
Unifying Leakage Models: from Probing Attacks

to Noisy Leakage⋆

Alexandre Duc1,⋆⋆, Stefan Dziembowski2,3,⋆ ⋆ ⋆, and Sebastian Faust1,†

1 Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
2 University of Warsaw, Poland

3 Sapienza University of Rome, Italy

Abstract. A recent trend in cryptography is to formally show the leak-
age resilience of cryptographic implementations in a given leakage model.
A realistic model is to assume that leakages are sufficiently noisy, follow-
ing real-world observations. While the noisy leakage assumption has first
been studied in the seminal work of Chari et al. (CRYPTO 99), the re-
cent work of Prouff and Rivain (Eurocrypt 2013) provides the first anal-
ysis of a full masking scheme under a physically motivated noise model.
Unfortunately, the security analysis of Prouff and Rivain has three im-
portant shortcomings: (1) it requires leak-free gates, (2) it considers a
restricted adversarial model (random message attacks), and (3) the se-
curity proof has limited application for cryptographic settings. In this
work, we provide an alternative security proof in the same noisy model
that overcomes these three challenges. We achieve this goal by a new re-
duction from noisy leakage to the important theoretical model of probing
adversaries (Ishai et al – CRYPTO 2003). Our work can be viewed as
a next step of closing the gap between theory and practice in leakage
resilient cryptography: while our security proofs heavily rely on concepts
of theoretical cryptography, we solve problems in practically motivated
leakage models.

1 Introduction

Physical side-channel attacks that exploit leakage emitting from devices are an
important threat for cryptographic implementations. Prominent sources of such
physical leakages include the running time of an implementation [17], its power
consumption [18] or electromagnetic radiation emitting from it [26]. A large
body of recent applied and theoretical research attempts to incorporate the
information an adversary obtains from the leakage into the security analysis and
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develops countermeasures to defeat common side-channel attacks [4, 14, 20, 1, 9,
31, 30]. While there is still a large gap between what theoretical models can
achieve and what side-channel information is measured in practice, some recent
important works propose models that better go align with the perspective of
cryptographic engineering [29, 24, 30]. Our work follows this line of research by
analyzing the security of a common countermeasure – the so-called masking
countermeasure – in the model of Prouff and Rivain [24]. Our analysis works by
showing that security in certain theoretical leakage models implies security in
the model of [24], and hence may be seen as a first attempt to unify the large
class of different leakage models used in recent results.

The masking countermeasure. A large body of work on cryptographic engineer-
ing has developed countermeasures to defeat side-channel attacks (see, e.g., [19]
for an overview). While many countermeasures are specifically tailored to pro-
tect particular cryptographic implementations (e.g., key updates or shielded
hardware), a method that generically works for most cryptographic schemes is
masking [13, 2, 23, 31]. The basic idea of a masking scheme is to secret share all
sensitive information, including the secret key and all intermediate values that
depend on it, thereby making the leakage independent of the secret data. The
most prominent masking scheme is the Boolean masking: a bit b is encoded by
a random bit string (b1, . . . , bn) such that b = b1 ⊕ . . .⊕ bn. The main difficulty
in designing masking schemes is to develop masked operations, which securely
compute on encoded data and ensure that all intermediate values are protected.

Masking against noisy leakages. Besides the fact that masking can be used to
protect arbitrary computation, it has the advantage that it can be analyzed
in formal security models. The first work that formally studies the soundness
of masking in the presence of leakage is the seminal work of Chari et al. [4].
The authors consider a model where each share bi of an encoding is perturbed
by Gaussian noise and show that the number of noisy samples needed to re-
cover the encoded secret bit b grows exponential with the number of shares. As
stated in [4], this model matches real-world physical leakages that inherently are
noisy. Moreover, many practical solutions exist to amplify leakage noise (see for
instance the works of [6, 5, 19]).

One limitation of the security analysis given in [4] is the fact that it does not
consider leakage emitting from masked computation. This shortcoming has been
addressed in the recent important work of Prouff and Rivain [24], who extend
at Eurocrypt 2013 the noisy leakage model of Chari et al. [4] to also include
leakage from the masked operations. Specifically, they show that a variant of
the construction of Ishai et al. [14] is secure even when there is noisy leakage
from all the intermediate values that are produced during the computation.
The authors of [24] also generalize the noisy leakage model of Chari et al. [4]
to a wider range of leakage functions instead of considering only the Gaussian
one. While clearly noisy leakage is closer to physical leakage occurring in real
world, the security analysis of [24] has a number of shortcomings which puts
strong limitations in which settings the masking countermeasure can be used



and achieves the proved security statements. In particular, like earlier works on
leakage resilient cryptography [8, 10] the security analysis of Prouff and Rivain
relies on so-called leak-free gates. Moreover, security is shown in a restricted
adversarial model that assumes that plaintexts are chosen uniformly during an
attack and the adversary does not exploit joint information from the leakages
and, e.g., the ciphertext. We discuss these shortcomings in more detail in the
next section.

1.1 The work of Prouff and Rivain [25]

Prouff and Rivain [25] analyze the security of a block-cipher implementation that
is masked with an additive masking scheme working over a finite field F. More
precisely, let t be the security parameter then a secret s ∈ F is represented by
an encoding (X1, . . . , Xt) such that each Xi ← F is uniformly random subject
to s = X1 ⊕ . . .⊕Xt. As discussed above the main difficulty in designing secure
masking schemes is to devise masked operations that work on masked values. To
this end, Prouff and Rivain use the original scheme of Ishai et al. [14] augmented
with some techniques from [3, 27] to work over larger fields and to obtain a
more efficient implementation. The masked operations are built out of several
smaller components. First, a leak-free operation that refreshes encodings, i.e.,
it takes as input an encoding (X1, . . . , Xt) of a secret s and outputs a freshly
and independently chosen encoding of the same value. Second, a number of leaky
elementary operations that work on a constant number of field elements. For each
of these elementary operations the adversary is given leakage f(X), where X are
the inputs of the operation and f is a noisy function. Clearly, the noise-level has
to be high enough so that given f(X) the values of X is not completely revealed.
To this end, the authors introduce the notion of a bias, which informally says
that the statistical distance between the distribution of X and the conditional
distribution X|f(X) is bounded by some parameter.

While noisy leakages are certainly a step in the right direction to model
physical leakage, we detail below some of the limitations of the security analysis
of Prouff and Rivain [24]:

1. Leak-free components: The assumption of leak-free computation has been
used in earlier works on leakage resilient computation [10, 8]. It is a strong
assumption on the physical hardware and, as stated in [24], an important
limitation of the current proof approach. The leak-free component of [24] is a
simple operation that takes as input an encoding and refreshes it. While the
computation of this operation is supposed to be completely shielded against
leakage, the inputs and the outputs of this computation may leak. Notice
that the leak-free component of [24] depends on the computation that is
carried out in the circuit by takeing inputs. In particular, this means that
the computation of the leak-free component depends on secret information,
which makes it harder to protect in practice and is different from earlier
works that use leak-free components [10, 8].



2. Random message attacks: The security analysis is given only for random
message attacks. In particular, it is assumed that every masked secret is a
uniformly random value. This is in contrast to most works in cryptography,
which usually consider at least a chosen message attack. When applied to a
block-cipher, their proof implies that the adversary has only access to the
leakage of the system without knowing which plaintext was used nor which
ciphertext was obtained. Hence, the proof does not cover chosen plaintext or
chosen ciphertext attacks. However, it is true that it is not clear how chosen
message attacks change the picture in standard DPA attacks [32].

3. Mutual-information-based security statement: The final statement of Theo-
rem 4 in [24] only gives a bound on the mutual information of the key and
the leakages from the cipher. In particular, this does not include informa-
tion that an adversary may learn from exploiting joint information from the
leakages and plaintext/ciphertext pairs. Notice that the use of mutual infor-
mation gets particularly problematic under continuous leakage attacks, since
multiple plaintext/ciphertext pairs information theoretically completely re-
veal the secret key. The standard security notion used, e.g., in Ishai et al. is
simulation-based and covers such subtleties when dealing with Shannon in-
formation theory.

4. Strong noise requirements: The amount of noise that is needed depends on
the number of shares and on the size of the field which might be a bit
unnatural. Moreover, the noise is independently sampled for each of the
elementary operation that have constant size.

1.2 Our contribution

We show in this work how to eliminate limitations 1-3 by a simple and elegant
simulation-based argument and a reduction to the so-called t-probing adversarial
setting [14] (that in this paper we call the t-threshold-probing model to empha-
size the difference between this model and the random-probing model defined
later.). The t-threshold-probing model considers an adversary that can learn the
value of t intermediate values that are produced during the computation and
is often considered as a good approximation for modelling higher-order attacks.
We notice that limitation 4 from above is what enables our security analysis.
The fact that the noise is independent for each elementary operation allows us
to formally prove security under an identical noise model as [24], but using a
simpler and improved analysis. In particular, we are able to show that the orig-
inal construction of Ishai et al. satisfies the standard simulation-based security
notion under noisy leakages without relying on any leak-free components. We
emphasize that our techniques are very different (and much simpler) than the
recent breakthrough result of Goldwasser and Rothblum [12] who show how to
eliminate leak-free gates in the bounded leakage model. We will further discuss
related works in Section 1.3.

Our proof considers three different leakage models and shows connections
between them. One may view our work as a first attempt to “reduce” the num-
ber of different leakage models, which is in contrast to many earlier works that



introduced new leakage settings. Eventually, we are able to reduce the security
in the noisy leakage model to the security in the t -threshold-probing model.
This shows that, for the particular choice of parameters given in [24], security in
the t-threshold-probing model implies security in the noisy leakage model. This
goes align with the common approach of showing security against t-order attacks,
which usually requires to prove security in the t–threshold-probing model. More-
over, it shows that the original construction of Ishai et al. that has been used in
many works on masking (including the work of Prouff and Rivain) is indeed a
sound approach for protecting against side-channel leakages when assuming that
they are sufficiently noisy. We give some more details on our techniques below.

From noisy leakages to random probes. As a first step in our security proof we
show that we can simulate any adversary in the noisy leakage model of Prouff
and Rivain with an adversary in a simpler noise model that we name a random
probing adversary and is similar to a model introduced in [14]. In this model, an
adversary recovers an intermediate value with probability ǫ and obtains a special
symbol ⊥ with probability 1− ǫ. This reduction shows that this model is worth
studiying, although from the engineering perspective it may seem unnatural.

From random probes to the t-threshold-probing model. We show how to go from
the random probing adversary setting to the more standard t-threshold-probing
adversary of Ishai et al. in [14]. This step is rather easy as due to the inde-
pendency of the noise we can apply Chernoff’s bound almost immediately. One
technical difficulty is that the work of Prouff and Rivain considers joint noisy
leakage from elementary operations, while the standard t-threshold-probing set-
ting only talks about leakage from wires. Notice, however, that the elementary
operations of [24] only depend on two inputs and, hence, it is not hard to extend
the result of Ishai et al. to consider “gate probing adversary” by tolerating a
loss in the parameters. Finally, our analysis enables us to show security of the
masking based countermeasure without the limitations 1-3 discussed above.

Leakage resilient circuits with simulation-based security. In our security analysis
we use the the framework of leakage resilient circuits introduced in the seminal
work of Ishai et al. [14]. A circuit compiler takes as input the description of a
cryptographic scheme C with secret key K, e.g., a circuit that describes a block
cipher, and outputs a transformed circuit C ′ and corresponding key K ′. The
circuit C ′[K ′] shall implement the same functionality as C running with key
K, but additionally is resilient to certain well-defined classes of leakage. Notice
that while the framework of [14] talks about circuits the same approach applies
to software implementations, and we only follow this notation to abstract our
description.

Moreover, our work uses the well-established simulation paradigm to state
the security guarantees we achieve. Intuitively, simulation-based security says
that whatever attack an adversary can carry out when knowing the leakage, he
can also run (with similar success probability) by just having black-box access
to C. In contrast to the approach based on Shannon information theory our



analysis includes attacks that exploit joint information from the leakage and
plaintext/ciphertext pairs. It seems impossible to us to incorporate the plain-
text/ciphertext pairs into an analysis based on Shannon information theory. To
see this, consider a block-cipher execution, where, clearly, when given a couple of
plaintext/ciphertext pairs, the secret key is information theoretically revealed.4

The authors of [24] are well aware of this problem and explicitly exclude such
joint information. A consequence of the simulation-based security analysis is
that we require an additional mild assumption on the noise – namely, that it is
efficiently computable (see Section 3.1 for more details). While this is a standard
assumption made in most works on leakage resilient cryptography, we empha-
size that we can easily drop the assumption of efficiently computable noise (and
hence considering the same noise model as [24]), when we only want to achieve
the weaker security notion considered in [24]. Notice that in this case we are still
able to eliminate the limitations 1 & 2 mentioned above.

1.3 Related work

Masking & leakage resilient circuits. A large body of work has proposed various
masking schemes and studies their security in different security models (see,
e.g., [13, 2, 23, 31, 27]). The already mentioned t-threshold-probing model has
been considered in the work of Rivain and Prouff [27], who show how to extend
the work of Ishai et al. to larger fields and propose efficiency improvements.
In [25] it was shown that techniques from multiparty computation can be used to
show security in the t-threshold-probing model. The work of Standaert et al. [31]
studies masking schemes using the information theoretic framework of [29] by
considering the Hamming weight model. Many other works analyze the security
of the masking countermeasure and we refer the reader for further details to [24].

With the emerge of leakage resilient cryptography [20, 1, 9] several works
have proposed new security models and alternative masking schemes. The main
difference between these new security models and the t-threshold-probing model
is that they consider joint leakages from large parts of the computation. The
work of Faust et al. [10] extends the security analysis of Ishai et al. beyond the
t-threshold-probing model by considering leakages that can be described by low-
depth circuits (so-called AC0 leakages). Faust et al. use leak-free component that
have been eliminated by Rohtblum in [28] using computational assumptions. The
recent work of Miles and Viola [21] proposes a new circuit transformation using
alternating groups and shows security with respect to AC0 and TC0 leakages.

Another line of work considers circuits that are provably secure in the so-
called continuous bounded leakage model [15, 11, 8, 12]. In this model, the ad-
versary is allowed to learn arbitrary information from the computation of the

4 More concretely: imagine an adversary that attacks a block-cipher implementation
EK , where K is the secret key. Then just by launching a known-plaintext attack
he can obtain several pairs V = (M0, EK(M0)), (M1, EK(M1)), . . .. Clearly a small
number of such pairs is usually enough to determine K information-theoretically.
Hence it makes no sense to require that “K is information-theoretically hidden given
V and the side-channel leakage.”



circuit as long as the amount of information is bounded. The proposed schemes
rely additionally on the assumption of “only computation leaks information” of
Micali and Reyzin [20].

Noisy leakage models. The work of Faust et al. [10] also considers circuit com-
pilers for noisy models. Specifically, they propose a construction with security in
the binomial noise model, where each value on a wire is flipped independently
with probability p ∈ (0, 1/2). In contrast to the work of [24] and our work the
noise model is restricted to binomial noise, but the noise rate is significantly
better (constant instead of linear noise). Similar to [24] the work of Faust et
al. also uses leak-free components. Besides these works on masking schemes,
several works consider noisy leakages for concrete cryptographic schemes [9, 22,
16]. Typically, the noise model considered in these works is significantly stronger
than the noise model that is considered for masking schemes. In particular, no
strong assumption about the independency of the noise is made.

2 Preliminaries

We start with some standard definitions and lemmas about the statistical dis-
tance. If A is a set then U ← A denotes a random variable sampled uniformly
from A. Recall that if A and B are random variables over the same set A
then the statistical distance between A and B is denoted as ∆(A;B), and de-
fined as ∆(A;B) = 1

2

∑

a∈A |P (A = a)−P (B = a) | =
∑

a∈A max{0,P (A = a)−
P (B = a)}. If X ,Y are some events then by ∆((A|X ) ; (B|Y)) we will mean the
distance between variables A′ and B′, distributed according to the conditional
distributions PA|X and PB|Y . If X is an event of probability 1 then we also write
∆(A ; (B|Y)) instead of ∆((A|X ) ; (B|Y)). If C is a random variable then by
∆(A ; (B|C)) we mean

∑

P (C = c) ·∆(A ; (B|(C = c))).
IfA,B, and C are random variables then∆((B;C) |A) denotes∆((BA); (CA)).

It is easy to see that it is equal to
∑

a P (A = a) ·∆((B|A = a) ; (C|A = a)). If

∆(A;B) ≤ ǫ then we say that A and B are ǫ-close. The “
d
=” symbol denotes

the equality of distributions, i.e., A
d
=B if and only if ∆(A;B) = 0. We also have

the following lemma, whose proof appears in the full version.

Lemma 1. Let A,B be two random variables. Let B′ be a variable distributed
identically to B but independent from A. We have ∆(A; (A|B)) = ∆((B;B′) | A).

3 Noise from set elements

We start with describing the basic framework for reasoning about the noise
from elements of a finite set X . Later, in Section 4, we will consider the leakage
from the vectors over X , and then, in Section 5, from the entire computation.
The reason why we can smoothly use the analysis from Section 3.1 in the later
sections is that, as in the work of Prouff and Rivain, we require that the noise



is independent for all elementary operations. By elementary operations, [24]
considers the basic underlying operations over the underlying field X used in a
masked implementation. In this work, we consider the same setting and type of
underlying operations (in fact, notice that our construction is identical to theirs
– except that we eliminate the leak-free gates and prove a stronger statement).
Notice that instead of talking about elementary operations, we consider the more
standard term of “gates” that was used in the work of Ishai et al. [14].

3.1 Modeling noise

Let us start with a discussion defining what it means that a randomized function
Noise : X → Y is “noisy”. We will assume that X is finite and rather small:
typical choices for X would be GF(2) (the “Boolean case”), or GF(28), if we
want to deal with the AES circuit. The set Y corresponds to the set of all
possible noise measurements and may be infinite, except when we require the
“efficient simulation” (we discuss it further at the end of this section). As already
informally described in Section 1.1 our basic definition is as follows: we say that
the function Noise is δ-noisy if

δ = ∆(X; (X|Noise(X))). (1)

Of course for (1) to be well-defined we need to specify the distribution of X.
The idea to define noisy functions by comparing the distributions of X and
“X conditioned on Noise(X)” comes from [24], where it is argued that the
most natural choice for X is a random variable distributed uniformly over X .
We also adopt this convention and assume that X ← X . We would like to
stress, however, that in our proofs we will apply Noise to inputs X̂ that are
not necessarily uniform and in this case the value of ∆(X̂; (X̂|Noise(X̂)) may
obviously be some non-trivial function of δ. Of course if X ← X and X ′ ← X
then Noise(X ′) is distributed identically to Noise(X), and hence, by Lemma 1,
Eq. (1) is equivalent to:

δ = ∆((Noise(X);Noise(X ′)) | X), (2)

where X and X ′ are uniform over X . Note that at the beginning this definition
may be a bit counter-intuitive, as smaller δ means more noise: in particular
we achieve “full noise” if δ = 0, and “no noise” if δ ≈ 1. Let us compare
this definition with the definition of [24]. In a nutshell: the definition of [24] is
similar to ours, the only difference being that instead of the statistical distance∆
in [24] the authors use a distance based on the Euclidean norm. More precisely,
they start with defining d as: d(X;Y ) :=

√
∑

x∈X (P (X = x)− P (Y = y))2, and
using this notion they define β as:

β(X|Noise(X)) :=
∑

y∈Y

P (Noise(X) = y) · d(X ; (X|Noise(X) = y))

(where X is uniform). In the terminology of [24] a function Noise is “δ-noisy”
if δ = β(X|Noise(X)). Observe that the right hand side of our noise definition



in Eq. (1) can be rewritten as:
∑

b∈Y P (Noise(X) = y) ·∆(X ; (X|Noise(X) =
y)),hence the only difference between their approach and ours is that we use ∆
where they use the distance d. The authors do not explain why they choose this
particular measure. We believe that our choice to use the standard definition
of statistical distance ∆ is more natural in this setting, since, unlike the “d”
distance, it has been used in hundreds of cryptographic papers in the past.
The popularity of the ∆ distance comes from the fact that it corresponds to
an intuitive concept of the “indistinguishability of distributions” — it is well-
known, and simple to verify, that ∆(X;Y ) ≤ δ if and only if no adversary can
distinguish between X and Y with advantage better than δ.5 Hence, e.g., (2)
can be interpreted as:

δ is the maximum probability, over all adversariesA, thatA distinguishes
between the noise from a uniform X that is known to him, and a uniform
X ′ that is unknown to him.

It is unclear to us if a d distance has a similar interpretation. We emphasize,
however, that the choice whether to use ∆ or β is not too important, as the
following inequality hold (c.f. [24]):

1

2
· β(X|Noise(X)) ≤ ∆(X; (X|Noise(X)) ≤

√

|X |

2
· β(X|Noise(X)). (3)

Hence, we decide to stick to the “∆ distance” in this paper. However, to allow
for comparison between our work and the one of [24] we will at the end of the
paper present our results also in terms of the β measure (this translation will
be straightforward, thanks to the inequalities in (3)).In [24] (cf. Theorem 4)
the result is stated in form of Shannon information theory. While such an in-
formation theoretic approach may be useful in certain settings [29], we follow
the more “traditional” approach and provide an efficient simulation argument.
As discussed in the introduction, this also covers a setting where the adver-
sary exploits joint information of the leakage and, e.g., the plaintext/ciphertext
pairs. We emphasize, however, that our results can easily be expressed in the
information theoretic language as shown in the full version of the paper.

The issue of “efficient simulation” To achieve the strong simulation-based
security notion, we need an additional requirement on the leakage, namely, that
the leakage can efficiently be “simulated” – which typically requires that the
noise function is efficiently computable. In fact, for our proofs to go through we
actually need something slightly stronger, namely that Noise is efficiently decid-
able by which we mean that (a) there exists a randomized poly-time algorithm
that computes it, and (b) the set Y is finite and for every x and y the value of
P (Noise(x) = y) is computable in polynomial time. While (b) may look like a
strong assumption we note that in practice for most “natural” noise functions

5 This formally means that for every A we have |P (A(X) = 1)− P (A(Y ) = 1)| ≤ δ.



(like the Gaussian noise with a known parameter, measured with a very good,
but finite, precision) it is easily satisfiable.

Recall that the results of [24] are stated without taking into consideration
the issue of the “efficient simulation”. Hence, if one wants to compare our results
with [24] then one can simply drop the efficient decidability assumption on the
noise. To keep our presentation concise and clean, also in this case the results will
be presented in a form “for every adversary A there exists an (inefficient) simu-
lator S”. Here the “inefficient simulator” can be an arbitrary machine, capable,
e.g., of sampling elements from any probability distributions.

3.2 Simulating noise by ǫ-identity functions

Lemma 2 below is our main technical tool. Informally, it states that every δ-
noisy function Noise : X → Y can be represented as a composition Noise ′ ◦ϕ of
efficiently computable randomized functions Noise ′ and ϕ, where ϕ is a “δ · |X |-
identity function”, defined in Definition 1 below.

Definition 1. A randomized function ϕ : X → X ∪ {⊥} is an ǫ-identity if for
every x we have that either ϕ(x) = x or ϕ(x) = ⊥ and P (ϕ(x) 6= ⊥) = ǫ.

This will allow us to reduce the “noisy attacks” to the “random probing attacks”,
where the adversary learns each wire (or a gate, see Section 5.5) of the circuit
with probability ǫ. Observe also, that thanks to the assumed independence of
noise, the events that the adversary learns each element are independent, which,
in turn, will allow us to use the Chernoff bound to prove that with a good
probability the number of wires that the adversary learns is small.

Lemma 2. Let Noise : X → Y be a δ-noisy function. Then there exist ǫ ≤ δ ·|X |
and a randomized function Noise ′ : X ∪ {⊥} → X such that for every x ∈ X we
have

Noise(x)
d
=Noise ′(ϕ(x)), (4)

where ϕ : X → X∪{⊥} is the ǫ-identity function. Moreover, if Noise is efficiently
decidable then Noise ′(ϕ(x)) is computable in time that is expected polynomial in
|X |.

The proof appears in the full version of the paper.

4 Leakage from vectors

In this section we describe the leakage models relevant to this paper. We start
with describing the models abstractly, by considering leakage from an arbitrary
sequence (x1, . . . , xℓ) ∈ X

ℓ, where X is some finite set and ℓ is a parameter. The
adversaryA will be able to obtain some partial information about (x1, . . . , xℓ) via
the games described below. Note that we do not specify the computational power
of A, as the definitions below make sense for both computationally-bounded or
infinitely powerful A.



Noisy model. For δ ≥ 0 a δ-noisy adversary on X ℓ is a machine A that plays
the following game against an oracle that knows (x1, . . . , xℓ) ∈ X

ℓ:

1. A specifies a sequence {Noisei : X → Y}ℓi=1 of noisy functions such that
every Noisei is δ

′
i-noisy, for some δ′i ≤ δ and mutually independent noises.

2. A receives Noise1(x1), . . . ,Noiseℓ(xℓ) and outputs some value outA(x1, . . . , xℓ).

If A works in polynomial time and the noise functions specified by A are effi-
ciently decidable then we say that A is poly-time-noisy.

Random probing model. For ǫ ≤ 0 a ǫ-random-probing adversary on X ℓ

is a machine A that plays the following game against an oracle that knows
(x1, . . . , xℓ) ∈ X

ℓ:

1. A specifies a sequence (ǫ1, . . . , ǫℓ) such that each ǫi ≤ ǫ.

2. A receives ϕ1(x1), . . . , ϕℓ(xℓ) and outputs some value outA(x1, . . . , xℓ), where
each ϕi is the ǫi-identity function with mutually independent randomness.

A similar model was introduced in the work of Ishai, Sahai and Wagner [14] to
obtain circuit compilers with linear blow-up in the size.

Threshold probing model. For t = 0, . . . , ℓ a t-treshold-probing adversary on
X ℓ is a machine A that plays the following game against an oracle that knows
(x1, . . . , xℓ) ∈ X

ℓ:

1. A specifies a set I = {i1, . . . , i|I|} ⊆ {1, . . . , ℓ} of cardinality at most t,

2. A receives (xi1 , . . . , xi|I|
) and outputs some value outA(x1, . . . , xℓ).

4.1 Simulating the noisy adversary by a random-probing adversary

The following lemma shows that every δ-noisy adversary can be simulated by a
δ · |X |-random probing adversary.

Lemma 3. Let A be a δ-noisy adversary on X ℓ. Then there exists a δ · |X |-
random-probing adversary S on X ℓ such that for every (x1, . . . , xℓ) we have

outA(x1, . . . , xℓ)
d
= outS(x1, . . . , xℓ). (5)

Moreover, if A is poly-time-noisy, then S works in time polynomial in |X |.

Intuitively, this lemma easily follows from Lemma 2 applied independently to
each element of (x1, . . . , xℓ). The formal proof appears in the full version.



4.2 Simulating the random-probing adversary

In this section we show how to simulate every δ-random probing adversary by
a threshold adversary. This simulation, unlike the one in Section 4 will not be
perfect in the sense that the distribution output by the simulator will be identical
to the distribution of the original adversary only when conditioned on some event
that happens with a large probability. We start with the following lemma, whose
proof, which is a straightforward application of the Chernoff bound, appears in
the full version.

Lemma 4. Let A be an ǫ-random-probing adversary on X ℓ. Then there exists
a (2ǫℓ− 1)-threshold-probing adversary S on X ℓ operating in time linear in the
working time of A such that for every (x1, . . . , xℓ) we have

∆(outA(x1, . . . , xℓ) ; outS(x1, . . . , xℓ) | outS(x1, . . . , xℓ) 6= ⊥) = 0, (6)

where

P (outS(x1, . . . , xℓ) = ⊥) ≤ exp

(

−
ǫℓ

3

)

. (7)

The following corollary, whose proof is given in the full version, combines Lemma
3 and 4 together, and will be useful in the sequel.

Corollary 1. Let d, ℓ ∈ N with ℓ > d and let A be a d/(4ℓ · |X |)-noisy adversary
on X ℓ. Then there exists an (d/2− 1)-threshold-probing adversary S such that

∆(outA(x1, . . . , xℓ) ; outS(x1, . . . , xℓ) | outS(x1, . . . , xℓ) 6= ⊥) = 0 (8)

and P (outS(x1, . . . , xℓ) = ⊥) ≤ exp(−d/12). Moreover, if A is poly-time-noisy
then S works in time polynomial ℓ · |X |.

5 Leakage from computation

In this section we address the main topic of this paper, which is the noise-
resilience of cryptographic computations. Our main model will be the model
of arithmetic circuits over a finite field. First, in Section 5.1 we present our
security definitions, and then, in Section 5.2 we describe a secure “compiler” that
transforms any cryptographic scheme secure in the “black-box” model into one
secure against the noisy leakage (it is essentially identical to the transformation
of [14] later extended in [27]). Finally, in the last section we present our security
results.

5.1 Definitions

A (stateful arithmetic) circuit Γ over a field F is a directed graph whose nodes
are called gates. Each gate γ can be of one of the following types: an input gate
γinp of fan-in zero, an output gate γout of fan-out zero, a random gate γrand of
fan-in zero, a multiplication gate γ× of fan-in 2, an addition gate γ+ of fan-in



2, a subtraction gate γ− of fan-in 2, a constant gate γconst , and a memory gate
γmem of fan-in 1. Following [14] we assume that the fan-out of every gate is at
most 3. The only cycles that are allowed in Γ must contain exactly 1 memory
gate. The size |Γ | of the circuit Γ is defined to be the total number of its gates.
The numbers of input gates, output gates and memory gates will be denoted
|Γ.inp| , |Γ.out |, and |Γ.mem|, respectively.

The computation of Γ is performed in several “rounds” numbered 1, 2, . . ..
In each of them the circuit will take some input, produce an output and update
the memory state. Initially, the memory gates of Γ are preloaded with some
initial “state” k0 ∈ F

|Γ.mem|. At the beginning of the ith round the input gates
are loaded with elements of some vector ai ∈ F

|Γ.inp| called the input for the ith
round. The computation of Γ in the ith round depends on ai and on the memory
state ki−1. It proceeds in a straightforward way: if all the input wires of a given
gate are known then the value on its output wire can be computed naturally: if γ
is a multiplication gate with input wires carrying values a and b, then its output
wire will carry the value a ·b (where “·” is the multiplication operation in F), and
the addition and the subtraction gates are handled analogously. We assume that
the random gates produce a fresh random field element in each round. The output
of the ith round is read-off from the output gates and denoted bi ∈ F

|Γ.out|. The
state after the ith round is contained in the memory gates and denoted ki. For
k ∈ F

|Γ.mem| and a sequence of inputs (a1, . . . , am) (where each ai ∈ F
|Γ.inp|) let

Γ (k, a1, . . . , am) denote the sequence (B1, . . . , Bm) where each Bi is the output
of Γ with k0 = k and inputs a1, . . . , am in rounds 1, 2, . . .. Observe that, since Γ
is randomized, hence Γ (k, a1, . . . , am) is a random variable.

A black-box circuit adversary A is a machine that adaptively interacts with

a circuit Γ via the input and output interface. Then out

(

A
bb

⇆Γ (k)

)

denotes

the output of A after interacting with Γ whose initial memory state is k0 = k.
A δ-noisy circuit adversary A is an adversary that has the following additional
ability: after each ith round A gets some partial information about the internal
state of the computation via the noisy leakage functions. More precisely: let
(X1, . . . , Xℓ) be the random variable denoting the values on the wires of Γ (k) in
the ith round. Then A plays the role of a δ-noisy adversary in a game against
(X1, . . . , Xℓ) (c.f. Section 4), namely: he choses a sequence {Noisei : F→ Y}

ℓ
i=1

of functions such that every Noisei is δi-noisy for some δi ≤ δ and he receives

Noise1(X1), . . . ,Noiseℓ(Xℓ). Let out

(

A
noisy

⇆ Γ (k)

)

denote the output of such

an A after interacting with Γ whose initial memory state is k0 = k.
We can also replace, in the above definition, the “δ-noisy adversary” with

the “ǫ-random probing adversary”. In this case, after each ith round A choses
a sequence (ǫ1, . . . , ǫℓ) such that each ǫi ≤ ǫ and he learns ϕ1(X1), . . . , ϕℓ(Xℓ),

where each ϕi is the ǫi-identity function. Let out

(

A
rnd

⇆ Γ (k)

)

denote the output

of such A after interacting with Γ whose initial memory state is k0 = k.
Analogously we can replace the “δ-noisy adversary” with the “t-threshold

probing adversary” obtaining an adversary that after each ith round A learns



t elements of (X1), . . . , ϕℓ(Xℓ). Let out

(

A
thr

⇆ Γ (k)

)

denote the output of such

A after interacting with Γ whose initial memory state is k0 = k.

Definition 2. Consider two stateful circuits Γ and Γ ′ (over some field F) and
a randomized encoding function Enc. We say that Γ ′ is a (δ, ξ)-noise resilient
implementation of a circuit Γ w.r.t. Enc if the following holds for every k ∈
F
|Γ.inp|:

1. the input-output behavior of Γ (k) and Γ ′(Enc(k)) is identical, i.e.: for every
sequence of inputs a1, . . . , am and outputs b1, . . . , bm we have

P (Γ (k, a1, . . . , am) = (b1, . . . , bm)) = P (Γ ′(Enc(k), a1, . . . , am) = (b1, . . . , bm))

and
2. for every δ-noisy circuit adversary A there exists a black-box circuit adver-

sary S such that

∆

(

out

(

S
bb

⇆Γ (k)

)

; out

(

A
noisy

⇆ Γ ′(Enc(k))

))

≤ ξ. (9)

The definition of Γ ′ being a (ǫ, ξ)-random-probing resilient implementation of a
circuit Γ is identical to the one above, except that Point 2 is replaced with:

2’. for every ǫ-random-probing circuit adversary A there exists a black-box cir-
cuit adversary S such that

∆

(

out

(

S
bb

⇆Γ (k)

)

; out

(

A
rnd

⇆ Γ ′(Enc(k))

))

≤ ξ.

The definition of Γ ′ being a (t, ξ)-threshold-probing resilient implementation of
a circuit Γ is identical to the one above, except that Point 2 is replaced with:

2”. for every t-threshold-probing circuit adversary A there exists a black-box cir-
cuit adversary S such that

∆

(

out

(

S
bb

⇆Γ (k)

)

; out

(

A
thr

⇆ Γ ′(Enc(k))

))

≤ ξ.

In all cases above we will say that Γ ′ is a an implementation Γ with efficient
simulation if the simulator S works in time polynomial in Γ ′ · |F| as long as A
is poly-time and the noise functions specified by A are efficiently decidable.

5.2 The implementation

In the full version of the paper, we describe in details the circuit compiler of [14]
which was generalized to larger fields in [27]. Due to space constraints, we just
recall it here in few sentences. The encoding function is defined as: Enc+(x) :=
(X1, . . . , Xd), where X1, . . . , Xd are uniform such that X1 + · · · + Xd = x. At



a high level, each wire w in the original circuit Γ is represented by a wire bun-
dle in Γ ′, consisting of d wires −→w = (w1, . . . , wd), that carry an encoding of w.
The gates in C are replaced gate-by-gate with so-called gadgets, computing on
encoded values. Addition and subtraction are performed wire-wise. For multipli-

cation, for input −→a and
−→
b , the circuit Γ ′ generates, for every 1 ≤ i < j ≤ d, a

random field element zi,j (this is done using the random gates in Γ ′). Then, for
every 1 ≤ j < i ≤ d it computes zi,j := aibj+ajbi−zj,i, and finally he computes
each output ci (for i = 1, . . . , d) as ci := aibi +

∑

i6=j zi,j .
This multiplication gadget turns out to a be useful as a building block for

“refreshing” of the encoding.

5.3 Security in the probing model [14]

In [14] it is shown that the compiler from the pervious section is secure against
probing attacks in which the adversary can probe at most ⌊(d − 1)/2⌋ wires
in each round.6 This parameter may be a bit disappointing as the number of
probes that the adversary needs to break the security does not grow with the
size of the circuit. This assumption may seem particularity unrealistic for large
circuits Γ . Fortunately, [14] also shows a small modification of the construction
from Section 5.2 that is resilient to a larger number of probes, provided that the
number of probes from each gadget is bounded. Before we present it let us argue
why the original construction is not secure against such attacks. To this end,
assume that our circuit Γ has a long sequence of wires a1, . . . , am, where each ai
(for i > 1) is the result of adding to ai−1 (using an addition gate) a 0 constant
(that was generated using a γconst

0 gate). It is easy to see that in the circuit Γ ′ all
the wire bundles −→a1, . . . ,

−→am (where each −→ai corresponds to ai) will be identical.
Hence, the adversary that probes even a single wire in each addition gadget in Γ ′

will learn the encoding of a1 completely as long as m ≥ d. Fortunately one can
deal with this problem by “refreshing” the encoding after each subtraction and
addition gate exactly in the same way as done before, i.e. by using the Refresh
sub-gadget.

Lemma 5 ([14]). Let Γ be an arbitrary stateful arithmetic circuit over some
field F.Let Γ ′ be the circuit that results from the procedure described above. Then
Γ ′ is a (⌊(d−1)/2⌋·|Γ | , 0)-threshold-probing resilient implementation of a circuit
Γ (with efficient simulation), provided that the adversary does not probe each
gadget more than ⌊(d− 1)/2⌋ times in each round.

We notice that [14] also contains a second transformation with blow-up Õ(d |Γ |).
It may be possible that this transformation can provide better noise parameters
as is achieved by Theorem 2. However, due to the hidden parameters in the Õ-
notation we do not get a straightforward improvement of our result. In particular,
using this transformation the size of the transformed circuit depends also on an

6 Strictly speaking the proof of [14] considers only the case when F = GF(2). It was
observed in [27] that it can be extended to any finite field, as the only properties of
GF(2) that are used in the proof are the field axioms.



additional statistical security parameter, which will affect the tolerated noise
level.

5.4 Resilience to noisy leakage from the wires

We now show that the construction from Section 5.3 is secure against the noisy
leakage. More precisely, we show the following.

Theorem 1. Let Γ be an arbitrary stateful arithmetic circuit over some field F.
Let Γ ′ be the circuit that results from the procedure described in Section 5.3. Then
Γ ′ is a (δ, |Γ | · exp(−d/12))-noise-resilient implementation of Γ (with efficient

simulation), where δ := ((28d+ 16) |F|)
−1

= O(1/(d · |F|)).

This lemma is proven by combining Corollary 1 that reduces the noisy adversary
to the probing adversary, with Lemma 5 that shows that the construction from
Section 5.3 is secure against probing. The full proof appears in the full version.

5.5 Resilience to noisy leakage from the gates

The model of Prouff and Rivain is actually slightly different than the one con-
sidered in the previous section. The difference is that they assume that the noise
is generated by the gates, not by the wires. This can be formalized by assuming
that each noise function Noise is applied to the “contents of a gate”. We do not
need to specify exactly what we mean by this. It is enough to observe that the
contents of each gate γ can be described by at most 2 field elements: obviously if
γ is a random gate, output gate, or memory gate then its entire state in a given
round can be described by one field element, and if γ is an operation gate then
it can be described by two field elements that correspond to γ’s input. Hence,
without loss of generality we can assume that the noise function is defined over
the domain F× F.

Formally, we define a δ-gate-noisy circuit adversary A as a machine that,
besides of having black box access to a circuit Γ (k), can, after each ith round,
get some partial information about the internal state of the computation via the
δ-noisy leakage functions applied to the gates (in a model described above). Let

out

(

A
g-noisy

⇆ Γ (k)

)

denote the output of such A after interacting with Γ whose

initial memory state is k0 = k.
We can accordingly modify the definition of noise-resilient circuit implemen-

tations (cf. Definition 2). We say that Γ ′ is a (δ, ξ)-input-gate-noise resilient
implementation of a circuit Γ w.r.t. Enc if for every k and every δ-noisy cir-
cuit adversary A described above there exists a black-box circuit adversary S
working in time polynomial in Γ ′ · |F| such that

∆

(

out

(

S
bb

⇆Γ (k)

)

; out

(

A
g-noisy

⇆ Γ ′(Enc(k))

))

≤ ξ. (10)



It turns out that the transformation from Section 5.3 also works in this model, al-
though with different parameters. More precisely we have the following theorem,
whose proof is given in the full version.7

Theorem 2. Let Γ be an arbitrary stateful arithmetic circuit over some field F.
Let Γ ′ be the circuit that results from the procedure described in Section 5.3. Then
Γ ′ is a (δ, |Γ | · exp(−d/24))-noise-resilient implementation of Γ (with efficient

simulation), where δ :=
(

(28d+ 16) · |F|
2
)−1

= O(1/(d · |F|
2
)).

In the full version of the paper, we compare our noise parameters with the
parameters of [24] and we show that they are roughly identical.
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