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Abstrat. A serious onern with quantum key distribution (QKD)

shemes is that, when under attak, the quantum devies in a real-life im-

plementation may behave di�erently than modeled in the seurity proof.

This an lead to real-life attaks against provably seure QKD shemes.

In this work, we show that the standard BB84 QKD sheme is one-sided

devie-independent. This means that seurity holds even if Bob's quan-

tum devie is arbitrarily maliious, as long as Alie's devie behaves as

it should. Thus, we an ompletely remove the trust into Bob's quantum

devie for free, without the need for hanging the sheme, and without

the need for hard-to-implement loophole-free violations of Bell inequality,

as is required for fully (meaning two-sided) devie-independent QKD.

For our analysis, we introdue a new quantum game, alled a monogamy-

of-entanglement game, and we show a strong parallel repetition theorem

for this game. This new notion is likely to be of independent interest and

to �nd additional appliations. Indeed, besides the appliation to QKD,

we also show a diret appliation to position-based quantum ryptogra-

phy: we give the �rst seurity proof for a one-round position-veri�ation

sheme that requires only single-qubit operations.

1 Introdution

Bakground. Quantum key distribution (QKD) makes use of quantum me-

hanial e�ets to allow two parties, Alie and Bob, to exhange a seret key

while being eavesdropped by an attaker Eve [5,11℄. In priniple, the seurity

of QKD an be rigorously proven based solely on the laws of quantum mehan-

is [27,33,31℄; in partiular, the seurity does not rely on the assumed hardness

of some omputational problem. However, these seurity proofs typially make

stringent assumptions about the devies used by Alie and Bob to prepare and

measure the quantum states that are ommuniated. These assumptions are not

neessarily satis�ed by real-world devies, leaving the implementations of QKD

shemes open to haking attaks [25℄.

One way to ounter this problem is by proteting the devies in an ad-ho

manner against known attaks. This is somewhat unsatisfatory in that the



implementation may still be vulnerable to unknown attaks, and the fat that

the sheme is in priniple provably seure loses a lot of its signi�ane.

Another approah is to try to remove the assumptions on the devies nees-

sary for the seurity proof; this leads to the notion of devie-independent (DI)

QKD. This line of researh an be traed bak to Mayers and Yao [28℄ as well

as [2,1℄. After some limited results [26,13℄, the possibility of DI QKD has reently

been shown in the most general ase by Reihhardt et al. in [30℄. In a typial DI

QKD sheme, Alie and Bob hek if the lassial data obtained from the quan-

tum ommuniation violates a Bell inequality, whih in turn ensures that there

is some amount of fresh randomness in the data that annot be known by Eve.

This an then be transformed into a seret key using standard ryptographi

tehniques like information reoniliation and randomness extration.

While this argument shows that DI QKD is theoretially possible, the disad-

vantage of suh shemes is that they require a loophole free violation of a Bell

inequality by Alie and Bob. This makes fully DI QKD shemes very hard to

implement and very sensitive to any kind of noise and to ine�ienies of the

physial devies: any de�ieny will result in a lower observed (loophole free)

Bell inequality violation, and urrently oneivable experimental parameters are

insu�ient to provide provable seurity. Trying to �nd ways around this problem

is an ative line of researh, see e.g. [12,24,7,23℄.

Our Result. Here, we follow a somewhat di�erent approah, not relying on

Bell tests, but making use of the monogamy of entanglement. Informally, the

latter states that if Alie's state is fully entangled with Bob's, then it annot

be entangled with Eve's, and vie versa. As a onsequene, if Alie measures a

quantum system by randomly hoosing one of two inompatible measurements,

it is impossible for Bob and Eve to both have low entropy about Alie's measure-

ment outome. Thus, if one an verify that Bob has low entropy about Alie's

measurement during the run of the sheme, it is guaranteed that Eve's entropy

is high, and thus that a seret key an be distilled.

Based on this idea, we show that the standard BB84 QKD sheme [5℄ is

one-sided DI. This means that only Alie's quantum devie has to be trusted,

but no assumption about Bob's measurement devie has to be made in order to

prove seurity. Beyond that it does not ommuniate the measurement outome

to Eve, Bob's measurement devie may be arbitrarily maliious.

One-sided DI seurity of BB84 was �rst laimed in [38℄. However, a lose in-

spetion of their proof sketh, whih is based on an entropi unertainty relation

with quantum side information, reveals that their arguments are insu�ient to

prove full one-sided DI seurity (as on�rmed by the authors). It needs to be

assumed that Bob's measurement devie is memoryless. The same holds for the

follow up work [37,6℄ of [38℄.

One-sided DI seurity is obviously weaker than fully DI seurity (as e.g.

ahieved in [30℄). Still, what is interesting is that there is no need for a new

sheme�good old BB84 does it. In that sense, we obtain one-sided DI seurity

for free. In partiular, no hard-to-implement loophole-free Bell tests are needed.



Despite the pratial motivation, our result is of theoretial nature. This

is beause, as in all ontemporary fully DI shemes, our analysis (impliitly)

assumes that every qubit sent by Alie is indeed reeived by Bob, or, more

generally, whether it is reeived or not does not depend on the basis it is to be

measured in; this is not neessarily satis�ed in pratial implementations�and

some reent attaks on QKD take advantage of exatly this e�et by blinding the

detetors whenever a measurement in a basis not to Eve's liking is attempted [25℄.

Our analysis of BB84 QKD with one-sided DI seurity admits a noise level

of up to 1.5%. This is signi�antly lower than the 11% tolerable for standard

(i.e. not DI) seurity. We believe that this is not inherent to the sheme but

an artifat of our analysis. Improving this bound by means of a better analysis

is an open problem (it an be slightly improved by using a better sheme, e.g.,

the 6-state sheme). Nonetheless, one-sided DI QKD appears to be an attrative

alternative to DI QKD in an asymmetri setting, when we an expet from one

party, say, a server, to invest into a very arefully designed, onstruted, and

tested apparatus, but not the other party, the user, and/or in ase of a star

network with one designated link being onneted with many other links.

Tehnique. In order to prove one-sided DI seurity of BB84, we introdue and

study a new quantum game, whih we all a monogamy of entanglement game

(or simply a monogamy game). This is a game of a spei� form, played by three

parties, Alie, Bob and Charlie. Of entral importane to us is the monogamy

game G×n
BB84

, whih is as follows.

Preparation Phase: Bob and Charlie agree on and prepare an arbitrary quan-

tum state ρABC , where ρA onsists of n qubits. They pass ρA to Alie and

hold on to ρB and ρC , respetively. After this phase, Bob and Charlie are

no longer allowed to ommuniate.

Question Phase: Alie hooses θ ∈ {0, 1}n
uniformly at random and announes

θ to Bob and Charlie. Additionally, she measures every qubit ρAi
of ρA in

the omputational basis if θi = 0, and in the Hadamard basis if θi = 1. This
results in a bit string x ∈ {0, 1}n

.

Answer Phase: Bob and Charlie independently form a guess of x by performing

measurements (whih may depend on θ) on ρB and ρC , respetively.

Winning Condition: The game is won if both Bob and Charlie guess x orretly.

From the perspetive of lassial information proessing, our game may ap-

pear somewhat trivial�after all, if Bob and Charlie were to provide some las-

sial information k to Alie who would merely apply a randomly hosen fun-

tion fθ, they ould predit the value of x = fθ(k) perfetly from k and θ. In
quantum mehanis, however, the outome of a measurement is in general not

deterministi, and the well-known unertainty priniple [15℄ plaes a limit on

how well observers an predit the outome of inompatible measurements. For

instane, if Bob and Charlie were restrited to lassial memory (i.e., ρB and

ρC are �empty�), it is not too hard to see that the best strategy gives a winning

probability of (1
2 + 1

2
√

2
)n ≈ 0.85n

.



In a fully quantum world, however, unertainty is not quite the end of the

story, as indeed Bob and Charlie are allowed to have quantum memory. To illus-

trate the power of suh a memory, onsider the same game played just between

Alie and Bob. As Einstein, Podolsky and Rosen famously observed [10℄: if ρAB

is a maximally entangled state, then one Bob learns Alie's hoie of measure-

ment θ, he an perform an adequate measurement on his share of the state to

obtain x himself. That is, there exists a strategy for Bob to guess x perfetly.

Does this hange when we add the extra player, Charlie? We an ertainly be

hopeful as it is known that quantum entanglement is �monogamous� [34℄ in the

sense that the more entangled Bob is with Alie, the less entangled Charlie an

be. In the extreme ase where ρAB is maximally entangled, even if Bob an guess

x perfetly every time, Charlie has to resort to making an uninformed random

guess. As both of them have to be orret in order to win the game, this strategy

turns out to be worse than optimal (see below).

An analysis of our game thus requires a tightrope walk between unertainty

on the one hand, and the monogamy of entanglement on the other. Writing

p
win

(G×n
BB84

) for the maximal winning probability, maximized over the hoie of

the initial state ρABC and over the measurements performed by Bob and Charlie,

we prove that

p
win

(G×n
BB84

) =
(1

2
+

1

2
√

2

)n

. (1)

We thus see that, interestingly, monogamy of entanglement wins out entirely,

anelling the power of Bob and Charlie's quantum memory�the optimal win-

ning probability an be ahieved without any entanglement at all. We also show

a generalization of (1), whih upper bounds p
win

(G×n
BB84

) for a variant of the game

G×n
BB84

for whih Bob and Charlie need to guess the string x only approximately.

Our result in partiular implies that p
win

(G×n
BB84

) = p
win

(G
BB84

)n
, i.e., strong

parallel repetition holds. This means that one annot play n parallel exeutions

of the game G
BB84

= G×1
BB84

better than repeating the optimal strategy for one exe-

ution n times. Even lassially, analyzing the n-fold parallel repetition of games

or tasks is typially hallenging. In many ases, only non-strong parallel repeti-

tion holds, meaning that p
win

(G×n) ≤ εn
for some ε < 1, but with ε > p

win

(G).
Furthermore, proving suh (strong or not) parallel repetition theorems tends to

be intriguingly di�ult; examples inlude the parallel repetition of interative

proof systems (see e.g. [29℄) or the analysis of ommuniation omplexity tasks

(see e.g. [19℄). In a quantum world, suh an analysis is often exaerbated further

by the presene of entanglement and the fat that quantum information annot

generally be opied. Famous examples inlude the analysis of the �parallel repeti-

tion� of hannels in quantum information theory (where the problem is referred

to as the additivity of apaities), see e.g. [14℄, entangled non-loal games [16℄, or

the question whether an eavesdropper's optimal strategy in QKD is to perform

the optimal strategy for eah round.

In this light, our proof of (1) is surprisingly simple. It is inspired by teh-

niques due to Kittaneh [18℄ and uses merely tools from linear algebra. At the

ore of the proof is a newly derived operator norm inequality that bounds the



norm ‖∑

iAi‖ of the sum of positive semi-de�nite operators A1, . . . , AN via the

respetive norms of the square root of pairwise produts AiAj .

In the ontext of one-sided DI QKD, it turns out that the game G
×n
BB84

pretty

muh aptures an exeution of BB84, with Eve playing the role of Charlie, and

onsidering a gedankenexperiment where Eve measures her quantum side infor-

mation in order to try to guess the raw key x Alie obtains. Our bound on

p
win

(G×n
BB84

) then implies that no matter what measurement Bob's devie per-

forms, if the outome of his measurement is strongly orrelated to Alie's raw

key x, then Eve has a hard time in guessing x. The latter holds for any mea-

surement Eve may perform, and as suh it follows that x has lower bounded

min-entropy onditioned on Eve's quantum side information. As a onsequene,

a seret key an be extrated from x using standard tehniques.

Further Appliation. We expet our notion of and our results on monogamy

games to �nd other appliations. Indeed, one additional diret appliation is to

position veri�ation. Here, we onsider a 1-dimensional setting where a prover

wants to onvine two veri�ers that he ontrols a ertain position, pos. The
veri�ers are loated at known positions around pos, and they are honest and

onneted by seure ommuniation hannels. Moreover, all parties are assumed

to have synhronized loks, and the message delivery time between any two

parties is assumed to be proportional to the distane between them.

Position veri�ation and variants thereof (like distane bounding) is a rather

well-studied problem in the �eld of wireless seurity (see e.g. the referenes in [9℄).

It was shown in [9℄ that in the presene of olluding adversaries at di�erent lo-

ations, position veri�ation is impossible lassially, even with omputational

hardness assumptions. That is, the prover an always trik the veri�ers into be-

lieving that he ontrols a position. The fat that the lassial attak requires the

adversary to opy information, initially gave hope that we may irumvent the

impossibility result using quantum ommuniation. However, suh shemes were

subsequently broken [17,22℄ and indeed a general impossibility proof holds [8℄:

without any restrition on the adversaries, in partiular on the amount of pre-

shared entanglement they may hold, no quantum sheme for position veri�ation

an be seure. This impossibility proof was onstrutive but required the dishon-

est parties to share a number of EPR pairs that grows doubly-exponentially in

the number of qubits the honest parties exhange. This was redued by Beigi and

König [3℄ to a single exponential amount. On the other hand, there are shemes

for position veri�ation that are provably seure against adversaries that have

no pre-shared entanglement, or only hold a ouple of entangled qubits [8,22,3℄.

However, all known shemes that are provably seure with a negligible sound-

ness error (the maximal probability that a oalition of adversaries an pass the

position veri�ation test for position pos without atually ontrolling that spe-

i� position) against adversaries with no or with bounded pre-shared entan-

glement are either multi-round shemes, or require the honest partiipants to

manipulate large quantum states.

In the full version [36℄, we present the �rst provably seure one-round position

veri�ation sheme with negligible soundness error in whih the honest parties



are only required to perform single qubit operations. We prove its seurity against

adversaries with an amount of pre-shared entanglement that is linear in the

number of qubits transmitted by the honest parties.

Outline. In Setion 2, we introdue the terminology and notation used through-

out this work, and we derive the operator norm inequality that is entral to our

main result. In Setion 3, we disuss the monogamy game G×n
BB84

, prove a strong

parallel repetition theorem, and disuss some generalizations. In Setion 4, we

then make use of these results to prove one-sided DI seurity of BB84. The

appliation to position veri�ation is given in the full version [36℄.

2 Tehnial Preliminaries

Basi Notation and Terminology. We assume the reader to be familiar with

the basi onepts of quantum information theory; we merely �x some notation

and terminology here.

Let H be an arbitrary, �nite dimensional omplex Hilbert spae. L(H) and
P(H) denote linear and positive semi-de�nite operators on H, respetively. Note

that an operator A ∈ P(H) is in partiular Hermitian, meaning that A† = A.
The set of density operators on H, i.e., the set of operators in P(H) with unit

trae, is denoted by S(H). For A,B ∈ L(H), we write A ≥ B to express that

A−B ∈ P(H). When operators are ompared with salars, we impliitly assume

that the salars are multiplied by the identity operator, whih we denote by 1H,

or 1 if H is lear from the ontext. A projetor is an operator P ∈ P(H) that

satis�es P 2 = P . A POVM (short for positive operator valued measure) is a set

{Nx}x of operators Nx ∈ P(H) suh that

∑

xNx = 1, and a POVM is alled

projetive if all its elements Nx are projetors. We use the trae distane

∆(ρ, σ) := max
0≤E≤1

tr(E(ρ− σ)) =
1

2
tr|ρ− σ|, where |L| =

√
L†L,

as a metri on density operators ρ, σ ∈ S(H).
The most prominent example of a Hilbert spae is the qubit spae, H ≡ C2

.

The vetors |0〉 =
(

1
0

)

and |1〉 =
(

0
1

)

form the omputational basis, and the vetors

H |0〉 = (|0〉 + |1〉)/
√

2 and H |1〉 = (|0〉 − |1〉)/
√

2 the Hadamard basis, where

H denotes the Hadamard matrix. More generally, we often onsider systems

omposed of n qubits, H ≡ C2 ⊗ · · · ⊗ C2
. For x, θ ∈ {0, 1}n

, we write |xθ〉 as a
shorthand for the state vetor Hθ1 |x1〉 ⊗ · · · ⊗Hθn |xn〉 ∈ H.

The Shatten ∞-Norm. For L ∈ L(H), we use the Shatten ∞-norm ‖L‖ :=
‖L‖∞ = s1(L), whih evaluates the largest singular value of L. It is easy to verify
that this norm satis�es ‖L‖2 = ‖L†L‖ = ‖LL†‖. Also, for A,B ∈ P(H), ‖A‖
oinides with the largest eigenvalue ofA, and A ≤ B implies ‖A‖ ≤ ‖B‖. Finally,
for any blok-diagonal operator A⊕B we have ‖A⊕B‖ = max{‖A‖, ‖B‖}.

We need the following fat. Note that the statement does not hold in general

if the projetors are replaed by general positive semi-de�nite operators.



Lemma 2.1. Let P,Q ∈ P(H) be projetors with P ≤ Q, and let L ∈ L(H).
Then, it holds that

∥

∥PL
∥

∥ ≤
∥

∥QL
∥

∥

and

∥

∥LP
∥

∥ ≤
∥

∥LQ
∥

∥

.

Proof. ‖PL‖2 =
∥

∥L†P †PL
∥

∥ =
∥

∥L†PL
∥

∥ ≤
∥

∥L†QL
∥

∥ =
∥

∥L†Q†QL†∥
∥ = ‖QL‖2

,

and the proof of the seond statement follows analogously. ⊓⊔

Applying the lemma twie, we get ‖PQ‖2 ≤ ‖P ′Q‖2 ≤ ‖P ′Q′‖2 = ‖P ′Q′P ′‖ for

any two pairs of projetors satisfying P ≤ P ′
and Q ≤ Q′

.

One of our main tools is the following Lemma 2.2, whih bounds the Shatten

norm of the sum of n positive semi-de�nite operators by means of their pairwise

produts. We derive the bound using a onstrution due to Kittaneh [18℄, whih

was also used by Sha�ner [32℄ to derive a similar, but less general, result.

We all two permutations π : [N ] → [N ] and π′ : [N ] → [N ] of the set

[N ] := {1, . . . , N} orthogonal if π(i) 6= π′(i) for all i ∈ [N ]. The N yli shifts

for instane form a set of N permutations of [N ] that are mutually orthogonal.

Lemma 2.2. Let A1, A2, . . . , AN ∈ P(H), and let {πk}k∈[N ] be a set of N mu-

tually orthogonal permutations of [N ]. Then,

∥

∥

∥

∥

∑

i∈[N ]

Ai

∥

∥

∥

∥

≤
∑

k∈[N ]

max
i∈[N ]

∥

∥

∥

√

Ai

√

Aπk(i)

∥

∥

∥
.

Proof. We de�ne X = [Xij ] as the N × N blok-matrix with bloks given by

Xij = δj1
√
Ai. The two matries X†X and XX†

are easy to evaluate, namely

(X†X)ij = δi1δj1
∑

i Ai and (XX†)ij =
√
Ai

√

Aj , respetively. As suh, we see

that

∥

∥

∑

i Ai

∥

∥ = ‖X†X‖ =
∥

∥XX†∥
∥

.

Next, we deompose XX†
into XX† = D1+D2+ . . . DN , where the matries

Dk are de�ned by the permutations π
k
, respetively, as (Dk)ij = δj,πk(i)

√
Ai

√

Aj .

The requirement on the permutations ensures that XX† =
∑

k Dk. Moreover,

sine the matries Dk are onstruted suh that they ontain exatly one non-

zero blok in eah row and olumn, they an be transformed into a blok-diagonal

matrix D′
k =

⊕

i

√
Ai

√

Aπk(i) by a unitary rotation. Hene, using triangle in-

equality and the unitary invariane of the norm, we get

∥

∥

∑

k Ak

∥

∥ =
∥

∥XX†∥
∥ ≤

∑

k ‖Dk‖ =
∑

k ‖D′
k‖ =

∑

k maxi

∥

∥

√
Ai

√

Aπk(i)

∥

∥

. ⊓⊔

CQ-States and Min-Entropy. A state ρXB ∈ S(HX ⊗ HB) is alled a

lassial-quantum (CQ) state with lassial X over X , if it is of the form

ρXB =
∑

x∈X
px|x〉〈x|X ⊗ ρx

B ,

where {|x〉}x∈X is a �xed basis of HX , {px}x∈X is a probability distribution,

and ρx
B ∈ S(HB). For suh a state, X an be understood as a random variable

that is orrelated with (potentially quantum) side information B.
If λ : X → {0, 1} is a prediate on X , then we denote by Prρ[λ(X)] the

probability of the event λ(X) under ρ; formally, Prρ[λ(X)] =
∑

x px λ(x). We



also de�ne the state ρXB|λ(X), whih is the state of the X and B onditioned on

the event λ(X). Formally,

ρXB|λ(X) =
1

Prρ[λ(X)]

∑

x

pxλ(x)|x〉〈x|X ⊗ ρx
B .

For a CQ-state ρXB ∈ S(HX ⊗HB), the min-entropy of X onditioned on B
[31℄ an be expressed in terms of the maximum probability that a measurement

on B yields the orret value of X , i.e. the guessing probability. Formally, we

de�ne [20℄ Hmin(X |B)ρ := − log p
guess

(X |B)ρ, where

p
guess

(X |B)ρ := max
{Nx}x

∑

x

px tr(ρx
BNx).

Here, the optimization is taken over all POVMs {Nx}x on B, and here and

throughout this paper, log denotes the binary logarithm.

In ase of a CQ-state ρXBΘ with lassialX , and with additional lassial side

information Θ, we an write ρXBΘ =
∑

θ pθ |θ〉〈θ|⊗ρθ
XB for CQ states ρθ

XB. The

min-entropy of X onditioned on B and Θ then evaluates to Hmin(X |BΘ)ρ =
− log p

guess

(X |BΘ)ρ, where pguess(X |BΘ)ρ =
∑

θ pθ pguess(X |B)ρθ . An intuitive

explanation of the latter equality is that the optimal strategy to guess X simply

hooses an optimal POVM on B depending on the value of Θ.
An overview of the min-entropy and its properties an be found in [35℄. We

merely point out the hain rule here: for a CQ-state ρXBΘ with lassial X and

Θ, where Θ is over {0, 1}n
, it holds that Hmin(X |BΘ)ρ ≥ Hmin(X |B)ρ − n.

3 Parallel Repetition of Monogamy Games

In this setion, we formalize the notion of a monogamy game, and we show

strong parallel repetition for the game G×n
BB84

. Then, we generalize our analysis

to arbitrary projetive measurements for Alie, and to the ase where Bob and

Charlie are allowed to make some errors.

De�nition 3.1. A monogamy-of-entanglement game G onsists of a �nite di-

mensional Hilbert spae HA and a list of projetive measurementsMθ = {F θ
x}x∈X

on a HA, indexed by θ ∈ Θ, where X and Θ are �nite sets.

We typially use less bulky terminology and simply all G a monogamy game.

Note that for any positive integer n, the n-fold parallel repetition of G, denoted as

G×n
and naturally spei�ed by H

⊗n
A and {F θ1

x1
⊗· · ·⊗F θn

xn
}x1,...,xn

for θ1, . . . , θn ∈
Θ, is again a monogamy game.

De�nition 3.2. We de�ne a strategy S for a monogamy game G as a list

S =
{

ρABC , P
θ
x , Q

θ
x

}

θ∈Θ,x∈X , (2)

where ρABC ∈ S(HA ⊗ HB ⊗ HC), and HB and HC are arbitrary �nite dimen-

sional Hilbert spaes. Furthermore, for all θ ∈ Θ, {P θ
x}x∈X and {Qθ

x}x∈X are

POVMs on HB and HC , respetively. A strategy is alled pure if the state ρABC

is pure and all the POVMs are projetive.



If S is a strategy for game G, then the n-fold parallel repetition of S, whih is

naturally given, is a partiular strategy for the parallel repetition G×n
; however,

it is important to realize that there exist strategies for G
×n

that are not of this

form. In general, a strategy Sn for G×n
is given by an arbitrary state ρA1...AnBC ∈

S(H⊗n
A ⊗ HB ⊗ HC) (with arbitrary HB and HC) and by arbitrary POVM

elements on HB and HC , respetively, not neessarily in produt form.

The winning probability for a game G and a �xed strategy S, denoted by

p
win

(G,S), is de�ned as the probability that the measurement outomes of Al-

ie, Bob and Charlie agree when Alie measures in the basis determined by a

randomly hosen θ ∈ Θ and Bob and Charlie apply their respetive POVMs

{P θ
x}x and {Qθ

x}x. The optimal winning probability, p
win

(G), maximizes the

winning probability over all strategies. The following makes this formal.

De�nition 3.3. The winning probability for a monogamy game G and a strategy

S is de�ned as

p
win

(G,S) :=
∑

θ∈Θ

1

|Θ| tr
(

ΠθρABC

)

, where Πθ :=
∑

x∈X
F θ

x ⊗ P θ
x ⊗Qθ

x . (3)

The optimal winning probability is p
win

(G) := supS p
win

(G,S), where the supre-

mum is taken over all strategies S for G.

In fat, due to a standard puri�ation argument and Neumark's dilation

theorem, we an restrit the supremum to pure strategies (f. [36℄).

Strong Parallel Repetition for G
BB84

. We are partiularly interested in the

game G
BB84

and its parallel repetition G×n
BB84

. The latter is given by HA = (C2)⊗n

and the projetors F θ
x = |xθ〉〈xθ | = Hθ1 |x1〉〈x1|Hθ1 ⊗ · · · ⊗ Hθn |xn〉〈xn|Hθn

for θ, x ∈ {0, 1}n
. The following shows the exat value of p

win

(G×n
BB84

), and in

partiular it shows strong parallel repetition.

Theorem 3.4. For any n ∈ N, n ≥ 1, we have

p
win

(G×n
BB84

) =

(

1

2
+

1

2
√

2

)n

. (4)

Proof. We �rst show that this probability an be ahieved. For n = 1, onsider
the following strategy. Bob and Charlie prepare the state |φ〉 := cos π

8 |0〉 +
sin π

8 |1〉 and send it to Alie. Then, they guess that Alie measures outome 0,
independent of θ. Formally, this is the strategy S1 =

{

|φ〉〈φ|, P θ
x = δx0, Q

θ
x =

δx0

}

. The optimal winning probability is bounded by the winning probability of

this strategy,

p
win

(G
BB84

) ≥
(

cos
π

8

)2

=
1

2
+

1

2
√

2
,

and the lower bound in Eq. (4) follows by repeating this simple strategy n times.



To show that this simple strategy is optimal, let us now �x an arbitrary, pure

strategy Sn = {ρA1...AnBC , P
θ
x , Q

θ
x}. From the de�nition of the norm, we have

tr(MρABC) ≤ ‖M‖ for any M ≥ 0. Using this and Lemma 2.2, we �nd

p
win

(G×n
BB84

,Sn) ≤ 1

2n

∥

∥

∥

∑

θ

Πθ
∥

∥

∥
≤ 1

2n

∑

k

max
θ

∥

∥ΠθΠπk(θ)
∥

∥, (5)

where the optimal permutations πk
are to be determined later. Hene, the prob-

lem is redued to bounding the norms

∥

∥ΠθΠθ′
∥

∥

, where θ′ = πk(θ). The trivial

upper bound on these norms, 1, leads to p
win

(G×n
BB84

,Sn) ≤ 1. However, most of

these norms are atually very small as we see below.

For �xed θ and k, we denote by T the set of indies where θ and θ′ di�er,
by T c

its omplement, and by t the Hamming distane between θ and θ′ (i.e.,
t = |T |). Consider the projetors

P̄ =
∑

x

|xθ
T 〉〈xθ

T | ⊗ 1T c ⊗ P θ
x ⊗ 1C and Q̄ =

∑

x

|xθ′

T 〉〈xθ′

T | ⊗ 1T c ⊗ 1B ⊗Qθ′

x ,

where |xθ
T 〉 is |xθ〉 restrited to the systems orresponding to rounds with index

in T , and 1T c
is the identity on the remaining systems.

Sine Πθ ≤ P̄ and Πθ′ ≤ Q̄, we an bound

∥

∥ΠθΠθ′
∥

∥

2 ≤
∥

∥P̄ Q̄P̄
∥

∥

using

Lemma 2.1. Moreover,

P̄ Q̄P̄ =
∑

x,y,z

|xθ
T 〉〈xθ

T |yθ′

T 〉〈yθ′

T |zθ
T 〉〈zθ

T | ⊗ 1T c ⊗ P θ
xP

θ
z ⊗Qθ′

y

=
∑

x,y

|〈xθ
T |yθ′

T 〉|2 |xθ
T 〉〈xθ

T | ⊗ 1T c ⊗ P θ
x ⊗Qθ′

y

= 2−t
∑

x

|xθ
T 〉〈xθ

T | ⊗ 1T c ⊗ P θ
x ⊗ 1C ,

where we used that P θ
xP

θ
z = δxzP

θ
x and |〈xθ

T |yθ′

T 〉|2 = 2−t
. The latter relation

follows from the fat that the two bases are diagonal to eah other on eah qubit

with index in T . From this follows diretly that ‖P̄ Q̄P̄‖ = 2−t
. Hene, we �nd

∥

∥ΠθΠθ′
∥

∥ ≤
√

2−t
. Note that this bound is independent of the strategy and only

depends on the Hamming distane between θ and θ′.
To minimize the upper bound in (5), we should hoose permutations πk

that

produe tuples (θ, θ′ = πk(θ)) with the same Hamming distane as this means

that the maximization is over a uniform set of elements. A omplete mutually

orthogonal set of permutations with this property is given by the bitwise XOR,

πk(θ) = θ⊕k, where we interpret k as an element of {0, 1}n
. Using this onstru-

tion, we get exatly

(

n
t

)

permutations that reate pairs with Hamming distane

t, and the bound in Eq. (5) evaluates to

1

2n

∑

k

max
θ

∥

∥ΠθΠπk(θ)
∥

∥ ≤ 1

2n

n
∑

t=0

(

n

t

)

( 1√
2

)t

=

(

1

2
+

1

2
√

2

)n

.

As this bound applies to all pure strategies, we onlude the proof. ⊓⊔



Arbitrary Games, and Imperfet Guessing. The above upper-bound teh-

niques an be generalized to an arbitrary monogamy game, G, spei�ed by an

arbitrary �nite dimensional Hilbert spae HA and arbitrary projetive measure-

ments {F θ
x}x∈X , indexed by θ ∈ Θ, and with arbitrary �nite X and Θ. The

only additional parameter relevant for the analysis is the maximal overlap of the

measurements, c(G) := max ‖F θ
xF

θ′

x′ ‖2
, where the max is over all θ 6= θ′ ∈ Θ and

all x, x′ ∈ X . c(G) satis�es 1/|X | ≤ c(G) ≤ 1 and c(G×n) = c(G)n
. This is in a-

ordane with the de�nition of the overlap as it appears in entropi unertainty

relations, e.g. in [21℄. Note also that in the ase of G
BB84

, we have c(G
BB84

) = 1
2 .

In addition to onsidering arbitrary monogamy games, we also generalize

Theorem 3.4 to the ase where Bob and Charlie are not required to guess perfetly

but are allowed to make some errors. The maximal winning probability in this

ase is de�ned as follows, where we again restrit to pure strategies.

De�nition 3.5. Let Q = {(πq
B, π

q
C)}q be a set of pairs of permutations of X ,

indexed by q, with the meaning that in order to win, Bob and Charlie's respetive

guesses for x must form a pair in {(πq
B(x), πq

C(x))}q . Then, the optimal winning

probability of G with respet to Q is

p
win

(G;Q) := sup
S

∑

θ∈Θ

1

|Θ| tr(Π
θρABC) with Πθ :=

∑

x∈X
F θ

x ⊗
∑

q

P θ
πq

B
(x) ⊗Qθ

πq

C
(x)

where the supremum is taken over all pure strategies S for G.

We �nd the following upper bound on the guessing probability, generalizing

the upper bound on the optimal winning probability established in Theorem 3.4.

The proof losely follows the proof of the upper bound in Theorem 3.4, and is

deferred to the full version [36℄.

Theorem 3.6. For any positive n ∈ N, we have

p
win

(G×n;Q) ≤ |Q|
(

1

|Θ| +
|Θ| − 1

|Θ|
√

c(G)

)n

.

Reall that in ase of G
BB84

, we have |Q| = 1, |Θ| = 2, and c(G
BB84

) = 1
2 , leading

to the bound stated in Theorem 3.4.

One partiularly interesting example of the above theorem onsiders binary

measurements, i.e. X = {0, 1}, where Alie will aept Bob's and Charlie's an-

swers if and only if they get less than a ertain fration of bits wrong. More

preisely, she aepts if d(x, y) ≤ γ n and d(x, z) ≤ γ′ n, where d(·, ·) denotes

the Hamming distane and y, z are Bob's and Charlie's guesses, respetively. In

this ase, we let Qn
γ,γ′ onsist of all pairs of permutations (πq

B , π
q
C) on {0, 1}n

of

the form πq
B(x) = x ⊕ k, πq

C(x) = x ⊕ k′, where q = {k, k′}, and k, k′ ∈ {0, 1}n

have Hamming weight at most γ and γ′, respetively. One an upper bound

|Qn
γ,γ′| ≤ 2nh(γ)+nh(γ′)

, where h(·) denotes the binary entropy. We thus �nd

p
win

(G×n;Qn
γ,γ′) ≤

(

2h(γ)+h(γ′) 1 + (|Θ| − 1)
√

c(G)

|Θ|

)n

.



4 Appliation: One-Sided Devie-Independent QKD

In the following, we assume some familiarity with quantum key distribution

(QKD). For simpliity, we onsider an entanglement-based [11℄ variant of the

BB84 QKD sheme [5℄, where Bob waits with performing the measurement until

Alie tells him the right bases. This protool is impratial beause it requires

Bob to store qubits. However, it is well known that seurity of this impratial

version implies seurity of the original, more pratial BB84 QKD sheme [4℄.

It is straightforward to verify that this impliation also holds in the one-sided

devie-independent setting we onsider here.

The entanglement-based QKD sheme, E-QKD, is desribed in Figure 1.

It is (impliitly) parameterized by positive integers 0 < t, s, ℓ < n and a real

number 0 ≤ γ < 1
2 . Here, n is the number of qubits exhanged between Alie

and Bob, t is the size of the sample used for parameter estimation, s is the

leakage (in bits) due to error orretion, and ℓ is the length (in bits) of the �nal

key. Finally, γ is the tolerated error in Bob's measurement results.

State Preparation: Alie prepares n EPR pairs

1
√

2

`

|0〉 ⊗ |0〉 + |1〉 ⊗ |1〉
´

. Then,

of eah pair, she keeps one qubit and sends the other to Bob.

Con�rmation: Bob on�rms reeipt of the n qubits. (After this point, there an-

not be any ommuniation between Bob's devie and Eve.)

Measurement: Alie hooses random Θ ∈ {0, 1}n
and sends it to Bob, and Alie

and Bob measure the EPR pairs in basis Θ to obtain X and Y , respetively.

(Remember: Bob's devie may produe Y in an arbitrary way, using a POVM

hosen depending on Θ ating on a state provided by Eve.)

Parameter Estimation: Alie hooses a random subset T ⊂ {1, . . . , n} of size t,

and sends T and XT to Bob. If the relative Hamming distane, drel(XT , YT ),
exeeds γ then they abort the protool and set K = ⊥.

Error Corretion: Alie sends a syndrome S(XT̄ ) of length s and a random

universal2 hash funtion F : {0, 1}n−t → {0, 1}ℓ
to Bob.

Privay Ampli�ation: Alie omputes K = F (XTc ) and Bob K̂ = F (X̂Tc),
where X̂Tc

is the orreted version of YTc
.

Fig. 1. An entanglement-based QKD sheme E-QKD.

A QKD protool is alled perfetly seure if it either aborts and outputs an

empty key, K =⊥, or it produes a key that is uniformly random and inde-

pendent of Eve's (quantum and lassial) information E+
gathered during the

exeution of the protool. Formally, this means that the �nal state must be of

the form ρKE+ = Prρ[K 6=⊥] ·µK ⊗ρE+|K 6=⊥+Prρ[K =⊥] · |⊥〉〈⊥|K ⊗ρE+|K=⊥,

where µK is a 2ℓ
-dimensional ompletely mixed state, and |⊥〉〈⊥|K is orthogonal

to µK .



Relaxing this ondition, a protool is alled δ-seure if ρKE+
is δ-lose to the

above form in trae distane, meaning that ρKE+
satis�es

Pr
ρ

[K 6=⊥] ·∆(ρKE+|K 6=⊥, µK ⊗ ρE+|K 6=⊥) ≤ δ . (6)

It is well known and has been proven in various ways that E-QKD is δ-seure
(with small δ) with a suitable hoie of parameters, assuming that all quantum

operations are orretly performed by Alie and Bob. We now show that the

protool remains seure even if Bob's measurement devie behaves arbitrarily

and possibly maliiously. The only assumption is that Bob's devie does not

ommuniate with Eve after it reeived Alie's quantum signals. This restrition

is learly neessary as there would otherwise not be any asymmetry between Bob

and Eve's information about Alie's key. Note that the sheme is well known to

satisfy orretness and robustness; hene, we do not argue these here.

Theorem 4.1. Consider an exeution of E-QKD, with an arbitrary measure-

ment devie for Bob. Then, for any ε > 0, protool E-QKD is δ-seure with

δ = 5e−2ε2t + 2−
1
2

(

log(1/β◦)n−h(γ+ε)n−ℓ−t−s+2
)

where β◦ =
1

2
+

1

2
√

2
.

Note that with an optimal error orreting ode, the size of the syndrome for

large n approahes the Shannon limit s = nh(γ). The seurity error δ an then

be made negligible in n with suitable hoies of parameters if log(1/β◦) > 2h(γ),
whih roughly requires that γ ≤ 0.015. Hene, the sheme an tolerate a noise

level up to 1.5% asymptotially.

3

The formal proof is given below. The idea is rather simple: We onsider a

gedankenexperiment where Eve measures her system, using an arbitrary POVM,

with the goal to guess X . The exeution of E-QKD then pretty muh oinides

with G×n
BB84

, and we an onlude from our results that if Bob's measurement

outome Y is lose to X , then Eve must have a hard time in guessing X . Sine

this holds for any measurement she may perform, this means her min-entropy

on X is large and hene the extrated key K is seure.

Proof. Let ρΘTABE = ρΘ ⊗ ρT ⊗ |ψABE〉〈ψABE | be the state before Alie and
Bob perform the measurements on A and B, respetively, where system E is held

by the adversary Eve. Here, the random variableΘ ontains the hoie of basis for

the measurement, whereas the random variable T ontains the hoie of subset

on whih the strings are ompared (see the protool desription in Fig. 1.) More-

over, let ρΘTXY E be the state after Alie and Bob measured, where� for every

possible value θ�Alie's measurement is given by the projetors {|xθ〉〈xθ |}x,

and Bob's measurement by an arbitrary but �xed POVM {P θ
x}x.

As a gedankenexperiment, we onsider the senario where Eve wants to guess

the value of Alie's raw key, X . Eve wants to do this during the parameter es-

timation step of the protool, exatly after Alie broadast T but before she

broadasts XT .
4

For this purpose, we onsider an arbitrary measurement strat-

3

This an be improved slightly by instead onsidering a six-state protool, where the

measurement is randomly hosen among three mutually unbiased bases on the qubit.

4

Note that the e�et of Eve learning XT is taken into aount later, in Eq. (8).



egy of Eve that aims to guess X . Suh a strategy is given by� for every basis

hoie, θ, and every hoie of sample, τ�a POVM {Qθ,τ
x }x. The values of θ

and τ have been broadast over a publi hannel, and are hene known to Eve

at this point of the protool. She will thus hoose a POVM depending on these

values to measure E and use the measurement outome as her guess.

For our gedankenexperiment, we will use the state, ρΘTXY Z , whih is the

(purely lassial) state that results after Eve applied her measurement on E. Let
ε > 0 be an arbitrary onstant. By our results from Setion 3, it follows that for

any hoies of {P θ
x}x and {Qθ,τ

x }x, we have

Pr
ρ

[drel(X,Y )≤γ+ε ∧ Z=X ] ≤ p
win

(G×n
BB84

;Qn
γ+ε,0) ≤ βn

with β = 2h(γ+ε) · β◦, where drel denotes the relative Hamming distane. This

uses the fat that Alie's measurement outome is independent of T , and T an

in fat be seen as part of Eve's system for the purpose of the monogamy game.

We now onstrut a state ρ̃ΘTXY E as follows.

ρ̃ΘTXY E = Pr
ρ

[Ω] · ρΘTXY E|Ω +
(

1 − Pr
ρ

[Ω]
)

· σΘTXY E ,

where Ω denotes the event Ω = {drel(X,Y ) ≤ drel(XT , YT ) + ε}, and we take

σTΘXY E to be an arbitrary state with lassial Θ, T , X and Y for whih

drel(X,Y ) = 1, and hene drel(XT , YT ) = 1. Informally, the event Ω indiates

that the relative Hamming distane of the sample strings XT and YT deter-

mined by T was representative of the relative Hamming distane between the

whole strings,X and Y , and the state ρ̃ΘTXY E is so that this is satis�ed with er-

tainty. By onstrution of ρ̃ΘTXY E , we have ∆(ρΘTXY E , ρ̃ΘTXY E) ≤ 1−Prρ[Ω],
and by Hoe�ding's inequality,

1 − Pr
ρ

[Ω] = Pr
ρ

[drel(X,Y ) > drel(XT , YT ) + ε] ≤ e−2ε2t.

Moreover, note that the event drel(XT , YT ) ≤ γ implies drel(X,Y ) ≤ γ+ ε under
ρ̃ΘTXY E . Thus, for every hoie of strategy {Qθ,τ

x }x by the eavesdropper, the

resulting state ρ̃ΘTXY Z , obtained by applying {Qθ,τ
x }x to E, satis�es

Pr
ρ̃

[drel(XT , YT )≤γ ∧ Z=X ] ≤ Pr
ρ̃

[drel(X,Y )≤γ+ε ∧ Z=X ] (7)

≤ Pr
ρ

[drel(X,Y )≤γ+ε ∧ Z=X ] ≤ βn.

We now introdue the event Γ = {drel(XT , YT ) ≤ γ}, whih orresponds to the

event that Bob does not abort the protool. Expanding the left hand side of (7)

to Prρ̃[Γ ] · Prρ̃[Z = X |Γ ] and observing that Prρ̃[Γ ] does not depend on the

strategy {Qθ,τ
x }x, we an onlude that

∀ {Qθ,τ
x }x : Pr

ρ̃
[Z=X |Γ ] ≤ β(1−α)n

where α ≥ 0 is determined by Prρ̃[Γ ] = βαn
. Therefore, by de�nition of the

min-entropy, Hmin(X |ΘTE, Γ )ρ̃ ≥ n(1−α) log(1/β). (This notation means that



the min-entropy of X given Θ, T and E is evaluated for the state ρ̃ΘTXY E|Γ ,
onditioned on not aborting.) By the hain rule, it now follows that

Hmin(X |ΘTXTSE, Γ )ρ̃ ≥ Hmin(XXTS|ΘTE, Γ )ρ̃ − t− s (8)

≥ n(1 − α) log(1/β) − t− s .

Here, the min-entropy is evaluated for the state ρ̃XΘTXT SE that is onstruted

from ρ̃XΘTE by alulating the error syndrome and opying XT from X as done

in the presription of the protool. In partiular, ∆(ρ̃XΘTXT SE , ρXΘTXT SE) ≤
e−2ε2t

. Finally, privay ampli�ation with universal2 hashing applied to the state

ρ̃XΘTXT SE ensures that the key K satis�es [31℄

∆(ρ̃KFΘTXT SE|Γ , µK ⊗ ρ̃FΘTXT E|Γ ) ≤ 1

2

√

β(1−α)n 2ℓ+t+s .

And, in partiular, realling that Prρ̃[Γ ] = βαn
, we have

Pr
ρ̃

[Γ ] ·∆(ρ̃KFΘTXT SE|Γ , µK ⊗ ρ̃FΘTXT E|Γ ) ≤ 1

2

√

βn 2ℓ+t+s .

Using β = 2h(γ+ε)β◦ and applying Lemma 4.2 below onludes the proof. ⊓⊔

Lemma 4.2. Let ρXB, ρ̃XB ∈ S(HX ⊗ HB) be two CQ states with X over X .

Also, let λ : X → {0, 1} be a prediate on X and Λ = λ(X), and let τX ∈ S(HX)
be arbitrary. Then

Pr
ρ

[Λ] ·∆(ρXB|Λ, τX ⊗ ρB|Λ) ≤ 5∆(ρXB, ρ̃XB) + Pr
ρ̃

[Λ] ·∆(ρ̃XB|Λ, τX ⊗ ρ̃B|Λ) .

Proof. We set δ := ∆(ρXB, ρ̃XB). From∆(ρXB , ρ̃XB) = δ it follows in partiular
that the two distributions PX and P̃X are δ-lose, and thus that the state

σXB := Pr
ρ

[Λ] · ρ̃XB|Λ + Pr
ρ

[¬Λ] · ρ̃XB|¬Λ

is δ-lose to ρ̃XB, and hene 2δ-lose to ρXB, where ¬Λ is the negation of the

event Λ. Sine Λ is determined by X , we an write

∆(ρXB, σXB) = Pr
ρ

[Λ] ·∆(ρXB|Λ, ρ̃XB|Λ) + Pr
ρ

[¬Λ] ·∆(ρXB|¬Λ, ρ̃XB|¬Λ) ,

from whih it follows that Prρ[Λ] ·∆(ρXB|Λ, ρ̃XB|Λ) ≤ 2δ, and, by traing out

X , also that Prρ[Λ] ·∆(ρB|Λ, ρ̃B|Λ) ≤ 2δ. We an now onlude that

Pr
ρ

[Λ] ·∆(ρXB|Λ, τX ⊗ ρB|Λ) ≤ 4δ + Pr
ρ

[Λ] ·∆(ρ̃XB|Λ, τX ⊗ ρ̃B|Λ)

≤ 5δ + Pr
ρ̃

[Λ] ·∆(ρ̃XB|Λ, τX ⊗ ρ̃B|Λ) ,

whih proves the laim. ⊓⊔
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