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Abstract. Verification of a polynomial’s evaluation in a secret committed value
plays a role in cryptographic applications such as non-membership or member-
ship proofs. We construct a novel special honest verifier zero-knowledge argu-
ment for correct polynomial evaluation. The argument has logarithmic commu-
nication cost in the degree of the polynomial, which is a significant improvement
over the state of the art with cubic root complexity at best. The argument is rel-
atively efficient to generate and very fast to verify compared to previous work.
The argument has a simple public-coin 3-move structure and only relies on the
discrete logarithm assumption.
The polynomial evaluation argument can be used as a building block to construct
zero-knowledge membership and non-membership arguments with communica-
tion that is logarithmic in the size of the blacklist. Non-membership proofs can be
used to design anonymous blacklisting schemes allowing online services to block
misbehaving users without learning the identity of the user. They also allow the
blocking of single users of anonymization networks without blocking the whole
network.

Keywords: Zero-knowledge argument, discrete logarithm, polynomial evalua-
tion, anonymous blacklisting, membership and non-membership proofs.

1 Introduction

In many cryptographic applications a party wants to prove possession of a secret value
u that fulfills a certain property. Since polynomials are widely used a natural question is
for instance given a polynomial P (X) and a value v whether the secret value u satisfies
P (u) = v in a prime order field Zp.

We propose a special honest verifier zero-knowledge argument of knowledge for
two committed values u, v satisfying P (u) = v for a given polynomial P (X) of degree
D. The argument has the following properties:

– It is based on the discrete logarithm assumption in a prime order group
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– It has a standard 3-round public coin structure and a common reference string with
just a few group elements

– Communication grows logarithmically in the degree of the polynomial
– Both the prover and the verifier are computationally efficient
– We have a working implementation, which gives us real life performance data

As a concrete application of our polynomial evaluation argument we will look at
blacklisting anonymous users, which is a notoriously difficult cryptographic problem.
Anonymizing networks such as Tor [35] allow a user to hide her IP address and are
used by a number of groups including undercover police agents, abuse victims and
citizens living under dictatorships. During the Arab Spring for instance the Tor network
experienced a spike in users from Libya and Egypt [13]. However, anonymous access to
services can also lead to abuse. Wikipedia for instance allows anonymous postings, but
blocks the IP address of misbehaving users. This crude solution means that if one user
of Tor abuses Wikipedia, all users whose traffic comes out of the same Tor relay with
this IP-address are blocked. So one misbehaving user causes many innocent users to be
punished. Johnson et al. [20] suggested the Nymble system to deal with this problem. In
this alternative solution IP-addresses are not blocked but instead each user anonymously
proves that she has not been blacklisted. Using the polynomial evaluation argument we
construct a non-membership proof, which enables a user to efficiently prove that she
has not been blacklisted.

We can also use our polynomial evaluation argument to construct efficient member-
ship proofs. Membership proofs are useful when operating a whitelist access control
system, or in applications such as e-voting or e-auctions where users want to prove that
their votes are valid or their bids belong to a set of approved values.

1.1 Our Contribution

Our main contribution is an efficient special honest verifier zero-knowledge argument of
knowledge for two secret committed values u, v ∈ Zp satisfying P (u) = v for a given
polynomial P (X) ∈ Zp[X], where p is a prime. We work over an order p group G and
use the Pedersen commitment scheme, i.e., a commitment to u is of the form guhr for
some r ∈ Zp. Given the coefficients of the polynomial P (X) =

∑D
i=0 aiX

i and two
Pedersen commitments our zero-knowledge argument can demonstrate knowledge of
openings of the commitments to values u and v such that P (u) = v.

Our polynomial evaluation argument is highly efficient. The communication com-
plexity is O(logD) group and field elements, which is very small compared to the
statement size ofD field elements. The prover computesO(logD) exponentiations and
O(D logD) multiplications in Zp, and the verifier calculatesO(logD) exponentiations
and O(D) multiplications in Zp. The constants in the expressions are small and the ar-
gument very efficient in practice as illustrated by a concrete implementation. We refer
to Sections 3 and 5 for further details on the efficiency and a comparison with previous
solutions.

The argument has a simple 3-move public coin structure: the prover sends a mes-
sage, the verifier picks a challenge uniformly at random from Zp, and the prover an-
swers the challenge. It has perfect completeness, perfect special honest verifier zero-



knowledge1, and computational soundness, which is based on the discrete logarithm
assumption in G.

The discrete logarithm assumption is one of the most fundamental and well-studied
cryptographic assumptions. There are several types of prime order groups where the
discrete logarithm assumption is believed to hold, for instance an order p subgroup of
Z∗q where q is a large prime, or a group of points on an elliptic curve. There are examples
of elliptic curve groups where group elements are roughly |p| bits and the best known
attacks have a complexity ofΩ(

√
p) group operations. In such groups a communication

complexity of O(k log k) bits suffices to get a security level of 2−k when D = poly(k)
and |p| = O(k).2

Based on the polynomial evaluation argument we then construct zero-knowledge ar-
guments for membership and non-membership with logarithmic communication com-
plexity. More precisely, given a Pedersen commitment c and a list of values L =
{λ1, . . . , λD} we give a zero-knowledge argument of knowledge that c is a commit-
ment to u ∈ L in the case of a membership proof or u /∈ L in the case of a non-
membership proof. Following Brands et al. [4] we do this by computing the polynomial
P (X) =

∏D
i=1(X − λi) and demonstrating P (u) = 0 in the case of a membership

proof or P (u) 6= 0 in the case of a non-membership proof. With our polynomial eval-
uation argument this requires only O(logD) communication, which is much smaller
than the size of the list.

1.2 Related Work

Polynomial Evaluation Arguments. Given two committed values u, v we give a zero-
knowledge argument that P (u) = v for a public polynomial P (X) of degree D. Kil-
ian [21] gave a communication efficient argument for circuit satisfiability and several
other general purpose zero-knowledge arguments for NP-languages exist. However,
since they are not tailored for the discrete logarithm setting using them would require a
costly NP-reduction.

In the prime order group setting there are already several general zero-knowledge
techniques for the satisfiability of arithmetic circuits that can demonstrate the correct-
ness of a polynomial evaluation. Using Cramer and Damgård [11] we would get a linear
communication complexity for this problem and using Groth [15] we would get a com-
munication complexity of O(

√
D) group elements. Using stronger assumptions and a

pairing-based argument by Groth [16] we could reduce this further to a communication
complexity of O(D

1
3 ) group elements.

1 Standard techniques can be used to make the argument fully zero-knowledge against malicious
adversaries at a negligible cost of a few extra group elements in the common reference string
as described in Section 2.2. There is therefore no loss of generality in considering just the
special honest verifier zero-knowledge case.

2 It is uncommon to have zero-knowledge arguments for large statements where an asymptotic
communication complexity of O(k log k) suffices for a security level of 2−k. Hash-trees and
cut-and-choose techniques give a communication complexity of Ω(k2) for instance and RSA-
type assumptions require group elements to be k3−o(1) bits to guard against factorization with
the general number field sieve.



Fujisaki and Okamoto [14] looked at the specific problem of polynomial evaluation
in an RSA-based context but their zero-knowledge argument has linear complexity. The
most efficient zero-knowledge argument for correct polynomial evaluation stems from
Brands et al. [4], which has a communication complexity of O(

√
D) group elements

and is based on the discrete logarithm assumption just like our argument.

Membership Proofs and Non-membership Proofs. Proofs for set membership and non-
membership for a committed u ∈ L or u /∈ L where L = {λ1, . . . , λD} have been
studied in their own right. The most straightforward approach is to prove in a one by
one manner the conjunction λ1 6= u ∧ . . . ∧ λD 6= u in the case of non-membership or
the disjunction λ1 = u ∨ . . . ∨ λD = u in the case of membership. In the context of
revoking members of group signature schemes Bresson and Stern [5] proposed such a
solution based on the strong RSA assumption. Peng and Bao [32] gave a general dis-
crete logarithm based zero-knowledge arguments of non-membership with linear com-
plexity. Brands et al. [4] improved the communication complexity to O(

√
D) group

elements and later Peng [31] gave a solution for a non-membership proof with the same
complexity using techniques similar to Brands et al. [4].

Accumulators [2, 9, 37, 29, 8, 38] provide another mechanism for giving member-
ship proofs. An accumulator is a succinct aggregate of a set of values where it is possible
to issue membership proofs for each accumulated value. A party in possession of such a
membership proof, typically a few group elements, can then demonstrate that the value
is included in the set. Non-membership accumulators have also been proposed [22, 39].
However, most accumulators rely on a trusted party to maintain the accumulator and if
corrupt this trusted party can issue arbitrary membership proofs. Furthermore, accumu-
lators rely on cryptographic assumptions that have been less studied than the discrete
logarithm problem, for instance the strong RSA assumption or the pairing-based q-SDH
assumption. These assumptions also mean that group elements have to be large and once
this has been factored in the accumulator-based solutions end up having larger commu-
nication than our membership and non-membership proofs for groups over elliptic or
hyper-elliptic curves. The construction of Camacho et al. [6] does not rely on a trusted
party and only assumes the existence of hash functions; however proofs in their setting
depend logarithmically on the number of accumulated elements.

In Song’s non-membership proof [34] the prover publishes a constant number of
elements and the verifier checks these elements against a blacklist by carrying out a
few operations for each blacklist element; several systems along these lines have been
proposed [1, 3, 27]. The operations consist either of exponentiations or pairings, so this
scheme places a heavy computational burden on the verifier.

Camenisch et al. [7] gave a membership proof where the elements in the set are
signed by a trusted third party. Now membership can be proven with a constant number
of group elements by demonstrating that the value has been signed. Related ideas have
recently been used by Libert et al. [23] in the context of revoking group signatures,
where a trusted third party signs representatives of sets that cover the whitelist of non-
revoked users and the user gives a zero-knowledge proof of belonging to this set [28].

All these solutions suffer from similar drawbacks that accumulator-based solutions
have though. They require trust in a third party to be honest when blacklisting members



or signing messages, and to get efficient proofs the signatures are built from strong
assumptions such as the strong RSA assumption or pairing-based assumptions.

A different approach is taken by Nymble-like systems [36, 19, 18, 26], which also
rely on a trusted third party. The user obtains a pseudonym, a “nymble”, from the trusted
third party which is only valid for a certain time frame with one server. The blacklist
consists of nymbles by misbehaving users and in [36, 19] the server simply checks if
the nymble of a connecting user is contained in the blacklist. To weaken the trust in the
trusted third party Lofgren and Hopper [26] use accumulators together with the Nymble
setup, while Henry and Goldberg [18] rely on the techniques of Brands et al. [4] for the
user to give a zero-knowledge argument for the non-membership of the blacklist.

2 Preliminaries

We write y = A(x; r) when the algorithm A on input x and randomness r, outputs
y. We write y ← A(x) for the process of picking randomness r at random and setting
y = A(x; r). We also write y ← S for sampling y uniformly at random from a set S. We
say a function f : N→ [0, 1] is negligible if f(k) = O(k−c) for every constant c > 0.
We say 1 − f is overwhelming if f is negligible. We will give a security parameter
k written in unary as input to all parties in our protocols. Intuitively, the higher the
security parameter the more secure the protocol.

2.1 The Pedersen Commitment Scheme

The Pedersen commitment scheme [30] works as follows. First the key generation al-
gorithm G on input 1k chooses a cyclic group G of k-bit prime order p and random
generators g, h. The commitment key is ck = (G, p, g, h). To commit to a ∈ Zp the
committer picks randomness r ∈ Zp and computes

comck(a; r) = gahr.

The Pedersen commitment scheme is computationally binding under the discrete
logarithm assumption, i.e., a non-uniform probabilistic polynomial time adversary has
negligible probability of finding two different openings of the same commitment. The
Pedersen commitment scheme is perfectly hiding since the commitment is uniformly
distributed in G no matter what the value a is.

The Pedersen commitment scheme is homomorphic. For all a, b ∈ Zp and r, s ∈ Zp

comck(a; r) · comck(b; s) = gahr · gbhs = ga+bhr+s = comck(a+ b; r + s).

We use the Pedersen commitment scheme because of its elegance and its security
resting on the discrete logarithm assumption. However, our protocols could also work
with other homomorphic commitment schemes and we will describe our arguments in
a way such that it would be easy to plug in another homomorphic commitment scheme.



2.2 Zero-knowledge Arguments of Knowledge

In the arguments we consider a prover P and a verifier V both of which are probabilistic
polynomial time interactive algorithms. All our protocols will be 3-move public-coin
arguments; first the prover sends a message, then the verifier responds with a random
challenge, and finally the prover sends an answer to the challenge.

We assume the existence of a probabilistic polynomial time setup algorithm G that
when given a security parameter k returns a common reference string σ. In this paper the
common reference string will always be a public key ck for the Pedersen commitment
scheme.

Let R be a polynomial time decidable ternary relation, we call w a witness for a
statement x if (σ, x, w) ∈ R. We define the CRS-dependent language

Lσ = {x | ∃w : (σ, x, w) ∈ R}

as the set of statements x that have a witness w in the relation R.
The public transcript produced by P and V when interacting on inputs s and t is

denoted by tr ← 〈P(s),V(t)〉. The transcript consists of the initial message from the
prover, the random challenge from the verifier, the answer from the prover and the
decision to accept or reject from the verifier. We write 〈P(s),V(t)〉 = b depending on
whether the verifier rejects, b = 0, or accepts, b = 1.

Definition 1 (Argument of knowledge) The triple (G,P,V) is called an argument of
knowledge for the relation R if we have completeness and witness-extended emulation
as defined below.

Definition 2 (Perfect completeness) (G,P,V) has perfect completeness if for all non-
uniform polynomial time adversaries A

Pr[σ ← G(1k); (x,w)← A(σ) : (σ, x, w) 6∈ R or 〈P(σ, x, w),V(σ, x)〉 = 1] = 1.

To define an argument of knowledge we follow Groth and Ishai [17] that borrowed
the term witness-extended emulation from Lindell [25]. Informally, their definition says
that given an adversary that produces an acceptable argument with some probability,
there exist an emulator that produces a similar argument with the same probability and
at the same time provides a witness w. We give a strong black-box definition where the
emulator just has black-box access to a prover and verifier’s interaction, which it can
rewind and run again with fresh randomness for the verifier.

Definition 3 (Computational witness-extended emulation) (G,P,V) has witness-
extended emulation if for all deterministic polynomial time P∗ there exists an expected
polynomial time emulator X such that for all non-uniform polynomial time interactive
adversaries A

Pr[σ ← G(1k); (x, s)← A(σ); tr ← 〈P∗(σ, x, s),V(σ, x)〉 : A(tr) = 1]

≈ Pr[σ ← G(1k); (x, s)← A(σ); (tr, w)← X 〈P
∗(σ,x,s),V(σ,x)〉(σ, x) :

A(tr) = 1 and if tr is accepting then (σ, x, w) ∈ R],

where the verifier picks fresh public coin challenges in each oracle call by
X 〈P∗(σ,x,s),V(σ,x)〉.



In the definition, s can be interpreted as the state of P∗, including the randomness.
So, whenever P∗ is able to make a convincing argument when in state s, the emulator
can extract a witness. This is why we call it an argument of knowledge.

Definition 4 (Public coin) An argument (G,P,V) is called public coin if the verifier
chooses his messages uniformly at random and independently of the messages sent by
the prover, i.e., the challenges correspond to the verifier’s randomness ρ.

An argument is zero-knowledge if it does not leak information about the witness beyond
what can be inferred from the truth of the statement. We will present arguments that
have special honest verifier zero-knowledge in the sense that if the verifier’s challenge
is known in advance, then it is possible to simulate the entire argument without knowing
the witness.

Definition 5 (Perfect special honest verifier zero-knowledge) A public coin argu-
ment (G,P,V) is called a perfect special honest verifier zero knowledge (SHVZK)
argument for R if there exists a probabilistic polynomial time simulator S such that for
all interactive non-uniform polynomial time adversaries A we have

Pr[σ ← G(1k); (x,w, ρ)← A(σ); tr ← 〈P(σ, x, w),V(σ, x; ρ)〉 : (σ, x, w) ∈ R and A(tr) = 1]

= Pr[σ ← G(1k); (x,w, ρ)← A(σ); tr ← S(σ, x, ρ) : (σ, x, w) ∈ R and A(tr) = 1],

where ρ is the public coin randomness used by the verifier as the challenge.

Full zero-knowledge. In real life applications special honest verifier zero-knowledge
may not suffice since a malicious verifier may give non-random challenges. However,
it is easy to convert an SHVZK argument into a full zero-knowledge argument secure
against arbitrary verifiers in the common reference string model using standard tech-
niques. The conversion can be very efficient and only costs a small additive overhead, so
we will in the paper without loss of generality just focus on building efficient SHVZK
arguments.

One example of such a conversion that would work in our case is the following: The
common reference string is set up with an additional group element y. The prover will
now use an OR-proof [12] to show that she knows a witness for the statement being
true or she knows the discrete logarithm of y. Since she does not know the discrete
logarithm of y this is a convincing argument of knowledge. On the other hand, we can
set the simulator up such that it does know the discrete logarithm of y and now it is
easy to simulate proofs. This conversion yields an argument of knowledge with perfect
zero-knowledge at the price of an extra group element in the common reference string.

3 Polynomial Evaluation Argument

Given a polynomial P (U) =
∑D
i=0 aiU

i and two commitments c0, cv , we will describe
an argument of knowledge of openings of the commitments to values u and v such that
P (u) = v. (The notation c0 for the commitment to u = u20

matches other commitments
cj to u2j

that the prover will construct in the argument.)



By padding with zero-coefficients we can without loss of generality assume D =
2d+1 − 1. It is useful to write i in binary, i.e., i = id . . . i0 where ij ∈ {0, 1}. We can
then rewrite the term U i as U i = U

∑d
j=0 ij2j

=
∏d
j=0(U2j

)ij . Substituting this in the
polynomial we get

P (U) =

D∑
i=0

aiU
i =

1∑
i0,...,id=0

aid...i0

d∏
j=0

(U2j

)ij .

The prover will make commitments c1, . . . , cd to u21

, u22

, . . . , u2d

, use standard
techniques to prove they are well-formed, and prove that when inserted into the rewrit-
ten polynomial we have

∑1
i0,...,id=0 aid...i0

∏d
j=0(u2j

)ij = v. Since d = blogDc the
prover only makes a logarithmic number of commitments, which will help keep com-
munication low.

To show the committed powers of u in c0, c1, . . . , cd evaluate to the commited v the
prover picks random values f0, . . . , fd ← Zp and defines a new polynomial

Q(X) =

1∑
i0,...,id=0

aid...i0

d∏
j=0

(Xu2j

+fj)
ijX1−ij = Xd+1P (u)+Xdδd+. . .+Xδ1+δ0.

The idea behind this choice ofQ(X) is that for each ij either anXu2j

factor is included
or an X factor is included so the coefficient of Xd+1 is P (u). Each fj on the other
hand is not multiplied by X and will therefore only affect the lower degree coefficients
δ0, . . . , δd of Q(X).

The prover will now demonstrate that the coefficient of Xd+1 in the secret Q(X) is
the same as v in a way that cancels out the δ0, . . . , δd coefficients. The prover sends
the verifier commitments cf0 , . . . , cfd to f0, . . . , fd, and commitments cδ0 , . . . , cδd
to δ0, . . . , δd. Afterwards, the verifier will pick a random challenge x ← Zp. The
prover will now open suitable products of the commitments in a way such that the
verifier can check that the committed values u, v satisfy Q(x) = xd+1v + xdδd +
. . . + δ0. More precisely, after receiving the challenge x the prover opens each prod-
uct cxj cfj to f̄j = xu2j

+ fj . Furthermore, the prover opens cx
d+1

v

∏d
j=0 c

xj

δj
to

δ̄ =
∑1
i0,...,id=0 ai0...id

∏d
j=0 f̄

ij
j x1−ij . Note that the verifier can calculate δ̄ himself

and therefore only accepts the opening if

1∑
i0,...,id=0

ai0...id

d∏
j=0

f̄
ij
j x1−ij = xd+1v + xdδd + . . .+ xδ1 + δ0.

This has negligible probability of being true unless P (u) = v.
Returning to the commitments c1, . . . , cd to u21

, . . . , u2d

we said the prover could
use standard techniques to show that they contain the correct powers of u. To do this
the prover sends some commitments cfuj to fju2j

to the verifier and later opens the

commitments cxuj+1
c
−f̄j
uj cfuj

to

xu2j+1

− (xu2j

+ fj)u
2j

+ fju
2j

= 0.



The full polynomial evaluation argument is given below.

Common reference string: ck ← G(1k)

Statement: P (U) =
∑D
i=0 aiU

i =
∑1
i0,...,id=0 aid...i0

∏d
j=0(U2j

)ij ∈ Zp[U ] and
c0, cv ∈ G

Prover’s witness: u, v, r0, t ∈ Zp such that c0 = comck(u; r0), cv = comck(v; t) and
P (u) = v

Initial message: Compute
1. c1 = comck(u21

; r1), . . . , cd = comck(u2d

; rd) where r1, . . . , rd ← Zp
2. cf0 = comck(f0; s0), . . . , cfd = comck(fd; sd) where f0, s0, . . . , fd, sd ← Zp
3. δ0, . . . , δd ∈ Zp such that

1∑
i0,...,id=0

aid...i0

d∏
j=0

(Xu2j

+ fj)
ijX1−ij = Xd+1v +

d∑
j=0

Xjδj

4. cδ0 = comck(δ0; t0), . . . , cδd = comck(δd; td) where t0, . . . , td ← Zp
5. cfu0

= comck(f0u
20

; ξ0), . . . , cfud−1
= comck(fd−1u

2d−1

; ξd−1) where
ξ0, . . . , ξd−1 ← Zp

Send: c1, . . . , cd, cf0 , . . . , cfd , cδ0 , . . . , cδd , cfu0 , . . . , cfud−1

Challenge: x← Zp
Answer: Compute for all j

f̄j = xu2j

+fj r̄j = xrj+sj t̄ = xd+1t+

d∑
i=0

tix
i ξ̄j = xrj+1−f̄jrj+ξj

Send: f̄0, r̄0, . . . , f̄d, r̄d, t̄, ξ̄0, . . . , ξ̄d−1

Verification: Accept if and only if for all j

cxj cfj = comck(f̄j ; r̄j) cxj+1c
−f̄j
j cfuj

= comck(0; ξ̄j)

and

cx
d+1

v

d∏
i=0

cx
i

δi = comck

 1∑
i0,...,id=0

aid...i0

d∏
j=0

f̄
ij
j x1−ij ; t̄


Example: Let G = 〈g = 3〉 ⊂ Z∗467, which has prime order p = 233 and let h = 266.
The common reference string describing (G, p, g, h) is ck = {467, 233, 3, 266}. The
statement consists of the polynomial P (X) = 93X4 + 3X2 + 115X + 51 ∈ Z233[X]
and commitments cu0 = 90, cv = 68. We have d = blog 4c = 2.

The prover knows values u = 5, v = P (u) = 110 ∈ Z233 and r0 = 201, t =
189 ∈ Z233 such that cu0

= 90 ∈ G and cv = 68 ∈ G. To prove knowledge of the
witness the prover first picks r1 = 23, r2 = 63 at random from Z233 and computes
commitments c1 = 387 and c2 = 4 to u21

= 25 and u22

= 159. The prover also picks
f0 = 161, f1 = 220, f2 = 15, s0 = 10, s1 = 37, s2 = 149 randomly from Z233 and
sets cf0 = 48, cf1 = 4, cf2 = 324.



Next she computes δ0, δ1, δ2. She calculates the five products
∏d
j=0(Xu2j

+

fj)
ijX1−ij for i = i2i1i0 ∈ {0, 1, 2, 3, 4} using a binary tree.

1

X

X2
X3

x3u+X2f0 = 5X3 + 161X2

X2u2 +Xf1

X3u2 +X2f1 = 25X3 + 220X2

X3u3 +X2(u2f0 + uf1) +Xf0f1

= 75X3 + 232X2 + 4X

Xu4 + f2 X2u4 +Xf2 X3u4 +X2f2 = 159X3 + 15X2

The prover takes the ai and multiplies them on the result of the binary tree, to get

i = 0 : a0 ·X3 = 51X3

i = 1 : a1 · (5X3 + 161X2) = 109X3 + 108X2

i = 2 : a2 · (25X3 + 220X2) = 75X3 + 194X2

i = 3 : a3 · (75X3 + 232X2) = 0

i = 4 : a4 · (159X3 + 15X2) = 108X3 + 230X2

Last, to extract the values δi she adds for i = 0, 1, 2 the coefficients for each Xi to get
δ0 = 0, δ1 = 0, δ2 = 66 mod 233. Now the prover picks t0 = 33, t1 = 201, t2 = 205
at random and commits to the δi’s to get cδ0 = 438, cδ1 = 329, cδ2 = 467.

Finally, the prover calculates f0u = 106, f1u
2 = 174 and commits to these values.

So, she picks ξ0 = 13, ξ1 = 75 and computes cfu0 = 352, cfu1 = 141. She sends all
the commitments to the verifier.

The verifier returns a random challenge x = 123 ∈ Z233, and the prover calculates
answers f̄0 = 77, f̄1 = 33, f̄2 = 0, r̄0 = 35, r̄1 = 70, r̄2 = 209, t̄ = 189, ξ̄0 =
180, ξ̄1 = 75, and sends all values to the verifier.

The verifier checks first if all commitments are in G and all answers valid numbers
in Z233. Then he checks for i = 0, 1, 2 if cxui

cfi = comck(f̄i; r̄i):

cxu0
cf0 = 68 = comck(f̄0; r̄0) cxu1

cf1 = 91 = comck(f̄1; r̄1) cxu2
cf2 = 220 = comck(f̄2; r̄2).

Next, he checks cxui+1
c−f̄iui

cfui = comck(0, ξ̄i) for i = 0, 1, i.e.,

cxu1
c−f̄0u0

cfu0
= 157 = comck(0; ξ̄0) cxu2

c−f̄1u1
cfu1

= 250 = comck(0; ξ̄1).

Then the verifier calculates δ̄ =
∑1
i0,...,id=0 ai0...id

∏d
j=0 f̄

ij
j x1−ij in a binary tree

fashion. The output leaves in the binary tree are x3 = 129, x2f̄0 = 166, x2f̄2 =
171, xf̄0f̄1 = 90, x2f̄2 = 0. He multiplies the values by the ai’s and adds the re-
sults together, to get δ̄ = a0129 + a1166 + a2171 + a390 + a40 = 86 ∈ Z233. Finally,
he checks the last verification equation cx

3

v c
x2

δ2
cx

1

δ1
cx

0

δ0
= 395 = comck

(
δ̄; t̄
)
.



Efficiency. The communication in the polynomial evaluation argument for a degree
D = 2d+1 − 1 polynomial is roughly 4d group elements and 3d field elements.

The prover uses 8d exponentiations to compute the commitments. She also has
to calculate δ0, . . . , δd that are defined to satisfy

∑1
i0,...,id=0 aid...i0

∏d
j=0(Xu2j

+

fj)
ijX1−ij = Xd+1v +

∑d
j=0X

jδj . The prover can calculate the D degree d + 1

polynomials
∏d
j=0(Xu2j

+ fj)
ijX1−ij in a binary-tree fashion for all choices of

i0 . . . , id ∈ {0, 1} at a cost of dD multiplications in Zp. Multiplying with the aid...i0 ’s
uses another dD multiplications. The total cost for the prover is therefore 8d exponen-
tiations in G and 2dD multiplications in Zp.

The verifier can check the argument using 6d exponentiations in G since the expo-
nent x is used twice in the verification equations. He also needs to compute the sum∑1
i0,...,id=0 aid...i0

∏d
j=0 f̄

ij
j x1−ij , which can be done in a binary tree fashion for all

choices of i0, . . . , id ∈ {0, 1} using 2D multiplications in Zp.
We have ignored small constants in the calculations above and just focused on the

dominant terms. Using multi-exponentiation techniques, randomized verification and
other tricks it is possible to reduce the computation even further for the prover and
verifier, so the estimates are quite conservative.

Theorem 6 Assuming the discrete logarithm assumption holds the polynomial evalua-
tion argument is a public coin perfect SHVZK argument of knowledge of openings of c0
and cv to u and v such that P (u) = v.

Proof. Perfect completeness follows by careful inspection.
We will now argue perfect SHVZK. Given a challenge x ∈ Zp the simula-

tor picks c1, . . . , cd, cδ1 , . . . , cδd ← G and f̄0, r̄0, . . . , f̄d, r̄d, t̄, ξ̄0, . . . , ξ̄d−1 ← Zp
and for all j he sets cfj = comck(f̄j ; r̄j)c

−x
j cfuj = comck(0; ξ̄j)c

−x
j+1c

f̄j
j and

cδ0 = comck

(∑1
i0,...,id=0 aid...i0

∏d
j=0 f̄

ij
j x1−ij ; t̄

)
c−x

d+1

v

∏d
i=1 c

−xi

δi
.

This is a perfect simulation. In a real argument c1, . . . , cd, cδ1 , . . . , cδd are uni-
formly random perfectly hiding commitments as in the simulation. In a real argument
f̄0, r̄0, . . . , f̄d, r̄d, t̄, ξ̄0, . . . , ξ̄d−1 ∈ Zp are also uniformly random because of the ran-
dom choice of f0, r0, . . . , fd, rd, t0, ξ0, . . . , ξd−1. Finally, both in the simulation and in
the real argument given these choices the verification equations uniquely determine the
values of cf0 , . . . , cfd , cδ0 and cfu0 , . . . , cfud−1

. This means simulated and real argu-
ments given a challenge x have identical probability distributions.

Finally, we will show that the argument has witness-extended emulation. The em-
ulator X runs the argument with random challenge x ← Zp and if the transcript tr is
accepting it rewinds until it has d+2 accepting arguments. For a prover with ε chance of
making a convincing argument we expect the emulator to rewind d+2

ε ε = d + 2 times,
so X runs in expected polynomial time.

There is negligible probability that the verifier will end up with two or more
transcripts with the same challenge x, so we just need to be able to extract a wit-
ness when we have d + 2 transcripts with different challenges. Given f̄ (1)

j , r̄
(1)
j and

f̄
(2)
j , r̄

(2)
j in the first two answers to challenges x1 and x2 the emulator can take lin-

ear combinations of the verification equations to get openings of the commitments



cj . More precisely, we have that the two answers satisfy cx1
j cfj = comck(f̄

(1)
j ; r̄

(1)
j )

cx2
j cfj = comck(f̄

(2)
j ; r̄

(2)
j ). Picking α1, α2 such that α1x1+α2x2 = 1 and α1+α2 = 0

gives us cj = cα1x1+α2x2
j cα1+α2

fj
= comck(α1f̄

(1)
j + α2f̄

(2)
j ;α1r̄

(1)
j + α2r̄

(2)
j ), which

is an opening of cj .
Other types of linear combinations of the verification equations give us openings of

the other commitments cfj , cfuj
, cv and cδi the prover sends in the initial message. In

the case of cδi we find the linear combination as follows: Let

M =

1 x1 . . . xd+1
1

...
...

1 xd+2 . . . x
d+1
d+2

 .

Since it is a Vandermonde matrix with different x1, . . . , xd+2 it is invertible. By taking
linear combinations of the verification equations

cx
d+1

v

d∏
i=0

cx
i

δi = comck

 1∑
i0,...,id=0

aid...i0

d∏
j=0

f̄
ij
j x1−ij ; t̄


for different challenges x1, . . . , xd+2 we get that

δ0 t0
...

...
δd td
v t

 = M−1


∑1
i0,...,id=0 aid...i0

∏d
j=0(f̄

(1)
j )ijx

1−ij
1 t̄(1)

...
...∑1

i0,...,id=0 aid...i0
∏d
j=0(f̄

(d+2)
j )ijx

1−ij
d+2 t̄(d+2)


which gives us openings of cδ0 , . . . , cδd and cv .

We now have openings to all the commitments. Because the commitments are bind-
ing, each answer must be computed as they are by an honest prover in the argument.
Therefore, the verification equations cxj cfj = comck(f̄j , r̄j) give us f̄j = xuj + fj ,
where uj is the extracted value in cj and fj is the extracted value in cfj .

The verification equations cxj+1c
−f̄j
j cfuj

= comck(0; ξ̄j) give us that the committed
values satisfy xuj+1 − (xuj + fj)uj + φj = 0 for j = 0, . . . , d− 1 with φj being the
value we extracted for cfuj

. Since each of the polynomial equalities is of degree 1 in x
and holds for d+ 2 different challenges x we see that uj+1 = ujuj . Since u0 = u this
gives us u1 = u21

, u2 = u22

, . . . , ud = u2d

.
Turning to the verification equation

cx
d+1

v

d∏
i=0

cx
i

δi = comck

 1∑
i0,...,id=0

aid...i0

d∏
j=0

f̄
ij
j x1−ij ; t̄


we now have that this corresponds to the degree d+ 1 polynomial equation

Xd+1v +Xdδd + . . .+Xδ1 + δ0 =

1∑
i0,...,id=0

aid...i0

d∏
j=0

(Xu2j

+ fj)
ijX1−ij .



With d + 2 different values x1, . . . , xd+2 satisfying the equation, we conclude the two
polynomials are identical. Looking at the coefficient for Xd+1 we conclude that the
extracted openings of c0 and cv satisfy P (u) = v. ut

4 Membership and Non-membership Arguments

In this section we will construct membership and non-membership arguments for com-
mitted values being included in whitelists or excluded from blacklists. In both cases the
whitelists or blacklists are given as a set L ⊂ Zp, and the goal is to show that the com-
mitted value u ∈ L in the case of membership or u /∈ L in the case of non-membership.

Let us first describe a non-membership argument for a committed value not be-
longing to a set L = {λ1, . . . , λD} using ideas from Brands et al. [4]. We define a
polynomial P (X) =

∏D
i=1(X − λi) with the elements in the set as roots. With this

choice of polynomial we have u ∈ L if and only if P (u) = 0. The prover has a com-
mitment c and will demonstrate that the committed value u does not belong to L by
showing P (u) 6= 0.

The prover computes v = P (u) and makes a commitment to v. She can now give an
SHVZK argument that the new commitment contains v = P (u) using the polynomial
evaluation argument from Section 3. To prove non-membership she just needs to prove
v 6= 0. To do this the prover commits to w = v−1 and uses a multiplication argument
to show v · w = 1, which will convince the verifier that v 6= 0. The main cost in this
argument is the polynomial evaluation argument; multiplication arguments are standard
cryptographic tools [10] that only cost a couple of group elements in communication.

Common reference string: ck ← G(1k)

Statement: L = {λ1, . . . , λD} ⊂ Zp, P (X) =
∏D
i=1(X − λi) ∈ Zp[X], c ∈ G

Prover’s witness: u, r ∈ Zp such that c = comck(u; r) and u /∈ L
Argument: Pick s, t ← Zp, compute v = P (u), w = v−1 and cv =

comck(v; s), cw = comck(w; t), and send cv, cw to the verifier. Engage in parallel
in an SHVZK multiplication argument [10] to show v · w = 1 and in the SHVZK
polynomial evaluation argument from Section 3 to show P (u) = v.

Verification: The verifier accepts u 6∈ L if and only if cv, cw ∈ G and the two SHVZK
arguments are valid.

Theorem 7 If the discrete logarithm assumption holds, the above protocol is a public
coin SHVZK argument of knowledge of an opening of c to u 6∈ L.

Proof. Perfect completeness follows from the perfect completeness of the two SHVZK
arguments.

The SHVZK simulator picks cv, cw ← G at random and runs the SHVZK sim-
ulators for the two underlying SHVZK arguments. Since the commitment scheme is
perfectly hiding and the underlying SHVZK arguments are perfect SHVZK this gives
us perfect SHVZK.

The protocol has witness-extended emulation. The emulator X runs the witness-
extended emulator for the two underlying SHVZK arguments to get openings u, v, w of
the commitments satisfying v · w = 1 and P (u) = v. The first equality tells us v 6= 0



and the second equality then tells us P (u) 6= 0. This means u is a not a root of the
polynomial P (X) =

∏D
i=1(X − λi) and therefore u /∈ L. ut

It is easy to modify the non-membership argument into a membership argument. If
u ∈ L then P (u) = 0. We therefore get a membership argument by removing cw and
instead of a multiplication argument letting the prover give an SHVZK argument for cv
containing v = 0. Arguments of knowledge of an opening of a commitment to 0 are
standard and only cost a couple of group elements in communication [33].

Efficiency. The coefficients of the polynomial P (X) =
∏D
i (X −λi) can be computed

in a binary tree fashion with the linear functions X − λi as leaves. Fast polynomial
multiplication techniques that rely on the Fast Fourier Transform can if p is an FFT
friendly prime multiply two degree n polynomials using O(n log n) multiplications
in Zp. This means the prover and the verifier can compute the coefficients of P (X)
using O(D log2D) multiplications in Zp. If the list stays fixed, the computation of the
polynomials coefficients is a one-time cost. Single element additions or deletions can
be done using D multiplications. If multiple elements are added or deleted at the same
time the per element cost can be reduced by using fast polynomial multiplication and
division techniques.

Once the coefficients of P (X) are given, the main cost of the membership and
non-membership arguments are dominated by the underlying polynomial evaluation
argument. For moderate D the computation is dominated by the logarithmic number
of exponentiations involved in the polynomial evaluation argument. For large D the
computational cost of computing the coefficients of the polynomial matters more as do
the multiplications in the polynomial evaluation argument.

5 Comparison and Implementation

The first approaches to prove for committed u, v ∈ Zp that p(u) = v for a given poly-
nomial P (X) with order D split in two parts: first construct commitments c1, . . . , cD
to values u, u2 . . . , uD and then use the homomorphic property of the commitment
scheme to get P (u) as a linear combination of u, u2, . . . , uD. This requires D com-
mitments and D multiplication arguments to show that the commitments c1, . . . , cD
have been correctly constructed and contain the correct powers of u. The cost can re-
duced to O(

√
D) as suggested in Brands et al. [4] by splitting the polynomial in

√
D

polynomials of degree
√
D each.

Our protocol also has a two part structure but only needs logD commitments
c1, . . . , cd and logD multiplication arguments to prove they have been correctly formed
and contain u2, u4, u8, u16, . . . , u2d

. By using a sophisticated combination of these
values in combination with the homomorphic properties of the commitment scheme,
we then get the desired argument for v = p(u). This reduces our communication to
O(logD) group elements.

Table 1 gives the asymptotic communication and computation costs of polynomial
evaluation arguments based on the discrete logarithm assumption. The polynomial eval-
uation argument from Brands et al. [4] achieves the best complexity, so we will in the



SHVZK Rounds Time P Time V Size
argument Expos Expos Elements
Fujisaki and Okamoto [14] 3 O(D) O(D) O(D) G +O(D) Zq
Brands et al. [4] 3 O(

√
D) O(

√
D) O(

√
D) G +O(

√
D) Zq

Groth [15] 7 O(D) O(
√
D)

√
D G +

√
D Zq

This paper 3 O(logD) O(logD) O(logD) G +O(logD) Zq
Table 1. Comparison of our polynomial argument with former work

SHVZK Rounds Time P Time P Time V Time V Size
argument Expos Multip. Expos Multip. Elements
[4] 3 8

√
D 2D + 8

√
D 7

√
D D + 4

√
D 4

√
D G + 3

√
D Zq

This paper 3 8 logD 2D logD 7 logD 2D 4 logD G + 3 logDZq
Table 2. Detailed comparison of our blacklist argument with Brands et al. [4] argument

following give a more detailed theoretical and practical comparison. In Table 2 we give
a more detailed theoretical analysis that also counts the number of multiplications.

Based on Table 2 we would expect our verifier to run faster than Brands et. al.’s as
our asymptotic computation cost is much smaller and we expect our argument size to
be much smaller. Just looking at the numbers of exponentiations needed by the prover
can be a little deceptive though since in our polynomial evaluation argument we need
O(D logD) multiplications in Zp to compute the δj and for large D this cost becomes
dominant. Our performance gain for the prover is therefore largest in the range, where
D is large enough for logD to be significantly smaller than

√
D yet not so large that

the cost of D logD multiplications in Zp becomes dominant.
We implemented our polynomial evaluation argument and Brands et al.’s argument

in C++ with the NTL library to obtain experimental confirmation of our theoretical
analysis and to get a real life comparison based on similar implementation techniques.

For the comparison of the polynomial evaluation arguments we have used a 256-bit
subgroup modulo a 1536-bit prime, assumed that the polynomialP (X) is pre-computed
and obtained the running time for polynomials with degree between 10 and 500, 000
elements. The performance measurements have been obtained on a MacBook Pro with
a 2.54 GHz Intel Core 2 Duo CPU, 4 GB RAM running Mac OS X 10.8.6; all code is
single threaded and optimized code using the multi exponentiation techniques by [24].
The results can be found in Table 3.

As expected our verifier runs faster than Brands et al.’s verifier and we also see that
our communication compares very favorably against Brands et al.’s communication. For
moderate sizeD it is also the case that our prover is the most efficient, however, for very
largeD the cost to calculate the δjs becomes dominant for our prover and here Brands et
al.’s prover is faster. Other experiments we have conducted show that for larger security
parameters the crossover happens for even larger D and for all reasonable degrees of
the polynomial our argument is faster.



Elements Prover Prover Verifier Verifier Communication Communication
in list D Brands et al. This paper Brands et al. This paper Brands et al. This paper

10 21 ms 13 ms 24 ms 17 ms 12 KB 8 KB
100 66 ms 24 ms 69 ms 30 ms 37 KB 15 KB

1000 227 ms 41 ms 234 ms 45 ms 128 KB 21 KB
10000 747 ms 182 ms 759 ms 81 ms 406 KB 29 KB

100000 2386 ms 1420ms 2402 ms 217 ms 1295 KB 35 KB
1000000 8650 ms 15512 ms 8165 ms 1315 ms 4161 KB 41 KB

Table 3. Our polynomial evaluation argument compared to Brands et al. [4]. All experiments
used a 256-bit subgroup modulo a 1536-bit prime and a MacBook Pro, 2.54 CPU, 4 GB RAM.

The computation cost of the non-membership argument by Brands et al. is smaller
than the cost of their polynomial argument. It still requires very large degree D also for
the non-membership argument of Brands et al. to become better from a computational
perspective though; for moderate size D we have a clear performance advantage.
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