
Universally Composable Symbolic Analysis
for Two-Party Protocols based on Homomorphic

Encryption

Morten Dahl and Ivan Damg̊ard

Aarhus University, Denmark ?

Abstract. We consider a class of two-party function evaluation proto-
cols in which the parties are allowed to use ideal functionalities as well
as a set of powerful primitives, namely commitments, homomorphic en-
cryption, and certain zero-knowledge proofs. With these it is possible to
capture protocols for oblivious transfer, coin-flipping, and generation of
multiplication-triples.
We show how any protocol in our class can be compiled to a symbolic
representation expressed as a process in an abstract process calculus, and
prove a general computational soundness theorem implying that if the
protocol realises a given ideal functionality in the symbolic setting, then
the original version also realises the ideal functionality in the standard
computational UC setting. In other words, the theorem allows us to
transfer a proof in the abstract symbolic setting to a proof in the standard
UC model.
Finally, we have verified that the symbolic interpretation is simple enough
in a number of cases for the symbolic proof to be partly automated using
the ProVerif tool.

Key words: Cryptographic protocols, Security analysis, Symbolic anal-
ysis, Automated analysis, Computational soundness, Universal composi-
tion, Homomorphic encryption.

1 Introduction

Giving security proofs for cryptographic protocols is often a complicated and
error-prone task, and there is a large body of research targeted at this problem
using methods from formal analysis [AR02,BPW03,CH06,CC08,CKW11]. This
is interesting because the approach could potentially lead to automated or at
least computer-aided (formal) proofs of security.

It is well known that the main difficulty with formal analysis is that it is
only feasible when enough details about the cryptographic primitives have been

? The authors acknowledge support from the Danish National Research Foundation
and The National Science Foundation of China (under the grant 61061130540) for
the Sino-Danish Center for the Theory of Interactive Computation, and also from
the CFEM research centre (supported by the Danish Strategic Research Council)
within which part of this work was performed.

abstracted away, while on the other hand this abstraction may make us “forget”
about issues that make an attack possible. One solution is to show once and for
all that a given abstraction is computational sound, which loosely speaking means
that for any protocol, if we know there are no attacks on its abstract symbolic
version then this (and some appropriate complexity assumption) implies there
are no attacks on the original computational version. Such soundness theorems
are known in some cases (see related work), in particular for primitives such as
public-key encryption, symmetric encryption, signatures, and hash functions.

Another issue with formal analysis is how security properties should be spec-
ified. Traditionally this has been done either through trace properties or “strong
secrecy” where two instances of the protocol running on different values are com-
pared to each other1. This approach can be used to specify security properties
such as authenticity and key secrecy. However, it is much less clear how it can
capture security of protocols such as oblivious transfer where players take input
from the environment. In the cryptographic community it is standard to give
simulations-based definitions of security for such protocols, yet this approach
have so far only received little attention in formal analysis.

Finally, making protocol (and in particular system) analysis feasible in gen-
eral requires some way of breaking the task into smaller components which may
be analysed independently. While also this has been standard in the crypto-
graphic community for a while (in the form of, e.g., the UC framework [Can01])
it has not yet received much attention in the symbolic community (but see [CH06]
for an exception).

1.1 Our Results

In this paper we make progress on expanding the class of protocols for which a
formal analysis can be used to show security in the computational setting. We
are particularly interested in two-party function evaluation protocols and the
primitives used by many of these, namely homomorphic public-key encryption,
commitments, and certain zero-knowledge proofs. We aim for proofs of UC secu-
rity against an active adversary where one party may be (statically) corrupted.

Protocol model. Besides the above primitives protocols are also allowed to use
ideal functionalities and communicate over authenticated channels. We put some
restrictions on how the primitives may be used. First, whenever a player sends
a ciphertext he actually sends a package which also contains a zero-knowledge
proof that the sender knows how the ciphertext was constructed: if the cipher-
text was made from scratch then he knows the plaintext and randomness used,
and if he constructed it from other ciphertexts using the homomorphic prop-
erty then he knows randomness that “explains” the ciphertext as a function of

1 For strong secrecy one runs the same protocol on two fixed but different inputs
(or with one instance patched to give an independent output) and then ask if it
is possible to tell the difference between the two executions. This can for instance
be used to argue that a key-exchange protocol is independent of the exchanged key
given only the transmitted messages.

that randomness and ciphertexts that were already known. We make a similar
assumption on commitments and allow also zero-knowledge proofs that commit-
ted values relate to encrypted values in a given way. Second, we assume that
honest players use the primitives in a black-box fashion, i.e. an honest player
can run the protocol using a (private) “crypto module” that holds all his keys
and handles encryption, decryption, commitment etc. This means that all ac-
tions taken by an honest player in the protocol may depend on plaintext sent or
received but not, for instance, on the binary representation of ciphertexts. We
emphasise that we make no such restriction on the adversary.

We believe that the assumptions we make are quite natural: it is well known
that if a player provides input to a protocol by committing to it or sending an
encryption then we cannot prove UC security of the protocol unless the player
proves that he knows the input he provides. Furthermore, active security usually
requires players to communicate over authenticated channels and prove that the
messages they send are well-formed. We stress, however, that our assumptions do
not imply that an adversary must be semi-honest; for instance, our model does
not make any assumptions on what type and relationship checks the protocol
must perform, nor on the randomness distributions used by a corrupted player.

Security properties. We use ideal functionalities and simulators to specify and
prove security properties. More concretely, we say that a protocol φ is secure
(with respect to the ideal functionality F) if no adversary can tell the difference
between interacting with φ and interacting with F and simulator Sim, later
written φ ∼ F � Sim for concrete notions of indistinguishability. When this
equivalence is satisfied we also say that the protocol (UC) realises the ideal
functionality. We require that ideal functionalities only operate on plain values
and do not use cryptography. Like honest players in protocols, our simulators
will only use the primitives and their trapdoors in a black-box fashion which
allows us to specify them on an abstract level.

Proof technique. Our main result is quite simple to state on a high level: given a
protocol φ, ideal functionality F , and simulator Sim, we show how these may be
compiled to symbolic versions such that if we are given a proof in the symbolic
world that φ realises F then it follows that φ realises F in the usual compu-
tational world as well (assuming the crypto-system, commitment scheme and
zero-knowledge proofs used are secure). As usual for UC security, we need to
make a set-up assumption which in our case amounts to assuming a function-
ality that initially produces reference strings for the zero-knowledge proofs and
keys for the crypto-system.

We arrive at our result as follows. First we define a simple programming
language for specifying, on a rather high and abstract level, the programmes for
honest players, ideal functionalities, and simulators that participate in a session
of both the real protocol containing φ and the ideal protocol containing F and
the simulator. The language is parameterised by the three corruption scenarios,
indicated by which players are honestH ∈ {AB ,A,B}, and the class of protocols
and properties we consider is implicitly defined as whatever can be described in

it. We call such a set of programmes a system and may hence fully describe real
and ideal protocols by system triples (SysAB ,SysA,SysB).

We then define three different ways of interpreting such systems:

– Real-world interpretation RW(Sys): Assuming concrete instantiations of the
cryptographic primitives this interpretation produces from system Sys a set
of interactive Turing machines that fits in the usual UC model. For instance,
if SysAB

real is the system for a real protocol in the scenario where both players
are honest then RW(SysAB

real) contains two ITMs MA,MB executing the
player programmes.

– Intermediate interpretation I(Sys): This interpretation also produces a set
of ITMs fitting into the UC model, but does not use concrete cryptographic
primitives. Instead we postulate an ideal functionality Faux that receives
all calls from all parties to cryptographic functions and returns handles to
objects such as encrypted plaintexts while storing these plaintexts in its
memory. Players then send such handles instead of actual ciphertexts and
commitments. In this interpretation, the adversary is limited to a certain
benign cryptographic behaviour as he too can only access cryptographic
objects through Faux.

– Symbolic interpretation S(Sys): This interpretation closely mirrors the in-
termediate interpretation but instead produces a set of processes described
in a well-known process calculus.

Having defined these interpretations we define notions of equivalence of sys-
tems in each representation: RW(Sys1)

c∼ RW(Sys2) means that no polynomial
time environment can distinguish the two cases given only the public and cor-
rupted keys, and may for instance be used to capture that a protocol UC-securely
realises F in the standard sense; for the intermediate world I(Sys1)

c∼ I(Sys2)

means the same but in the Faux-hybrid model; finally, S(Sys1)
s∼ S(Sys2) means

the two processes are observationally equivalent in the standard symbolic sense.
We then prove two soundness theorems stating first, that I(Sys1)

c∼ I(Sys2)

implies RW(Sys1)
c∼ RW(Sys2) and second, that S(Sys1)

s∼ S(Sys2) implies

I(Sys1)
c∼ I(Sys2), so that in order to prove UC security of a protocol it is now

sufficient to show equivalence in the symbolic model and this is the part we may
automate using e.g. ProVerif [BAF05].

Finally, we note that in some cases (in particular when both players are
honest) it is possible to use a standard simulator construction and instead check
a different symbolic criteria along the lines of previous work [CH06]. This removes
the manual effort required in constructing simulators.

Analysis approach. Given the above, a protocol φ may be analysed as follows:

1. formulate in our model protocol φ and the ideal functionalities F1, . . . ,Fn
it uses as a triple (SysAB

real ,Sys
A
real ,Sys

B
real)

2. likewise formulate the target ideal functionality G and suitable simulators as
a triple (SysAB

ideal ,Sys
A
ideal ,Sys

B
ideal)

3. show in the symbolic model that S(SysHreal)
s∼ S(SysHideal) for all three H

4. the soundness theorem then gives RW(SysHreal)
c∼ RW(SysHideal), and in turn

that φ realises G under static corruption

Note that as usual in the UC framework we only need to consider one session
of the protocol since the compositional theorem guarantees that it remains se-
cure even when composed with itself a polynomial number of times. Note also
that we may apply our result to a broader class of protocols through a hybrid-
symbolic approach where the protocol in question is broken down into several
sub-protocols and ideal functionalities analysed independently either within our
framework or outside in an ad-hoc setting (possibly using other primitives).

We have tried to make the symbolic model suitable for automated analysis
using current tools such as ProVerif, and although our approach requires the
manual construction of a simulator for the symbolic version of the protocol, this
is usually a very simple task. As a case study we have carried out a full analysis
of the OT protocol from [DNO08] in the full version of this paper2, where we
also illustrate compositional analyses through a coin-flipping protocol, and that
the model may express the preprocessing phase of the multi-party computation
protocol in [BDOZ11]3.

1.2 Related Work

The main area of related work is computational soundness as discussed below
(see also [CKW11] for an in-depth survey of this area), but there is also a large
body of work on symbolic modelling of security properties which at this point has
not given much attention to the simulation-based paradigm (see [DKP09,BU13]
for two examples without computational soundness), as well as a substantial
amount of work on the direct approach where the symbolic model is altogether
avoided but instead used as inspiration for creating a computational model easier
to analyse; this latter line of work includes [Bla08,BGHB11,MRST06,DDMR07]
and while it is more expressive than the symbolic approach we have taken here,
our focus has been on abstracting and automating as much as possible.

Computational soundness. The line of work started by Backes et al. in [BPW03]
and known as “the BPW approach” gives an ideal cryptographic library based
on the ideas behind abstract Dolev-Yao models. The library is responsible for all
operations that players and the adversary want to perform (such as encryption,
decryption, and message sending) with every message being kept in a database by
the library and accessed only through handles. Using the framework for reactive
simulatability [PW01] (similar to the UC framework) the ideal library is realised
using cryptographic primitives. This means that a protocol may be analysed rel-
ative to the ideal library yet exhibit the same properties when using the realisa-
tion instead. The original model supporting nested nonce generation, public-key

2 Available at http://eprint.iacr.org/2013/296.
3 Due to limitations on expressibility of probabilistic choice in our model we analyse a

slight variant of the protocol where the verification of the generated triples is pushed
into the online phase.

encryption, and MACs has later been extended to support symmetric encryp-
tion [BP04] and a simple form of homomorphic threshold-encryption [LN08]
allowing a single homomorphic evaluation. The approach has been used to anal-
yse protocols for trace-based security properties such as authentication and key
secrecy [BP03,BP06].

Comparing our work to the BPW approach we see that the functionality
Faux in our intermediate model corresponds to the ideal cryptographic library,
and the real-world operation modules to the realisation. The difference lies in the
supported operations, namely our more powerful homomorphic encryption and
simulation operations – the former allows us to implement several two-party func-
tionalities while the latter allows us to express simulators for ideal functionalities
within the model. This not only allows us to capture an entirely different class
of indistinguishability-based security properties4 (such as the standard assump-
tions on OT with static corruption) but also to do modular and hybrid-symbolic
analysis. The importance of this was elaborated on in [Can08].

The next line of closely related work is that started by Canetti et al. in
[CH06] and building on [MW04,BPW03] but adding support for modular analy-
sis. They first formulate a programming language for protocols using public-key
encryption and give both a computational and symbolic interpretation. They
then give a mapping lemma showing that the traces of the two interpretations
coincide, i.e. the computational adversary can do nothing that the symbolic ad-
versary cannot also do (except with negligible probability). This is used to give
symbolic criteria for realising authentication and key-exchange functionalities,
and show that ProVerif may be used to automate the analysis of the original
Needham-Schroeder-Lowe protocol (relative to authenticity) and two of its vari-
ants (relative to key-exchange). Later work [CG10] again targets key-exchange
protocols but adds support for digital signatures, Diffie-Hellman key-exchanges,
and forward security under adaptive corruption.

Most importantly, our approach has been that of not fixing the target ideal
functionalities but instead letting it be expressible in the model (along with
the realising protocol and simulator). Hence it is relatively straight-forward to
analyse protocols implementing other functionalities than what we have done
here, whereas adapting [CH06] to other classes of protocols requires manually
finding and showing soundness of a symbolic criteria. It is furthermore not clear
which functionalities may be captured by symbolic criteria expressed as trace
properties and strong secrecy. In particular, the target functionalities of [CH06]
and [CG10] do not take any input from the players nor provide any security
guarantees when a player is corrupt, and hence the criteria do not need to account
for these case. Again we also show soundness for a different set of primitives.

4 In principle the BPW model could be used as a stepping-stone to analyse cases where
the simulator may simply run the protocol on constants. However, the simulator
is sometimes required to use trapdoors in order to extract information needed to
simulate an ideal functionality in the simulation-based paradigm. These cases cannot
be analysed with the operations of the BPW model.

The final line of related work is showing soundness of indistinguishability-
based (instead of trace-based) properties. This was started by Comon-Lundh
et al. in [CC08] and, unlike the two previous lines of work, aims at showing
that if the symbolic adversary cannot distinguish between two systems in the
symbolic interpretation then the computational adversary cannot do so either for
the computational interpretation. [CC08] showed this for symmetric encryption
and was continued in [CHKS12] for public-key encryption and hash functions.

Our work obviously relates in that we are also concerned about soundness
of indistinguishability. Again the biggest difference is the choice of primitives,
but also that our framework seems more suitable for expressing ideal function-
alities and simulators: although mentioned as an application, their model does
not appear to be easily adapted to capturing the typical structure of a compos-
able analysis framework such as the UC framework (private channels are not
allowed for instance). To this end the result is closer to what might be achieved
through the BPW approach. Note that the work in [CHKS12] does not require
computable parsing (as we do through the NIZK proofs). However, for secure
function evaluation in the simulation-based paradigm some form of computa-
tional extraction is typically required in general.

The work in [BMM10] is also somewhat related in that they also aim at
analysing secure function evaluation, namely secure multi-party computations
(MPC). However, they instead analyse protocols using MPC as a primitive
whereas we are interested in analysing the (lower-level) protocols realising MPC.
Moreover, they are again limited to trace properties.

Organisation. The rest of the paper is organised in a “top-down” approach
of progressively removing cryptography and bitstrings, and ending up with an
highly idealised model. Section 2 specifies our protocol class including the inter-
face of the operation modules. Section 3 gives the preliminaries for the real-world
interpretation in Section 4. The intermediate and symbolic worlds are given in
Section 5 and 6 respectively together with their soundness statements. Further
details including definitions and proofs are given in the full version of this paper.

2 Protocol Model

The specific form of protocols introduced here is an essential part of our sound-
ness result in that it characterises the class of protocols for which the result
holds. The model is parameterised by a finite domain of values {Vn}, two finite
sets of types {Ti}, {Uj}, and two finite sets of arithmetic expressions {ek} ⊆ {f`}
which for simplicity we often assume to be over four variables.

Programmes are given in a simple programming language allowing input,
output, conditionals, and invocation of operations. We consider three kinds of
programmes, plain, player, and simulator, differing in what operations they may
use and whether or not they accept cryptographic packages.

Plain programmes, such as ideal functionalities, may only use operations

isValue(x)→ b, eqValue(v, w)→ b, inTypeU (v)→ b, inTypeT (v)→ b,

pevalf (v1, v2, w1, w2)→ v, isConst(x)→ b, eqConstc(x)→ b,

isPair(x)→ b, pair(x1, x2)→ x, first(x)→ x1, second(x)→ x2

where for instance isValue determines if a message is a value, inTypeU if a value
belongs to type U , pevalf evaluates expression f on the four values, pair forms a
pairing, and first projects the first component of a pairing. Their input command
aborts if any cryptographic package is received.

Player programmes, in addition to those of plain programmes, may also use
operations

isComPack(x)→ b, isEncPack(x)→ b, isEvalPack(x)→ b,

commitU,ck,crs(v, r)→ d, encryptT,ek,crs(v, r)→ c,

evale,ek,ck,crs(c1, c2, v1, r1, v2, r2)→ c, decryptdk(c)→ v,

verComPackU,ck,crs(d)→ b, verEncPackT,ek,crs(c)→ b,

verEvalPacke,ek,ck,crs(c, c1, c2, [d1, d2])→ b

to respectively determine: whether a message is a cryptographic package and its
kind; form a new commitment package under their own commitment key and
CRS using the value and randomness supplied, and with a proof of plaintext
membership in type U5; form a new encryption package under either encryption
key and their own CRS using the value and randomness supplied, and with a
proof of plaintext membership in type T ; form a new evaluation package under
the encryption key of the inputs and their own commitment key and CRS, with
a fresh ciphertext, a proof that it was created through homomorphic evaluation
of expression e on inputs c1, c2, v1, v2, and commitments to v1, v2 under the
randomness supplied6; decrypt a ciphertext under their own encryption key;
and finally verify cryptographic packages under the specified keys and, in case
of evaluation packages, that the correct ciphertexts and (optional) commitments
were used. Their input command aborts on cryptographic packages not created
under the commitment key and CRS of the other player.

Finally, simulator programmes instead use simulation versions of the player
operations

simcommitU,ck,simtd(v, r)→ d, simencryptT,ek,simtd(v, r)→ c,

simevale,ek,ck,simtd(c1, c2, v1, r1, v2, r2)→ c,

simevale,ek,ck,simtd(v, c1, c2, d1, d2)→ c

5 Note that the NIZK proofs allow us to realise an ideal commitment functionality
with opening despite no explicit opening operation for commitments.

6 Note that as an artefact from wanting a symbolic model easier to analysis with
available tools, operation evale (unlike commitU and encryptT) only takes r1, r2 for
commitments d1, d2 as input, and not an r for re-randomisation of the resulting
ciphertext; instead, the implementations will choose fresh randomness internally.

for an honest player (and no decryption operation), and operations

extractComextd(d)→ v, extractEncextd(c)→ v,

extractEval1,extd(c)→ v, extractEval2,extd(c)→ v

for a corrupt player. The operations for an honest player are similar to those of
a player programme except that less checks are performed and proofs are simu-
lated. The operations for a corrupt player allows the programme to extract the
plaintext value of commitment and encryption packages, and the two plaintext
values of commitments in evaluation packages, as long as they were created un-
der the CRS of the corrupt player. Their input command behaves as for player
programmes.

As an example, consider the OT protocol from [DNO08]. Intuitively, the
receiver gets a bit b from the environment, encrypts it as cb under his own en-
cryption key, and sends cb to the sender along with a proof that it really contains
either 0 or 1. After checking the proof, the sender uses the homomorphic prop-
erty to evaluate expression sel(b, v0, v1) = (1 − b) · v0 + b · v1 on the received
ciphertext and the values v0, v1 given by the environment. He then sends the
resulting ciphertext cv back to the receiver along with a proof that it was con-
structed correctly. Finally, the receiver checks the proof to ensure that cv was
created using cb, and outputs the decrypted value.

In our protocol model we may express the two players as the programmes in
Figure 1 with sender PS

OT on the left and receiver PR
OT on the right. Under the

three scenarios of static corruption the real protocol may then be described by
system triple(

PS
OT �AuthRS �AuthSR � PR

OT , PS
OT , PR

OT

)
where the first system for when both players are honest also have one authen-
ticated channel in each direction (and no ideal functionalities), and the next
two systems for when one player is corrupted contain just the honest player
programme. Likewise we may describe the ideal protocol with an ideal OT func-
tionality and simulators in the protocol model, obtaining system triple(

FSR
OT � Sim

SR,R
OT �AuthRS �AuthSR � SimSR,S

OT ,

FS
OT � Sim

S
OT , FR

OT � Sim
R
OT

)
with simulators that respectively run the protocol on dummy values, use ex-
traction to obtain b, and use extraction to obtain v0, v1. In our case analysis we
use ProVerif to conclude for each of the three cases that the two corresponding
systems are indistinguishable.

Note that the input command inputP [p : x] is specified with a set of ports P
on which the programme is also listening but which will result in the programme
aborting. The motivation for having these is that the symbolic soundness result
requires that systems are non-losing, in the sense that whenever a programme

input∅[receiveRS : cb];

if verEncPackbit,ekR,crsR(cb) then

output[outSOT : getInput];

input∅[inS
OT : (v0, v1)];

if isValue(v0) and isValue(v1) then

let cv ← evalsel,R,S,S(cv, v0, r0, v1, r1);

output[sendSR : cv];

stop

input∅[inR
OT : b];

if inTypebit(b) then

let cb ← encryptbit,ekR,crsR
(b, r);

output[sendRS : cb];

input∅[receiveSR : cv];

if verEvalPacksel,R,S,S(cv, cb) then

let vb ← decryptdkR
(cv);

output[outROT : vb];

stop

where evalsel,R,S,S(. . .) = evalsel,ekR,ckS ,crsS (. . .)

and verEvalPacksel,R,S,S(. . .) = verEvalPacksel,ekR,ckS ,crsS (. . .)

Fig. 1. Player programmes for OT sender (left) and receiver (right)

sends a message on a closed port p the receiving programme must also be lis-
tening on p. This also accounts for the atypical specification of the sender pro-
gramme above; making it explicit ask the environment for its input by sending
getInput means we may use P = ∅ for all input commands, thereby simplifying
the symbolic analysis.

3 Computational Model and Cryptographic Primitives

Our computational model is that of the UC framework as described in [Can01].
In this model ITMs in a network communicate by writing to each others tapes,
thereby passing on the right to execute. In other words, the scheduling is token-
based so that any ITM may only execute when it is holding the token. Initially
the special environment ITM Z holds the token. When it writes on a tape of an
ITM M in the network it passes on the token and M is now allowed to execute.
If the token ever gets stuck it goes back to the environment.

For environment Z, adversary A, and network N , we write ExecZ,A,N (κ, z)
for the random variable denoting the output bit (guess) of Z after interacting
withA andN , and denote ensemble {ExecZ,A,N (κ, z)}κ∈N,z∈{0,1}? by ExecZ,A,N .
We may then compare networks as follows:

Definition 1 (Computational Indistinguishability). Two networks of ITMs
N1 and N2 are computational indistinguishability when no polynomial time ad-
versary A may allow a polynomial time environment Z to distinguish between
them with more than negligible probability, i.e. for all PPT Z and A we have

ExecZ,A,N1

c
≈ ExecZ,A,N2

which we write N1
c∼ N2.

By allowing different adversaries in the two networks we also obtain a notion
of one network realising another, namely network N1 realises network N2 when,

for any PPT A, there exists a PPT simulator Sim such that for all PPT Z we
have N1

c∼ N2.

We require the following primitives and security properties:

Commitment scheme. We assume two PPT algorithms ComKeyGen(1κ)→ ck
and Comck(V,R)→ D for key-generation and commitment, respectively. We re-
quire that the scheme is well-spread, computationally binding and computation-
ally hiding. Intuitively, well-spread means that it is hard to predict the outcome
of honestly generating a commitment.

Homomorphic encryption scheme. An encryption scheme is given by three PPT
algorithms EncKeyGen(1κ) → (ek, dk), Encek(V,R) → C, and Decdk(C) →
V . A homomorphic encryption scheme furthermore contains a PPT algorithm
Evale,ek(C1, C2, V1, V2, R) → C for arithmetic expression e(x1, x2, y1, y2) and
randomness R for re-randomisation. We require that the scheme is well-spread,
correct, history hiding (or formula private), and IND-CPA secure for the entire
domain. Here, correct means that decryption almost always succeeds for well-
formed ciphertexts, and history hiding that a ciphertext produced using Evale,ek
is distributed as Encek on the same inputs.

Non-Interactive Zero-Knowledge Proof-of-Knowledge scheme. For binary rela-
tion R we assume PPT algorithms CrsGenR(1κ)→ crs, SimCrsGenR(1κ)→
(crs, simtd), and ExCrsGenR(1κ)→ (crs, extd) for CRS generation, PPT algo-
rithms ProveR,crs(x,w)→ π, SimProveR,simtd(x)→ π, and VerR,crs(x, π)→
{0, 1} for respectively generating, simulating, and verifying proofs π, and finally
deterministic polynomial time algorithm ExtractR,extd(x, π) → w for extract-
ing witnesses. We require that such schemes are complete, computational zero-
knowledge, and extractable, and assume instantiations for:

– RU =
{

(x,w)
∣∣D = Comck(V,R) ∧ V ∈ U

}
with x = (D, ck), w = (V,R)

– RT =
{

(x,w)
∣∣C = Encek(V,R) ∧ V ∈ T

}
with x = (C, ek), w = (V,R)

– Re =
{

(x,w)
∣∣C = Evale,ek(C1, C2, V1, V2, R) ∧Di = Comck(Vi, Ri)

}
with x = (C,C1, C2, ek,D1, D2, ck) and w = (V1, R1, V2, R2, R).

4 Real-world Interpretation

In the real-world model all messages sent between entities are annotated bit-
strings BS of the following kinds: 〈value : V 〉 and 〈const : Cn〉 for values
and constants, 〈pair : BS1, BS2〉 for pairings, and [comPack : D, ck, πU , crs],
[encPack : C, ek, πT , crs], [evalPack : C,C1, C2, ek,D1, D2, ck, πe, crs] for com-
mitment, encryption, and evaluation packages. In interpretation RW(Sys) of
a system Sys each programme P is executed by ITM MP with access to its
own operation module OP enforcing sanity checks on received messages and
implementing the operations available to P as described in Section 2. These
implementations follow straight-forwardly from the primitives.

The interpretation also contains a setup functionality Fsetup connected to
the operation modules of the cryptographic programmes. It is set to support
either a real or an ideal protocol, is assumed to know the corruption scenario,
and is responsible for generating and distributing the cryptographic keys and
trapdoors, including leaking the public and corrupted keys to the adversary.

When a message is received by an MP it is immediately passed to OP which
checks that every cryptographic package in it comes with a correct proof gen-
erated under the other player’s CRS. The operation module also keeps a list
σ of the ciphertexts received and generated by the player, so that it may en-
force a policy of only accepting an evaluation package if it has first seen the
ciphertexts it is supposedly constructed from, and rejecting certain ciphertexts
that an honest player would never have produced and which cannot occur in the
intermediate interpretation7.

If the message was accepted by the operation module the machine gets back a
reference through which it may access the message in the future. It then executes
the operations as dictated by the programme and finally either halts or sends a
message to another machine.

5 Intermediate Interpretation

The intermediate interpretation uses the same machines MP for executing pro-
grammes as the real-world interpretation, however all operation modules and
the setup functionality are now replaced with a single functionality Faux of-
fering operation implementations to the honest entities as well as a certain set
of methods to the adversary. In effect, the cryptographic primitives and setup
functionality has been replaced by a global memory with logical restrictions on
how the adversary is allowed to access it.

All cryptographic messages passed around among the entities are uniformly
random handles H of length κ associated to data objects in the global mem-
ory: commitment objects take form (com : V,R, ck), encryption objects (enc :
V,R, ek), and proof objects8 (proofU : HD, ck, crs), (proofT : HC , ek, crs), and
(proofe : HC , HC1 , HC2 , ek,HD1 , HD2 , ck, crs). Note that the ck, ek, crs here are
simply constants chosen by Faux and indicating the creator and owner of the
objects. For packages we have objects (comPack : HD, ck,Hπ, crs), (encPack :
HC , ek,Hπ, crs), and (evalPack : HC , HC1

, HC2
, ek,HD1

, HD2
, ck,Hπ, crs).

The intermediate implementation of operations for honest entities follows
the real-world implementation closely, yet of course using data objects instead
of cryptographic bitstrings. One difference is that some guarantees are now pro-
vided by the model itself as a consequence of the adversary being limited in

7 One example is if it receives two evaluation packages with the same C but with,
say, different D1; an honest player would have re-randomised the result thereby
with overwhelming probability not produce the same C twice. As mentioned earlier,
rejecting certain ciphertexts gives an easier-to-analyse symbolic interpretation.

8 Note that proof objects do not have a randomness (or counter) component; we have
gone with this option to simplify the symbolic model but it may easily be removed.

what he may do; for instance, it is not possible for him to construct packages
with an invalid proof, and even adversarily evaluated ciphertexts are correctly
re-randomised. This means that less checks are enforced through the σ list.

The methods offered to the adversary by Faux essentially allows him to in-
spect and construct cryptographic packages, including decrypting ciphertexts for
corrupted players, and compare arbitrary handles through a method eq(H,H ′)→
{0, 1}. These methods are determined by what is needed by translator9 T? in
the soundness proof (see below and full paper).

5.1 Soundness of Intermediate Interpretation

Through a series of hybrid interpretations T [I(Sys)], where leakage and influence
ports of the authenticated channels are rewired to run through translator T ,
we show that a real-world adversary cannot distinguish between RW(Sys) and
I(Sys) for a well-formed system Sys.

Theorem 1 (Soundness of Intermediate Model). Let Sys1 and Sys2 be

two well-formed systems. If I(Sys1)
c∼ I(Sys2) then RW(Sys1)

c∼ RW(Sys2).

Proof (overview). By a series of hybrid interpretations we first use the properties
of the primitives to show that for any well-formed real or ideal protocol Sys we
haveRW(Sys)

c∼ T?
[
I(Sys)

]
for a constructed PPT translator T? using only the

methods offered to the adversary by Faux. An important property here is that
the identity of commitments and ciphertexts are preserved by the translation
performed by each (hybrid-)translator. Next, by assumption no polynomially
bounded ITM Z ′ can tell the difference between I(Sys1) and I(Sys2) using
only the adversarial methods, and hence no Z ′ = Z � T? for a polynomially
bounded ITM Z can tell the difference either. The result then follows.

Corollary 1. Let (SysHreal)H specify a real protocol for φ and let (SysHideal)H
specify an ideal protocol with target functionality F . If I(SysHreal)

c∼ I(SysHideal)
for all three corruption cases H then φ is a realisation of MF (with inlined
operation module) under static corruption.

9 In UC-terms the translator is simply a simulator for Faux used to show that the real-
world interpretation is a realisation of the intermediate interpretation. However, we
use this wording to avoid too much overload.

6 Symbolic Model and Interpretation

The symbolic model and interpretation is tailored to be a conservative ap-
proximation of the intermediate model and is based on the well-known dialect
in [BAF05] of the applied-pi calculus [AF01], for which automated verification
tools exist in the form of ProVerif.

We assume a modelling of the values v in the domain and a modelling of all
constants plus true, false,garbage. Let names N be a countable set of atomic
symbols used to model randomness r, secret key material dk, extd, and ports p.
A term t is then build from names, a countable set of variables x, y, z, . . . , and
constructor symbols

pair, ek, crs, com, enc, proofU , proofT , proofe,

comPack, encPack, evalPack

where the three proof (·) constructors are unavailable to the adversary. The
destructor symbols are

isValue, eqValue, inTypeU , inTypeT , isConst, eqConstc, equals,

isPair, first, second, isComPack, isEncPack, isEvalPack,

verComPackU , verEncPackT , verEvalPacke, evale, pevalf ,

dec, extractCom, extractEnc, extractEval1, extractEval2,

ckOf , ekOf , crsOf , comOf , encOf , encOf1, encOf2, comOf1, comOf2

where only evale is unavailable to the adversary. The reason for this is that in
order to keep the symbolic model suitable for automated analysis, we do not wish
to symbolically model the composition of randomness from encryptions when
performing homomorphic evaluations; instead the private evale destructor takes
a name r as input and we give the adversary access to it only via an honest
process that accepts inputs c1, c2, v1, r1, v2, r2, picks a fresh name for r, and
applies the destructor before sending back the result. We also use t to range
over terms with destructors.

Processes Q are built from grammar

nil

new n; Q

in[p, x]; Q

out[p, t]; Q

let x = t in Q else Q′

if t = t′ then Q else Q′
Q || Q′

!Q

where n is a name, p is a port, and x a variable. The nil process does nothing
and represents a halted state. The new n;Q process is used for name and port
restriction. Intuitively, the let x = t in Q else Q′ process tries to evaluate t to
t′ by reducing it using our rewrite rules and (trivial) equational theory; if it is
successful it binds it to x in Q and proceeds as this process, and if it fails then
it proceeds as Q′ instead. The if t = t′ then Q else Q′ process is just syntactic
sugar but intuitively proceeds as Q if t and t′ can be rewritten to equivalent
terms, and as Q′ if not. Finally, Q || Q′ denotes parallel composition, and !Q
unbounded replication.

An evaluation context E is essentially a process with a hole, built from [],
E || Q, and new n; E . We obtain process E [Q] as the result of filling the hole in
E with Q. The formal semantics of a process can then be given by a reduction
relation −→ defined as the smallest relation closed under application of evaluation
contexts and rules:

out[p, t];Q1 || in[p, x];Q2 −→ Q1 || Q2{t/x}

let x = t in Q else Q′ −→

{
Q{t′/x} when t ⇓ t′

Q′ otherwise

where t ⇓ t′ indicates that t may be rewritten to some t′ containing no destruc-
tors. We write −→∗ for the reflexive and transitive closure of reduction.

Our equivalence notion for formalising symbolic indistinguishability is obser-
vational equivalence [AF01]. Here we write Q↓p when Q can send an observable
message on port p; that is, when Q −→∗ E [out[p, t];Q′] for some term t, process Q′,
and evaluation context E that does not bind p.

Definition 2 (Symbolic indistinguishability). Symbolic indistinguishabil-

ity, denoted
s∼, is the largest symmetric relation R on closed processes Q1 and

Q2 such that Q1 R Q2 implies:

1. if Q1↓p then Q2↓p
2. if Q1 → Q′1 then there exists Q′2 such that Q2 →∗ Q′2 and Q′1 R Q′2
3. E [Q1] R E [Q2] for all evaluation contexts E

Intuitively, a context may represent an attacker, and two processes are symbolic
indistinguishable if they cannot be distinguished by any attacker at any step:
every output step in an execution of process Q1 must have an indistinguishable
equivalent output step in the execution of process Q2, and vice versa; if not then
there exists an evaluation context that “breaks” the equivalence. Note that the
definition uses an existential quantification: if Q1

s∼ Q2 then we only know that
a reduction of Q1 can be matched by some reduction of Q2.

6.1 Symbolic Interpretation

Using the model from above it is somewhat straight-forward to give a symbolic
interpretation of a system S(Sys) by giving an interpretation of a programme
P in the form of a process QP , as well as a symbolic implementation of its
operation module. Doing this we obtain a process Qh for the honest entities,
and for the adversary’s operations we get a process Qadv, both of which depend
on the corruption scenario H. The symbolic interpretation of a protocol is hence
given by the three processes

EABsetup

[
QABh || QABadv

]
EAsetup

[
QAh || QAadv

]
EBsetup

[
QBh || QBadv

]
where QHh and QHadv are put together inside an evaluation context responsible
for generating keys.

6.2 Soundness of Symbolic Interpretation

Since the symbolic model already matches the intermediate model quite closely,
the main issue for the soundness theorem is to ensure that the two notions of
equivalence coincide. This in turn boils down to ensuring that the scheduling that
leads to symbolic equivalence coincides with the scheduling policy used in the
computational interpretations. Our solution is to restrict systems such that they
allow only one choice of symbolic scheduling, namely that of the computational
model. It is enough to require that no message is lost, i.e. for any strategy of
the adversary, if a programme sends a message on a port then the receiving
programme is listening on that port. The motivation behind this is that the
two models disagree on what happens when the receiver is not ready: in the
computational model the message is lost (read but ignored by the receiver) while
in the symbolic model the message hangs around (possibly blocking) until the
receiver is ready; this may then lead to non-determinism and several scheduling
choices.

Theorem 2. Let Sys1 and Sys2 be two systems that do not allow messages to

be lost. If S(Sys1)
s∼ S(Sys2) then I(Sys1)

c∼ I(Sys2).

Proof (overview). By fixing the random bitstrings seen by Z when interacting
with I(Sysi) we obtain a deterministic execution that with overwhelming prob-
ability will be matched by the symbolic execution on some evaluation context;
the only situation where this is not possible is if Z manages to guess a bitstring
drawn uniformly at random from {0, 1}κ. Symbolic indistinguishability between
the two systems then implies that with overwhelming probability Z sees the
same when interacting with I(Sys1) and I(Sys2).

Acknowledgements

We would like to thank Ran Canetti for valuable discussion and insights, and for
hosting Morten at BU in the beginning of this work. We would also like to thank
Hubert Comon-Lundh for discussion and clarification of his work, and Bogdan
Warinschi for comments and valuable suggestions. Finally, we are thankful for the
feedback provided by the anonymous reviewers, including mentioning of several
places that needed clarification.

References

[AF01] Mart́ın Abadi and Cédric Fournet. Mobile values, new names, and secure
communication. In Symposium on Principles of Programming Languages
(POPL’01), pages 104–115, New York, USA, 2001. ACM Press.

[AR02] Mart́ın Abadi and Phillip Rogaway. Reconciling two views of cryptography
(the computational soundness of formal encryption). Journal of Cryptology,
15:103–127, 2002.

[BAF05] Bruno Blanchet, Mart́ın Abadi, and Cédric Fournet. Automated Verifi-
cation of Selected Equivalences for Security Protocols. In Symposium on
Logic in Computer Science (LICS’05), pages 331–340. IEEE, 2005.

[BDOZ11] Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorphic encryption and multiparty computation. In EUROCRYPT
2011, volume 6632 of LNCS, pages 169–188. Springer, 2011.

[BGHB11] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella
Béguelin. Computer-aided security proofs for the working cryptographer.
In CRYPTO 2011, volume 6841 of LNCS, pages 71–90. Springer, 2011.

[Bla08] Bruno Blanchet. A computationally sound mechanized prover for secu-
rity protocols. IEEE Transactions on Dependable and Secure Computing,
5(4):193–207, 2008.

[BMM10] Michael Backes, Matteo Maffei, and Esfandiar Mohammadi. Computation-
ally sound abstraction and verification of secure multi-party computations.
In Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’10), volume 8 of LIPIcs, pages 352–363. Schloss Dagstuhl, 2010.

[BP03] Michael Backes and Birgit Pfitzmann. A cryptographically sound security
proof of the needham-schroeder-lowe public-key protocol. In Foundations
of Software Technology and Theoretical Computer Science (FSTTCS’03),
volume 2914 of LNCS, pages 1–12. Springer, 2003.

[BP04] Michael Backes and Birgit Pfitzmann. Symmetric encryption in a simulat-
able dolev-yao style cryptographic library. In Computer Security Founda-
tions Workshop (CSFW’04), pages 204–218. IEEE, 2004.

[BP06] Michael Backes and Birgit Pfitzmann. On the cryptographic key secrecy of
the strengthened yahalom protocol. In Security and Privacy in Dynamic
Environments, volume 201 of IFIP, pages 233–245. Springer, 2006.

[BPW03] Michael Backes, Birgit Pfitzmann, and Michael Waidner. A composable
cryptographic library with nested operations. In Computer and Communi-
cations Security (CCS’03), pages 220–230, New York, USA, 2003. ACM.

[BU13] Florian Böhl and Dominique Unruh. Symbolic universal composability. In
Computer Security Foundations (CSF’13), pages 257–271. IEEE, 2013.

[Can01] Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In Foundations of Computer Science (FOCS’01), pages
136–145. IEEE Computer Society, 2001.

[Can08] Ran Canetti. Composable formal security analysis: Juggling soundness,
simplicity and efficiency. In ICALP, volume 5126 of Lecture Notes in Com-
puter Science, pages 1–13. Springer, 2008.

[CC08] Hubert Lundh Comon and Véronique Cortier. Computational soundness
of observational equivalence. In Computer and Communications Security
(CCS’08), pages 109–118. ACM, 2008.

[CG10] Ran Canetti and Sebastian Gajek. Universally composable symbolic analy-
sis of diffie-hellman based key exchange. IACR Cryptology ePrint Archive,
2010:303, 2010.

[CH06] Ran Canetti and Jonathan Herzog. Universally composable symbolic anal-
ysis of mutual authentication and key-exchange protocols. In Theory of
Cryptography (TCC’06), volume 3876 of Lecture Notes in Computer Sci-
ence, pages 380–403. Springer Berlin Heidelberg, 2006.

[CHKS12] Hubert Lundh Comon, Masami Hagiya, Yusuke Kawamoto, and Hideki
Sakurada. Computational soundness of indistinguishability properties with-
out computable parsing. In Information Security Practice and Experience
(ISPEC’12), volume 7232 of LNCS, pages 63–79. Springer, 2012.

[CKW11] Véronique Cortier, Steve Kremer, and Bogdan Warinschi. A survey of sym-
bolic methods in computational analysis of cryptographic systems. Journal
of Automated Reasoning, 46:225–259, 2011.

[DDMR07] Anupam Datta, Ante Derek, John C. Mitchell, and Arnab Roy. Protocol
composition logic (PCL). Electronic Notes in Theoretical Computer Sci-
ence, 172(0):311–358, 2007.

[DKP09] Stéphanie Delaune, Steve Kremer, and Olivier Pereira. Simulation based
security in the applied pi calculus. In Foundations of Software Technology
and Theoretical Computer Science (FSTTCS 2009), volume 4, pages 169–
180, 2009.

[DNO08] Ivan Damg̊ard, Jesper Buus Nielsen, and Claudio Orlandi. Essentially op-
timal universally composable oblivious transfer. In ICISC, volume 5461 of
LNCS, pages 318–335. Springer, 2008.

[LN08] Peeter Laud and Long Ngo. Threshold homomorphic encryption in the
universally composable cryptographic library. In Provable Security, volume
5324 of Lecture Notes in Computer Science, pages 298–312. Springer, 2008.

[MRST06] John C. Mitchell, Ajith Ramanathan, Andre Scedrov, and Vanessa Teague.
A probabilistic polynomial-time process calculus for the analysis of crypto-
graphic protocols. Theoretical Computer Science, 353(1-3):118–164, 2006.

[MW04] Daniele Micciancio and Bogdan Warinschi. Soundness of formal encryption
in the presence of active adversaries. In Theory of Cryptography (TCC’04),
volume 2951 of LNCS, pages 133–151. Springer, 2004.

[PW01] Birgit Pfitzmann and Michael Waidner. A model for asynchronous reactive
systems and its application to secure message transmission. In Proc. of
IEEE Symposium on Security and Privacy, pages 184–200, 2001.

