK(·) on all the
domain except for X, and the values FK(x) for x ∈ X are pseudo-random even
given KX . Importantly for our application, we also need successive revocation,
i.e. from KX and some X ′ we should be able to to generate KX∪X′ . Such revo-
cable PRFs can be constructed based on the Goldreich-Goldwasser-Micali [10]
PRF, where the size of the key KX is at most κ · |X| logN (with κ the security
parameter and N the domain size).

We use revocable PRFs to break the circularity as follows: whenever we use
some FK(x) in the encryption of the label values on the input wire w, we make
sure to embed in the circuit itself not the original key K but rather the weaker
key KX (with x ∈ X), so the encryption remain secure even if KX is known.
A naive use of this technique yields a trivial scheme with overhead poly(κ) · n,
which is no better than using circuits. However we show how to periodically
refresh the keys to reduce the overhead to roughly poly(κ)

√
n, and then use a

5 This notion is similar to punctured PRFs [18], delegatable PRFs [13], functional
PRFs [7], and constrained PRFs [6], see more details in Definition 3.



recursive strategy to reduce it further to poly(κ) · min(t, nε) for any constant
ε > 0 (where n is the data size and t is the running time). This construction is
described in detail in [15].

Reusable/Persistent Data. We also carefully define and prove the security of an
important use-case of garbled RAMs, where the garbled memory data can be
reused across multiple program executions. If a program updates some location
in memory, these changes will persist for future program executions and cannot
be “rolled back” by the adversarial evaluator. For example, consider a client that
garbles some huge database D and outsources the garbled version D̃ to a remote
server. Later, the client can sequentially garble arbitrary database queries so as
to allow the server to execute exactly the garbled query on the garbled database
but not learn anything else. If the query updates some values in the database,
these changes will persist for the future. The running time of the client and server
per database query is only proportional to the RAM run-time of the query.6 Prior
to garbled RAMs, this could be done using oblivious RAM (ORAM) but would
have required numerous rounds of interaction between the client and the server
per database query. With garbled RAMs, the solution becomes non-interactive.
This use-case was already envisioned by Lu and Ostrovsky [14], but we proceed
to define and analyze it formally.

Worst-case Versus Per-instance Running Time, Universal Programs, and Output
Privacy. As was noted in the CRYPTO 2013 work of Goldwasser et al. [11], the
power of secure computation on Turing Machines and RAM programs over that
of circuits is that for algorithms with very different worst-case and average-case
running times, the circuit must be of worst-case size. Randomized algorithms
such as Las Vegas algorithms or even heuristically good-on-average programs
would benefit greatly if the online running time of the secure computation ran
in time proportional to that particular instance. In our solution, though we have
an upper bound T on the number of execution steps of the algorithm which
affects the offline time and space, the online evaluation can have a CPU step
output “halt” in the clear when the program has halted and the evaluator will
then only run in time depending on this particular input.

In order to further mask the program, one can consider a T time-bounded
universal program uT , which takes as input the code of a program π and an input
for that program. One can also provide an auxiliary mask so that the output of
P is blinded by this value (such a modification has appeared in the literature,
see, e.g. [1]).

Organization. We describe our notations for RAM computation and define gar-
bled RAM in Section 2. We then give a high-level description of the Lu-Ostrovsky
6 In contrast to schemes for outsourcing computation, the client here does not save on

work, but only saves on storage. In particular, only the garbled data D̃ is reusable,
but the garbled program P̃ can still only be evaluated on a single garbled input
x̃; the client must garble a fresh program for each execution, which requires time
proportional to that of the execution.



construction in Section 3, along with an explanation of the “circularity” issue.
In Section 4 we present our IBE-based solution, and in Section 5 we describe
our solution based on one-way functions.

2 RAM Computation and Garbled RAM

Notation for RAM Computation. Consider a program P that has random-access
to a memory of size n, which may initially contain some data D ∈ {0, 1}n,
and a “short” input x. 7 We use the notation PD(x) to denote the execution
of such program. The program can read/write to various locations in memory
throughout the execution. We will also consider the case where several different
programs are executed sequentially and the memory persists between executions.
We denote this process as (y1, . . . , y`) = (P1(x1), . . . , P`(x`))D to indicate that
first PD1 (x1) is executed, resulting in some memory contents D1 and output y1,
then PD1

2 (x2) is executed resulting in some memory contents D2 and output y2
etc. As a useful example to keep in mind throughout this work, imagine that D
is a huge database and the programs Pi are database queries that can read and
possibly write to the database and are parameterized by some values xi.

CPU-Step Circuit. A useful representation of a RAM program P is through a
small CPU-Step Circuit which executes a single CPU step:

CPCPU(state, bread) = (state′, iread, iwrite, bwrite)

This circuit takes as input the current CPU state and a bit bread residing in the
the last read memory location. It outputs an updated state′, the next location
to read iread ∈ [n], a location to write to iwrite ∈ [n] ∪ {⊥} (where ⊥ values are
ignored), a bit bwrite to write into that location.

The computation PD(x) starts in the initial state state1 = x, corresponding
to the “short input” and by convention we will set the initial read bit to bread1 :=
0. In each step j, the computation proceeds by running CPCPU(statej , breadj ) =
(statej+1, i

read, iwrite, bwrite). We first read the requested location iread by setting
breadj+1 := D[iread] and, if iwrite 6= ⊥, we write to the location by setting D[iwrite] :=
bwrite. The value y = state output by the last CPU step serves as the output of
the computation.

We say that a program P has read-only memory access, if it never overwrites
any values in memory. In particular, using the above notation, the outputs of
CPCPU always set iwrite = ⊥.

2.1 Defining Garbled RAM

We consider a setting where the memory data D is garbled once, and then
many different garbled programs can be executed sequentially with the memory
7 In general, the distinction between what to include in the program P , the memory

data D and the short input x can be somewhat arbitrary.



changes persisting from one execution to the next. We stress that each garbled
program P̃i can only be executed on a single garbled input x̃i. In other words,
although the garbled data is reusable and allows for the execution of many
programs, the garbled programs are not reusable. The programs can only be
executed in the specified order and are not “interchangeable”. Therefore, they
cannot be garbled completely independently. In our case, we will assume that
the garbling procedure of each program Pi gets tinit which is the total number
of CPU steps executed so far by P1, . . . , Pi−1 and tcur which is the number of
CPU steps to be executed by Pi.

Syntax and Efficiency. A garbled RAM scheme consists of four procedures:
(GData, GProg, GInput, GEval) with the following syntax:

– D̃ ← GData(D, k) : Takes memory data D ∈ {0, 1}n and a key k. Outputs
the garbled data D̃.

– (P̃ , kin) ← GProg(P, k, n, tinit, tcur) : Takes a key k and a description of a
RAM program P with memory-size n and run-time consisting of tcur CPU
steps. In the case of garbling multiple programs, we also provide tinit indi-
cating the cumulative number of CPU steps executed by all of the previous
programs. Outputs a garbled program P̃ and an input-garbling-key kin.

– x̃← GInput(x, kin): Takes an input x and input-garbling-key kin and outputs
a garbled-input x̃.

– y = GEvalD̃(P̃ , x̃): Takes a garbled program P̃ , garbled input x̃ and garbled
memory data D̃ and computes the output y = PD(x). We model GEval itself
as a RAM program that can read and write to arbitrary locations of its
memory initially containing D̃.

We require that the run-time of GData be O(n ·poly(κ)), which also serves as an
upper bound on the size of D̃, and also require that the run-time of GInput should
be |x|·poly(κ). We also wish to minimize the run-time of GProg and GEval, prefer-
ably as low as poly(κ)polylog(n)·(|P |+tcur) for GProg and poly(κ)polylog(n)·tcur
for GEval (but not all our constructions achieve polylogarithmic overhead in n).

Correctness and Security. To define the correctness and security requirements of
garbled RAMs, let P1, . . . , P` be any sequence of programs with polynomially-
bounded run-times t1, . . . , t`. Let D ∈ {0, 1}n be any initial memory data, let
x1, . . . , x` be inputs and (y1, . . . , y`) = (P1(x1), . . . , P`(x`))D be the outputs
given by the sequential execution of the programs. Consider the following exper-
iment: choose a key k ← {0, 1}κ, D̃ ← GData(D, k) and for i = 1, . . . , `:

(P̃i, kin
i )← GProg

(
Pi, n, t

init
i , ti, k

)
, x̃i ← GInput(xi, kin

i )

where tiniti :=
∑i−1
j=1 ti denotes the run-time of all programs prior to Pi. Let

(y′1, . . . , y
′
`) = (GEval(P̃1, x̃1), . . . ,GEval(P̃`, x̃`))D̃,



denotes the output of evaluating the garbled programs sequentially over the
garbled memory. We require that the following properties hold:

– Correctness: We require that Pr[y′1 = y1, . . . , y
′
` = y`] = 1 in the above

experiment.
– Security: we require that there exists a universal simulator Sim such that:

(D̃, P̃1, . . . , P̃`, x̃1, . . . , x̃`)
comp
≈ Sim(1κ, {Pi, ti, yi}`i=1, n).

Our security definition is non-adaptive: the data/programs/inputs are all chosen
ahead of time. This makes our definitions/analysis simpler and also matches the
standard definitions for our building blocks such as ORAM. However, there does
not seem to be any inherent hurdle to allowing each subsequent program/input
(Pi, xi) to be chosen adaptively after seeing D̃, (P̃1, x̃1), . . . , (P̃i−1, x̃i−1).

Security with Unprotected Memory Access (UMA). We also consider a weaker
security notion, which we call security with unprotected memory access (UMA).
In this variant, the attacker may learn the initial contents of the memory D,
as well as the complete memory-access pattern throughout the computation in-
cluding the locations being read/written and their contents. In particular, we let
MemAccess = {(ireadj , iwrite

j , bwrite
j ) : j = 1, . . . , t} correspond to the outputs of the

CPU-step circuits during the execution of PD(x). For security with unprotected
memory access, we give the simulator the additional values (D,MemAccess).
Using the notation from above, we require:

(D̃, P̃1, . . . , P̃`, x̃1, . . . , x̃`)
comp
≈ Sim(1κ, {Pi, ti, yi}`i=1, D,MemAccess, n).

In the long version [9], we show a general transformation that converts any gar-
bled RAM scheme with UMA security into one with full security by encrypting
the memory contents and applying oblivious RAM to hide the access pattern.
Therefore, it is useful to focus on achieving just UMA security.

3 The Original Lu-Ostrovsky Construction

We now describe the main ideas behind the Lu-Ostrovsky construction from
Eurocrypt 2013 [14] (but we use a substantially different exposition). In this
extended abstract we only consider security with unprotected memory access
(UMA), which completely abstracts out the use of oblivious RAM. Moreover,
for ease of exposition, we begin by describing a solution for the case of “read-
only” computation, which never writes to memory. Many of the main ideas, as
well as the circularity problem, are already present in this simple case.

3.1 Garbling Read-Only Programs

Garbled Data. The garbled data D̃ consists of n secret keys for some symmetric-
key encryption scheme. For each bit i ∈ [n] of the original data D, the garbled



data D̃ contains a secret key ski. The secret keys are chosen pseudo-randomly
using a pseudo-random function (PRF) family Fk via ski = Fk(i,D[i]). Note
that, given k, there are two possible values sk(i,0) = Fk(i, 0) and sk(i,1) = Fk(i, 1)
that can reside in D̃[i] depending on the bit D[i] of the original data, and we set
D̃[i] = sk(i,D[i]).

Garbled Program (Overview). The garbled program P consists of t garbled copies
of an “augmented” CPU-step circuit CP

CPU+ , which we describe shortly. Recall
that the basic CPU-step circuit takes as input the current CPU state and the
last read bit (state, bread) and outputs (state′, iread) containing the updated
state and the next read location – we can ignore the other outputs iwrite, bwrite

since we are considering read-only computation.
We can garble copy j of the CPU-step circuit so that the labels for the output

wires corresponding to the output state′ match the labels of the input wires
corresponding to the input state in the next copy j + 1 of the circuit. This
allows the garbled state to securely travel from one garbled CPU-step circuit
to the next. Each garbled copy j of the CPU-step circuit can also output the
read location i = iread in the clear. The question becomes, how can the evalua-
tor incorporate the data from memory into the computation? In particular, let
lbl

(read,j+1)
0 , lbl

(read,j+1)
1 be the labels of the input wires corresponding to the bit

bread in garbled copy j + 1 of the circuit. We need to ensure that the evaluator
who knows sk(i,b) = Fk(i, b) can learn lbl

(read,j+1)
b but learns nothing about the

other label. Unfortunately, the labels lbl
(read,j+1)
b need to be created at “compile

time” when the garbled program is created, and therefore cannot depend on the
location i = iread which is only known at “run time” when the garbled program
is being evaluated. Therefore the labels lbl

(read,j+1)
b cannot depend on the keys

sk(i,b) since i is not known.
Lu and Ostrovsky propose a clever solution to the above problem. We aug-

ment the CPU-step circuit so that the jth copy of the circuit outputs a transla-
tion mapping translate which allows the evaluator to translate between the keys
sk(i,b) contained in the garbled memory and the labels lbl

(read,j+1)
b of the read-

bit in the next circuit. The translation mapping is computed by the jth CPU
circuit at run-time and therefore can depend on the memory location i = iread

being requested in that step. The translation mapping computed by circuit j
consists of two ciphertexts translate = (ct0, ct1) where ctb is an encryption of
the label lbl

(read,j+1)
b under the secret key sk(i,b) = Fk(i, b).8 In order to compute

this encryption, the augmented CPU-step circuits contain the PRF key k as a
hard-coded value.

Garbled Program (Technical). In more detail, we define an augmented CPU-step
circuit CP

CPU+ which gets as input (state, bread) and outputs (state′, iread, translate).

8 Since we are only aiming for UMA security, we can reveal the bit b and therefore do
not need to permute the ciphertexts.



It contains some hard-coded parameters (k, r0, r1, lbl
(read)
0 , lbl

(read)
1 ) and performs

the following computation:

– (state′, iread) = CPCPU(state, bread) are the outputs of the basic CPU-step
circuit.

– translate = (ct0, ct1) consists of two ciphertexts, computed as follows. For
b ∈ {0, 1}, first compute sk(i,b) := Fk(i, b) for i = iread. Then set cb =
Encsk(i,b)(lbl

(read)
b ; rb) where Enc is a symmetric key encryption and rb is the

encryption randomness.

The garbled program P̃ consists of t garbled copies of this augmented CPU-
step circuit C̃P

CPU+(j). We start garbling from the end j = t. Each garbled cir-
cuit C̃P

CPU+(j) outputs the values iread, translate in the clear and the updated
state′ is garbled with the same labels as the input state in the next cir-
cuit C̃P

CPU+(j + 1); the last circuit outputs state′ in the clear as the output
of the computation. Each garbled circuit C̃P

CPU+(j) contains hard-coded values
(k, r(j)0 , r

(j)
1 , lbl

(read,j+1)
0 , lbl

(read,j+1)
1 ) which are used to compute the translation

mapping translate as described above. The key k is the PRF key which was used
to garbled the memory data. The values r(j)0 , r

(j)
1 are fresh encryption random

coins, and lbl
(read,j+1)
0 , lbl

(read,j+1)
1 are the labels of the input-wire for the bit bread

in the garbled circuit C̃P
CPU+(j + 1).

Garbled Input and Evaluation. The garbled input x̃ consists of the wire-labels
for the value state1 = x for the garbled circuit C̃P

CPU+(j = 1). The evaluator
simply evaluates the garbled augmented CPU-step circuits one by one starting
from j = 1. It can evaluate the first circuit using only x̃, and gets out a garbled
output state2 along with the values (iread, translate = (c0, c1)) in the clear. The
evaluator looks up the secret key sk := D̃[iread] and attempts to use it to decrypt
c0 and c1 to recover a label lbl(read,j=2). The evaluator then evaluates the second
garbled circuit C̃P

CPU+(j = 2) using the garbled input state2 and the wire-label
lbl(read,j=2) for the wire corresponding to the bit bread. This process continues
until the last circuit j = t which outputs state′ in the clear as the output of
the computation.

3.2 Circularity in the Security Analysis

There is good intuition that the above construction should be secure. In par-
ticular, the evaluator only gets one label per wire of the first garbled circuit
C̃P

CPU+(j = 1) and therefore does not learn anything beyond its outputs i =
iread, translate (in the clear) and the garbled value state2 which can be used as
an input to the second circuit. Now, assume that the memory-data contains (say)
the bit D[i] = 0 and so the evaluator can get sk(i,0) from the garbled memory
D̃. Using the translation map translate = (ct0, ct1), the evaluator can use this to
recover the label lblread0 corresponding to the read-bit bread = 0 of the next circuit
j = 2. We need to argue that the evaluator does not learn anything about the



“other” label: lblread1 . Intuitively, the above should hold since the evaluator does
not have the secret key sk(i,1) = Fk(i, 1) needed to decrypt ct1. Unfortunately, in
attempting to make the above intuition formal, we uncover a complex circularity:

1. In order to argue that the evaluator does not learn anything about the
“other” label lblread1 , we need to rely on the security of the ciphertext ct1.

2. In order to rely on the security of the ciphertext ct1 we need to argue that the
attacker does not learn the decryption key sk(i,1) = Fk(i, 1), which requires
us to argue that the attacker does not learn the PRF key k. However, the
PRF key k is contained as a hard-coded value of the second garbled circuit
C̃P

CPU+(j = 2) and all future circuits as well. Therefore, to argue that the
attacker does not learn k we need to (at the very least) rely on the security
of the second garbled circuit.

3. In order to use the security of the second garbled circuit C̃P
CPU+(j = 2),

we need to argue that the evaluator only gets one label per wire, and in
particular, we need to argue the the evaluator does not have the “other”
label lblread1 . But this is what we wanted to prove in the first place!

We note that the above can be seen as a complex circularity problem involving
the PRF, the encryption scheme and the garbled circuit. In particular, the PRF
key k is used to encrypt both labels for some input-wire in the garbled circuit,
but k is also a hard-coded in the garbled circuit. Therefore we cannot rely on
the security of the garbled circuit unless we argue that k stays hidden, but we
cannot argue that k stays hidden without relying on the security of the garbled
circuit. Notice that this circularity problem comes up even if the evaluator didn’t
get the garbled data D̃ at all.

The problem is even more complex than described above since the key k
is hard-coded in many other garbled circuits and the outputs of these circuits
depend on k but do not reveal k directly. Therefore, the circularity problem is
not “contained” to a single circuit. We do not know of any “simple” circular-
security assumption that one could make on the circuit-garbling scheme, the
PRF, and/or the encryption scheme that would allow us to prove security, other
than simply assuming that the full construction is secure.

3.3 Writing to Memory

We now describe the main ideas behind how to handle “writes” in the Lu-
Ostrovsky construction. Although the circularity problem remains in this solu-
tion, it will be useful to see the ideas as they will guide us in our fixes. We again
note that our exposition here is substantially different from [14].

Predictably Timed Writes. Below we describe how to incorporate a limited form
of writing to memory, which we call predictably timed writes (ptWrites). On a
high level, this means that whenever we want to read some location i in memory,
it is easy to figure out the time (i.e., CPU step) j in which that location was last
written to, given only the current state of the computation and without reading



any other values in memory. In the long version [9] we describe how to upgrade
a solution for ptWrites to one that allows arbitrary writes. We give a formal
definition of ptWrites below:

Definition 1 (Predictably Timed Writes (ptWrites)). A program exe-
cution PD(x) has predictably timed writes (ptWrites) if there exists a poly-
size circuit WriteTime such that the following holds for every CPU step j =
1, . . . , t. Let the inputs/outputs of the jth CPU step be CPCPU(statej , breadj ) =
(statej+1, i

read
j , iwrite

j , bwrite
j ). Then, u = WriteTime(j, statej , ireadj ) is the largest

value of u < j such that the CPU step u wrote to location ireadj ; i.e., iwrite
u =

ireadj . We also define a ptWrites property for a sequence of program executions
(P1(x1), . . . , P`(x`))D if the above property holds for each CPU step in the se-
quence.

Garbling programs with ptWrites. At any point in time, the garbled memory
data D̃ maintained by the honest evaluator should consist of secret keys of the
form sk(j,i,b) = Fk(j, i, b) for each location i ∈ [n], where the additional value
j will denote a “time step” in which the location i was last written to, and b
denotes the current bit in that location. Initially, for each location i ∈ [n], we
set D̃[i] = sk(0,i,D[i]) using the time period j = 0. Then, to read from a location
i with last-write-time u, the CPU circuit encrypts the wire-label for bit b under
some key which depends on (u, i, b), and to write a bit b to location i in time-step
j the CPU circuit gives out some key which depends on (j, i, b).

In more detail, to write a bit b to memory location iwrite in time step u, the
augmented CPU circuit now simply computes a secret key sk(u,i,b) = Fk(u, i, b),
using the hard-coded PRF key k, and outputs sk(u,i,b) in the clear. The honest
evaluator will place this new key in to garbled memory by setting D̃[i] := sk(u,i,b),
and can “forget” the previous key in location i.

To read from location iread, in time step j we now need to make sure that the
evaluator can only use latest key (corresponding to the most recently written
bit), and cannot use some outdated key (corresponding to an old value in that
location). To do so, the augmented CPU circuit computes the last write time
for the location iread by calling u = WriteTime(j, statej , iread) and then prepares
the translation mapping translate = (c0, c1) as before, but with respect to the
keys for time step u by encrypting the ciphertext c0, c1 under the secret key
sk(u,i,0) = Fk(u, i, 0), sk(u,i,1) = Fk(u, i, 1) respectively.

4 Our Solution Using IBE

We now outline our modifications to the Lu-Ostrovsky solution so as to remove
the circular use of garbled circuits, using identity-based encryption. See the long
version [9] for a full description. As above, we begin by describing our fix for
read-only computation and then describe how to handle ptWrites.



4.1 A Read-Only Construction

The initial idea is to simply replace the symmetric-key encryption scheme with
a public-key one. Each garbled circuit will have a hard-coded public-key which
allows it to create ciphertexts translate = (ct0, ct1), but does not provide enough
information to “break” the security of these ciphertexts. Unfortunately, standard
public-key encryption does not suffice and we will need to rely on identity-based
encryption (IBE). Indeed, we can already think of the Lu-Ostrovsky construction
outlined above as implicitly using a “symmetric-key” IBE where the master
secret key k is needed to encrypt. In particular, we can think of the garbled
memory data as consisting of “identity secret keys” sk(i,b) for identities of the
form (i, b) ∈ [n] × {0, 1} depending on the data bit b = D[i]. The translation
information consists of an encryption of the label lblread0 for identity (i, 0) and
an encryption of lblread1 for identity (i, 1). We can view the Lu-Ostrovsky scheme
as using a symmetric-key IBE scheme constructed from a PRF Fk(·) and a
standard encryption scheme, where the encryption of a message msg for identity
id is computed as EncFk(id)(msg). We now simply replace this with a public-key
IBE. In particular, we modify the augmented CPU-step circuit so that it now
contains a hard-coded master public key MPK for an IBE scheme (instead of a
PRF key k) and it now creates the translation map translate = (c0, c1) by setting
cb = EncMPK(id = (i, b),msg = lbl

(read)
b ) to be an encryption of the message lblreadb

for identity (i, b).

Overview of Security Proof. The above scheme already removes the circularity
problem and yields a secure construction for read-only computation with un-
protected memory-access (UMA) security. In particular, we can now rely on the
semantic-security of the IBE ciphertexts created by a garbled circuit j without
needing to argue about the security of future garbled circuits j + 1, j + 2, . . .
since they do not contain any secret information about the IBE scheme.

4.2 Writing to Memory

We present the solution for a predictably timed writes (ptWrites), cf. Defini-
tion 1. To handle writes, we now want the garbled data to consist of secret keys
for identities of the form id = (j, i, b) where i ∈ [n] is the location in the data, j
is a time step when that location was last written to, and b ∈ {0, 1} is the bit
that was written to location i in time j. The honest evaluator only needs to keep
the the most recent secret key for each location i. When the computation needs
to read from location i, it computes the last time step j when this location was
written to, then creates the translation mapping by encrypting ciphertexts for
the two identities (j, i, b) for b = 0, 1.

When the computation needs to write a bit b to location i in time period
j, the corresponding garbled circuit should output a secret key for the identity
(j, i, b). Unfortunately, a naive implementation would require the garbled circuits
to include the master secret key MSK of the IBE in order to compute these secret
keys, and this would re-introduce the same circularity problem that we are trying



to avoid! Instead we use a solution similar to hierarchical IBE (HIBE), as we
describe next.

Timed IBE. To avoid circularity, we introduce a primitive that we call a timed
IBE (TIBE) scheme. Such a scheme roughly lets us create “time-period keys”
TSKj for arbitrary time periods j ≥ 0 such that TSKj can be used to create
identity-secret-keys sk(j,v) for arbitrary v, but cannot break the security of any
other identities with j′ 6= j.9 TIBEs as described above can be easily constructed
from 2-level HIBE by thinking of the identities (j, v) as being of the form j.v
where the time-period j is the top level of the hierarchy and v is the lower level;
the time-period key TSKj would just be a secret key for the identity j. We note,
however, that for our purposes we can use a slightly weaker version of TIBEs
where we only give out limited number of keys, and these can be constructed
from any selectively-secure IBE scheme.

Definition 2 (Timed IBE (TIBE)). A TIBE scheme Consists of 5 PPT
algorithms MasterGen, TimeGen, KeyGen, Enc, Dec with the syntax:

– (MPK,MSK)← MasterGen(1κ): generates master public/secret keys MPK,MSK.
– TSKj ← TimeGen(MSK, j): Generates a key for time-period j ∈ N.
– sk(j,v) ← KeyGen(TSKj , (j, v)): creates a secret key for the identity (j, v).
– ct← EncMPK((j, v),msg) encrypts msg for the identity (j, v).
– msg = Decsk(j,v)(ct): decrypts ct for identity (j, v) using the secret key sk(j,v).

The scheme should satisfy the following properties:
Correctness: For any id = (j, v), and any msg ∈ {0, 1}∗ it holds that:

Pr
[
Decsk(ct) = msg

∣∣∣∣ (MPK,MSK)← MasterGen(1κ),TSKj ← TimeGen(MSK, j),
sk← KeyGen(TSKj , (j, v)), ct← EncMPK((j, v),msg)

]
= 1.

Security: Consider the following game between an attacker A and a challenger.

– The attacker A(1κ) chooses target identity id∗ = (j∗, v∗) and bound t ≥ j∗

(given in unary). The attacker also chooses a set of identities S = S0 ∪ S>0

with id∗ 6∈ S such that: (I) S0 contains arbitrary identities of the form (0, v),
(II) S>0 contains exactly one identity (j, v) for each period j ∈ {1, . . . , j∗}.
Lastly, the adversary chooses messages msg0,msg1 ∈ {0, 1}

∗ of equal size
|msg0| = |msg1|.

– The challenger chooses (MPK,MSK)← MasterGen(1κ), and TSKj ← TimeGen(MSK, j)
for j = 0, . . . , t. For each id = (j, v) ∈ S it chooses skid ← KeyGen(TSKj , id).
Lastly, the challenger chooses a challenge bit b ← {0, 1} and sets ct ←
EncMPK(id∗,msgb). The challenger gives the attacker:

MPK , TSK = {TSKj}j∗<j≤t , sk = {(id, skid)}id∈S , ct.

9 In our use of TIBE, we will always set v = (i, b) for some i ∈ [n], b ∈ {0, 1}.



– The attacker outputs a bit b̂ ∈ {0, 1}.

The scheme is secure if, for all PPT A, we have |Pr[b = b̂]− 1
2 | ≤ negl(κ) in the

above game.

In the full version [9], we show how to construct a TIBE scheme from any secure
IBE scheme.

Solution using TIBE. Using a TIBE scheme, we can solve the problem of writes.
For each location i ∈ [n] the honest evaluator will always have a secret key for
identity id = (j, i, b) where j is the last-write-time for location i and b ∈ {0, 1}
is its value. Initially, the garbled data consists of secret keys for the time period
j = 0. Each augmented-CPU-step-circuit in time period j > 0 will contain a
hard-coded time-period key TSKj and the master-public-key MPK. This allows
each CPU step j to read an arbitrary location i ∈ [n] with last-write time u < j
by encrypting the translation ciphertexts translate = (ct0, ct1) under MPK to the
identities (u, i, b) for b = 0, 1. Each such CPU step j can also write a bit b to
an arbitrary location i by creating a secret key skid for the identity id = (j, i, b)
using TSKj . Notice that we create at most one such secret-key for each time
period j > 0. This solution does not suffer from a circularity problem, since
the ciphertexts created by CPU step j for an identity (u, i, b) must have u < j,
and therefore we can rely on semantic security even given the hard-coded values
TSKj+1, . . . ,TSKt in all future garbled circuits.

5 Our Solution Using One-Way Functions

The main problem that arises in the circularity is that there is only one PRF
key, and that this key when embedded in any future time step is able to decode
anything the circuit does in the current time step. The intuitive way to circum-
vent this is to iteratively weaken the PRF key. In order to do so, we introduce
the following notion of revocable PRFs.

5.1 Revocable PRFs

We define the notion of (adaptively) revocable PRFs and we explain how it
differs from existing notions such as [6, 7, 13, 18]. The idea is that we can revoke
values from the key so that the PRF cannot be evaluated on these values, and
given an already-revoked key, one can further revoke new values.

Definition 3. A revocable PRF is a PRF F equipped with an additional revoke
algorithm Rev. The keys for this PRF are of the form kX where X is a subset of
the domain (which is the revoked values), and we identify “fresh keys” with k∅.
The revoke algorithm takes as input a key kX and another subset Y , and output
kX∪Y , satisfying the following properties:

Correctness: FkX∪Y
(x) = FkX

(x) if x /∈ X ∪ Y , and FkX∪Y
(x) = ⊥ otherwise.



Pseudorandomness: Given any set of keys {kY1 , . . . , kYm
}, Fk(x) is pseudo-

random for all x /∈
⋂
i Yi.

Note that this definition appears similar to constrained PRFs [6]; however,
we do not require that the revoked set to be hidden in any way, and we allow
successive revocation of more and more values starting from an initial fresh key.

Revocable PRFs can be constructed based on the GGM construction [10], as
we now sketch. Recall that GGM PRF is built out of a length-doubling PRG G.
It can be thought of as filling the nodes of a complete binary tree with pseudo-
random values: The PRF key is placed in the root, and then the values in all
other nodes are computed by taking any node with value s and putting in its two
children the two halves of the pseudo-random value G(s). An input to the PRF
specifies a leaf in the tree, and the corresponding output is the pseudo-random
value in that leaf. To revoke a single leaf x, we simply replace the root value with
the values of all the siblings of nods on the path to the revoked leaf. Clearly we
can still compute the PRF on every input y 6= x, but the value of x is now pseudo-
random even given the weaker key. More generally, let X = {x1, x2, . . . , xs} be a
set of s leaves that we want to revoke, the key kX will contain siblings of nodes
on the paths to all these xi’s, except these nodes that are themselves ancestors
of some xi. This key consists of at most s logN values, where N is the number
of leaves in the tree.

5.2 Overview of the Second Construction

Step 1, read-once programs. We begin by describing a naive construction that
solves the circularity issue by using revocable PRFs. Starting from a RAM pro-
gram with ptWrites, we convert it to a “read-once” program (i.e. no location
is read more than once before it is overwritten) by introducing a local cache
in which the CPU keeps every value that it gets from memory. Of course this
transformation comes with a steep performance price, as the CPU state after t
steps grows to size roughly min(n, t).

Once we have a read-once program, we can use revocable PRFs to break
the circularity in the original Lu-Ostrovsky construction as follows: instead of
having the PRF key hard-wired in the augmented CPU-step circuit, we now let
it be part of the input. In particular the circuit will get some key KX as part of
the input, compute the next address i to read from memory (if any), and will
prepare the translation mapping table translate by evaluating FKX

(u, i, 0) and
FKX

(u, i, 1), then revoke the two points (u, i, 0) and (u, i, 1), and pass to the next
CPU-step function the PRF key KX′ for X ′ = X ∪ {(i, 0), (i, 1)}. Since this is a
read-once program, then no future CPU step ever needs to evaluate the PRF at
these points. Writing remains unchanged, and does not interfere with the PRF
because all revocations only happened to CPU-steps in the past, and in the proof
we can still plant the PRF challenge in the un-written bit FKX

(u, i, 1− b).
This solves the circularity problem since the encryption in translate is secure

even given all future keys K ′x. Moreover, the size of the augmented CPU step is
not much larger than that of the original CPU step since the keys KX only grow



to size roughly κ ·min(n, t) · log n. The naive construction would just garble all of
these enhanced CPU steps, which entails time complexity of poly(κ) ·min(n, t) ·
t log n for both GProg and GEval. This solution, although secure, is not much
better than just converting the original RAM program to a circuit and garbling
that circuit (i.e. the generic t3 transformation). We do obtain some amortized
savings in the case of running multiple programs on persistent memory (e.g.
repeated binary search).

We mention that instead of “read-once”, we can consider a weakened version
that allows for some bounded number of reads before a location is overwritten.
In such a case, there exists a transformation (via ORAM, see [15]) from an arbi-
trary RAM program to one that satisfies ptWrites and poly-logarithmic bounded
reads, without a cache. In order for GRAM to handle multiple reads to the same
location, we can simply apply repetition and have multiple, independent PRFs.
Unfortunately, even though this removes the cache, the bottleneck remains in
the growth of the keys KX . Only when combined with a more efficient revocable
PRF scheme will this result in lower overhead. Instead, we propose the following
approach.

Step 2, refreshing the memory. To reduce the complexity, we introduce a pe-
riodic memory-refresh operation which is designed to rein-in the growth in the
(augmented) CPU-step functions: Namely, we refresh the entire memory and its
representation every f steps, for some parameter f < n to be determined later.
In more detail, after every f CPU steps we introduce an special refresh circuit
that (a) empties the cache, and (b) re-garbles the memory using a freshly chosen
PRF key. The complexity of each such refresh step is poly(k) ·n, and there is no
need to hard-wire in it any PRF keys (since we can instead just hard-wire all
the O(n) PRF values that it needs, rather than computing them.)

The advantage of using these refresh steps is that now the augmented CPU
steps only grow up to size at most O(κ · f log n), and although each refresh
step is expensive we only have t/f such steps. Hence the overall complexity is
bounded by poly(κ)·(t/f ·n+t·f log n). Setting f =

√
n/ log n thus yields overall

complexity of poly(κ) · t ·
√
n log n for performing t steps, so we get overhead of

poly(κ)
√
n log n.

Step 3, a recursive construction. To further reduce the overhead, we notice that
instead of garbling the augmented CPU steps as circuits (which incurs complex-
ity s·poly(κ) for a size-s step), we can instead view these steps as RAM programs
and apply the same RAM-garbling procedure recursively to these programs. Each
augmented CPU state grows to O(κ·f log n), and can be implemented as a RAM
program of that size, but running in time Õ(κ log f log n) by using appropriate
data structures. This allows us to balance the refresh time with the cost of exe-
cuting each of the t emulated steps as a recurrence relation. There are additional
details required when applying this recursion. Since every level of the recursion
induces a factor of κ, we must choose f so that the savings overcome this factor
and while preserving polynomial complexity. Also, if we treat each step as an
independent GRAM, the cost of running GData on the size-f cache would negate



all savings. We must amortize this cost by treating the steps as running on the
same persistent “mini-GRAM” memory. This requires a careful formalization of
our recursion in terms of a composition theorem that states that a small, secure
GRAM can be bootstrapped into a larger one via treating CPU internals as
persistent memory. In the long version [15] we give the details and show that for
any constant ε > 0 we can choose the parameter f and the number of recursion
levels to get overhead of poly(κ)nε.

6 Conclusions

We conclude with two important open problems. Firstly, it would be interesting
to give a garbled RAM scheme based only on the existence of one-way functions
with poly-logarithmic overhead. Secondly, the work of Goldwasser et al. recently
constructed the first reusable garbling schemes for circuits and Turing machines
[12, 11] where the garbled circuit/TM can be executed on multiple inputs. It
would be interesting to analogously construct a reusable garbled RAM where
the garbled program can be evaluated on many different “short” inputs.
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