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Abstrat. Timed-release enryption is a kind of enryption sheme that a

reipient an derypt only after a spei�ed amount of time T (assuming that

we have a moderately preise estimate of his omputing power). A revoable

timed-release enryption is one where, before the time T is over, the sender

an �give bak� the timed-release enryption, provably loosing all aess to the

data. We show that revoable timed-release enryption without trusted parties

is possible using quantum ryptography (while trivially impossible lassially).

Along the way, we develop two proof tehniques in the quantum random orale

model that we believe may have appliations also for other protools.

Finally, we also develop another new primitive, unknown reipient enryption,

whih allows us to send a message to an unknown/unspei�ed reipient over an

inseure network in suh a way that at most one reipient will get the message.

1 Introdution

We present and onstrut revoable timed-release enryption shemes (based on

quantum ryptography). To explain what revoable timed-release enryption is,

we �rst reall the notion of timed-release enryption (also known as a time-lok

puzzle); we only onsider the setting without trusted parties in this paper. A

timed-release enryption (TRE) for time T is an algorithm that takes a message

m and �enrypts� it in suh a way that the message annot be derypted in time

T but an be derypted in time T ′ > T . (Here T ′
should be as lose as possible

to T , preferably o� by only an additive o�set.)

The ruial point here is that the reipient an open the enryption without

any interation with the sender. (E.g., [21℄ publishes a seret message that is

supposed not to be openable before 2034.) Example use ases ould be: mes-

sages for posterity [22℄; data that should be provided to a reipient at a given

time, even if the sender goes o�ine; A sells some information to B that should

be revealed only later, but B wants to be sure that A annot withdraw this

information any more;
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exhange of serets where none of the parties should be

able to abort depending on the data reeived by the other; fair ontrat signing

[6℄; eletroni autions [6℄; mortgage payments [22℄; onurrent zero-knowledge

protools [6℄; et.

Physially, one an imagine TRE as follows: The message m is put in a

strongbox with a timer that opens automatially after time T ′
. The reipient

annot get the message in time T beause the strongbox will not be open by

then.
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In this ase, zero-knowledge proofs ould be used to show that the TRE indeed

ontains the right plaintext.



It turns out, however, that a physial TRE is more powerful than a digital

one. Consider the following example setting: Person P goes to a meeting with

a riminal organization. As a safe guard, he leaves ompromising information

m with his friend F , to be released if P does not resurfae after one day. (Wik-

iLeaks/Assange seems to have done something similar [19℄.) As P assumes F to

be urious, P puts m in a physial TRE, to be opened only after one day. If P
returns before the day is over, P asks the TRE bak. If F hands the TRE over

to P , P will be sure that F did not and will not read m. (Of ourse, F may

refuse to hand bak the TRE, but F annot get m without P notiing.)

This works �ne with physial TRE, but as soon as P uses a digital TRE, F
an heat. F just opies the TRE before handing it bak and ontinues derypt-

ing. After one day, F will have m, without P notiing.

So physial TREs are �revoable�. The reipient an give bak the enryption

before the time T has passed. And the sender an hek that this revoation was

performed honestly. In the latter ase, the sender will be sure that the reipient

does not learn anything. Obviously, a digital TRE an never have that property,

beause it an be opied before revoation.

However, if we use quantum information in our TRE, things are di�erent.

Quantum information annot, in general, be opied. So it is oneivable that a

quantum TRE is revoable.

1.1 Example appliations

We sketh a few more possible appliations of revoable TREs. Some of them are

far beyond the reah of urrent tehnology (beause they need reliable storage

of quantum states for a long time). In some ases, however, TREs with very

short time T are used, this might be within the reah of urrent tehnology.

The appliations are not worked out in detail (some are just �rst ideas), and

we do not laim that they are neessarily the best options in their respetive

setting, but they illustrate that revoable TREs ould be a versatile tool worth

investigating further.

Deposits. A lient has to provide a deposit for some servie (e.g., ar rental).

The dealer should be able to ash in the deposit if the lient does not return.

Solution: The lient produes a T -revoable TRE ontaining a signed transation

that empowers the dealer to withdraw the deposit. When the lient returns the

ar within time T , the lient an make sure the dealer did not keep the deposit.
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One hallenge: The lient needs to onvine the dealer that the TRE indeed ontains

a signature on a transation. I.e., we need a way to prove that a TRE V ontains a

given value (and the running time of this proof should not depend on T ). At least for

our onstrutions (see below), this ould be ahieved as follows: The lient produes

a ommitment c on the ontent of the lassial inner TRE V0 and proves that c

ontains the right ontent (using a SNARK [4℄ so that the veri�ation time does not

depend on T ). Then lient and dealer perform a quantum two-party omputation

[12℄ with inputs c, V , and opening information for c, and with dealer outputs V and

b where b is a bit indiating whether the message in V satis�es P .



Suh deposits might also be part of a ryptographi protool where deposits

are revoked or redeemed automatially depending on whether a party is aught

heating (to produe an inentive against heating). In this ase, the time T
might well be in the range of seonds or minutes, whih ould be within the

reah of near future quantum memory [15℄.

Data retention with veri�able deletion. Various ountries have laws re-

quiring the retention of teleommuniation data, but mandate the deletion of

the data after a ertain period (e.g., [14℄). Using revoable TREs, lients ould

provide their data within revoable TREs (together with a proof of orretness,

f. footnote 2). At the end of the presribed period, the TRE is revoked, unless

it is needed for law-enforement. This way, the lients an verify that their data

is indeed erased from the storage.

Unknown reipient enryption. An extension of revoable TREs is �unknown

reipient enryption� (URE) whih allows a sender to enrypt a message m in

suh a way that any reipient but at most one reipient an derypt it. That is,

the sender an send a message to an unknown reipient, and that reipient an,

after derypting, be sure that only he got the message, even if the iphertext

was transferred over an inseure hannel. Think, e.g., of a lient onneting to

a server in an anonymous fashion, e.g., through (a quantum variant of) TOR

[11℄, and reeiving some data m. Sine the onnetion is anonymous and the

lient has thus no redentials to authentiate with the server, we annot avoid

that the data gets �stolen� by someone else. However, with unknown reipient

enryption, it is possible to make sure that the lient will detet if someone else

got his data. This appliation shows that revoable TREs an be the basis for

other unexpeted ryptographi primitives. Again, the time T may be small in

some appliations, thus in the reah of the near future. We stress that URE is

non-interative, so this works even if no bidiretional ommuniation is possible.

It ould be used for a ryptographi dead letter box where a �spy� deposits

seret information, and the reipient an verify that no-one found it. Unknown

reipient enryption is formalized in the full version [27℄.

A variant of this is �one-shot� quantum key distribution: Only a single mes-

sage is sent from Alie to Bob, and as long as Bob reeives that message within

time T , he an be sure no-one else got the key. (This is easily implemented by

enrypting the key with a URE.)

1.2 Our ontribution

De�nitions. We give formal de�nitions of TREs and revoable TREs (Se-

tion 2). These de�nitions ome in two �avors: T -hiding (no information is leaked

before time T ) and T -one-way (before time T , the plaintext annot be guessed

ompletely).)

One-way revoable TREs. Then we onstrut one-way revoable TREs (Se-

tion 3). Although one-wayness is too weak a property for almost all purposes, the

onstrution and its proof are useful as a warm-up for the hiding onstrution,



and also useful on their own for the random orale based onstrutions (see be-

low). The onstrution itself is very simple: To enrypt a message m, a quantum

state |Ψ〉 is onstruted that enodes m in a random BB84 basis B.
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Then B is

enrypted in a (non-revoable) T -hiding TRE V0. The resulting TRE (|Ψ〉, V0)
is sent to the reipient. Revoation is straightforward: the reipient sends |Ψ〉
bak to the sender, who heks that |Ψ〉 still enodes m in basis B. Intuitively,

|Ψ〉 annot be reliably opied without knowledge of basis B, hene before time T
the reipient annot opy |Ψ〉 and thus looses aess to |Ψ〉 and thus to m upon

revoation.

The proof of this fat is not as easy as one might think at the �rst glane (�use

the fat that B is unknown before time T , and then use that a state |Ψ〉 annot
be loned without knowledge of the basis�) beause information-theoretial and

omplexity-theoreti reasoning need to be mixed arefully.

The resulting sheme even enjoys everlasting seurity (f., e.g., [17,10,1,7,20℄):

after suessful revoation, the adversary annot break the TRE even given

unlimited omputation.

We hope that the ideas in the proof bene�t not only the onstrution of

revoable TREs, but might also be useful in other ontexts where it is nees-

sary to prove unloneability of quantum-data based on ryptographi and not

information-theoretial serey (quantum-money perhaps?).

Revoably hiding TREs. The next step is to onstrut revoably hiding TREs

(Setion 4). The onstrution desribed before is not hiding, beause if the ad-

versary guesses a few bits of B orretly, he will learn some bits of m while still

passing revoation. A natural idea would be to use privay ampli�ation: the

sender piks a universal hash funtion F and inludes it in the TRE V0. The

atual plaintext is XORed with F (m) and transmitted. Surprisingly, we annot

prove this onstrution seure, see the beginning of Setion 4 for a disussion.

Instead, we prove a onstrution that is based on CSS odes. The resulting

sheme uses the same tehnologial assumptions as the one-way revoable one:

sending and measuring of individual qubits, quantum memory. Unfortunately,

the redution in this ase is not very e�ient; as a onsequene the underlying

non-revoable TRE needs to be exponentially hard, at least if we want to en-

rypt messages of superlogarithmi length. Notie that the random orale based

solutions desribed below do not have this drawbak.

Like the previous sheme, this sheme enjoys everlasting seurity.

Random orale transformations. We develop two transformations of TREs

in the quantum random orale model. The �rst transformation takes a revoably

one-way TRE and transforms it into a revoably hiding one (by sendingm⊕H(k)
and putting k into the revoably one-way TRE; Setion 5.1). This gives a simpler

and more e�ient alternative to the omplex onstrution for revoably hiding

TREs desribed above, though at the ost of using the random-orale model

and loosing everlasting seurity. The seond transformation allows us to assume
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I.e., eah bit of m is randomly enoded either in the omputational or the diagonal

basis.



without loss of generality that the adversary performs no orale queries before

reeiving the TRE, simplifying other seurity proof (Setion 5.2).

For both transformations we prove general lemmas that allow us to use anal-

ogous transformations also on shemes unrelated to TREs (e.g., to make an

enryption sheme semantially seure). We believe these to be of independent

interest, beause the quantum random orale model is notoriously di�ult to

use, and many existing lassial onstrutions are not known to work in the

quantum ase.

Classial TREs. Unfortunately, only very few onstrutions of lassial TRE

are known. Rivest, Shamir, and Wagner [22℄ present a onstrution based on

RSA; it is obviously not seure in the quantum setting [23℄. Other onstrutions

are iterated hashing (to send m, we send H(H(H(. . . (r) . . . )))⊕m) and preim-

age searh (to derypt, one needs to invert H(k) where k ∈ {1, . . . , T}); with
suitable ampli�ation this beomes a TRE [26℄). Preimage searh is not a good

TRE beause it breaks down if the adversary an ompute in parallel. This leaves

iterated hashing.
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We prove that (a slight variation of) iterated hashing is hiding

even against quantum adversaries and thus suitable for plugging into our on-

strutions of revoable TREs (Setion 5.3). (Note, however, that the hardness of

iterated hashing ould also be used as a very reasonable assumption on its own.

The random orale model is thus not stritly neessary here, it just provides

additional justi�ation for that assumption.)

We leave it as an open problem to identify more pratial andidates for

iterated hashing, perhaps following the ideas of [22℄ but not based on RSA or

other quantum-easy problems.

For spae reasons, details and full proofs are deferred to the full version [27℄

of this paper.

1.3 Preliminaries

For the neessary bakground in quantum omputing, see, e.g., [18℄.

Let ω(x) denote the Hamming weight of x. By [q + n]q we denote the set of

all size-q subsets of {1, . . . , q + n}. I.e., S ∈ [q + n]q i� S ⊆ {1, . . . , q + n} and
|S| = q. By ⊕ we mean bitwise XOR (or equivalently, addition in GF(2)n). Given
a linear ode C, let C⊥

be the dual ode (C⊥ := {x : ∀y ∈ C. x, y orthogonal}).
Let X,Y, Z denote the Pauli operators. Let |βij〉 denote the four Bell states,

namely |β00〉 := 1√
2
|00〉+ 1√

2
|11〉 and |βfe〉 = (ZfXe⊗I)|β00〉 = (I⊗XeZf )|β00〉.

In slight abuse of notation, we all |β00〉 an EPR pair (originally, [13℄ used

|β11〉). And a state onsisting of EPR pairs we all an EPR state. H denotes
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Iterated hashing has the downside that produing the TRE takes as long as derypt-

ing it. However, this long omputation an be moved into a preomputation phase

that is independent of the message m, making this TRE suitable at least for some

appliations. [16℄ present a sophistiated variant of iterated hashing that irumvents

this problem; their onstrution, however, does not allow the sender to predit the

reipient's output and is thus not suitable for sending a message into the future.



the Hadamard gate, and In the identity on C2n
(short I if n is lear from the

ontext). Let |m〉B denote m ∈ {0, 1}n enoded in basis B ∈ {0, 1}n, where 0
stands for the omputational and 1 for the diagonal basis.

Given an operator A and a bitstring x ∈ {0, 1}n, we write Ax
for Ax1 ⊗· · ·⊗

Axn
. E.g., Xx|y〉 = |x⊕ y〉, and HB |x〉 = |x〉B .
Given f, e ∈ {0, 1}n, we write |f̃ e〉 for |βf1e1〉 ⊗ · · · ⊗ |βfnen〉, exept for the

order of qubits: the �rst qubits of all EPR pairs, followed by the last qubits of

all EPR pairs. In other words, |0̃n0n〉 = ∑
x∈{0,1}n |w〉|w〉 and |f̃ e〉 = (ZfXe ⊗

I)|0̃n0n〉.
Let ‖·‖ be the Eulidean norm (i.e., ‖|Ψ〉‖2 = |〈Ψ |Ψ〉|) and let · denote the

orresponding operator norm (i.e., A: = supx 6=0‖Ax‖/‖x‖).
By TD(ρ1, ρ2) we denote the trae distane between density operators ρ1, ρ2.

We write short TD(|Ψ1〉, |Ψ2〉) for TD(|Ψ1〉〈Ψ1|, |Ψ2〉〈Ψ2|).
Whenever we speak about algorithms, we mean quantum algorithms. (In

partiular, adversaries are always assumed to be quantum.)

2 De�ning revoable TREs

A timed-release enryption (TRE) onsists of: An enryption algorithm TRE(m)
that returns a (possibly quantum) iphertext V ontaining m. A deryption algo-

rithm that omputes m from V (without using any key). Possibly: a revoation

algorithm in whih the reipient gives bak V to the sender and the sender

performs some hek on V . We have two basi seurity properties for TREs:

T -hiding means that within time T , an adversary annot learn anything about

m, and T -one-way means that within time T , an adversary annot guess m.

(These basi seurity properties do not refer to the revoation algorithm.) For

formal de�nitions of these basi properties, and a disussion on timing-models

and de�nitions in related work, see the full version [27℄.

We now de�ne the revoable hiding property. A TRE is revoably T -hiding
if an adversary annot both suessfully pass the revoation protool within

time T and learn something about the message m ontained in the TRE.

When formalizing this, we have to be areful. A de�nition like: �onditioned

on revoation sueeding, p0 := Pr[adversary outputs 1 given TRE(m0)] and
p1 := Pr[adversary outputs 1 given TRE(m1)] are lose (|p0 − p1| is negligi-

ble)� does not work: if Pr[revoation sueeds] is very small, |p0 − p1| an be-

ome large even if the adversary rarely sueeds in distinguishing. (Consider,

e.g., an adversary that intentionally fails revoation exept in the very rare

ase that he guesses an enryption key that allows to derypt the TRE im-

mediately.) Also, a de�nition like �|p0 − p1| · Pr[revoation sueeds]� is prob-

lemati: Does Pr[revoation sueeds] refer to an exeution with TRE(m0)
or TRE(m1)?. Instead, we will require � |p0 − p1| is negligible with pi :=
Pr[adversary outputs 1 and revoation sueeds given TRE(mi)]�. This de�ni-

tion avoids the ompliations of a onditional probability and additionally

implies as side e�et that also Pr[revoation sueeds given TRE(m0)] and

Pr[revoation sueeds given TRE(m1)] are lose.



De�nition 1 (Revoably hiding timed-release enryption). Given a re-

voable timed-release enryption TRE with message spae M , and an adversary

(A0, A1, A2) (that is assumed to be able to keep state between ativations of

A0, A1, A2) onsider the following game G(b) for b ∈ {0, 1}:
� (m0,m1)← A0().
� V ← TRE(mb).
� Run the revoation protool of TRE, where the sender is honest, and the

reipient is A1(V ). Let ok be the output of the sender (i.e., ok = 1 if the

sender aepts).

� b′ ← A2().
A timed-release enryption TRE with message spae M is T -revoably hiding,

if for any adversary (A0, A1, A2) where A1 is sequential-polynomial-time and T -
time and A0, A2 are sequential-polynomial-time,

∣

∣Pr[b′ = 1 ∧ ok = 1 : G(0)] −

Pr[b′ = 1 ∧ ok = 1 : G(1)]
∣

∣

is negligible.

Note that although revoably hiding seems to be a stronger property than

hiding, we are not aware of any proof that a T -revoably hiding TRE is also T -
hiding. (It might be that it is possible to extrat the message m in time≪ T , but
only at the ost of making a later revoation impossible. This would ontradit

T -hiding but not T -revoably hiding.) Therefore we always need to show that

our revoable TREs are both T -hiding and T -revoably hiding.

Again, we de�ne the weaker property of revoable one-wayness whih only

requires the adversary to guess the message m. We need this weaker property for

intermediate onstrutions. Like for hiding, we stress that revoable one-wayness

does not seem to imply one-wayness.

De�nition 2 (Revoably one-way TRE). Given a revoable timed-release

enryption TRE with message spae M , and an adversary (A0, A1, A2) (that is

assumed to be able to keep state between ativations of A0, A1, A2) onsider the

following game G:

� Run A0().

� Pik m
$

←M , run V ← TRE(m).
� Run the revoation protool of TRE, where the sender is honest, and the

reipient is A1(V ). Let ok be the output of the sender (i.e., ok = 1 if the

sender aepts).

� m′ ← A2().
A timed-release enryption TRE with message spae M is T -revoably one-way,

if for any quantum adversary (A0, A1, A2) where A1 is sequential-polynomial-

time and T -time and A0, A2 are sequential-polynomial-time, we have that Pr[m =
m′ ∧ ok = 1 : G] is negligible.

3 Construting revoably one-way TREs

In this setion, we present our onstrution RTREow for revoably one-way

TREs. Although one-wayness is too weak a property, this serves as a warm-



up for our onsiderably more involved revoably hiding TREs (Setion 4), and

also as a building blok in our random-orale based onstrution (Setion 5.1).

The following protool is like we skethed in the introdution, exept that

we added a one-time pad p. That one-time pad has no e�et on the revoable

one-wayness, but we introdue beause it makes the protool (non-revoably)

hiding at little extra ost.

De�nition 3 (Revoably one-way TRE RTREow).

� Let n be an integer.

� Let TRE0 be a T -hiding TRE with message spae {0, 1}2n.
We onstrut a revoable TRE RTREow with message spae {0, 1}n.
Enryption of m ∈ {0, 1}n:
� Pik p,B

$← {0, 1}n.
� Construt the state |Ψ〉 := |m⊕ p〉B. (Reall that |x〉B is x enoded in basis

B, see page 6.)

� Compute V0 ← TRE0(B, p).
� Send V0 and |Ψ〉.

Deryption:

� Derypt V0.

� Measure |Ψ〉 in basis B; all the outome γ.
� Return m := γ ⊕ p.

Revoation:

� The reipient sends |Ψ〉 bak to the sender.

� The sender measures |Ψ〉 in basis B; all the outome γ.
� If γ = m⊕ p, revoation sueeds (sender outputs 1).

Naive proof approah. (In the following disussions, for larity we omit all

ourrenes of the one-time pad p.) At a �rst glane, it seems the seurity of this

protool should be straightforward to prove: We know that without knowledge

of the basis B, one annot lone the state |Ψ〉, not even approximately.
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We also

know that until time T , the adversary does not know anything about B (sine

TRE0 is T -hiding). Hene the adversary annot reliably lone |Ψ〉 before time T .
But the adversary would need to do so to pass revoation and still keep a state

that allows him to measure m later (when he learns B).

Unfortunately, this argument is not sound. It would be orret if TRE0 were

implemented using a trusted third party (i.e., if B is sent to the adversary after

time T ).6 However, the adversary has aess to V0 = TRE0(B) when trying

to lone |Ψ〉. From the information-theoretial point of view, this is the same

as having aess to B. Thus the no-loning theorem and its variants annot be

applied beause they rely on the fat that B is information-theoretially hidden.
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This fat also underlies the seurity of BB84-style QKD protools [3℄.
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Again, this is impliit in proofs for BB84-style QKD protools: there the adversary

gets a state |Ψ〉 = |m〉B from Alie (key m enoded in a seret base B), whih he

has to give bak to Bob unhanged (beause otherwise Alie and Bob will detet

tampering). And he wishes to, at the same time, keep information to later be able

to ompute the key m when given B.



One might want to save the argument in the following way: Although V0 =
TRE0(B) information-theoretially ontains B, it is indistinguishable from V̂0 =
TRE0(B̂) whih does not ontain B but an independently hosen B̂. And if the

adversary is given V̂0 instead of V0, we an use information-theoretial arguments

to show that he annot learn m. But although this argument would work if

TRE0 were hiding against polynomial-time adversaries (e.g., if TRE0 were a

ommitment sheme). But TRE0 is only hiding for T -time adversaries! This

only guarantees that all observable events that happen with V0 before time T
also happen with V̂0 before time T and vie versa. In partiular, sine with V̂0, the

adversary annot learn m before time T , he annot learn m before time T with

V0. But although with V̂0, after suessful revoation, the adversary provably

annot ever learn m, it might be possible that with V0, he an learn m right

after time T has passed.

Indeed, it is not obvious how to exlude that there is some �enrypted-loning�

proedure that, given |Ψ〉 = |m〉B and TRE0(B), without disturbing |Ψ〉, pro-
dues a state |Ψ ′〉 that for a T -time distinguisher looks like a random state, but

still |Ψ ′〉 an be transformed into |Ψ〉 in time ≫ T . Suh an �enrypted-loning�

would be su�ient for breaking RTREow . (Of ourse, it is a diret orollary from

our seurity proof that suh enrypted-loning is impossible.)

7

Proof idea. As we have seen in the preeding disussion, we an prove that

the property �the adversary annot learn m ever� holds when sending V̂0 =
TRE0(B̂) for an independent B̂ instead of V0 = TRE0(B). But we annot prove
that this property arries over to the V0-setting beause it annot be tested in

time T . Examples for properties that do arry over would be �the adversary

annot learn m in time T � or �revoation sueeds� or �when measured in basis

B, the adversary's revoation-message does not yield outome m�. But we would

like to have a property like �the entropy of m is large (or revoation fails)�. That

property annot be tested in time T , so it does not arry over. Yet, we an use

a trik to still guarantee that this property holds in the V0-setting.

For this, we �rst modify the protool in an (information-theoretially) indis-

tinguishable way: Normally, we would pik m at random and send |Ψ〉 := |m〉B

7

To illustrate that �enrypted-loning� is not a far fethed idea, onsider the follow-

ing quite similar revoable TRE: Let EK(|Ψ〉) denote the quantum one-time pad

enryption of |Ψ〉 ∈ C2n
using key K ∈ {0, 1}2n, i.e., EK(|Ψ〉) = ZK1XK2 |Ψ〉 with

K = K1‖K2 [2℄. RTRE(m) := (EK(|m〉B), B,TRE0(K)). For revoation, the sender
sends EK(|m〉B) bak, and the reipient heks if it is the right state. Again, if K

is unknown, it is not possible to lone EK(|m〉B) as it is e�etively a random state

even given B. But we an break RTRE as follows:

The reipient measures |Φ〉 := EK(|m〉B) in basis B. Using XH = HZ and

ZH = HX, we have |Φ〉 = ZK1XK2HB |m〉 = HBXK1∗BZK1∗B̄ZK2∗BXK2∗B̄ |m〉 =
±|m⊕ (K2 ∗ B̄)⊕ (K1 ∗B)〉B where ∗ is the bit-wise produt and B̄ the omplement

of B. Thus the measurement of |Φ〉 in basis B does not disturb |Φ〉, and the reipient

learns m ⊕ (K1 ∗ B) ⊕ (K2 ∗ B̄). He an then send bak the undisturbed state |Φ〉
and pass revoation. After derypting TRE0(K), he an ompute m, and reonstrut

the state |Φ〉 = EK(|m〉B) using known K,m,B. Thus he performed an �enrypted

loning� of |Φ〉 before derypting TRE0(K).



to the adversary. Instead, we initialize two n-bit quantum registers X,Y with

EPR pairs and send X to the adversary. The value m is omputed by mea-

suring Y in basis B. Now we an formulate a new property: �after revoation

but before measuring m, XY are still EPR pairs (up to some errors) or revoa-

tion fails�. This property an be shown to hold in the V̂0-setting using standard

information-theoretial tools. And the property tested in time T , all we have

to do is a measurement in the Bell basis. Thus the property also holds in the

V0-setting. And �nally, due to the monogamy of entanglement ([9℄; but we need

a ustom variant of it) we have that this property implies �the entropy of m is

high (or revoation fails)�.

We have still to be areful in the details, of ourse. E.g., the revoation hek

itself ontains a measurement in basis B whih would destroy the EPR state

XY ; this an be �xed by only measuring whether the revoation hek would

sueeds, without atually measuring m.

Theorem 1 (RTREow is revoably one-way). Let δowT be the time to ompute

the following things: a measurement whether two n-qubit registers are equal in a

given basis B, a measurement whether two n-qubit registers are in an EPR state

up to t :=
√
n phase �ips and t bit �ips, and one NOT- and one AND-gate.

Assume that the protool parameter n is superlogarithmi.

The protool RTREow from De�nition 3 is (T−δowT )-revoably one-way, even

if adversary A2 is unlimited (i.e., after revoation, seurity holds information-

theoretially).

A onrete seurity bound is derived in the full version [27℄.

Sine revoable one-wayness does not imply (non-revoable) one-wayness, we

additionally show the hiding property of RTREow . Due to the presene of the

one-time pad p, the proof is unsurprising.

4 Revoably hiding TREs

We now turn to the problem of onstruting revoably hiding TREs. The on-

strution from the previous setion is revoably one-way, but it is ertainly not

revoably hiding beause the adversary might be luky enough to guess a few

bits of the basis B, measure the orresponding bits of the message m without

modifying the state, and suessfully pass revoation. So some bits of m will

neessarily leak. The most natural approah for dealing with partial leakage (at

least in the ase of QKD) is to use privay ampli�ation. That is, we pik a

funtion F from a suitable family of funtions (say, universal hash funtions

with suitable parameters), and then to send m, we enrypt a random x using

the revoably one-way TRE, and additionally transmit F (x) ⊕m. If x has suf-

�iently high min-entropy, F (x) will look random, and thus F (x) ⊕m will not

leak anything about m. Additionally, we need to transmit F to the reipient, in a

way that the adversary does not have aess to it when measuring the quantum

state. Thus, we have to inlude F in the lassial TRE. So, altogether, we would

send (m ⊕ F (x),TRE0(B, f)) and |m〉B . In fat, this sheme might be seure,



we do not have an attak. Yet, when it omes to proving its seurity, we fae

di�ulties: In the proof of RTREow , to use the hiding property of TRE0, we

identi�ed a property that an be heked in time T , and that guarantees that m
annot be guessed. (Namely, we used that the registers XY ontain EPR pairs

up to some errors whih implies that the adversary annot predit the outome

m of measuring Y .) In the present ase, we would need more. We need a prop-

erty P that guarantees that F (x) is indistinguishable from random given the

adversary's state when x is the outome of measuring Y . Note that here it is not

su�ient to just use that x has high min-entropy and that F is a strong random-

ness extrator; at the point when we test the property P , F is already �xed and

thus not random. Instead, we have to �nd a measurable property P ′
that guar-

antees: For the partiular value F hosen in the game, F (x) is indistinguishable
from randomness. (And additionally, we need that P ′

holds with overwhelming

probability when TRE0(B, f) is replaed by a fake TRE not ontaining B, f .)
We were not able to identify suh a property.

8

Using CSS odes. This disussion shows that, when we try to use privay

ampli�ation, we enounter the hallenge how to transmit the hash funtion F .
Yet, in the ontext of QKD, there is a seond approah for ensuring that the

�nal key does not leak any information: Instead of �rst exhanging a raw key

and then applying privay ampli�ation to it, Shor and Preskill [24℄ present a

protool where Alie and Bob �rst reate shared EPR pairs with a low number

of errors. In our language: Alie and Bob share a superposition of states |f̃ e〉

with ω(f), ω(e) ≤ t. Then they use the fat that, roughly speaking, |0̃n0n〉 is an

enoding of |0̃ℓ0ℓ〉 for some ℓ < n using a random CSS ode orreting t bit/phase
error. (Calderbank-Shor-Steane odes [8,25℄.) So if Alie and Bob apply error

orretion and deoding to |f̃ e〉, they get the state |0̃ℓ0ℓ〉. Then, if Alie and Bob

measure that state, they get idential and uniformly distributed keys, and the

adversary has no information. Furthermore, the resulting protool an be seen

to be equivalent to one that does not need quantum odes (and thus quantum

8

To illustrate the di�ulty of identifying suh a property: Call a funtion F s-good

if F (x) is uniformly random if all bits xi with si = 0 are uniformly random (and

independent). In other words, F tolerates leakage of the bits with si = 1. For suitable
families of funtions F , and for s with low Hamming weight, a random F will be

s-good with high probability. Furthermore, when using a fake TRE0, XY is in state

|f̃ e〉 with s := (f ∨ e) of low Hamming weight with overwhelming probability after

suessful revoation (this we showed in the seurity proof for RTREow ). In this ase,

all bits of Y with si = 0 will be �untampered� and we expet that F (x) is uniformly

random for s-good F (when x is the outome of measuring Y ). So we are tempted

to hoose P ′
as: �XY is in a superposition of states |f̃ e〉 suh that the hosen F is

(f ∨ e)-good�. This property holds with overwhelming property using a fake TRE0.

But unfortunately, this fails to guarantee that f(x) is random. E.g., if F (ab) = a⊕ b,

then F is 10-good and 01-good. Thus a superposition of |1̃0 00〉 and |0̃1 00〉 satis�es

property P ′
for that F . But

1√
2
|1̃0 00〉 + 1√

2
|0̃1 00〉 = 1√

2
|0000〉 − 1√

2
|1111〉, so x ∈

{00, 11} with probability 1 and thus F (x) = 0 always. So P ′
fails to guarantee that

F (x) is random.



omputers) but only transmits and measures individual qubits (BB84-style). It

turns out that we an apply the same basi idea to revoably hiding TREs.

For understanding the following proof sketh, it is not neessary to under-

stand details of CSS odes. It is only important to know that for any CSS ode C,

there is a family of disjoint odes Cu,v suh that

⋃
u,v Cu,v forms an orthonormal

basis of C{0,1}n

.

Consider the following protool (simpli�ed):

De�nition 4 (Simpli�ed protool RTRE′
hid). Let C be a CSS ode on {0, 1}n

that enodes plaintexts from a set {0, 1}m and that orrets t phase and bit �ips.

Let q be a parameter.

� Enryption: Create q + n EPR pairs in registers X,Y . Pik a set Q =
{i1, . . . , iq} ∈ [q + n]q of qubit pair indies and a basis B ∈ {0, 1}q, and

designate the qubit pairs in XY seleted by Q as �test bits� in basis B. (The

remaining pairs in XY will be onsidered as an enoding of EPR pairs using

C.) Send X together with the desription of C and a hiding TRE TRE0(Q)
to the reipient.

The plaintext ontained in the TRE is x where x results from: Consider the

bits of Y that are not in Q as a odeword from one of the odes Cu,v. Measure

what u, v are (this is possible sine the Cu,v are orthogonal). Deode the ode

word. Measure the result in the omputational basis.

� Deryption: Derypt TRE0(Q). Considering the bits of X that are not in

Q as a odeword from Cu,v and deode and measure as in the enryption.

� Revoation: Send bak X. The sender measures the bit pairs from XY

seleted by Q using bases B, yielding r, r′. If r = r′, revoation sueeds.

Note that this simpli�ed protool is a �randomized� TRE whih does not

allow us to enrypt an arbitrary message, but instead hooses the message x.

The obvious approah to transform it to a normal TRE for enrypting a given

message m is to send m⊕ x in addition to the TRE. This is indeed what we do,

but there are some di�ulties that we disuss below.

Entanglement-free protool. The protool RTRE′
hid

requires Alie to prepare

EPR pairs and apply the deoding operation of CSS odes. While our protool

may not be feasible with urrent tehnology anyway due to the required quantum

memory, we wish to redue the tehnologial requirements as muh as possible.

Fortunately, CSS odes have the nie property that deoding with subsequent

measurement in the omputational basis is equivalent to a sequene of individual

qubit measurements. Using these properties, we an rewrite Alie so that she

only sends and measures individual qubits in BB84 bases, and Bob stores and

measures individual qubits in BB84 bases (i.e., like in RTREow ). See the �nal

protool desription (De�nition 5) below for details. In the full proof, this hange

means that we have to add further games in front of the sequene of games to

rewrite the entanglement-free operations into EPR-pair based ones.

Early key revelation. One big problem remains: the seurity de�nition used

for proving seurity of De�nition 4 gives mb⊕x to A2, and not to A1 as a natural

de�nition of randomized TREs would do. (We all this late key revelation) The



e�et of this is that RTRE′
hid is only seure if the plaintext x is not used before

time T . This limitation, of ourse, ontradits the purpose of TREs and needs to

be removed. We need early key revelation where the adversary A1 is given mb⊕x.
As our proof needs the fat that x is piked only after A1 runs, our solution is

to redue seurity with early key revelation to seurity with late key revelation.

This is done by guessing what x will be when invoking A1. If that guess turns out

inorret in the end, we abort the game. Unfortunately, this redution multiplies

the advantage of the adversary by a fator of 2|x| = 2ℓ; the e�et is that our �nal
protool will need an underlying sheme TRE0 with seurity exponential in ℓ.

We an now present the preise protool and its seurity:

De�nition 5 (The protool).

� Let C1, C2 be a CSS ode with parameters n, k1, k2, t. (n is the bit length of

the odes, k1, k2 refer to the parameters of the odes C1, C2, and t to the

number of orreted errors.)

� Let q be an integer.

� Let TRE0 be a TRE with message spae {0, 1}q × [q + n]q ×C1/C2. (Reall,

[q + n]q refers to q-size subsets of {1, . . . , q + n}, see page 5. C1/C2 denotes

the quotient of odes.)

We onstrut a revoable TRE RTREhid with message spae C1/C2 (isomorphi

to {0, 1}ℓ with ℓ := k1 − k2).

We enrypt a message m ∈ C1/C2 as follows:

� Pik uniformly B ∈ {0, 1}q, Q ∈ [q + n]q, p ∈ C1/C2. u ∈ {0, 1}n/C1,

r ∈ {0, 1}q, x ∈ C1/C2, w ∈ C2.

� Construt the state |Ψ〉 := U †
Q(H

B⊗ In)(|r〉⊗ |x⊕w⊕u〉). Here UQ denotes

the unitary that permutes the qubits in Q into the �rst half of the system.

(I.e., UQ|x1 . . . xq+n〉 = |xa1
. . . xaq

xb1 . . . xbn〉 with Q =: {a1, . . . , aq} and

{1, . . . , q + n} \ Q =: {b1, . . . , bn}; the relative order of the ai and of the bi
does not matter.)
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� Compute V0 ← TRE0(B,Q, r, p).
� The TRE onsists of (V0, u,m⊕ x⊕ p) and |Ψ〉.
Deryption is performed as follows:

� Derypt V0, this gives B,Q, r, p.
� Apply UQ to |Ψ〉 and measure the last n qubits in the omputational basis;

all the outome γ.10

� Return m := (γ ⊕ u) mod C2.

The revoation protool is the following:

� The reipient sends |Ψ〉 bak to the sender.

9

Notie that, sine U
†
Q is just a reordering of qubits, and HB

is a sequene of

Hadamards applied to a known basis state, the state |Ψ〉 an also diretly be pro-

dued by enoding individual qubits in the omputational or diagonal basis, whih

is tehnologially simpler.

10

Sine UQ is just a reordering of qubits, this just orresponds to measuring a subset

of the qubits in the omputational basis.



� The sender applies (HB ⊗ In)UQ to |Ψ〉 and measures the �rst q qubits, all

the outome r′.11

� If r = r′, revoation sueeds (sender outputs 1).

Notie that in this protool (and in ontrast to the simpli�ed desription

above), we have inluded B, r in the TRE V0, even though they are not needed

by the reipient. In fat, the protool would still work (and be seure with almost

unmodi�ed proof) if we did not inlude these values. However, when onstruting

unknown reipient enryption, the inlusion of B, r will turn out to be useful.

Theorem 2 (RTREhid is revoably hiding). Let δhidT be the time to om-

pute the following things: q ontrolled Hadamard gates, applying an already

omputed permutation to n + q qubits, a q-qubit measurement in the ompu-

tational basis (alled MR in the proof), a omparison of two q-qubit strings, the
error-orretion/deoding operations UEC

uv , Udec
uv of the CSS ode, a measurement

whether two n-qubit registers are in the state

∑
x∈C1/C2

|x〉|x〉 (alled PEPR

C1/C2
in

the proof), one AND-gate, and one NOT-gate.

Assume that TRE0 is T -hiding with (2−2(k1−k2) · negligible)-seurity.12 As-

sume that tq/(q + n)− 4(k1 − k2) ln 2 is superlogarithmi.

Then the TRE from De�nition 5 is (T − δhidT )-revoably hiding even if A2 is

unlimited (i.e., after revoation, seurity holds information-theoretially).

A onrete seurity bound is derived in the full version [27℄.

Those parameters an always be instantiated [27℄, leading to a revoable

TRE for logarithmi length messages, and a TRE for arbitrary length messages

if TRE0 has exponential seurity. Furthermore, RTREhid is also T -hiding.

5 TREs in the random orale model

We present onstrutions and transformations of TREs in the random orale

model. (We use the quantum random orale that an be aessed in superposi-

tion, f. [5℄.)

The results in this setion will be formulated with respet to two di�erent

timing models. In the sequential orale-query timing model, one orale query

is one time step. I.e., if we say an adversary runs in time T , this means he

performs at most T random orale queries. In the parallel orale-query timing

model, an arbitrary number of parallel orale-queries an be performed in one

time step. However, in time T , at most T orale queries that depend on eah

other may be performed.

13

More formally, if the orale is H, the adversary an

query H(x1), . . . , H(xq) for arbitrarily large q and arbitrary x1, . . . , xn in eah

11

Sine UQ is just a reordering of the qubits, this is equivalent to measuring a subset

of the qubits in the bases spei�ed by B.

12

I.e., in De�nition 1, we require that the advantage is not only negligible, but atually

≤ 2−2(k1−k2)µ for some negligible µ.
13

In [16℄, this is alled �T levels of adaptivity�.



time step. (Of ourse, if the adversary is additionally sequential-polynomial-time,

then q will be polynomially bounded.)

Seurity in those timing models implies seurity in timing models that ount

atual (sequential/parallel) omputation steps beause in eah step, at most one

orale all an be made.

5.1 One-way to hiding

In the previous setion, we have seen how to onstrut revoably hiding TREs.

However, the onstrution was relatively omplex and ame with an exponential

seurity loss in the redution. As an alternative, we present a transformation

takes a TRE that is (revoably) one-way and transforms it into one that is

(revoably) hiding in the random orale model. The basi idea is straightforward:

we enrypt a key k in a one-way TRE, and useH(k) as a one-time-pad to enrypt

the message:

Theorem 3 (Hiding TREs). Let H be a random orale and let TRE be a

(revoable or non-revoable) TRE (not using H).

Then the TRE TRE′
enrypts m as follows: Run k

$← {0, 1}n, V ′ ← TRE(k),
and then return V := (V ′,m⊕H(k)). (Deryption is analogous, and revoation

is unhanged from TRE.)
Then, if TRE is T -oneway and T -revoably one-way then TRE′

is T -revoably
hiding. And if TRE is T -oneway then TRE′

is T -hiding. (The same holds �with-

out o�ine-queries�; see Setion 5.2 below.)

This holds both for the parallel and the sequential orale-query timing

model.
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Notie that we assume that TRE does not aess H. Otherwise simple oun-

terexamples an be onstruted. (E.g., TRE(k) ould inlude H(k) in the TRE

V ′
.) However, TRE may aess another random orale, say G, and TRE′

then

uses both G and H.

In a lassial setting, this theorem would be straightforward to prove (us-

ing lazy sampling of the random orale). Yet, in the quantum setting, we need

a new tehnique for dealing with this. We present a generi lemma for redu-

ing hiding-style properties (semanti seurity) to a one-wayness-style properties

(unpreditability) from whih we an derive Theorem 3.

5.2 Preomputation

We will now develop a seond transformation for TREs in the random orale

model. The seurity de�nition for TREs permit the adversary to run an arbi-

trary (sequential-polynomial-time) omputation before reeiving the TRE. In

partiular, we do not have a good upper bound on the number of orale queries

performed in this preomputation phase (�o�ine queries�). This an make proofs

harder beause even if the adversary runs in time T , this does not allow us to

onlude that only T orale queries will be performed. Our transformation will



allow us to transform a TRE that is only seure when the adversary makes no

o�ine queries (suh as the one presented in Setion 5.3 below) into a TRE that

is seure without this restrition.

We all a TRE T -hiding without o�ine-queries if the hiding property holds

for adversaries were A0 makes no random orale queries. Analogously we de�ne

T -revoably hiding without o�ine-queries and T -one-way without o�ine-queries.

To transform a TRE that is seure without o�ine-queries into a fully seure

one, the idea is to make sure that the o�ine-queries are useless for the adversary.

We do this by using only a part H(a‖·) of the random orale where a is hosen

randomly with the TRE. Intuitively, sine during the o�ine-phase, the adversary

does not know a, none of his o�ine-queries will be of the form H(a‖·), thus they
are useless.

Theorem 4 (TREs with o�ine-queries). Let G and H be random orales

and ℓ superlogarithmi. Let TRE be a revoable TRE using G. Let TRE′
be the

result of replaing in TRE all orale queries G(x) by queries H(a‖x), where a
is hosen by the enryption algorithm of TRE′

and is inluded in the message

send to the reipient.

If TRE is T -revoably hiding without o�ine-queries then TRE′
is T -revoably

hiding (and analogously for T -hiding). This holds both for the parallel and the

sequential orale-query timing model.

14

To prove this, we develop a general lemma for this kind of transformations.

(In the lassial setting this is simple using the lazy sampling proof tehnique,

but that is not available in the quantum setting.)

5.3 Iterated hashing

In all onstrutions so far we assumed that we already have a (non-revoable)

TRE. In the lassial setting, only two onstrutions of TREs are known. The

one from [22℄ an be broken by fatoring, this leaves only repeated hashing as a

andidate for the quantum setting. We prove that the following onstrution to

be one-way without o�ine queries:

De�nition 6 (Iterated hashing). Let n and T be polynomially-bounded in-

tegers (depending on the seurity parameter), and assume that n is superloga-

rithmi. Let H : {0, 1}n → {0, 1}n denote the random orale. The timed-release

enryption TREih with message spae {0, 1}n enrypts m as V := HT+1(0n)⊕m.

We an prove that TREih is T -one-way without o�ine queries. TREih is obvi-

ously not one-way with o�ine queries, the adversary an preompute HT+1(0n).
Yet, using the random-orale transformations from Theorems 3 and 4, we an

transform it into a hiding TRE. This is plugged into RTREow , to get a revoa-

bly one-way TRE, and using Theorem 3 again, we get a revoably hiding TRE

14

For other timing models, the redution desribed in the proof may inur a overhead,

leading to a smaller T for TRE
′
.



in the random orale model. (The resulting protool is spelled out in the full

version [27℄.)

An alternative onstrution is to plug TREih (after transforming it using

Theorems 3 and 4) into RTREhid . This results in a more omplex yet everlast-

ingly seure sheme.

And �nally, if we wish to avoid the random orale model altogether, we an

take as our basi assumption that a suitable variant of iterated hashing

15

is a

hiding TRE, and get a revoably hiding, everlastingly seure TRE by plugging

it into RTREhid .
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