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Abstra
t. A serious 
on
ern with quantum key distribution (QKD)

s
hemes is that, when under atta
k, the quantum devi
es in a real-life im-

plementation may behave di�erently than modeled in the se
urity proof.

This 
an lead to real-life atta
ks against provably se
ure QKD s
hemes.

In this work, we show that the standard BB84 QKD s
heme is one-sided

devi
e-independent. This means that se
urity holds even if Bob's quan-

tum devi
e is arbitrarily mali
ious, as long as Ali
e's devi
e behaves as

it should. Thus, we 
an 
ompletely remove the trust into Bob's quantum

devi
e for free, without the need for 
hanging the s
heme, and without

the need for hard-to-implement loophole-free violations of Bell inequality,

as is required for fully (meaning two-sided) devi
e-independent QKD.

For our analysis, we introdu
e a new quantum game, 
alled a monogamy-

of-entanglement game, and we show a strong parallel repetition theorem

for this game. This new notion is likely to be of independent interest and

to �nd additional appli
ations. Indeed, besides the appli
ation to QKD,

we also show a dire
t appli
ation to position-based quantum 
ryptogra-

phy: we give the �rst se
urity proof for a one-round position-veri�
ation

s
heme that requires only single-qubit operations.

1 Introdu
tion

Ba
kground. Quantum key distribution (QKD) makes use of quantum me-


hani
al e�e
ts to allow two parties, Ali
e and Bob, to ex
hange a se
ret key

while being eavesdropped by an atta
ker Eve [5,11℄. In prin
iple, the se
urity

of QKD 
an be rigorously proven based solely on the laws of quantum me
han-

i
s [27,33,31℄; in parti
ular, the se
urity does not rely on the assumed hardness

of some 
omputational problem. However, these se
urity proofs typi
ally make

stringent assumptions about the devi
es used by Ali
e and Bob to prepare and

measure the quantum states that are 
ommuni
ated. These assumptions are not

ne
essarily satis�ed by real-world devi
es, leaving the implementations of QKD

s
hemes open to ha
king atta
ks [25℄.

One way to 
ounter this problem is by prote
ting the devi
es in an ad-ho


manner against known atta
ks. This is somewhat unsatisfa
tory in that the



implementation may still be vulnerable to unknown atta
ks, and the fa
t that

the s
heme is in prin
iple provably se
ure loses a lot of its signi�
an
e.

Another approa
h is to try to remove the assumptions on the devi
es ne
es-

sary for the se
urity proof; this leads to the notion of devi
e-independent (DI)

QKD. This line of resear
h 
an be tra
ed ba
k to Mayers and Yao [28℄ as well

as [2,1℄. After some limited results [26,13℄, the possibility of DI QKD has re
ently

been shown in the most general 
ase by Rei
hhardt et al. in [30℄. In a typi
al DI

QKD s
heme, Ali
e and Bob 
he
k if the 
lassi
al data obtained from the quan-

tum 
ommuni
ation violates a Bell inequality, whi
h in turn ensures that there

is some amount of fresh randomness in the data that 
annot be known by Eve.

This 
an then be transformed into a se
ret key using standard 
ryptographi


te
hniques like information re
on
iliation and randomness extra
tion.

While this argument shows that DI QKD is theoreti
ally possible, the disad-

vantage of su
h s
hemes is that they require a loophole free violation of a Bell

inequality by Ali
e and Bob. This makes fully DI QKD s
hemes very hard to

implement and very sensitive to any kind of noise and to ine�
ien
ies of the

physi
al devi
es: any de�
ien
y will result in a lower observed (loophole free)

Bell inequality violation, and 
urrently 
on
eivable experimental parameters are

insu�
ient to provide provable se
urity. Trying to �nd ways around this problem

is an a
tive line of resear
h, see e.g. [12,24,7,23℄.

Our Result. Here, we follow a somewhat di�erent approa
h, not relying on

Bell tests, but making use of the monogamy of entanglement. Informally, the

latter states that if Ali
e's state is fully entangled with Bob's, then it 
annot

be entangled with Eve's, and vi
e versa. As a 
onsequen
e, if Ali
e measures a

quantum system by randomly 
hoosing one of two in
ompatible measurements,

it is impossible for Bob and Eve to both have low entropy about Ali
e's measure-

ment out
ome. Thus, if one 
an verify that Bob has low entropy about Ali
e's

measurement during the run of the s
heme, it is guaranteed that Eve's entropy

is high, and thus that a se
ret key 
an be distilled.

Based on this idea, we show that the standard BB84 QKD s
heme [5℄ is

one-sided DI. This means that only Ali
e's quantum devi
e has to be trusted,

but no assumption about Bob's measurement devi
e has to be made in order to

prove se
urity. Beyond that it does not 
ommuni
ate the measurement out
ome

to Eve, Bob's measurement devi
e may be arbitrarily mali
ious.

One-sided DI se
urity of BB84 was �rst 
laimed in [38℄. However, a 
lose in-

spe
tion of their proof sket
h, whi
h is based on an entropi
 un
ertainty relation

with quantum side information, reveals that their arguments are insu�
ient to

prove full one-sided DI se
urity (as 
on�rmed by the authors). It needs to be

assumed that Bob's measurement devi
e is memoryless. The same holds for the

follow up work [37,6℄ of [38℄.

One-sided DI se
urity is obviously weaker than fully DI se
urity (as e.g.

a
hieved in [30℄). Still, what is interesting is that there is no need for a new

s
heme�good old BB84 does it. In that sense, we obtain one-sided DI se
urity

for free. In parti
ular, no hard-to-implement loophole-free Bell tests are needed.



Despite the pra
ti
al motivation, our result is of theoreti
al nature. This

is be
ause, as in all 
ontemporary fully DI s
hemes, our analysis (impli
itly)

assumes that every qubit sent by Ali
e is indeed re
eived by Bob, or, more

generally, whether it is re
eived or not does not depend on the basis it is to be

measured in; this is not ne
essarily satis�ed in pra
ti
al implementations�and

some re
ent atta
ks on QKD take advantage of exa
tly this e�e
t by blinding the

dete
tors whenever a measurement in a basis not to Eve's liking is attempted [25℄.

Our analysis of BB84 QKD with one-sided DI se
urity admits a noise level

of up to 1.5%. This is signi�
antly lower than the 11% tolerable for standard

(i.e. not DI) se
urity. We believe that this is not inherent to the s
heme but

an artifa
t of our analysis. Improving this bound by means of a better analysis

is an open problem (it 
an be slightly improved by using a better s
heme, e.g.,

the 6-state s
heme). Nonetheless, one-sided DI QKD appears to be an attra
tive

alternative to DI QKD in an asymmetri
 setting, when we 
an expe
t from one

party, say, a server, to invest into a very 
arefully designed, 
onstru
ted, and

tested apparatus, but not the other party, the user, and/or in 
ase of a star

network with one designated link being 
onne
ted with many other links.

Te
hnique. In order to prove one-sided DI se
urity of BB84, we introdu
e and

study a new quantum game, whi
h we 
all a monogamy of entanglement game

(or simply a monogamy game). This is a game of a spe
i�
 form, played by three

parties, Ali
e, Bob and Charlie. Of 
entral importan
e to us is the monogamy

game G×n
BB84

, whi
h is as follows.

Preparation Phase: Bob and Charlie agree on and prepare an arbitrary quan-

tum state ρABC , where ρA 
onsists of n qubits. They pass ρA to Ali
e and

hold on to ρB and ρC , respe
tively. After this phase, Bob and Charlie are

no longer allowed to 
ommuni
ate.

Question Phase: Ali
e 
hooses θ ∈ {0, 1}n
uniformly at random and announ
es

θ to Bob and Charlie. Additionally, she measures every qubit ρAi
of ρA in

the 
omputational basis if θi = 0, and in the Hadamard basis if θi = 1. This
results in a bit string x ∈ {0, 1}n

.

Answer Phase: Bob and Charlie independently form a guess of x by performing

measurements (whi
h may depend on θ) on ρB and ρC , respe
tively.

Winning Condition: The game is won if both Bob and Charlie guess x 
orre
tly.

From the perspe
tive of 
lassi
al information pro
essing, our game may ap-

pear somewhat trivial�after all, if Bob and Charlie were to provide some 
las-

si
al information k to Ali
e who would merely apply a randomly 
hosen fun
-

tion fθ, they 
ould predi
t the value of x = fθ(k) perfe
tly from k and θ. In
quantum me
hani
s, however, the out
ome of a measurement is in general not

deterministi
, and the well-known un
ertainty prin
iple [15℄ pla
es a limit on

how well observers 
an predi
t the out
ome of in
ompatible measurements. For

instan
e, if Bob and Charlie were restri
ted to 
lassi
al memory (i.e., ρB and

ρC are �empty�), it is not too hard to see that the best strategy gives a winning

probability of (1
2 + 1

2
√

2
)n ≈ 0.85n

.



In a fully quantum world, however, un
ertainty is not quite the end of the

story, as indeed Bob and Charlie are allowed to have quantum memory. To illus-

trate the power of su
h a memory, 
onsider the same game played just between

Ali
e and Bob. As Einstein, Podolsky and Rosen famously observed [10℄: if ρAB

is a maximally entangled state, then on
e Bob learns Ali
e's 
hoi
e of measure-

ment θ, he 
an perform an adequate measurement on his share of the state to

obtain x himself. That is, there exists a strategy for Bob to guess x perfe
tly.

Does this 
hange when we add the extra player, Charlie? We 
an 
ertainly be

hopeful as it is known that quantum entanglement is �monogamous� [34℄ in the

sense that the more entangled Bob is with Ali
e, the less entangled Charlie 
an

be. In the extreme 
ase where ρAB is maximally entangled, even if Bob 
an guess

x perfe
tly every time, Charlie has to resort to making an uninformed random

guess. As both of them have to be 
orre
t in order to win the game, this strategy

turns out to be worse than optimal (see below).

An analysis of our game thus requires a tightrope walk between un
ertainty

on the one hand, and the monogamy of entanglement on the other. Writing

p
win

(G×n
BB84

) for the maximal winning probability, maximized over the 
hoi
e of

the initial state ρABC and over the measurements performed by Bob and Charlie,

we prove that

p
win

(G×n
BB84

) =
(1

2
+

1

2
√

2

)n

. (1)

We thus see that, interestingly, monogamy of entanglement wins out entirely,


an
elling the power of Bob and Charlie's quantum memory�the optimal win-

ning probability 
an be a
hieved without any entanglement at all. We also show

a generalization of (1), whi
h upper bounds p
win

(G×n
BB84

) for a variant of the game

G×n
BB84

for whi
h Bob and Charlie need to guess the string x only approximately.

Our result in parti
ular implies that p
win

(G×n
BB84

) = p
win

(G
BB84

)n
, i.e., strong

parallel repetition holds. This means that one 
annot play n parallel exe
utions

of the game G
BB84

= G×1
BB84

better than repeating the optimal strategy for one exe-


ution n times. Even 
lassi
ally, analyzing the n-fold parallel repetition of games

or tasks is typi
ally 
hallenging. In many 
ases, only non-strong parallel repeti-

tion holds, meaning that p
win

(G×n) ≤ εn
for some ε < 1, but with ε > p

win

(G).
Furthermore, proving su
h (strong or not) parallel repetition theorems tends to

be intriguingly di�
ult; examples in
lude the parallel repetition of intera
tive

proof systems (see e.g. [29℄) or the analysis of 
ommuni
ation 
omplexity tasks

(see e.g. [19℄). In a quantum world, su
h an analysis is often exa
erbated further

by the presen
e of entanglement and the fa
t that quantum information 
annot

generally be 
opied. Famous examples in
lude the analysis of the �parallel repeti-

tion� of 
hannels in quantum information theory (where the problem is referred

to as the additivity of 
apa
ities), see e.g. [14℄, entangled non-lo
al games [16℄, or

the question whether an eavesdropper's optimal strategy in QKD is to perform

the optimal strategy for ea
h round.

In this light, our proof of (1) is surprisingly simple. It is inspired by te
h-

niques due to Kittaneh [18℄ and uses merely tools from linear algebra. At the


ore of the proof is a newly derived operator norm inequality that bounds the



norm ‖∑

iAi‖ of the sum of positive semi-de�nite operators A1, . . . , AN via the

respe
tive norms of the square root of pairwise produ
ts AiAj .

In the 
ontext of one-sided DI QKD, it turns out that the game G
×n
BB84

pretty

mu
h 
aptures an exe
ution of BB84, with Eve playing the role of Charlie, and


onsidering a gedankenexperiment where Eve measures her quantum side infor-

mation in order to try to guess the raw key x Ali
e obtains. Our bound on

p
win

(G×n
BB84

) then implies that no matter what measurement Bob's devi
e per-

forms, if the out
ome of his measurement is strongly 
orrelated to Ali
e's raw

key x, then Eve has a hard time in guessing x. The latter holds for any mea-

surement Eve may perform, and as su
h it follows that x has lower bounded

min-entropy 
onditioned on Eve's quantum side information. As a 
onsequen
e,

a se
ret key 
an be extra
ted from x using standard te
hniques.

Further Appli
ation. We expe
t our notion of and our results on monogamy

games to �nd other appli
ations. Indeed, one additional dire
t appli
ation is to

position veri�
ation. Here, we 
onsider a 1-dimensional setting where a prover

wants to 
onvin
e two veri�ers that he 
ontrols a 
ertain position, pos. The
veri�ers are lo
ated at known positions around pos, and they are honest and


onne
ted by se
ure 
ommuni
ation 
hannels. Moreover, all parties are assumed

to have syn
hronized 
lo
ks, and the message delivery time between any two

parties is assumed to be proportional to the distan
e between them.

Position veri�
ation and variants thereof (like distan
e bounding) is a rather

well-studied problem in the �eld of wireless se
urity (see e.g. the referen
es in [9℄).

It was shown in [9℄ that in the presen
e of 
olluding adversaries at di�erent lo-


ations, position veri�
ation is impossible 
lassi
ally, even with 
omputational

hardness assumptions. That is, the prover 
an always tri
k the veri�ers into be-

lieving that he 
ontrols a position. The fa
t that the 
lassi
al atta
k requires the

adversary to 
opy information, initially gave hope that we may 
ir
umvent the

impossibility result using quantum 
ommuni
ation. However, su
h s
hemes were

subsequently broken [17,22℄ and indeed a general impossibility proof holds [8℄:

without any restri
tion on the adversaries, in parti
ular on the amount of pre-

shared entanglement they may hold, no quantum s
heme for position veri�
ation


an be se
ure. This impossibility proof was 
onstru
tive but required the dishon-

est parties to share a number of EPR pairs that grows doubly-exponentially in

the number of qubits the honest parties ex
hange. This was redu
ed by Beigi and

König [3℄ to a single exponential amount. On the other hand, there are s
hemes

for position veri�
ation that are provably se
ure against adversaries that have

no pre-shared entanglement, or only hold a 
ouple of entangled qubits [8,22,3℄.

However, all known s
hemes that are provably se
ure with a negligible sound-

ness error (the maximal probability that a 
oalition of adversaries 
an pass the

position veri�
ation test for position pos without a
tually 
ontrolling that spe-


i�
 position) against adversaries with no or with bounded pre-shared entan-

glement are either multi-round s
hemes, or require the honest parti
ipants to

manipulate large quantum states.

In the full version [36℄, we present the �rst provably se
ure one-round position

veri�
ation s
heme with negligible soundness error in whi
h the honest parties



are only required to perform single qubit operations. We prove its se
urity against

adversaries with an amount of pre-shared entanglement that is linear in the

number of qubits transmitted by the honest parties.

Outline. In Se
tion 2, we introdu
e the terminology and notation used through-

out this work, and we derive the operator norm inequality that is 
entral to our

main result. In Se
tion 3, we dis
uss the monogamy game G×n
BB84

, prove a strong

parallel repetition theorem, and dis
uss some generalizations. In Se
tion 4, we

then make use of these results to prove one-sided DI se
urity of BB84. The

appli
ation to position veri�
ation is given in the full version [36℄.

2 Te
hni
al Preliminaries

Basi
 Notation and Terminology. We assume the reader to be familiar with

the basi
 
on
epts of quantum information theory; we merely �x some notation

and terminology here.

Let H be an arbitrary, �nite dimensional 
omplex Hilbert spa
e. L(H) and
P(H) denote linear and positive semi-de�nite operators on H, respe
tively. Note

that an operator A ∈ P(H) is in parti
ular Hermitian, meaning that A† = A.
The set of density operators on H, i.e., the set of operators in P(H) with unit

tra
e, is denoted by S(H). For A,B ∈ L(H), we write A ≥ B to express that

A−B ∈ P(H). When operators are 
ompared with s
alars, we impli
itly assume

that the s
alars are multiplied by the identity operator, whi
h we denote by 1H,

or 1 if H is 
lear from the 
ontext. A proje
tor is an operator P ∈ P(H) that

satis�es P 2 = P . A POVM (short for positive operator valued measure) is a set

{Nx}x of operators Nx ∈ P(H) su
h that

∑

xNx = 1, and a POVM is 
alled

proje
tive if all its elements Nx are proje
tors. We use the tra
e distan
e

∆(ρ, σ) := max
0≤E≤1

tr(E(ρ− σ)) =
1

2
tr|ρ− σ|, where |L| =

√
L†L,

as a metri
 on density operators ρ, σ ∈ S(H).
The most prominent example of a Hilbert spa
e is the qubit spa
e, H ≡ C2

.

The ve
tors |0〉 =
(

1
0

)

and |1〉 =
(

0
1

)

form the 
omputational basis, and the ve
tors

H |0〉 = (|0〉 + |1〉)/
√

2 and H |1〉 = (|0〉 − |1〉)/
√

2 the Hadamard basis, where

H denotes the Hadamard matrix. More generally, we often 
onsider systems


omposed of n qubits, H ≡ C2 ⊗ · · · ⊗ C2
. For x, θ ∈ {0, 1}n

, we write |xθ〉 as a
shorthand for the state ve
tor Hθ1 |x1〉 ⊗ · · · ⊗Hθn |xn〉 ∈ H.

The S
hatten ∞-Norm. For L ∈ L(H), we use the S
hatten ∞-norm ‖L‖ :=
‖L‖∞ = s1(L), whi
h evaluates the largest singular value of L. It is easy to verify
that this norm satis�es ‖L‖2 = ‖L†L‖ = ‖LL†‖. Also, for A,B ∈ P(H), ‖A‖

oin
ides with the largest eigenvalue ofA, and A ≤ B implies ‖A‖ ≤ ‖B‖. Finally,
for any blo
k-diagonal operator A⊕B we have ‖A⊕B‖ = max{‖A‖, ‖B‖}.

We need the following fa
t. Note that the statement does not hold in general

if the proje
tors are repla
ed by general positive semi-de�nite operators.



Lemma 2.1. Let P,Q ∈ P(H) be proje
tors with P ≤ Q, and let L ∈ L(H).
Then, it holds that

∥

∥PL
∥

∥ ≤
∥

∥QL
∥

∥

and

∥

∥LP
∥

∥ ≤
∥

∥LQ
∥

∥

.

Proof. ‖PL‖2 =
∥

∥L†P †PL
∥

∥ =
∥

∥L†PL
∥

∥ ≤
∥

∥L†QL
∥

∥ =
∥

∥L†Q†QL†∥
∥ = ‖QL‖2

,

and the proof of the se
ond statement follows analogously. ⊓⊔

Applying the lemma twi
e, we get ‖PQ‖2 ≤ ‖P ′Q‖2 ≤ ‖P ′Q′‖2 = ‖P ′Q′P ′‖ for

any two pairs of proje
tors satisfying P ≤ P ′
and Q ≤ Q′

.

One of our main tools is the following Lemma 2.2, whi
h bounds the S
hatten

norm of the sum of n positive semi-de�nite operators by means of their pairwise

produ
ts. We derive the bound using a 
onstru
tion due to Kittaneh [18℄, whi
h

was also used by S
ha�ner [32℄ to derive a similar, but less general, result.

We 
all two permutations π : [N ] → [N ] and π′ : [N ] → [N ] of the set

[N ] := {1, . . . , N} orthogonal if π(i) 6= π′(i) for all i ∈ [N ]. The N 
y
li
 shifts

for instan
e form a set of N permutations of [N ] that are mutually orthogonal.

Lemma 2.2. Let A1, A2, . . . , AN ∈ P(H), and let {πk}k∈[N ] be a set of N mu-

tually orthogonal permutations of [N ]. Then,

∥

∥

∥

∥

∑

i∈[N ]

Ai

∥

∥

∥

∥

≤
∑

k∈[N ]

max
i∈[N ]

∥

∥

∥

√

Ai

√

Aπk(i)

∥

∥

∥
.

Proof. We de�ne X = [Xij ] as the N × N blo
k-matrix with blo
ks given by

Xij = δj1
√
Ai. The two matri
es X†X and XX†

are easy to evaluate, namely

(X†X)ij = δi1δj1
∑

i Ai and (XX†)ij =
√
Ai

√

Aj , respe
tively. As su
h, we see

that

∥

∥

∑

i Ai

∥

∥ = ‖X†X‖ =
∥

∥XX†∥
∥

.

Next, we de
ompose XX†
into XX† = D1+D2+ . . . DN , where the matri
es

Dk are de�ned by the permutations π
k
, respe
tively, as (Dk)ij = δj,πk(i)

√
Ai

√

Aj .

The requirement on the permutations ensures that XX† =
∑

k Dk. Moreover,

sin
e the matri
es Dk are 
onstru
ted su
h that they 
ontain exa
tly one non-

zero blo
k in ea
h row and 
olumn, they 
an be transformed into a blo
k-diagonal

matrix D′
k =

⊕

i

√
Ai

√

Aπk(i) by a unitary rotation. Hen
e, using triangle in-

equality and the unitary invarian
e of the norm, we get

∥

∥

∑

k Ak

∥

∥ =
∥

∥XX†∥
∥ ≤

∑

k ‖Dk‖ =
∑

k ‖D′
k‖ =

∑

k maxi

∥

∥

√
Ai

√

Aπk(i)

∥

∥

. ⊓⊔

CQ-States and Min-Entropy. A state ρXB ∈ S(HX ⊗ HB) is 
alled a


lassi
al-quantum (CQ) state with 
lassi
al X over X , if it is of the form

ρXB =
∑

x∈X
px|x〉〈x|X ⊗ ρx

B ,

where {|x〉}x∈X is a �xed basis of HX , {px}x∈X is a probability distribution,

and ρx
B ∈ S(HB). For su
h a state, X 
an be understood as a random variable

that is 
orrelated with (potentially quantum) side information B.
If λ : X → {0, 1} is a predi
ate on X , then we denote by Prρ[λ(X)] the

probability of the event λ(X) under ρ; formally, Prρ[λ(X)] =
∑

x px λ(x). We



also de�ne the state ρXB|λ(X), whi
h is the state of the X and B 
onditioned on

the event λ(X). Formally,

ρXB|λ(X) =
1

Prρ[λ(X)]

∑

x

pxλ(x)|x〉〈x|X ⊗ ρx
B .

For a CQ-state ρXB ∈ S(HX ⊗HB), the min-entropy of X 
onditioned on B
[31℄ 
an be expressed in terms of the maximum probability that a measurement

on B yields the 
orre
t value of X , i.e. the guessing probability. Formally, we

de�ne [20℄ Hmin(X |B)ρ := − log p
guess

(X |B)ρ, where

p
guess

(X |B)ρ := max
{Nx}x

∑

x

px tr(ρx
BNx).

Here, the optimization is taken over all POVMs {Nx}x on B, and here and

throughout this paper, log denotes the binary logarithm.

In 
ase of a CQ-state ρXBΘ with 
lassi
alX , and with additional 
lassi
al side

information Θ, we 
an write ρXBΘ =
∑

θ pθ |θ〉〈θ|⊗ρθ
XB for CQ states ρθ

XB. The

min-entropy of X 
onditioned on B and Θ then evaluates to Hmin(X |BΘ)ρ =
− log p

guess

(X |BΘ)ρ, where pguess(X |BΘ)ρ =
∑

θ pθ pguess(X |B)ρθ . An intuitive

explanation of the latter equality is that the optimal strategy to guess X simply


hooses an optimal POVM on B depending on the value of Θ.
An overview of the min-entropy and its properties 
an be found in [35℄. We

merely point out the 
hain rule here: for a CQ-state ρXBΘ with 
lassi
al X and

Θ, where Θ is over {0, 1}n
, it holds that Hmin(X |BΘ)ρ ≥ Hmin(X |B)ρ − n.

3 Parallel Repetition of Monogamy Games

In this se
tion, we formalize the notion of a monogamy game, and we show

strong parallel repetition for the game G×n
BB84

. Then, we generalize our analysis

to arbitrary proje
tive measurements for Ali
e, and to the 
ase where Bob and

Charlie are allowed to make some errors.

De�nition 3.1. A monogamy-of-entanglement game G 
onsists of a �nite di-

mensional Hilbert spa
e HA and a list of proje
tive measurementsMθ = {F θ
x}x∈X

on a HA, indexed by θ ∈ Θ, where X and Θ are �nite sets.

We typi
ally use less bulky terminology and simply 
all G a monogamy game.

Note that for any positive integer n, the n-fold parallel repetition of G, denoted as

G×n
and naturally spe
i�ed by H

⊗n
A and {F θ1

x1
⊗· · ·⊗F θn

xn
}x1,...,xn

for θ1, . . . , θn ∈
Θ, is again a monogamy game.

De�nition 3.2. We de�ne a strategy S for a monogamy game G as a list

S =
{

ρABC , P
θ
x , Q

θ
x

}

θ∈Θ,x∈X , (2)

where ρABC ∈ S(HA ⊗ HB ⊗ HC), and HB and HC are arbitrary �nite dimen-

sional Hilbert spa
es. Furthermore, for all θ ∈ Θ, {P θ
x}x∈X and {Qθ

x}x∈X are

POVMs on HB and HC , respe
tively. A strategy is 
alled pure if the state ρABC

is pure and all the POVMs are proje
tive.



If S is a strategy for game G, then the n-fold parallel repetition of S, whi
h is

naturally given, is a parti
ular strategy for the parallel repetition G×n
; however,

it is important to realize that there exist strategies for G
×n

that are not of this

form. In general, a strategy Sn for G×n
is given by an arbitrary state ρA1...AnBC ∈

S(H⊗n
A ⊗ HB ⊗ HC) (with arbitrary HB and HC) and by arbitrary POVM

elements on HB and HC , respe
tively, not ne
essarily in produ
t form.

The winning probability for a game G and a �xed strategy S, denoted by

p
win

(G,S), is de�ned as the probability that the measurement out
omes of Al-

i
e, Bob and Charlie agree when Ali
e measures in the basis determined by a

randomly 
hosen θ ∈ Θ and Bob and Charlie apply their respe
tive POVMs

{P θ
x}x and {Qθ

x}x. The optimal winning probability, p
win

(G), maximizes the

winning probability over all strategies. The following makes this formal.

De�nition 3.3. The winning probability for a monogamy game G and a strategy

S is de�ned as

p
win

(G,S) :=
∑

θ∈Θ

1

|Θ| tr
(

ΠθρABC

)

, where Πθ :=
∑

x∈X
F θ

x ⊗ P θ
x ⊗Qθ

x . (3)

The optimal winning probability is p
win

(G) := supS p
win

(G,S), where the supre-

mum is taken over all strategies S for G.

In fa
t, due to a standard puri�
ation argument and Neumark's dilation

theorem, we 
an restri
t the supremum to pure strategies (
f. [36℄).

Strong Parallel Repetition for G
BB84

. We are parti
ularly interested in the

game G
BB84

and its parallel repetition G×n
BB84

. The latter is given by HA = (C2)⊗n

and the proje
tors F θ
x = |xθ〉〈xθ | = Hθ1 |x1〉〈x1|Hθ1 ⊗ · · · ⊗ Hθn |xn〉〈xn|Hθn

for θ, x ∈ {0, 1}n
. The following shows the exa
t value of p

win

(G×n
BB84

), and in

parti
ular it shows strong parallel repetition.

Theorem 3.4. For any n ∈ N, n ≥ 1, we have

p
win

(G×n
BB84

) =

(

1

2
+

1

2
√

2

)n

. (4)

Proof. We �rst show that this probability 
an be a
hieved. For n = 1, 
onsider
the following strategy. Bob and Charlie prepare the state |φ〉 := cos π

8 |0〉 +
sin π

8 |1〉 and send it to Ali
e. Then, they guess that Ali
e measures out
ome 0,
independent of θ. Formally, this is the strategy S1 =

{

|φ〉〈φ|, P θ
x = δx0, Q

θ
x =

δx0

}

. The optimal winning probability is bounded by the winning probability of

this strategy,

p
win

(G
BB84

) ≥
(

cos
π

8

)2

=
1

2
+

1

2
√

2
,

and the lower bound in Eq. (4) follows by repeating this simple strategy n times.



To show that this simple strategy is optimal, let us now �x an arbitrary, pure

strategy Sn = {ρA1...AnBC , P
θ
x , Q

θ
x}. From the de�nition of the norm, we have

tr(MρABC) ≤ ‖M‖ for any M ≥ 0. Using this and Lemma 2.2, we �nd

p
win

(G×n
BB84

,Sn) ≤ 1

2n

∥

∥

∥

∑

θ

Πθ
∥

∥

∥
≤ 1

2n

∑

k

max
θ

∥

∥ΠθΠπk(θ)
∥

∥, (5)

where the optimal permutations πk
are to be determined later. Hen
e, the prob-

lem is redu
ed to bounding the norms

∥

∥ΠθΠθ′
∥

∥

, where θ′ = πk(θ). The trivial

upper bound on these norms, 1, leads to p
win

(G×n
BB84

,Sn) ≤ 1. However, most of

these norms are a
tually very small as we see below.

For �xed θ and k, we denote by T the set of indi
es where θ and θ′ di�er,
by T c

its 
omplement, and by t the Hamming distan
e between θ and θ′ (i.e.,
t = |T |). Consider the proje
tors

P̄ =
∑

x

|xθ
T 〉〈xθ

T | ⊗ 1T c ⊗ P θ
x ⊗ 1C and Q̄ =

∑

x

|xθ′

T 〉〈xθ′

T | ⊗ 1T c ⊗ 1B ⊗Qθ′

x ,

where |xθ
T 〉 is |xθ〉 restri
ted to the systems 
orresponding to rounds with index

in T , and 1T c
is the identity on the remaining systems.

Sin
e Πθ ≤ P̄ and Πθ′ ≤ Q̄, we 
an bound

∥

∥ΠθΠθ′
∥

∥

2 ≤
∥

∥P̄ Q̄P̄
∥

∥

using

Lemma 2.1. Moreover,

P̄ Q̄P̄ =
∑

x,y,z

|xθ
T 〉〈xθ

T |yθ′

T 〉〈yθ′

T |zθ
T 〉〈zθ

T | ⊗ 1T c ⊗ P θ
xP

θ
z ⊗Qθ′

y

=
∑

x,y

|〈xθ
T |yθ′

T 〉|2 |xθ
T 〉〈xθ

T | ⊗ 1T c ⊗ P θ
x ⊗Qθ′

y

= 2−t
∑

x

|xθ
T 〉〈xθ

T | ⊗ 1T c ⊗ P θ
x ⊗ 1C ,

where we used that P θ
xP

θ
z = δxzP

θ
x and |〈xθ

T |yθ′

T 〉|2 = 2−t
. The latter relation

follows from the fa
t that the two bases are diagonal to ea
h other on ea
h qubit

with index in T . From this follows dire
tly that ‖P̄ Q̄P̄‖ = 2−t
. Hen
e, we �nd

∥

∥ΠθΠθ′
∥

∥ ≤
√

2−t
. Note that this bound is independent of the strategy and only

depends on the Hamming distan
e between θ and θ′.
To minimize the upper bound in (5), we should 
hoose permutations πk

that

produ
e tuples (θ, θ′ = πk(θ)) with the same Hamming distan
e as this means

that the maximization is over a uniform set of elements. A 
omplete mutually

orthogonal set of permutations with this property is given by the bitwise XOR,

πk(θ) = θ⊕k, where we interpret k as an element of {0, 1}n
. Using this 
onstru
-

tion, we get exa
tly

(

n
t

)

permutations that 
reate pairs with Hamming distan
e

t, and the bound in Eq. (5) evaluates to

1

2n

∑

k

max
θ

∥

∥ΠθΠπk(θ)
∥

∥ ≤ 1

2n

n
∑

t=0

(

n

t

)

( 1√
2

)t

=

(

1

2
+

1

2
√

2

)n

.

As this bound applies to all pure strategies, we 
on
lude the proof. ⊓⊔



Arbitrary Games, and Imperfe
t Guessing. The above upper-bound te
h-

niques 
an be generalized to an arbitrary monogamy game, G, spe
i�ed by an

arbitrary �nite dimensional Hilbert spa
e HA and arbitrary proje
tive measure-

ments {F θ
x}x∈X , indexed by θ ∈ Θ, and with arbitrary �nite X and Θ. The

only additional parameter relevant for the analysis is the maximal overlap of the

measurements, c(G) := max ‖F θ
xF

θ′

x′ ‖2
, where the max is over all θ 6= θ′ ∈ Θ and

all x, x′ ∈ X . c(G) satis�es 1/|X | ≤ c(G) ≤ 1 and c(G×n) = c(G)n
. This is in a
-


ordan
e with the de�nition of the overlap as it appears in entropi
 un
ertainty

relations, e.g. in [21℄. Note also that in the 
ase of G
BB84

, we have c(G
BB84

) = 1
2 .

In addition to 
onsidering arbitrary monogamy games, we also generalize

Theorem 3.4 to the 
ase where Bob and Charlie are not required to guess perfe
tly

but are allowed to make some errors. The maximal winning probability in this


ase is de�ned as follows, where we again restri
t to pure strategies.

De�nition 3.5. Let Q = {(πq
B, π

q
C)}q be a set of pairs of permutations of X ,

indexed by q, with the meaning that in order to win, Bob and Charlie's respe
tive

guesses for x must form a pair in {(πq
B(x), πq

C(x))}q . Then, the optimal winning

probability of G with respe
t to Q is

p
win

(G;Q) := sup
S

∑

θ∈Θ

1

|Θ| tr(Π
θρABC) with Πθ :=

∑

x∈X
F θ

x ⊗
∑

q

P θ
πq

B
(x) ⊗Qθ

πq

C
(x)

where the supremum is taken over all pure strategies S for G.

We �nd the following upper bound on the guessing probability, generalizing

the upper bound on the optimal winning probability established in Theorem 3.4.

The proof 
losely follows the proof of the upper bound in Theorem 3.4, and is

deferred to the full version [36℄.

Theorem 3.6. For any positive n ∈ N, we have

p
win

(G×n;Q) ≤ |Q|
(

1

|Θ| +
|Θ| − 1

|Θ|
√

c(G)

)n

.

Re
all that in 
ase of G
BB84

, we have |Q| = 1, |Θ| = 2, and c(G
BB84

) = 1
2 , leading

to the bound stated in Theorem 3.4.

One parti
ularly interesting example of the above theorem 
onsiders binary

measurements, i.e. X = {0, 1}, where Ali
e will a

ept Bob's and Charlie's an-

swers if and only if they get less than a 
ertain fra
tion of bits wrong. More

pre
isely, she a

epts if d(x, y) ≤ γ n and d(x, z) ≤ γ′ n, where d(·, ·) denotes

the Hamming distan
e and y, z are Bob's and Charlie's guesses, respe
tively. In

this 
ase, we let Qn
γ,γ′ 
onsist of all pairs of permutations (πq

B , π
q
C) on {0, 1}n

of

the form πq
B(x) = x ⊕ k, πq

C(x) = x ⊕ k′, where q = {k, k′}, and k, k′ ∈ {0, 1}n

have Hamming weight at most γ and γ′, respe
tively. One 
an upper bound

|Qn
γ,γ′| ≤ 2nh(γ)+nh(γ′)

, where h(·) denotes the binary entropy. We thus �nd

p
win

(G×n;Qn
γ,γ′) ≤

(

2h(γ)+h(γ′) 1 + (|Θ| − 1)
√

c(G)

|Θ|

)n

.



4 Appli
ation: One-Sided Devi
e-Independent QKD

In the following, we assume some familiarity with quantum key distribution

(QKD). For simpli
ity, we 
onsider an entanglement-based [11℄ variant of the

BB84 QKD s
heme [5℄, where Bob waits with performing the measurement until

Ali
e tells him the right bases. This proto
ol is impra
ti
al be
ause it requires

Bob to store qubits. However, it is well known that se
urity of this impra
ti
al

version implies se
urity of the original, more pra
ti
al BB84 QKD s
heme [4℄.

It is straightforward to verify that this impli
ation also holds in the one-sided

devi
e-independent setting we 
onsider here.

The entanglement-based QKD s
heme, E-QKD, is des
ribed in Figure 1.

It is (impli
itly) parameterized by positive integers 0 < t, s, ℓ < n and a real

number 0 ≤ γ < 1
2 . Here, n is the number of qubits ex
hanged between Ali
e

and Bob, t is the size of the sample used for parameter estimation, s is the

leakage (in bits) due to error 
orre
tion, and ℓ is the length (in bits) of the �nal

key. Finally, γ is the tolerated error in Bob's measurement results.

State Preparation: Ali
e prepares n EPR pairs

1
√

2

`

|0〉 ⊗ |0〉 + |1〉 ⊗ |1〉
´

. Then,

of ea
h pair, she keeps one qubit and sends the other to Bob.

Con�rmation: Bob 
on�rms re
eipt of the n qubits. (After this point, there 
an-

not be any 
ommuni
ation between Bob's devi
e and Eve.)

Measurement: Ali
e 
hooses random Θ ∈ {0, 1}n
and sends it to Bob, and Ali
e

and Bob measure the EPR pairs in basis Θ to obtain X and Y , respe
tively.

(Remember: Bob's devi
e may produ
e Y in an arbitrary way, using a POVM


hosen depending on Θ a
ting on a state provided by Eve.)

Parameter Estimation: Ali
e 
hooses a random subset T ⊂ {1, . . . , n} of size t,

and sends T and XT to Bob. If the relative Hamming distan
e, drel(XT , YT ),
ex
eeds γ then they abort the proto
ol and set K = ⊥.

Error Corre
tion: Ali
e sends a syndrome S(XT̄ ) of length s and a random

universal2 hash fun
tion F : {0, 1}n−t → {0, 1}ℓ
to Bob.

Priva
y Ampli�
ation: Ali
e 
omputes K = F (XTc ) and Bob K̂ = F (X̂Tc),
where X̂Tc

is the 
orre
ted version of YTc
.

Fig. 1. An entanglement-based QKD s
heme E-QKD.

A QKD proto
ol is 
alled perfe
tly se
ure if it either aborts and outputs an

empty key, K =⊥, or it produ
es a key that is uniformly random and inde-

pendent of Eve's (quantum and 
lassi
al) information E+
gathered during the

exe
ution of the proto
ol. Formally, this means that the �nal state must be of

the form ρKE+ = Prρ[K 6=⊥] ·µK ⊗ρE+|K 6=⊥+Prρ[K =⊥] · |⊥〉〈⊥|K ⊗ρE+|K=⊥,

where µK is a 2ℓ
-dimensional 
ompletely mixed state, and |⊥〉〈⊥|K is orthogonal

to µK .



Relaxing this 
ondition, a proto
ol is 
alled δ-se
ure if ρKE+
is δ-
lose to the

above form in tra
e distan
e, meaning that ρKE+
satis�es

Pr
ρ

[K 6=⊥] ·∆(ρKE+|K 6=⊥, µK ⊗ ρE+|K 6=⊥) ≤ δ . (6)

It is well known and has been proven in various ways that E-QKD is δ-se
ure
(with small δ) with a suitable 
hoi
e of parameters, assuming that all quantum

operations are 
orre
tly performed by Ali
e and Bob. We now show that the

proto
ol remains se
ure even if Bob's measurement devi
e behaves arbitrarily

and possibly mali
iously. The only assumption is that Bob's devi
e does not


ommuni
ate with Eve after it re
eived Ali
e's quantum signals. This restri
tion

is 
learly ne
essary as there would otherwise not be any asymmetry between Bob

and Eve's information about Ali
e's key. Note that the s
heme is well known to

satisfy 
orre
tness and robustness; hen
e, we do not argue these here.

Theorem 4.1. Consider an exe
ution of E-QKD, with an arbitrary measure-

ment devi
e for Bob. Then, for any ε > 0, proto
ol E-QKD is δ-se
ure with

δ = 5e−2ε2t + 2−
1
2

(

log(1/β◦)n−h(γ+ε)n−ℓ−t−s+2
)

where β◦ =
1

2
+

1

2
√

2
.

Note that with an optimal error 
orre
ting 
ode, the size of the syndrome for

large n approa
hes the Shannon limit s = nh(γ). The se
urity error δ 
an then

be made negligible in n with suitable 
hoi
es of parameters if log(1/β◦) > 2h(γ),
whi
h roughly requires that γ ≤ 0.015. Hen
e, the s
heme 
an tolerate a noise

level up to 1.5% asymptoti
ally.

3

The formal proof is given below. The idea is rather simple: We 
onsider a

gedankenexperiment where Eve measures her system, using an arbitrary POVM,

with the goal to guess X . The exe
ution of E-QKD then pretty mu
h 
oin
ides

with G×n
BB84

, and we 
an 
on
lude from our results that if Bob's measurement

out
ome Y is 
lose to X , then Eve must have a hard time in guessing X . Sin
e

this holds for any measurement she may perform, this means her min-entropy

on X is large and hen
e the extra
ted key K is se
ure.

Proof. Let ρΘTABE = ρΘ ⊗ ρT ⊗ |ψABE〉〈ψABE | be the state before Ali
e and
Bob perform the measurements on A and B, respe
tively, where system E is held

by the adversary Eve. Here, the random variableΘ 
ontains the 
hoi
e of basis for

the measurement, whereas the random variable T 
ontains the 
hoi
e of subset

on whi
h the strings are 
ompared (see the proto
ol des
ription in Fig. 1.) More-

over, let ρΘTXY E be the state after Ali
e and Bob measured, where� for every

possible value θ�Ali
e's measurement is given by the proje
tors {|xθ〉〈xθ |}x,

and Bob's measurement by an arbitrary but �xed POVM {P θ
x}x.

As a gedankenexperiment, we 
onsider the s
enario where Eve wants to guess

the value of Ali
e's raw key, X . Eve wants to do this during the parameter es-

timation step of the proto
ol, exa
tly after Ali
e broad
ast T but before she

broad
asts XT .
4

For this purpose, we 
onsider an arbitrary measurement strat-

3

This 
an be improved slightly by instead 
onsidering a six-state proto
ol, where the

measurement is randomly 
hosen among three mutually unbiased bases on the qubit.

4

Note that the e�e
t of Eve learning XT is taken into a

ount later, in Eq. (8).



egy of Eve that aims to guess X . Su
h a strategy is given by� for every basis


hoi
e, θ, and every 
hoi
e of sample, τ�a POVM {Qθ,τ
x }x. The values of θ

and τ have been broad
ast over a publi
 
hannel, and are hen
e known to Eve

at this point of the proto
ol. She will thus 
hoose a POVM depending on these

values to measure E and use the measurement out
ome as her guess.

For our gedankenexperiment, we will use the state, ρΘTXY Z , whi
h is the

(purely 
lassi
al) state that results after Eve applied her measurement on E. Let
ε > 0 be an arbitrary 
onstant. By our results from Se
tion 3, it follows that for

any 
hoi
es of {P θ
x}x and {Qθ,τ

x }x, we have

Pr
ρ

[drel(X,Y )≤γ+ε ∧ Z=X ] ≤ p
win

(G×n
BB84

;Qn
γ+ε,0) ≤ βn

with β = 2h(γ+ε) · β◦, where drel denotes the relative Hamming distan
e. This

uses the fa
t that Ali
e's measurement out
ome is independent of T , and T 
an

in fa
t be seen as part of Eve's system for the purpose of the monogamy game.

We now 
onstru
t a state ρ̃ΘTXY E as follows.

ρ̃ΘTXY E = Pr
ρ

[Ω] · ρΘTXY E|Ω +
(

1 − Pr
ρ

[Ω]
)

· σΘTXY E ,

where Ω denotes the event Ω = {drel(X,Y ) ≤ drel(XT , YT ) + ε}, and we take

σTΘXY E to be an arbitrary state with 
lassi
al Θ, T , X and Y for whi
h

drel(X,Y ) = 1, and hen
e drel(XT , YT ) = 1. Informally, the event Ω indi
ates

that the relative Hamming distan
e of the sample strings XT and YT deter-

mined by T was representative of the relative Hamming distan
e between the

whole strings,X and Y , and the state ρ̃ΘTXY E is so that this is satis�ed with 
er-

tainty. By 
onstru
tion of ρ̃ΘTXY E , we have ∆(ρΘTXY E , ρ̃ΘTXY E) ≤ 1−Prρ[Ω],
and by Hoe�ding's inequality,

1 − Pr
ρ

[Ω] = Pr
ρ

[drel(X,Y ) > drel(XT , YT ) + ε] ≤ e−2ε2t.

Moreover, note that the event drel(XT , YT ) ≤ γ implies drel(X,Y ) ≤ γ+ ε under
ρ̃ΘTXY E . Thus, for every 
hoi
e of strategy {Qθ,τ

x }x by the eavesdropper, the

resulting state ρ̃ΘTXY Z , obtained by applying {Qθ,τ
x }x to E, satis�es

Pr
ρ̃

[drel(XT , YT )≤γ ∧ Z=X ] ≤ Pr
ρ̃

[drel(X,Y )≤γ+ε ∧ Z=X ] (7)

≤ Pr
ρ

[drel(X,Y )≤γ+ε ∧ Z=X ] ≤ βn.

We now introdu
e the event Γ = {drel(XT , YT ) ≤ γ}, whi
h 
orresponds to the

event that Bob does not abort the proto
ol. Expanding the left hand side of (7)

to Prρ̃[Γ ] · Prρ̃[Z = X |Γ ] and observing that Prρ̃[Γ ] does not depend on the

strategy {Qθ,τ
x }x, we 
an 
on
lude that

∀ {Qθ,τ
x }x : Pr

ρ̃
[Z=X |Γ ] ≤ β(1−α)n

where α ≥ 0 is determined by Prρ̃[Γ ] = βαn
. Therefore, by de�nition of the

min-entropy, Hmin(X |ΘTE, Γ )ρ̃ ≥ n(1−α) log(1/β). (This notation means that



the min-entropy of X given Θ, T and E is evaluated for the state ρ̃ΘTXY E|Γ ,

onditioned on not aborting.) By the 
hain rule, it now follows that

Hmin(X |ΘTXTSE, Γ )ρ̃ ≥ Hmin(XXTS|ΘTE, Γ )ρ̃ − t− s (8)

≥ n(1 − α) log(1/β) − t− s .

Here, the min-entropy is evaluated for the state ρ̃XΘTXT SE that is 
onstru
ted

from ρ̃XΘTE by 
al
ulating the error syndrome and 
opying XT from X as done

in the pres
ription of the proto
ol. In parti
ular, ∆(ρ̃XΘTXT SE , ρXΘTXT SE) ≤
e−2ε2t

. Finally, priva
y ampli�
ation with universal2 hashing applied to the state

ρ̃XΘTXT SE ensures that the key K satis�es [31℄

∆(ρ̃KFΘTXT SE|Γ , µK ⊗ ρ̃FΘTXT E|Γ ) ≤ 1

2

√

β(1−α)n 2ℓ+t+s .

And, in parti
ular, re
alling that Prρ̃[Γ ] = βαn
, we have

Pr
ρ̃

[Γ ] ·∆(ρ̃KFΘTXT SE|Γ , µK ⊗ ρ̃FΘTXT E|Γ ) ≤ 1

2

√

βn 2ℓ+t+s .

Using β = 2h(γ+ε)β◦ and applying Lemma 4.2 below 
on
ludes the proof. ⊓⊔

Lemma 4.2. Let ρXB, ρ̃XB ∈ S(HX ⊗ HB) be two CQ states with X over X .

Also, let λ : X → {0, 1} be a predi
ate on X and Λ = λ(X), and let τX ∈ S(HX)
be arbitrary. Then

Pr
ρ

[Λ] ·∆(ρXB|Λ, τX ⊗ ρB|Λ) ≤ 5∆(ρXB, ρ̃XB) + Pr
ρ̃

[Λ] ·∆(ρ̃XB|Λ, τX ⊗ ρ̃B|Λ) .

Proof. We set δ := ∆(ρXB, ρ̃XB). From∆(ρXB , ρ̃XB) = δ it follows in parti
ular
that the two distributions PX and P̃X are δ-
lose, and thus that the state

σXB := Pr
ρ

[Λ] · ρ̃XB|Λ + Pr
ρ

[¬Λ] · ρ̃XB|¬Λ

is δ-
lose to ρ̃XB, and hen
e 2δ-
lose to ρXB, where ¬Λ is the negation of the

event Λ. Sin
e Λ is determined by X , we 
an write

∆(ρXB, σXB) = Pr
ρ

[Λ] ·∆(ρXB|Λ, ρ̃XB|Λ) + Pr
ρ

[¬Λ] ·∆(ρXB|¬Λ, ρ̃XB|¬Λ) ,

from whi
h it follows that Prρ[Λ] ·∆(ρXB|Λ, ρ̃XB|Λ) ≤ 2δ, and, by tra
ing out

X , also that Prρ[Λ] ·∆(ρB|Λ, ρ̃B|Λ) ≤ 2δ. We 
an now 
on
lude that

Pr
ρ

[Λ] ·∆(ρXB|Λ, τX ⊗ ρB|Λ) ≤ 4δ + Pr
ρ

[Λ] ·∆(ρ̃XB|Λ, τX ⊗ ρ̃B|Λ)

≤ 5δ + Pr
ρ̃

[Λ] ·∆(ρ̃XB|Λ, τX ⊗ ρ̃B|Λ) ,

whi
h proves the 
laim. ⊓⊔
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