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Abstract. A major general paradigm in cryptography is the following
argument: Whatever an adversary could do in the real world, it could just
as well do in the ideal world. The standard interpretation of “just as well”
is that the translation from the real to the ideal world, usually called a
simulator, is achieved by a probabilistic polynomial-time algorithm. This
means that a polynomial blow-up of the adversary’s time and memory
requirements is considered acceptable.
In certain contexts this interpretation of “just as well” is inadequate,
for example if the concrete amount of memory used by the adversary is
relevant. The example of Ristenpart et al. (Eurocrypt 2011), for which
the original indifferentiability notion introduced by Maurer et al. (Euro-
crypt 2004) is shown to be insufficient, turns out to be exactly of this
type. It requires a fine-grained statement about the adversary’s memory
capacity, calling for a generalized treatment of indifferentiability where
specific resource requirements can be taken into account by modeling
them explicitly.
We provide such treatment and employ the new indifferentiability notion
to prove lower bounds on the memory required by any simulator in a do-
main extension construction of a public random function. In particular,
for simulators without memory, even domain extension by a single bit
turns out to be impossible. Moreover, for the construction of a random
oracle from an ideal compression function, memory roughly linear in the
length of the longest query is required. This also implies the impossibil-
ity of such domain extension in any multi-party setting with potential
individual misbehavior by parties (i.e., no central adversary).

1 Introduction

1.1 Simulation-Based Security

The so-called “real world – ideal world” paradigm is underlying all current cryp-
tographic frameworks aiming for composable security statements. Using the lan-
guage of [MRH04,MR11], the purpose of a protocol is to construct an “ideal”
resource (which is secure by definition) from “real” resources assumed to be
available. The security of such a construction is then argued by showing that if
some misbehaving entity (adversary) deviates from the prescribed protocol in
the real world, it cannot achieve anything more than what would also be possible
in the ideal world. Since the ideal resource is considered secure by definition, any



such action is seen as harmless, thus implying the security of the protocol using
the real resources.

The translation of the adversarial actions from the real world to the ideal
world is described by exhibiting an algorithm performing it, called a simulator.
The above argument for the real construction being as secure as the ideal re-
source is then valid as long as we assume that the adversary can, in addition to
executing its attack, also translate it into the ideal-world setting by performing
the job of the simulator itself. Simulators are typically modeled as probabilistic
polynomial-time (PPT) Turing machines, which implies also polynomial memory
(the range of the tape that can be accessed within this time) and randomness
limitations. This potentially leads to a polynomial blow-up of the attack’s re-
source requirements when translated from the real to the ideal world.

The implicit step of considering this overhead acceptable is hard-coded into
most of the existing frameworks, such as the universal composability [Can01], in-
differentiability [MRH04] and reactive simulatability [BPW04]. It is appropriate
in most natural settings and hence the results in the above-mentioned frame-
works have a wide scope of applicability. However, there are practical settings
where this rough approach is not sufficient and a more fine-grained analysis is
needed. One such scenario was recently exhibited in [RSS11] in the context of
indifferentiability, considering the setting of auditable storage. Before we intro-
duce our contributions, let us briefly review both the indifferentiability notion
and the example from [RSS11].

1.2 The Case of Indifferentiability

Indifferentiability was introduced in [MRH04] as a generalization of indistin-
guishability for settings where some access to the internal state of the considered
resources is available publicly, within reach of any potential attacker. The frame-
work comes with a composition theorem loosely interpreted as saying that an
ideal resource can be replaced by an indifferentiable construction in any context.

The indifferentiability framework found its most important application in
the analysis of hash function constructions [CDMP05]. Many existing crypto-
graphic constructions are proven secure in the random oracle model [BR93], but
once we instantiate the random oracle (RO) by an existing cryptographic hash
function H, such a proof can be seen at most as a heuristic argument towards
the security of the construction [CGH98]. However, if one uses a hash function
construction Hf that was proven indifferentiable from a RO when using an ideal
compression function f , this excludes any possible attacks exploiting the struc-
ture of H and reduces the security of the construction to the security of the
underlying compression function f , a more compact object that is simpler to
analyze. As a consequence, an indifferentiability proof in the setting with an
ideal compression function is generally considered an important argument to-
wards the security of a practical hash function design and many of the SHA-3
candidates (including the winner Keccak [BDPVA08a]) enjoy such a proof (see
e.g. [BDPVA08b,CN08,DRRS09,DRS09,AMP10]).



Storage-Auditing Scenario from [RSS11]. Re-examining the guarantees
provided by indifferentiability, in [RSS11] the authors present an example of a
two-party protocol for storage verification. Its goal is to allow the first party
(the user) to verify that the second party (the server – e.g. a storage service) is
properly storing a certain piece of data that the user has provided earlier. The
protocol is using a hash function and as long as it is modeled as a RO, it is
clearly impossible for a malicious server to pass the verification without actually
storing the user’s data. However, as observed in [RSS11] this is no longer true
if the RO is replaced by a particular iterative construction with an underlying
ideal compression function, even though this construction is known to be indif-
ferentiable from a RO. This puts in question the meaning of an indifferentiability
proof as a security argument relevant in all possible contexts.

The best way to understand this example is to consider in greater detail the
memory requirements of the simulator used in the indifferentiability proof in
question. The simulator is modeled as a PPT algorithm, guaranteeing that the
real implementation is at least as good as the ideal RO as long as the attacker
is capable of performing the tasks modeled by the simulator, in particular has
polynomial amount of memory available. However, this is an unacceptable as-
sumption if we want to investigate whether the server can pass the verification
procedure without allocating all the memory required to store the user’s mes-
sage. As a side contribution, we give a more detailed explanation of this problem
in the full version of our paper.

1.3 Contributions of this Paper

Our contributions are three-fold. First, we introduce a new formalism based on
abstract cryptography (AC, [MR11]), allowing a fine-grained modelling of re-
source requirements, necessary to capture problems such as the one described
above. Second, we apply this new formalism to the problem of domain extension
of public random functions and prove lower bounds on the memory needed by
any simulator in this type of constructions. And finally, we investigate the conse-
quences of these bounds for settings with multiple parties that may potentially
deviate from the prescribed behavior in an uncoordinated manner. We proceed
by a detailed description of all three parts.

Memory-Aware Reducibility. In Section 3 we introduce the notion of memo-
ry-aware reducibility that is derived from reducibility1 in the classical indiffer-
entiability setting as given in [MRH04,MR11], but does not allow the memory
requirements of the simulator to be “swept under the rug”, requiring only that
they are polynomial. In accordance with the spirit of the AC framework that is
used to formalize it, our notion requires any memory necessary for the simulator

1 The term “reducibility” is used in [MRH04] and, for consistency, also throughout
this paper. It is to be understood in the same sense as the term “construction” used
above, but the viewpoint is reversed. To construct S from R means the same as to
reduce (the need for) S to (the need for) R.



to be explicitly modeled as a part of the ideal resource; with the intuitive mean-
ing that the real construction is provably as good as the ideal resource as long
as we assume that the adversary has the necessary amount of memory available.
We also give a composition theorem for our new notion.

An independent approach to analyzing the complexity of the simulator in an
indifferentiability statement appeared recently in [DRST12], where the authors
focus on the number of queries the simulator issues per invocation. To the best of
our knowledge, our work is the first one pointing out the importance of the sim-
ulator’s memory requirements. However, we stress that the applicability of our
approach goes beyond modeling memory, extending also to other resources such
as computational power or randomness, would the investigated setting require it.

Simulator Memory for Domain Extension. In Section 4 we look at the
most important application of indifferentiability: the question of domain exten-
sion for public random functions. More precisely, we consider constructions that
can be used to obtain an arbitrary input-length RO R∗,n : {0, 1}∗ → {0, 1}n
from an ideal compression function Rm,r : {0, 1}m → {0, 1}r in an indifferen-
tiable way, such as the various variants of the Merkle-Damg̊ard construction
proposed in [CDMP05]. We also consider the question of finite domain exten-
sion, i.e., constructing R`,r from Rm,r for ` > m.

The formalism of memory-aware reducibility allows us to investigate the
minimal necessary memory requirements of the simulator for any such domain-
extension construction. We prove two lower bounds on the memory required
by the simulator, with the following consequences (see Section 4 for the precise
bounds):

1. With stateless simulators (i.e., without any memory) even domain extension
by a single bit (i.e., ` = m+ 1) is impossible.

2. For the class of simulators issuing at most one query to the ideal resource per
invocation, any simulator for a domain extension by d bits (i.e., `−m = d)
requires at least d bits of memory.

These bounds hold for both the information-theoretic and the computational set-
ting. They naturally imply analogous impossibility results for constructing an
arbitrary input-length RO, with the obvious transition of ` denoting the length
of the longest query issued to the RO. This answers negatively the open ques-
tion of the existence of such a construction using no simulator memory asked
in [RSS11]. As another consequence, we also obtain the irreducibility of the
RO to the ideal cipher with respect to stateless simulators, in contrast to the
equivalence of these two ideal primitives with respect to classical indifferentia-
bility [CDMP05,CPS08,HKT11].

Random Oracles Used by Multiple Parties.The impossibility results de-
scribed above have some intriguing consequences for the setting where a RO
is being used in a protocol by multiple parties, if we consider that several of
these parties might deviate from the prescribed protocol in a potentially non-
coordinated way (for example due to conflicting goals). According to the AC
framework, a security notion for such a situation has to involve local simulators



for each of the parties that deviate from the protocol. Clearly, if a distinguisher is
allowed to access two such simulators (for two of the parties) in the ideal world,
these have to be essentially stateless as otherwise they would produce incon-
sistent results when brought to different states. On the other hand, our results
described above imply that also for this setting, no stateless simulator can exist.
Hence, roughly speaking, for settings where one cannot assume a central adver-
sary coordinating all the actions of the misbehaving parties, no secure construc-
tion of a RO from an ideal compression function exists. This might be relevant
in the contexts of rational cryptography [HT04], incoercible computation [CG96],
receipt-free voting [BT94] or collusion-free computation [LMs05,AKL+09] and its
recent composable variants [AKMZ12,CV12]. We formalize the above argument
in Section 5 as an illustration of the impact of our results.

2 Preliminaries

Basic Notation.We denote sets by calligraphic letters or capital greek letters
(e.g. X , Σ) and their cardinalities by |X |, |Σ|. For a superset clear from the
context, we denote the complement of a set X by X . Throughout the paper all
logarithms considered are to the base 2. The notation d·e corresponds to the
usual ceiling function.

We denote random variables and concrete values they can take on by upper-
case letters X,Y, . . . and lower-case letters x, y, . . ., respectively. For random
variables U and V with ranges U and V, respectively, we let PU |V be the
corresponding conditional probability distribution, seen as a (partial) function
U × V → [0, 1]. Here the value PU |V (u, v) = P[U = u|V = v] is well defined
for all u ∈ U and v ∈ V such that PV (v) > 0 and undefined otherwise. For
a discrete random variable X with range X we denote by H(X) the Shannon
entropy of X, i.e., H(X) =

∑
x∈X −PX(x) logPX(x) where PX(x) denotes the

probability that X takes on the value x ∈ X . Moreover, we denote by H(Y |X)
the usual notion of conditional entropy of Y given X, satisfying the chain rule
H(Y |X) = H(XY ) −H(X). For a probability p ∈ [0, 1] we also use the notion
of binary entropy denoted h(p) that is defined as the Shannon entropy of the
binary random variable taking on the two possible values with probabilities p
and 1− p.

Resources, Converters and Distinguishers. To formulate our results we
use the language of abstract systems [MR11,Mau11] to which we give here a self-
contained introduction, partly following the exposition given in [MRT12]. At the
highest level of abstraction, a system is an object with interfaces via which it
interacts with its environment (consisting of other systems). Two systems can be
composed by connecting one interface of each system, and the composed object
is again a system. Also, every two different systems are mutually independent.



We consider three distinct types of systems: resources, converters and dis-
tinguishers. Resources2 are denoted by upper-case boldface letters such as S,T.
In this paper we mostly (but not always) consider resources with two interfaces,
hence our exposition here will only cover this case. In the indifferentiability set-
ting these interfaces are referred to as private and public (for reasons explained
below). Examples of resources discussed below are a fixed input-length random
oracle with input length m and output length r denoted Rm,r; an arbitrary
input-length random oracle with output length n denoted R∗,n; and an ideal
block cipher with key length k and block length n denoted Ek,n. Unless indi-
cated otherwise, we see these as 2-interface resources providing access to the
same random function at each interface.

Converters are systems having one inner and one outer interface and are
denoted by small Greek letters such as φ, π, σ. The set of all converters considered
is denoted as Σ. A converter φ can be composed with a resource S by attaching
the inner interface of φ to one of the interfaces of S. For example, if φ is attached

to the private interface of S this can be depicted as φk S . Note that the
composed system is again a 2-interface resource that exposes the outer interface
of φ instead of the interface of S to which φ was connected, together with the
other interface of S.

To describe the composition of resources and converters algebraically, we can
take advantage of the restriction to 2-interface resources: We will understand
the left and the right side of the symbol S as representing the private and the
public interface of the system S, respectively. Hence, attaching a converter π
to the left (private) interface of a resource S results in a resource πS while
attaching a converter σ to the right (public) interface of a resource T results
in a resource Tσ. If two 2-interface resources S and T are used in parallel, this
is denoted as S‖T and is again a 2-interface resource; each of the interfaces of
S‖T allows to access the corresponding interface of both subsystems S and T.
Two converters ψ and φ can also be composed: either sequentially, obtaining a
converter ψ ◦ φ such that (ψ ◦ φ)S = ψ(φS); or in parallel, obtaining ψ|φ such
that (ψ|φ)(S‖T) = (ψS)‖(φT). The application of composed converters to the
public interface works in an analogous way. The term id refers to the “identity
converter” that forwards all inputs and outputs, we always assume id ∈ Σ. For a
2-interface system S we sometimes denote by [S]L(x) (resp. [S]R(x)) its response
to a query x on its left (resp. right) interface.

We instantiate the general concept of abstract systems given above by con-
sidering (probabilistic) systems that communicate by passing messages from dis-
crete sets and within discrete time steps. These can be formalized by the notion
of random systems [Mau02], i.e., conditional distributions of the outputs of the
system (as random variables) given all previous inputs and outputs, where each
input or output is associated to a specific interface. Since being sufficient for our
setting, we restrict our considerations to resources that only produce output in

2 In this paper we sometimes also use the term “resources” in a more informal way
to refer to computational power, memory, etc. This should cause no confusion, since
these resources could also be formalized in the sense of the notion introduced above.
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Fig. 1: The real (left) and the ideal (right) setting considered for reducibility in
the context of indifferentiability.

response to an input and on the same interface where the input was received. For
a converter we assume that it is always invoked by a query at the outer interface,
it then issues zero or more queries to the resource attached to its inner interface
and finally produces an output at the outer interface. Under these assumptions,
the behavior of composed systems is determined in the natural way, with the
parallel composition of two resources defined asynchronously: each input at an
interface of S‖T explicitly specifies one of the subsystems, and this subsystem
is invoked with the input.

A distinguisher D is a system that connects to all interfaces of a resource T
and outputs (at a separate interface) a single bit denoted B. The complete in-
teraction of D and T defines a random experiment and the probability that the
bit B is 1 in this experiment is written as PDT(B = 1). The distinguishing ad-
vantage of D for the systems S and T is then defined as ∆D(S,T) :=

∣∣PDS(B =

1)− PDT(B = 1)
∣∣. We denote by D the set of all distinguishers considered and

define ∆D(S,T) := supD∈D∆
D(S,T).

Classical (weak) Indifferentiability. In the classical indifferentiability de-
fined in [MRH04] one restricts only to resources having two interfaces. The first
one, referred to as private, is meant to model the access to the resource by all
honest parties. On the other hand, the second interface is called public and is
present to model the adversarial access to the internal state of the resource.

Let S and T be such 2-interface resources. For given sets Σ and D of con-
verters and distinguishers, respectively, we define T being ε-reducible to S in the
sense of weak indifferentiability (denoted S

ε−→
wi

T) as

S
ε−→
wi

T :⇔ (∃π ∈ Σ)(∀D ∈ D)(∃σ ∈ Σ) : ∆D(πS,Tσ) ≤ ε

and refer to the converters π and σ as the protocol and the simulator, respec-
tively. Usually we call S the real and T the ideal resource; hence also the random
experiment of D interacting with πS (resp. Tσ) is called the real (resp. ideal)
experiment. The two settings distinguished are depicted in Fig. 1.

Note that by choosing the sets Σ and D, this definition covers both infor-
mation-theoretic and computational indifferentiability; moreover, one could also
easily derive an asymptotic definition. These remarks are also true for all other
reducibility notions presented below.

Strong Indifferentiability. For given sets Σ and D we define T being ε-
reducible to S in the sense of strong indifferentiability (denoted S

ε−→
si

T) as

S
ε−→
si

T :⇔ (∃π, σ ∈ Σ)(∀D ∈ D) : ∆D(πS,Tσ) ≤ ε.

Clearly reducibility under strong indifferentiability implies reducibility under
the weak one and moreover, positive indifferentiability results (such as those



in [CDMP05] showing security of MD-variants) typically prove this stronger
type of statement by exhibiting a simulator that does not depend on the dis-
tinguisher. A detailed discussion of the relationship between these two forms of
simulatability in various formalisms can be found in [HU05,Can01], here we only
remark that both notions are composable in the spirit of Theorem 1 (see below).

function chop-MDf (m)
m′ ← Pad(m)

parse m′ as m1‖ · · · ‖mb for mi ∈ {0, 1}d
y0 ← 0r (or any fixed initialization vector)
for i = 1 to b do yi ← f(mi‖yi−1)
return first r/2 bits of yb

Domain Extension for
Hash Functions. Finally,
we briefly introduce the do-
main extension construction
chop-MD from [CDMP05]
that will serve us as a use-
ful example throughout the
paper. Let f : {0, 1}r+d → {0, 1}r be a compression function. The function
chop-MDf : {0, 1}∗ → {0, 1}r/2 is as defined in the box above. The role of the
function Pad is to append the length of the message and a padding in a decodable
way to obtain m′ with length being a multiple of d bits. It will not be relevant
for our discussion.

3 Memory-Aware Reducibility

Stateless simulators.To formally define memory-aware reducibility, we need
to consider the class of stateless converters in the following sense. A stateless
converter uses no memory between answering outer queries, i.e., its behavior for
a particular query depends only on the query itself and the ongoing interaction
at the inner interface, not on previous outer queries and the transcript of the
interaction during their evaluation. However, it might of course be randomized,
using fresh randomness at every invocation. This is captured by the following
formal definition.

Definition 1. A converter φ is stateless if there exists a sequence of conditional
probability distributions pφIXj+1|X1...XjY1...YjQ

for j ≥ 0 such that whenever φ

received a query q at the outer interface and has then issued the sequence of
queries x1, . . . , xj to the inner interface, obtaining responses y1, . . . , yj, then

pφIXj+1|X1...XjY1...YjQ
(i, xj+1, x1, . . . , xj , y1, . . . , yj , q) determines the probability

that its next action will be to output the value xj+1 at interface i ∈ {inner, outer}.
For a set of converters Σ we denote by Σsl the set of all stateless converters
from Σ.

For example, the converter accessing an ideal compression function and realizing
a Merkle-Damg̊ard construction on top of it would be stateless according to the
above definition.

Quantifying the Memory Requirements of the Simulator.Let Ms de-
note a resource that provides a dummy private interface and at the public (ad-
versarial) interface, it provides the functionality of s-bit memory, i.e., allows ef-
ficient storage and retrieval of arbitrary information such that its size is in every



point in time upper-bounded by s bits. To quantify the memory requirements of
the simulator in a reducibility statement we shall require it to be stateless and
only use the memory provided by the ideal resource, leading to the following
formalism (broadly denoted as memory-aware reducibility).

Definition 2. For given sets Σ and D of converters and distinguishers, respec-
tively, we define T being ε-reducible to S in the presence of s bits of adversarial
memory (denoted S

ε,s−−→
m

T) as

S
ε,s−−→
m

T :⇔ (∃π ∈ Σ)(∀D ∈ D)(∃σ ∈ Σsl) : ∆D(πS, [T||Ms]σ) ≤ ε.

Informally speaking, the statement S
ε,s−−→
m

T indicates that T can be con-
structed securely from S within error ε in an environment where the adversary
has s bits of memory available. In other words, whatever the adversary can
achieve in the real world he could also achieve in the ideal world, but it might
need up to s more bits of memory to do so. Evaluating whether this is acceptable
depends on the context in which we want to use S instead of T.

As before, by specifying the sets of converters and distinguishers to be consid-
ered, this definition covers both computational and information-theoretic memo-
ry-aware reducibility; moreover, the transition to an asymptotic definition would
be straightforward. Alongside the notion of reducibility, one could also explicitly
define the underlying notion of memory-aware indifferentiability that would only
consider the trivial protocol π = id, leading to the same relationship between in-
differentiability and the respective reducibility as in the classical case [MRH04].
Since our results make use of the reducibility notion, we omit this step.

In case of no memory (i.e., s = 0) the notion of memory-aware reducibility
S
ε,0−−→
m

T collapses to the notion of reducibility with stateless simulators. If we
refer to this situation, we usually omit the 0 and simply write S

ε−→
m

T. In this
special case, the underlying indifferentiability notion is technically equivalent to
the notion of reset indifferentiability introduced in [RSS11]: First, if the simula-
tor is stateless, then it can be used also in the scenario with resets with the same
outcome. On the other hand, any simulator that satisfies the requirements of re-
set indifferentiability must be able to simulate successfully even in presence of an
adversary that resets it before every query, hence there also exists an equivalent
stateless simulator. However, our motivation to introduce stateless simulators is
completely different. We do not put them forward to define a security notion
by themselves, but only as a tool for modeling the memory requirements of the
simulator explicitly.

Composability.The formalism of memory-aware reducibility given above leads
to statements that are composable under some natural closure assumptions on
the sets Σ and D of converters and distinguishers considered. Here we only state
the respective composition theorem informally.

Theorem 1 (Informal). Let Σ be closed under both sequential composition
◦ and parallel composition | and let D be closed under the emulation of any
converter and of any resource. Let S, T and V be resources such that S

ε1,s1−−−→
m

T
and T

ε2,s2−−−→
m

V. Then we have:



1. For any resource U, S‖U ε1,s1−−−→
m

T‖U and U‖S ε1,s1−−−→
m

U‖T,

2. S
ε1+ε2,s1+s2−−−−−−−−→

m
V.

4 Lower Bounds on Simulator Memory for Any
Domain-Extending Construction

We now investigate the amount of memory that we must assume to be available
to the adversary in order to be able to conclude the security of classical domain
extension constructions for hash functions.

4.1 Fixed Input-Length Random Oracles

The following theorem upper-bounds the achievable domain extension for fixed
input-length random oracles, given a bound on the memory available to the
simulator. In particular, it implies that without simulator memory, even domain
extension by a single bit becomes impossible, thus solving an open problem
introduced in [RSS11].

Theorem 2. Assume that for any π ∈ Σ, the distinguisher D constructed from
π according to Fig. 2 is present in D. Then any reduction Rm,r ε,s−−→

m
R`,r with3

r ≥ 2 and ε ≤ 0.04 satisfies4

`−m ≤ s+ dlog(min{s, t})e (1)

where t ≥ 1 denotes an upper bound on the number of queries the simulator
issues to the ideal primitive R`,r to answer a single query.

Proof. Recalling Def. 2, let us denote by π the protocol performing the reduction
from the statement and let us consider a distinguisher D interacting with either
πRm,r or [R`,r‖Ms]σ, where σ is the stateless simulator corresponding to D.

Proof Overview. We only consider the trivial distinguisher D given in Fig. 2
that chooses a random input X ∈ {0, 1}` and then evaluates the {0, 1}`-domain
function on the input X in two different ways. First it queries the private (left)
interface for the whole input X; second it simulates the protocol π on X on its
own and uses the public (right) interface to answer the {0, 1}m-queries issued
by π. Moreover, it never repeats a query to the right interface: in case the
simulated protocol π would issue a repeated query, it is answered as before. We
will refer to this modified (simulated) protocol π as π′; note that D is capable
of this modification since it can keep the history of query-answer pairs in its
state. Finally, D outputs 1 if and only if the two values obtained from these
evaluations are equal. The distinguisher D participating in both the real and
the ideal setting is depicted in Fig. 3. Note that it is natural to expect that this
simple distinguisher D is present in any reasonable distinguisher class.



Distinguisher D(S): where S ∈
{
πRm,r, [R`,r‖Ms]σ

}
1: X

$← {0, 1}`
2: query Y := [S]L(X)
3: simulate π to evaluate Ŷ := π(X)

answer new inner queries by querying [S]R
answer repeated inner queries consistently

4: if Y = Ŷ then
5: return 1
6: return 0

Fig. 2: The distinguisher D for the proof of Theorem 2.

Rm,rπ

D
π′

m→r

`→r m→r

`→r `→r

B ∈ {0, 1}

R`,r

Ms

σ

D
π′

`→r

(?)

`→r m→r(??)

`→r `→r

B ∈ {0, 1}

Fig. 3: The real and the ideal setting for the proof of Theorem 2. The notation
i→ o describes an interface that accepts queries from {0, 1}i and responds with
elements from {0, 1}o.

Clearly if D interacts with πRm,r it always outputs 1. It remains to analyze
the probability of D outputting 1 when interacting with [R`,r‖Ms]σ. To this
end, we consider the ideal setting depicted on the right-hand side of Fig. 3 and
upper-bound the probability that the output of the protocol π′ simulated by
D will be the correct value R`,r(X). Informally speaking, we do this by upper-
bounding the amount of useful information that π′ can obtain about the actual
values of R`,r and show that it is not enough to recover R`,r(X) with sufficient
probability.

We use two separate approaches to bound this amount, each proving the
above claim for one of the values in the minimum term in (1). In the first
approach, we upper-bound the number of distinct queries the simulator σ is able

3 The bound degrades gracefully for smaller r and bigger ε. In particular, for the
same ε and r = 1 with no memory (s = 0) domain extension by a single bit is still
impossible.

4 To avoid handling the special case s = 0 separately we use the notational convention
log 0 = 0 throughout this section.



to issue to R`,r in any of its possible configurations (determined by the query
it is answering and the state of its memory), thus using the channel denoted
(?) in Fig. 3 as the “bottle-neck” to be considered. On the other hand, in the
second approach we upper-bound the information provided by σ to π′, this time
the channel (??) acting as the “bottle-neck”. We now give the details of both
approaches.

First approach: the channel (?). To capture the randomness involved in
the ideal distinguishing experiment, we denote by Rw the (fresh, independent)
internal randomness used by σ when it is answering an outer query w ∈ {0, 1}m
for the first time5 and let Rσ := {Rw}w∈{0,1}m . Moreover, let RR denote the

overall randomness of the ideal resource R`,r, i.e., its function table. For a fixed
randomness Rσ = rσ and RR = rR where rσ = {rw}w∈{0,1}m , let us denote

by f(w, z, rw, rR) ⊆ {0, 1}` the set of all queries that the (stateless) simulator
σ issues to the random oracle R`,r while evaluating an outer query w with the
available memory Ms containing value z ∈ {0, 1}s, using randomness rw while
the responses from R`,r are determined by rR. Since the random variables Rw
and RR represent the only sources of randomness in this evaluation, f is a well-
defined deterministic mapping and by our assumption |f(w, z, rw, rR)| ≤ t for
all possible inputs. Let us define Srσ,rR to be the set of all possible queries under
all inputs (w, z) for this fixed randomness (rσ, rR), i.e.,

Srσ,rR :=
⋃

w∈{0,1}m
z∈{0,1}s

f(w, z, rw, rR),

then we have |Srσ,rR | ≤ 2m+s+log t for any (rσ, rR). Since X ∈ {0, 1}` was cho-
sen at random and independently from SRσ,RR

, we obtain P(X ∈ SRσ,RR
) ≤

2m+s+log t/2` = 2m+s+log t−`. Hence, if ` − m > s + dlog te then X 6∈ SRσ,RR

with probability at least 1/2. However, if X 6∈ SRσ,RR
then π′ has no infor-

mation about R`,r(X) and hence can only guess it successfully with negligible
probability. Therefore, any proper simulation requires `−m ≤ s+ dlog te.
Second approach: the channel (??). In this case, let us denote by σz(w)
the response of σ to a query w ∈ {0, 1}m with the available memory set to the
value z ∈ {0, 1}s and let us denote by Z ′(w, z) ∈ {0, 1}s the new contents of the
memory after this invocation of σ. Note that since σ is stateless, both σz(w) and
Z ′(w, z) are random variables fully determined by the function table of R`,r and
the internal randomness of σ used during this invocation. We can now define T
to be the table containing a sample of σz(w) and Z ′(w, z) for all possible w and
z, formally T := {(σz(w), Z ′(w, z))}(w,z)∈{0,1}m×{0,1}s . Then T can be seen as

a random variable distributed over {0, 1}(r+s)·2m+s

and is again determined by
the function table of R`,r and the randomness used by σ.

5 Formally, one can imagine σ being replaced by a stateful simulator that chooses all
random variables Rw at the beginning and then uses it when the query w arrives for
the first time. This view does not change the outcomes of the experiment.



We now consider a different protocol ρ instead of π′ which we allow to be
stateful, but we only provide it with access to T , not σ (which we denote by
ρT ). We claim that the probability of the best such ρ in reconstructing R`,r(X)
given access to T is not smaller than the same probability for π′ given access to
the right interface of [R`,r‖Ms]σ, i.e., we have

max
ρ

P[ρT (X) = R`,r(X)] ≥ P
[
[[R`,r‖Ms]σπ

′]R(X) = R`,r(X)
]
. (2)

This is because one possible ρ to be considered on the left side of (2) is the
following: it simulates π′ and answers each of its queries to σ using the respective
value from T instead (recall that π′ asks each query at most once). It also keeps
track of the memory contents in its own state, updating it after each answered
query according to the value given in T . This ρ clearly achieves equality in (2).

Now, since any ρ as described above only has access to T , we can use a corol-
lary of the well-known Fano’s inequality [Fan61] to upper-bound the probability
of ρ successfully reconstructing R`,r(X) based on T . To simplify the notation,
we shall denote by F the whole function table of R`,r seen as a random variable

(uniformly distributed over {0, 1}r2`). The value X is chosen independently at
random, hence we can lower-bound the probability p̄e of error in a randomly
chosen bit of R`,r(X) as follows:

h(p̄e) ≥
1

r2`
H(F |T ) =

1

r2`
(H(FT )−H(T )) ≥ 1

r2`
(H(F )−H(T ))

≥ 1

r2`
(
r2` − (r + s)2m+s

)
= 1− 2m+s−` −

(s
r

)
2m+s−`.

The first inequality follows from Fano’s inequality, see e.g. [CK11, Corollary 3.8]
or the full version of this paper. Now if ` − m > s + dlog se then since m, s, `
are integers we get 2m+s−` ≤ 1/2 and (s/r) · 2m+s−` ≤ 1/2r, hence h(p̄e) ≥
1/2− 1/2r, resulting in p̄e ≥ 0.04 for r ≥ 2. Therefore any simulator successful
beyond 96% has to satisfy `−m ≤ s+ dlog se as desired. ut

Before we apply our result also to other contexts, note that our argument
above is completely information-theoretic and hence the bound applies to both
information-theoretic and computational memory-aware reducibility.

4.2 Arbitrary Input-Length Random Oracles

Seen from a different perspective, the above theorem also imposes a lower bound
on the required simulator memory for any reduction of an arbitrary input-length
random oracle to a fixed input-length random oracle (i.e., an ideal compression
function) as a function of the lengths of hashed messages.

In the statement below we shall again consider the distinguisher given in
Fig. 2, this time for the setting of the reduction Rm,r ε,s−−→

m
R∗,r. To emphasize

that it chooses the value X from the set {0, 1}` ⊆ {0, 1}∗, we shall denote it D`,
note that it again implicitly depends on a protocol π. One could give a similar
statement also for a distinguisher asking several private queries and using the
public interface to evaluate the protocol π on the longest one.



Corollary 1. If for every π ∈ Σ the distinguisher D` described above is present
in D then any reduction Rm,r ε,s−−→

m
R∗,r with r ≥ 2 and ε ≤ 0.04 satisfies

s ≥ `−m− dlog(min{s, t})e

where t ≥ 1 denotes an upper bound on the number of queries the simulator itself
issues to the ideal primitive to answer a single query. For the more general case
Rm,r ε,s−−→

m
R∗,n we still have s ≥ `−m− dlog te under the same assumptions.

The proof is analogous to the proof of Theorem 2 and we omit it. To illustrate
the meaning of the above statement, let us consider the domain extension con-
struction chop-MD described in Section 2. The simulator presented in [CDMP05]
to show its indifferentiability from a random oracle would use (without optimiza-
tions) roughly (1 + r/m) · ` bits of memory to answer all queries of the distin-
guisher D` considered in Corollary 1, while always asking at most one query to
the ideal primitive to answer a single query itself. Our result implies that for
any indifferentiable domain extension construction, if the respective simulator is
of this single-query form then it needs at least `−m bits of memory. Since typ-
ically `� m, this implies that the simulator given in [CDMP05] has essentially
optimal memory requirements within this class (i.e., linear in `).

4.3 Random Oracle vs. Ideal Cipher

Our proof of Theorem 2 relies on information-theoretic arguments that remain
valid also after introducing additional permutation structure into the real re-
source. Hence, as a side result, we also obtain the impossibility of reducing an
arbitrary input-length random oracle to an ideal cipher with respect to state-
less simulators. This is in contrast to the results of [CDMP05] that demonstrate
the possibility of such reduction with respect to stateful simulators. The proof
of the following corollary uses the same arguments as part (??) in the proof of
Theorem 2 and is hence omitted.

Corollary 2. If for every π ∈ Σ and for ` = k + n + dlog(n/r)e + 2 the dis-
tinguisher D` considered in Corollary 1 is present in D, then any reduction
Ek,n ε−→

m
R∗,r has to satisfy ε ≥ 0.1.

5 Domain Extension is Impossible in a General
Multi-Party Setting

As a particular application of our results, in this section we present some interest-
ing consequences of the lower bound on simulator memory for domain extension
of public random functions established in the previous section.

The approach taken in any indifferentiability analysis is to model the system
in question as having two interfaces: the private one and the public one, as de-
scribed in Section 2. However, we often consider the constructed primitives to
be used in an environment or protocol involving multiple parties. For example, a



random oracle is typically understood to be available to all entities participating
in a protocol (or possibly many concurrent protocols) that use it. The generic
translation of an indifferentiability result into a security guarantee for such a set-
ting is then tacitly assumed. Namely, we view all the honest parties as accessing
identical copies of the private interface of the real primitive, each party running
a local copy of the protocol π realizing the reduction. On the other hand, all the
misbehaving parties are allowed to access the internals of the construction via
identical copies of the public interface.

This implicit reasoning step imposes some requirements on the reduction
used. For example, when constructing a random oracle from an ideal compression
function, all honest parties should use the same protocol π and moreover, it
should be stateless in the sense of Definition 1. This is intuitively easy to see,
since an inherently stateful protocol could lead to inconsistent behavior observed
by different honest parties. In the ideal world the resource (a random oracle) is
stateful, with the state (its function table) accessible to all honest parties. If in
the real world a part of this state was stored by the protocol, different parties
running different instances of the protocol could obtain different function values
for the same query. Naturally, typical protocols constructing a random oracle
from an ideal compression function such as the variants of the Merkle-Damg̊ard
construction proposed in [CDMP05] are indeed designed to be stateless.

It turns out that for a generic transition from an indifferentiability statement
to a security guarantee in a setting with multiple parties, using a stateless proto-
col is in general by itself not sufficient. However, before we can formally approach
this question, we first have to describe how we formulate security requirements
in the multi-party setting. For this task we use the approach of abstract cryp-
tography (AC) of Maurer and Renner.

AC Reducibility.Here we only give a very brief introduction to the AC frame-
work required for our exposition, further details and the justification of the
framework are given in [MR11]. The framework introduces a strong notion of
isomorphism given at a very abstract level that, when applied to the particular
setting of abstract systems, gives rise to the security notion described below.
Its main technical difference compared to other simulation-based security defi-
nitions (e.g. [Can01,BPW04]) relevant for our discussion is that it requires the
existence of a local simulator for each of the parties.

From now on, we will be discussing more general resources having n interfaces
labeled 1, . . . , n, hence we also have to extend our notation. If φ̂ = (φ1, . . . , φn)

is an n-tuple of converters and S is an n-interface resource, we write φ̂S to
denote the resource S with the converter φi applied to its i-th interface for
all i ∈ {1, . . . , n}. For a subset P ⊆ {1, . . . , n} and an n-tuple of converters

φ̂ = (φ1, . . . , φn) let us denote by φ̂P the n-tuple of converters that is obtained

from φ̂ by replacing all converters on positions not in P by the identity converter
id. Hence, for two n-interface resources S and T, the notation π̂PS below denotes
the system S with a protocol from π̂ connected to every interface in P while σ̂PT
denotes T with a simulator from σ̂ connected to every interface not in P.



Let S and T be n-interface resources. For some understood Σ and D, we say
that T is ε-reducible to S in the sense of AC (denoted S

ε−−→
AC

T) if there exist
two n-tuples of converters π̂ = (π1, . . . , πn) and σ̂ = (σ1, . . . , σn) such that for
every subset P of indices {1, . . . , n} and every distinguisher D ∈ D we have
∆D(π̂PS, σ̂PT) ≤ ε, i.e.:

S
ε−−→

AC
T :⇔ (∃π̂, σ̂ ∈ Σn)(∀P ⊆ {1, . . . , n})(∀D ∈ D) : ∆D(π̂PS, σ̂PT) ≤ ε.

(3)

For a 1-interface resource S, let us denote by Ŝn the n-interface resource that
provides access to the same internal copy of S on each of its interfaces (including
the same randomness). For P ⊆ {1, . . . , n} and a distinguisher D from the class
D let ProjP(D) denote a new distinguisher for the 2-interface indifferentiability
setting that works exactly as D does but asks all D’s queries to interfaces in
P at the private interface instead and all D’s queries to interfaces in P at the
public interface instead. Moreover, let ProjP(D) := {ProjP(D) | D ∈ D}.
Generic Transition to n-Party Setting. Now we are ready to state a
theorem that formalizes the above-mentioned generic transition from any indif-
ferentiability statement to a more meaningful statement in the multi-party AC
setting: it turns out that using stateless protocols and simulators is sufficient.
Since the isomorphism notion introduced in the AC framework requires us to
make statements where the simulators are chosen independently of the distin-
guisher (such as in (3)), to relate indifferentiability to AC we make use of its
strong version described in Section 2. The proof of Theorem 3 is deferred to the
full version of our paper.

Theorem 3. Let S, T be 1-interface resources and let n ∈ N. If Ŝ2
ε−→
si

T̂2 for
a class of converters Σ and distinguishers D, and both the protocol π and the
simulator σ used in this reduction are stateless, then we have Ŝn

ε−−→
AC

T̂n for the
class of converters Σ and any class of distinguishers D′ such that ProjP(D′) ⊆ D
for all P ⊆ {1, . . . , n}.

Impossibility of Domain Extension. Let us now consider the specific case
of the domain extension for random functions in the n-party case6 (i.e., the

reduction R̂m,r
n

ε−−→
AC

R̂`,r
n with ` > m). In this case using inherently stateful sim-

ulators σi would also lead to inconsistencies, for the same reason as described
for the protocols πi. Note that we cannot claim that such a reduction cannot be
achieved using a stateful simulator, since its stateful behavior might not manifest
in the distinguishing experiment. However, any such stateful simulator could be
replaced by a stateless one without significant impact, as formalized in Lemma 1
below (its proof is deferred to the full version). Later we observe that the simu-
lators cannot be stateless (for the same reason as in the indifferentiability case),
leading to the impossibility result.

6 In the rest of the section we will use symbols such as Rm,r to refer to the single-
interface resource and use the introduced notation to explicitly state the number of
interfaces we want to consider (e.g., R̂m,r

n ).



For the statement of Lemma 1, we will assume that the set of distinguishers
D satisfies a simple closure property. For any D ∈ D asking queries only to
interfaces 1 and 2, let D(i) denote a distinguisher that proceeds the same way
as D but when it asks its i-th query to interface 2, it asks the same query also
to interface 3. At the end, D(i) determines its output bit solely on whether the
response to its i-th query to interface 2 was consistent with the response to the
same query to interface 3. We assume D(i) ∈ D for all D ∈ D and all 1 ≤ i ≤ q
where q is an upper bound on the number of D’s queries to interface 2.

Lemma 1. Consider some fixed n ≥ 3, ` > m and some fixed sets of converters
Σ and distinguishers D satisfying the property given above. Assume that there
exists a reduction R̂m,r

n
ε−−→

AC
R̂`,r
n via a tuple of protocols π̂ = (π1, . . . , πn) and

simulators σ̂ = (σ1, . . . , σn). Then there also exists a tuple of simulators σ̂′ =
(σ1, σ

′
2, σ3, . . . , σn) such that σ′2 is stateless and for every distinguisher D ∈ D

accessing only interfaces 1 and 2 we have ∆D(π̂{1}R̂
m,r
n , σ̂′

{1}
R̂`,r
n ) ≤ (q + 1)ε

where q is an upper bound on the number of its queries to interface 2.

Let us now denote by D̂ the distinguisher given in Fig. 2 (implicitly parametri-
zed by a converter π ∈ Σ) modified into the n-interface setting as follows: it
uses interface 1 for all its (originally) private-interface queries, while using inter-

face 2 for all public-interface queries. If D̂ ∈ D then the upper bound given in

Lemma 1 applies to ∆D̂(π̂{1}R̂
m,r
n , σ̂′

{1}
R̂`,r
n ). On the other hand, since ` > m

and σ′2 uses no memory, following the proof of Theorem 2 we also get that

∆D̂(π̂{1}R̂
m,r
n , σ̂′

{1}
R̂`,r
n ) > 0.04. Combining these observations we get the fol-

lowing corollary.

Corollary 3. Consider some fixed n ≥ 3, r ≥ 2, ` > m and sets of converters Σ
and distinguishers D satisfying the properties required in Lemma 1 and addition-
ally such that for each π ∈ Σ the respective D̂ is in D. If there exists a reduction
R̂m,r
n

ε−−→
AC

R̂`,r
n via a tuple of protocols π̂ = (π1, . . . , πn) then ε > 0.04/(p + 1)

where p is an upper bound on the number of {0, 1}m-queries the protocol π1 used
for this reduction needs to evaluate on one {0, 1}`-input.

Hence by the above result it is impossible to extend the domain of a public
random function even by a single bit in a multi-party environment where the
parties must be modeled as possibly having conflicting goals or deviating from
the protocol in an uncoordinated manner (or, technically speaking, in any sce-
nario where a proper modeling requires the use of local simulators). The above
result extends trivally also to the case of infinite domain extension, i.e., the con-
struction of a public random oracle from an ideal compression function. This is in
contrast to the two-party indifferentiability setting (with several constructions
that achieve this transformation) where one implicitly makes the assumption
that all dishonest parties are coordinated by a hypothetical central adversary.
This seems to be a very strong assumption in particular for random oracles that
are typically thought of as being used by many different parties in many differ-
ent applications. Of course, a particular use of a construction proven secure in



the 2-party scenario within a multi-party setting as discussed above might still
be secure under some additional assumptions, however our result indicates that
such use should always be explicitly justified.

6 Conclusions

We have introduced a general way of treating simulation-based security in situa-
tions where a more fine-grained quantification of a certain resource is necessary.
Focusing on indifferentiability as the security notion in question and memory
as the resource, this also allowed us to explain from a different perspective the
unexpected security failure of the protocol given in [RSS11] when used with the
construction chop-MD.

We proceeded by giving lower bounds on the required simulator memory for
any reduction of a public random oracle to a public random function, showing
that memory roughly linear in the length of the longest query is necessary, and
that with no memory even domain extension by a single bit becomes impossible.

Finally, we applied our result to the setting where the random oracle is used
by multiple parties with no central adversary to coordinate potential misbehav-
ior. We showed that special care must be taken in such settings when replacing
the random oracle by a construction using an ideal compression function, since
no construction secure in every such setting exists.
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