
Multi-Party Computation of Polynomials and
Branching Programs without Simultaneous

Interaction

S. Dov Gordon1⋆, Tal Malkin2 ⋆⋆, Mike Rosulek3⋆ ⋆ ⋆, and Hoeteck Wee4†

1 Applied Communication Sciences
2 Columbia University

3 University of Montana
4 George Washington University

Abstract. Halevi, Lindell, and Pinkas (CRYPTO 2011) recently pro-
posed a model for secure computation that captures communication
patterns that arise in many practical settings, such as secure computation
on the web. In their model, each party interacts only once, with a single
centralized server. Parties do not interact with each other; in fact, the
parties need not even be online simultaneously.

In this work we present a suite of new, simple and efficient protocols
for secure computation in this “one-pass” model. We give protocols that
obtain optimal privacy for the following general tasks:
– Evaluating any multivariate polynomial F (x1, . . . , xn) (modulo a

large RSA modulus N), where the parties each hold an input xi.
– Evaluating any read once branching program over the parties’ inputs.

As a special case, these function classes include all previous functions for
which an optimally private, one-pass computation was known, as well as
many new functions, including variance and other statistical functions,
string matching, second-price auctions, classification algorithms and
some classes of finite automata and decision trees.

1 Introduction

Most of the literature on secure multi-party computation assumes that all parties
remain on-line throughout the computation. Unfortunately, this assumption

⋆ Parts of this work was completed while the author was a postdoctoral researcher at
Columbia University.

⋆⋆ Supported in part by NSF grant CCF-1116702 and by the the Intelligence
Advanced Research Project Activity (IARPA) via Department of Interior National
Business Center (DoI / NBC) contract Number D11PC20194. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon. Disclaimer: The views and
conclusions contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or
implied, of IARPA, DoI/NBC, or the U.S. Government.

⋆ ⋆ ⋆ Supported by NSF grant CCF-1149647.
† Supported by NSF CAREER Award CNS-1237429

is problematic in many emerging environments, where the parties are often
disconnected from the network due to geographic or power constraints. Moreover,
the protocols typically require each party to broadcast a large number of
messages to the other parties, which can be quite impractical in large distributed
networks. We would like to minimize interaction to the greatest extent possible
due to practical communication and bandwidth considerations — ideally, each
party would need to send only one message.

We consider secure computation in a one-pass client-server model put forth in
a recent work of Halevi, Lindell and Pinkas [12].5 In this model, there is a single
server and multiple clients, and the goal is for the server to securely compute
some function of the inputs held by the respective clients. Each client connects
to the server once (hence “one-pass”) and interacts with it, without any other
client necessarily being connected at the same time. In particular, there is no
need for any two clients to interact. This model is applicable in settings where
maintaining constant network connectivity can be problematic — for example,
when deployed troops are communicating with the central command center. It
is also applicable in situations where the participants cannot be coordinated for
social reasons. Imagine trying to get thirty program committee members across
different time zones online at the same time to cast a vote. Instead, in the one-
pass model, each will receive an email instructing them to login to the server
at their leisure. When all participants have done so, the server can compute the
output and post the data to a website (or email it out). Similarly, if a website
would like to gather data from its visitors, it is unreasonable to ask that they
remain logged-in to the site for the duration of the computation. Instead, as they
login, they can upload the relevant data according to the protocol, assured of
their privacy, and the server can compute the agreed-upon function offline.

1.1 Security for the One-Pass Model

We briefly outline the security model for the one-pass client-server setting and
previous results of Halevi et al. [12] — hereafter, “HLP.” First, observe that
secure computation in this setting is easy if the server is always honest, and is
trusted with user data: each client simply sends its input to the server, encrypted
under the server’s public key; the server will then perform all of the computation.
However, assuming that the server is completely honest is not realistic. Instead,
we aim to protect the privacy of the honest parties’ inputs even amidst a
malicious server that may collude with some subset of the clients. Together with
the requirement that the protocol be one-pass, this imposes inherent limitations
on what we can securely compute in this model. To see why this is the case,
consider parties P1, P2, . . . , Pn computing some function f(x1, . . . , xn), where
party Pi holds xi and the parties go in order P1, P2, . . . , Pn. If the server
colludes with the last t parties, then the correctness and one-pass nature of
the protocol imply that the coalition can compute the “residual function”

5 The ideas of “non-interactive” and “one-pass” computations can be further traced
back to [18, 14]. See Section 1.3.

f(x1, . . . , xn−t, ·, · · · , ·), on any choice of a t-tuple (zn−t+1, . . . , zn), and for
arbitrarily many such choices. In other words, inherent to this one-pass model is
the fact that parties P1, . . . , Pn−t must disclose enough information about their
inputs to allow the remaining parties to correctly evaluate the residual function
f(x1, . . . , xn−t, ·, · · · , ·). Once the last parties have this information, nothing can
prevent them from using it repeatedly. This is in stark contrast to the standard
interactive model for secure computation, where the adversary only learns the
output of the computation on a single set of inputs, and which allows us to
securely compute every efficiently computable function [19, 10].

Due to these inherent limitations of the one-pass model, the “best possible”
security guarantee that one could hope for is that the protocol reveals no more
information than what is revealed by oracle access to this residual function
f(x1, . . . , xn−t). Throughout this paper, this will be the notion we mean when
we refer to security (following [12], we will also refer to this notion as optimal
privacy); for completeness, we provide the formal definitions in Section 2.2.
HLP [12] presented practical optimally private protocols for sum of inputs,
selection, and symmetric functions like majority, and leave as an open problem
whether we can obtain practical optimally private protocols for some larger
classes of functions. Indeed, there is no clear candidate for such a larger class
of functions as the previous protocols are somewhat ad-hoc and seem to rely on
different ideas.

Even ignoring the issue of practical efficiency, the aforementioned functions
are essentially the only ones for which we have optimally private protocols. The
main technical challenge in designing optimally private protocols is as follows:
on one hand, the view yi of the server after interaction with party Pi should
encode sufficient information about the first i inputs x1, . . . , xi to be able to
compute the function f ; on the other hand, in order to establish security, the
simulator needs to be able to efficiently reconstruct the view yi given only oracle
access to the residual function f(x1, . . . , xi, ·, · · · , ·). HLP formalize this via the
notion of minimum-disclosure decomposition, which is a combinatorial property
of the function itself, providing a necessary condition for the existence of an
optimally private protocol. In addition, they demonstrate that every function
with this combinatorial property admits some optimally private protocol, albeit
a highly inefficient one. However, beyond the small classes of functions mentioned
above, they do not demonstrate that any function has such a property. Indeed,
using pseudorandom functions, they demonstrate that not all functions have a
minimum-disclosure decomposition.

1.2 Our results

We present practical, optimally private protocols for two broad classes of
functions: (1) sparse polynomials over large domains, which capture many
algebraic and arithmetic functions of interest, such as mean and variance, and
(2) read-once branching programs, which capture symmetric functions, string
matching, classification algorithms and some classes of finite automata and

decision trees (c.f. [15, 14]).6 Together, these two classes capture all of the
functions addressed in the previous work of HLP, and also include many more
functions of interest. One such concrete example is a second-price auction (the
n-party functionality that returns the index of the largest value along with the
second largest value). This function is asymmetric, but can be represented as a
branching program. A second-price auction with n parties and discrete bids in
the range {1, . . . , k} has an associated branching program of width nk2.

We begin by giving a simplified exposition of the protocols (achieving security
against semi-honest adversaries), and outlining the simulation strategies used in
the proof of security. In particular, the simulation strategies provide a solution
to the minimum-disclosure decomposition problem.

Computing sparse polynomials. Consider a sparse7 polynomial F in n variables
X1, . . . , Xn, where party Pi holds an input xi for variable Xi. The parties go in
the order P1, . . . , Pn. Consider the following polynomial:

Fi(Xi+1, . . . , Xn) := F (x1, . . . , xi, Xi+1, . . . , Xn).

Informally, party Pi will post to the server an encryption of the coefficients of
polynomial Fi. The next party Pi+1 will homomorphically evaluate an encryption
of (the coefficients of) Fi+1 given its input xi+1 and the previous encryption of
Fi (Figure 1). To do so, the encryption scheme must be homomorphic with
respect to affine functions over the integers. We are able to realize such an
encryption scheme from the DCR assumption, which leads to a one-pass protocol
for computing sparse polynomials over ZN , where N is a RSA modulus. Overall,
each party does O(M) group operations and sends O(M) group elements, where
M is an upper bound on the number of monomials in F .

To establish security of this protocol, we must show a simulator that can
efficiently reconstruct the coefficients of Fi given oracle access to appropriate
residual function, which in this case is Fi itself. (For technical reasons, the
simulator needs to reconstruct not just the encrypted coefficients but the
coefficients themselves.) We show that by querying Fi on sufficiently many
random points, the simulator can obtain the coefficients of Fi by solving a
suitable system of linear equations.

Computing branching programs. Consider a layered read-once branching pro-
gram, where party i holds the input xi in the i’th layer. Our protocol proceeds
by evaluating the branching program in a bottom-up manner, “percolating”
output labels from the end of the branching program towards the start node.
Accordingly, we label the output layer of the branching program L0, and layers
L1, . . . , Ln proceed up from there. The parties go in order P1, . . . , Pn, and
party Pi will post to the server an encryption of the output labels on all of

6 For technical reasons outlined below, our protocol for computing polynomials relies
on having a large input domain (namely, ZN). On the other hand, the nature of
branching programs makes them well-suited to functions with small input domains.
Thus these two classes of functions are somewhat incomparable.

7 That is, F can be written as the sum of poly(n) monomials.

Fi−1(X) = ..α X3
iX

2
i+4X

4
n + ..β XiX

2
i+1 + ..γ X2

iX
2
i+1 + · · ·

..αx3i X
2
i+4X

4
n + ..βxi X

2
i+1 +

..γx2i X
2
i+1 + · · ·

Fi(X) = ..αx3i X
2
i+4X

4
n + ..(βxi + γx2i)X

2
i+1 + · · ·

..

× x3i

.

× xi

.

× x2i

.

+

Fig. 1. Obtaining coefficients of Fi using the coefficients of Fi−1 and the
value of xi. Shaded boxes are encrypted values. Operations on arrows are
homomorphic operations possible in an additively homomorphic scheme.

the nodes in the i’th layer. The next party, Pi+1, generates an encryption of
labels in layer i + 1, given xi+1 and an encryption of labels in the i’th layer
(Figures 2 & 3). Due to the simplicity of the percolation operation, it suffices
to use an encryption scheme which is homomorphic with respect to the identity
map (i.e., re-randomizable). Such an encryption scheme may be realized from the
DCR, DDH and DLIN assumptions (the latter two instantiations are important
for compatibility with Groth-Sahai proofs [11]). Overall, each party does O(w)
group operations and sends O(w) group elements, where w is an upper bound
on the width of the branching program.

Layer: 4 3 2 1 0

x4

x3

x3

x2

x2

x2

x1

x1

x1

x1

0

1

2

3

4

0
1

0
1
0
1

0
1
0
1
0
1

0
1
0
1
0
1
0
1

Fig. 2. A layered branching program for
computing a tally among 4 parties. Output
nodes are darkly shaded.

Layer:

1

2

3

4

0

1

2

3

4

0
1
0
1
0
1
0
1

Fig. 3. How party #1 truncates the
branching program, corresponding to
input x1 = 1.

To establish security of this protocol, we must show a simulator that can
efficiently compute the labels that the protocol assigns to the layer corresponding
to the last honest party, given oracle access to the appropriate residual function.
For each node u in the i’th layer, the simulator runs a depth-first search to find
a path to u from the start node in the branching program. The path determines
a set of inputs on which to query the residual function; the result of the query
will be the label on the node u.

The full-fledged protocol: more details. The outline above is a little over-
simplified. The parties will in fact need to use a homomorphic threshold
encryption scheme, which is also re-randomizable, in order to provide “circuit
privacy” (that is, hide the homomorphic operations). Roughly speaking, the i’th
party Pi’s message will be encrypted under the public keys of parties Pi+1, . . . , Pn

and the server, so that the message will be private unless all of these parties and
the server are corrupted. The use of homomorphic threshold encryption here is
analogous to previous constructions [12].

The protocols outlined above obtain optimal privacy against only semi-honest
adversaries. To achieve security against malicious adversaries, we can use a
generic GMW-style compiler via non-interactive zero-knowledge proofs in the
random oracle model, in line with previous work. For our branching-program
protocol, we provide an alternative method, in the standard model, that relies
on Groth-Sahai proofs. The same approach does not apply to our polynomial-
evaluation protocol, since it requires an additively homomorphic encryption
scheme, and none are known that are compatible with Groth-Sahai proofs.

As with previous constructions, our protocols can often be extended to
handle arbitrary ordering of the players (which is useful in such an asynchronous
interaction setting). Indeed, this is the case for our polynomial evaluation
protocols. Our branching-program protocol can also allow for arbitrary ordering
if the function computed is such that the branching program can be adjusted “on
the fly” based on the order in which the parties show up; this is the case for all
symmetric functions, as well as some asymmetric ones such as the second-price
auction mentioned above.

Finally, we note that while the previously known constructions of [12] are
captured as special cases of our two protocols, our technical novelty over these
previous constructions is two-fold. First, for our polynomial-evaluation protocol
we provide a novel threshold homomorphic encryption scheme based on the
DCR assumption. This is important for extending the expressivity from simple
summations to more general polynomials while keeping the protocol practical.8

Second, proving security for our constructions (in particular, proving that
the functions admit minimum-disclosure decompositions) requires much more
sophisticated simulation strategies than those required by the previous work. In
particular, for the classes of functions considered previously, there is no need to
solve systems of linear equations or solve s-t connectivity, as we do in this work.

1.3 Additional related work

Related constructions. Surprisingly, our result statements are similar to the
results of Harnik, Ishai and Kushilevitz [13, Section 4] for a very different
problem. They showed how to securely compute branching programs and sparse

8 Recall that if efficiency is not an issue, then we could instead rely on threshold
fully homomorphic encryption, or a threshold variant of i-hop garbled circuits [8],
as shown in [12].

polynomials9, where every pair of parties makes a single call to an oblivious
transfer channel. In their setting, as in ours, the parties incrementally maintain
a succinct representation of the inputs of the first i parties. Beyond that
similarity, however, the security goal and the underlying communication model
are very different. Specifically, they achieve security in the standard MPC setting
where the simulator calls the ideal functionality once (there is no “one pass”
restriction); indeed, our simulation strategy is very different from theirs. An
interesting open problem is to adapt their result on linear branching programs
to our setting; the key technical obstacle appears to be solving the analogue of
s-t connectivity on the computation graph for linear branching programs.

Related models. There is a large body of work considering the general theme
of secure computation with a restricted communication pattern. Sander, Young
and Yung [18] were the first to put forth the notion of ‘non-interactive’ secure
computation, but only in the context of two-party computation. Extensions to
the multi-party setting were addressed recently in the work of Ishai et al. [16].
These are essentially ‘two-pass’ protocols, where it is still possible to securely
compute any efficiently computable function. Secure computation in two passes
was also recently considered by Asharov et al. [?].

The notion of one-pass computation was considered by Ibrahim, Kiayias,
Yung and Zhou [14]. The notion of security is however quite different – roughly
speaking, they do not allow the server to collude with the clients, which is in some
sense the main source of technical difficulty in the model we study here; their
main goal is to minimize server’s storage. Ibrahim et al. also provided an efficient
protocol for computing branching programs in their model. We note that their
protocol is very different from ours: (1) the computation is done in a top-down
manner, whereas ours is done in a bottom-up manner; and (2) the transitions
from one layer to the next is encoded using a degree w polynomial where w is
the width of the branching program, and the parties homomorphically evaluate
a degree w polynomial on ciphertexts. The authors showed how to realize the
latter based on only the DCR assumption, whereas our protocol may be based on
either the DDH, DLIN, or DCR assumptions. The idea for evaluating branching
programs in a bottom-up manner originates in a paper of Ishai and Paskin [15]
in a different context; their main result exploits the DCR assumption to obtain
short ciphertexts.

Other related works. We also point out that both classes of functions we consider
in this work have been studied in several recent works in a variety of different
settings [3, 2, 17, 15, 14].

Organization. We summarize the general one-pass framework [12] (including
minimum-disclosure decomposition) Section 2. We provide a generic protocol

9 They handle sparse polynomials over bits, whereas we consider sparse polynomials
over ZN . In addition, they evaluate the branching programs top-down, whereas we
do it bottom-up.

construction in Section 3, and show how to apply it to computing polynomials
and branching programs in Sections 4 and 5 respectively. We provide concrete
instantiations for underlying primitives in Section 6.

2 General Framework

We design our protocols in the registered public-key infrastructure (PKI) model
[1]. We assume that in an initial setup phase every party registers a public and
private key pair with a central authority and all the public keys are made known
to everyone. We discuss the exact assumptions in the full version.

2.1 Decompositions

As described above, we prove that our protocols leak only the minimum possible
information, even if the server colludes with some of the players. We assume
that parties P1, . . . , Pn interact with the server in order, with P1 going first and
Pn going last.10 As in [12], we define a decomposition of the function f that the
players are computing, by a sequence of functions f1, . . . , fn.

Definition 1 (Decomposition). For a function f : Dn → R, we define a
decomposition of f by a tuple of n functions, f1, . . . , fn, where f1 : D → {0, 1}∗,
fi : {0, 1}∗×D → {0, 1}∗ for 1 < i < n, and fn : {0, 1}∗×D → R, such that for
all (x1, . . . , xn) ∈ Dn, it holds that fn(fn−1(· · · f2(f1(x1), x2) · · · , xn−1), xn) =
f(x1, . . . , xn). We define a partial decomposition inductively as f̃1(x1) = f1(x1)
and f̃i(x1, . . . , xi) = fi(f̃i−1(x1, . . . , xi−1), xi).

Minimum-Disclosure Decompositions: As in the work of Halevi et al. [12], we use
the notion of a minimum-disclosure decomposition to argue that our protocols
reveal as little information as possible. For a function f , a decomposition of f
given by f1, . . . , fn, some fixed inputs x = (x1, . . . , xn), and for all i ∈ [n], we
define the residual function gxi (zi+1, . . . , zn) = f(x1, . . . , xi, zi+1, . . . , zn).

Definition 2 ([12]). A decomposition of function f , given by f1, . . . , fn, is
a minimum-disclosure decomposition if there exists a probabilistic, black-box
simulator S that for any set of inputs x = (x1, . . . , xn) having total length m, and
any i ∈ [n], when S is given black-box access to an oracle computing gxi (·), the
output of the simulator satisfies Sgx

i(·)(m,n, i) = f̃i(x1, . . . , xi), and the running
time of Sgx

i(·)(m,n, i) is polynomial in m and n.

2.2 Defining Security

Security is defined using the real/ideal world paradigm [9, 12]. In the ideal world,
there is a trusted party that computes f , which is represented by some fixed

10 As noted before, the parties can actually interact with the server in arbitrary order
for our polynomial evaluation protocol and in many cases for the branching program
protocol as well.

decomposition, f1, . . . , fn. Each party Pi gives input xi to the trusted party. If Pi

is honest, or semi-honest, he simply uses the value xi that was found on his input
tape; a malicious Pi(z), with auxiliary information z, may use any input of his
choice. We denote the corrupted set of parties by I ⊂ {P1, . . . , Pn+1}. If Pn+1 /∈
I (i.e. if the server is honest), the trusted party sends output f(x1, . . . , xn) to
the server. If Pn+1 ∈ I, then we let i∗ denote the largest index such that Pi∗ /∈ I
(i.e. Pi∗ is the last honest party). The trusted party ignores inputs (xi∗+1, . . . , xn)
and sends f̃i∗(x1, . . . , xi∗) to the adversary controlling I. In this case, we stress
that the trusted party does not send f(x1, . . . , xn), although this can of course
be computed by the adversary once he is given f̃i∗(x1, . . . , xi∗). This subtlety
becomes important while proving security, because the simulator will have no
way to extract the input of malicious party Pj for j > i∗.

In the real world, f is computed by a sequence of protocols π = (π1, . . . , πn),
where πi is a two-party protocol between the server and Pi. Each party Pi uses
input xi in πi, and, as above, if they are honest or semi-honest, they use the
input found on their input tape. The server uses his output from πi−1 as input
to πi. Each player is also given all n+ 1 public keys, denoted by p̃k, which are
set up as described at the beginning of this Section.

Let S(z) denote an ideal-world adversary holding auxiliary input z and
corrupting some set of parties I. On input set x = (x1, . . . , xn) and security pa-
rameter κ, we denote the output of S(z) and server Pn+1 by Idealf̄ ,S(z),I(x, z, 1

κ).
Let A(z) denote a real-world adversary holding auxiliary input z and corrupting
the set of parties I. On input set x = (x1, . . . , xn) and security parameter κ, we
denote the output of A(z) and server Pn+1 by Realf̄ ,A(z),I(x, z, p̃k, 1

κ).

Definition 3 ([12]). We say that a protocol π = (π1, . . . , πn) securely computes
a decomposition f̄ = (f1, . . . , fn) with optimal privacy, if π is a minimum
decomposition for f̄ , and if for any non-uniform, PPT adversary A(z) corrupting
some subset of parties I in the real-world, there exists a non-uniform, PPT
adversary S(z) corrupting I in the ideal-world such that{

Idealf̄ ,S(z),I(x, z, 1
κ)
}

c=
{
Realπ,A(z),I(x, z, p̃k, 1

κ)
}
.

2.3 Homomorphic threshold encryption

Our constructions require a (n-out-of-n) threshold encryption scheme which
supports the following properties in addition to the standard Enc, Dec, and Gen
procedures: (These properties generalize the “layer re-randomizable encryption”
in [12, Definition 4.1].)

– To encrypt to a set of users whose corresponding public keys comprise the
set S, one simply aggregates their public keys via p̃k ← Aggregate(S), and
then encrypts normally treating p̃k as a normal public key.

– The scheme is homomorphic (with respect to a class of functions we
specify later when describing our main protocols). More formally, there is a
procedure Eval which takes a (possibly aggregated) public key, a ciphertext,

and a function, and outputs another ciphertext. We then require that for all
valid keypairs (sk,pk), all supported functions f , and all ciphertexts C:

Dec(sk,Eval(pk, C, f)) = f(Dec(sk, C))

– Given an encryption C under public keys pk1, . . . ,pkn, the owner of any
corresponding secret key ski, i ∈ [n], can transform C into a (fresh)
encryption of the same message, under the remaining n− 1 public keys.
More formally, there is a procedure Strip which takes a (aggregated) public
key, a secret key, and a ciphertext, and outputs another ciphertext. We
require that, for all valid keypairs (sk∗,pk∗), all S ∋ pk∗, all plaintexts M ,
and all C in the support of Enc(Aggregate(S),M), we have

Strip(Aggregate(S), sk∗, C) ≈s Enc(Aggregate(S \ {pk∗}),M).

Semantic Security. For an adversary A = (A1,A2) we define the advantage
AdvThEncA(k) to be:∣∣∣∣∣∣∣∣∣∣∣∣

Pr

U \ U
∗ ̸= ∅ ∧ b = b′ :

(pki, ski)← Gen(1k), i = 1, . . . , n;

(U,U∗,M0,M1)← A1(1
k,pk1, . . . ,pkn);

b
$← {0, 1};

C ← Enc(Aggregate({pki | i ∈ U}),Mb);

b′ ← A2(C, {ski | i ∈ U∗});

−
1

2

∣∣∣∣∣∣∣∣∣∣∣∣
A threshold encryption scheme is said to be indistinguishable against chosen
plaintext attacks (IND-CPA) if for all PPT adversaries A, the advantage
AdvThEncA(k) is a negligible function in k.

3 Our General Protocol

Our protocols are designed using the following high-level approach, which is
essentially an abstraction of that in [12].

1. We begin with a decomposition for the class of functions we are interested in,
namely sparse polynomials and read-once branching programs, as described
in Sections 4 and 5 respectively. We show that our decompositions are in fact
minimal, proving that our protocols are optimally private for these classes
of functions.

2. We construct a semi-honest protocol by combining the decomposition with
a threshold homomorphic encryption scheme. (See Section 3.1.) For our
constructions, the only homomorphic operations we need to support are
the identity function and affine functions. In Section 6, we provide concrete
instantiations from DDH, DCR and DLIN.

3. We construct a protocol that is secure against malicious parties by having
the participants first encrypt their inputs and then prove consistency using
suitable NIZKs. We provide a detailed treatment in the design of NIZKs,
where we completely specify the witnesses used by the honest provers. (Some
of these details were omitted in [12].) These results appear in the full version.

3.1 Protocol for Semi-Honest Adversaries

We consider n parties P1, . . . , Pn, with corresponding registered key pairs
{(pki, ski)}i∈[n]. Let f1, . . . , fn be a decomposition for f in which the parties
go in order 1, . . . , n. Our protocol is as follows: At a high level, party
i sends to the server the ciphertext Ci, which is an encryption of the
value yi := fi(yi−1, xi) = f̃i(x1, . . . , xi) under the aggregated public key
p̃ki = Aggregate(pki+1, . . . ,pkn+1). Ciphertext Ci is generated by applying the
encryption scheme’s homomorphic properties to ciphertext Ci−1. In more detail:

1. Party P1 computes C1
$← Enc(p̃k1, f1(x1)) and sends C1 to the server Pn+1.

2. For i = 2, . . . , n: party Pi receives Ci−1 from the server, and sends Ci to the
server, where:

Ci
$← Strip(p̃ki, ski,Eval(p̃ki, Ci−1, fi(·, xi)).

3. Upon receiving Cn from Pn, the server Pn+1 decrypts the ciphertext using
its secret key skn+1 and outputs the result.

From the properties of Eval and Strip, it is easy to see that if all players are
honest, then Ci ≈s Enc(p̃ki, yi) for all i. Correctness then follows from the fact
that f1, . . . , fn is a correct decomposition.

Lemma 1 (Semi-honest security). If (Gen,Enc,Dec,Aggregate,Eval, Strip) is
a secure threshold encryption scheme (Section 2.3), then the above protocol is
an optimally private protocol for decomposition (f1, . . . , fn), against semi-honest
adversaries.

4 Computing Sparse Multivariate Polynomials

In this section we instantiate our general framework to obtain a protocol for
evaluating a multivariate polynomial on the parties’ inputs. We begin with a
simple lemma about learning the coefficients of a multivariate polynomial via
oracle queries:

Lemma 2. Let F ∈ ZN [X1, . . . , Xn] be a known multivariate polynomial with
total degree d, where N is square-free, and d ≤ p/2 for every prime p dividing
N . Let M be the number of monomials in F . Fix an (unknown) input to the
polynomial (x1, . . . , xn) ∈ (ZN)n and define:

Fi(Xi+1, . . . , Xn) := F (x1, . . . , xi, Xi+1, . . . , Xn)

Then, for each i, it is possible to learn the coefficients of the polynomial Fi by
making a polynomial number (in M and logN) of queries to an oracle for Fi.

Proof. Our approach for learning the coefficients of Fi is to simply query Fi

on a sufficiently large number of random points (the number of points to be
determined later). Then the coefficients of Fi can be viewed as unknowns in a

linear system over ZN , which can be solved via Gaussian elimination. We must
show that the linear system uniquely determines Fi with high probability.

Fix i and recall that F is fixed and known. Let us say that a monomial m′

in variables {Xi+1, . . . , Xn} is valid if there exists some monomial m ∈ F (with
nonzero coefficient) such that the degree of Xj is the same in both m′ and m,
for all j ∈ {i + 1, . . . n}. Since Fi is of the form F (x̂1, . . . , x̂i, Xi+1, . . . , Xn),
every monomial of Fi must be valid. Then we may restrict our linear system to
polynomials whose monomials are all valid, by including unknowns only for the
coefficients of valid monomials. Recall that there are at mostM valid monomials.
Now, it suffices to show that the linear system uniquely determines Fi, among
polynomials that contain only valid monomials.

Let p be a prime divisor of N . Fix any polynomial F ′ ̸= Fi, where F
′ contains

only valid monomials. Then by the Schwartz-Zippel lemma, we have that Fi and
F ′ agree on q randomly selected points (modulo p) with probability at most
(d/p)q ≤ 1/2q. There are at most NM such multivariate polynomials F ′, and
at most logN prime divisors of N , so choose q = Mk logN log logN . Then
by a union bound, we have that Fi agrees with some other F ′ on all q random
points modulo some prime divisor with probability at most 1/2k. By the Chinese
Remainder Theorem, the linear system over ZN uniquely determines Fi with
probability at least 1− 1/2k.

Function decomposition. The preceding lemma suggests that, given a sparse
polynomial F , we may compute its minimum-disclosure decomposition as
follows:

fi(·, xi) takes as input the list of coefficients for a polynomial P (Xi, Xi+1, . . . , Xn)
and outputs the list of coefficients for the polynomial P ′(Xi+1, . . . , Xn)
where P ′(Xi+1, . . . , Xn) := P (xi, Xi+1, . . . , Xn).

Specifically, fi proceeds as follows:

1. For each monomial of P that contains a term of the form Xt
i , multiply that

coefficient by xt
i.

2. For each set of monomials whose degrees in Xi+1, ..., Xn are identical, add
the coefficients together.

This next Lemma follows directly from Lemma 2.

Lemma 3. The decomposition described above is a minimum-disclosure decom-
position.

Secure, one-pass protocols. It is easy to see that fi(·, xi) is an affine function of
its inputs. Therefore, using our general framework in the preceding section, it
suffices to construct a threshold homomorphic encryption scheme that supports
computing affine functions on encrypted values. Indeed, we provide such an
instantiation based on DCR in the full version.

Theorem 1. Under the DCR assumption, there is a one-pass protocol, secure
against a semi-honest adversary, for evaluating any F ∈ ZN [X1, . . . , Xn] with
M monomials, where N is a RSA modulus and M and the total degree of F
satisfy the bounds given in Lemma 2. The protocol achieves optimal privacy, its
runtime is polynomial in M , n, and logN , and it requires O(M) exponentiations
per party.

In Section 6, with further details in the full version, we demonstrate
concrete instantiations of NIZKs appropriate to ensure security against malicious
adversaries. This leads to the following Theorem.

Theorem 2. Under the DCR assumption, there is a one-pass protocol in the
random-oracle model, secure against malicious adversaries, for evaluating any
F ∈ ZN [X1, . . . , Xn] expressed as a sum of monomials, where N is as in
Lemma 2. The protocol achieves optimal privacy and it requires O(nM |D|)
exponentiations per party (where D denotes the input domain for each party).

5 Computing Branching Programs

In this section we describe our protocol for computing branching programs.

Overview. A (deterministic) branching program P is defined by a directed acyclic
graph in which the nodes are labeled by input variables and every nonterminal
node has two outgoing edges, labeled by 0 and 1.11 An input naturally induces
a computation path from a distinguished initial node to a terminal node, whose
label determines the output. We rely on a technique of Ishai and Paskin [15] for
computing branching programs (BPs) in a bottom-up manner. Let x1, . . . , xn

be the inputs to the BP. First, without loss of generality we may make the BP
layered (defined below), incurring at most a quadratic blow-up in its size (this
blow-up may be avoided in specific cases, see [15]). In a layered BP, all nodes can
be partitioned into layers L0, . . . , Ln, with the property that all nodes in layer
i ∈ {1, . . . , n} correspond to input variable Xi and have outgoing edges only into
layer i− 1. (Because we work in a bottom-up manner, we label the output layer
L0, and the topmost layer Ln.) Layer 0 contains only output nodes.

Imagine evaluating a layered BP by “percolating” output labels from the end
of the BP towards the start node, as follows.12 Starting at layer L0, we do the
following: For every edge (u, v) between layer Li and Li−1 that is labeled with

11 We note that our protocols work also for more general “linear branching programs”,
where the edges are labeled with affine functions.

12 We note that computing branching programs in a top-down manner may also be
considered in the one-pass model. Each party simply posts an encryption of the
unique active node in its layer. This leads to a minimum-disclosure decomposition if
the BP does not have redundant states, which can be achieved using a variant of the
Myhill-Nerode algorithm. However, this top-down approach requires the threshold
encryption to support the BP’s transition function as a homomorphic operation,
whereas our bottom-up approach requires only re-randomizability.

the value xi (that is, if we are at node u and Xi assumes the value xi, we proceed
to node v), copy the output label from node v to node u (there will not be a
conflict by the deterministic property of the branching program). Finally, the
start node in layer Ln is labeled with the output of the computation.

This process naturally lends itself to a decomposition of the branching
program’s functionality. Namely, the ith phase of the decomposition outputs
the labels of all nodes in layer i. To show that this decomposition is minimum-
disclosure, we must argue that an adversary could also learn this information
by corrupting the server and parties i + 1 through n in the ideal world. To see
why, first assume that all nodes in the branching program are reachable from
the start node. Then a path from the start node to some node v in layer i
naturally corresponds to a set of inputs that the adversary could query to the
residual function. The result of the query is the label that this process would
have assigned to node v.

Definitions. We proceed with the details of our protocol:

Definition 4 (Branching program). A branching program on variables X =
(X1, . . . , Xn) with input domain D and output range R is defined by a tuple
{G = {V,E},Sout, ϕV , ϕE}. V contains a single start node with in-degree 0, and
a set of designated leaf nodes, Sout, along with any internal nodes. The function
ϕV assigns each node in Sout with an output value from R, and every other node
with a variable from X. ϕE is a function that labels each edge (u, v) ∈ E with
values from D.

Definition 5 (Read-Once, Layered BP). In a layered branching program,
V can be partitioned into layers Ln, . . . , L1, L0 = Sout such that for any node
u ∈ Li and v ∈ Lj, with i > j, the length of every path from u and v is exactly
i− j. A layered branching program is read-once if every node in layer i is labeled
with variable Xi (possibly after re-naming the variables).

Informally, we can think of every node in layer i as having the same height,
and the same variable assignment. Looking ahead, layer i will coincide with the
input variable of player Pi. We note that any branching program can be turned
into a layered branching program with at most a quadratic blowup in the size
of V . For simplicity, we will assume that our branching programs are already
read-once, layered branching programs.

Function decomposition. Let F : Dn → R denote the function on X =
(X1, . . . , Xn) described by a read-once, layered branching program BP . Let
si = |{v ∈ Li}| denote the size of layer i in BP . We assume some (arbitrary)
ordering on the nodes in each layer: let (v1, . . . , vsi) be the ordered nodes
of layer i, and (u1, . . . , usi−1) the ordered nodes in layer i − 1. We define
fi : Rsi−1 × {xi} → Rsi as follows. Let inj ∈ R denote the jth input to fi,
and outk ∈ R denote the kth output. Then outk = inj if and only if (vk, uj) ∈ E,
and ϕE(vk, uj) = xi.

Intuitively, this decomposition percolates the output “up” the graph, strip-
ping off layers as it goes. For example, f1(ϕV (Sout), x1) fixes the variableX1 = x1

in layer 1, and percolates the resulting output values from layer 0 up to each node
in layer 1. The output nodes in Sout now become irrelevant to the computation.
Similarly, f̃i = fi(· · · f2(f1(ϕV (Sout), x1), x2) · · · , xi) strips off layers 0 through
i − 1, labeling all the nodes in layer i with the correct output, and making
all layers j < i irrelevant. More specifically, consider two nodes uj ∈ Li and
vk ∈ Sout. If there exists some path p = (ei, . . . , e1) from uj to vk such that

(ϕE(ei), . . . , ϕE(e1)) = xi, . . . , x1, then f̃i(x1, . . . , xi) assigns ϕV (vk) to node uj .

Lemma 4. The decomposition of F described above is a minimum-disclosure
decomposition.

Proof. Wemust show that for every i ∈ [n], there exists a simulator Sgx
i (·)(m,n, i),

that outputs f̃i(x1, . . . , xi). Recall that the output of f̃i contains si = |{v ∈ Li}|
values, out1, . . . outsi ∈ R. To compute the value of outj , the simulator takes the
jth node uj in layer Li and runs a breadth-first-search on G to find a path from
the start node to uj . Let xn, . . . , xi+1 denote the input assignments associated
with the edges along this path (according to ϕE). S queries his oracle and sets
outj = gxi (xi+1, . . . , xn).

Secure, one-pass protocols. To obtain a secure protocol using our framework in
Section 2, we need to specify the homomorphic operation required by party
Pi. It is easy to verify that we only need to re-randomize ciphertexts. By
our conventions for homomorphic encryption (Section 2.3), re-randomization is
performed when Pi strips his secret key’s contribution from the ciphertext. We
do not require any homomorphic operations beyond this. A formal description
of the protocol is in Figure 4.

Theorem 3. Assuming an encryption scheme satisfying the conditions of
Section 2.3 w.r.t. the identity function, the protocol in Figure 4 is a one-pass
protocol, secure against a semi-honest adversary, for evaluating any read-once,
layered branching program. The protocol achieves optimal privacy. For branching
programs of width w, the runtime is polynomial in w and n, and it requires O(w)
exponentiations per party.

In Section 6 we provide instantiations of the NIZKs that are necessary to make
this protocol secure against malicious adversaries. This gives us the following
theorem as well.

Theorem 4. Assuming an encryption scheme satisfying the conditions of
Section 2.3 w.r.t. the identity function, and that the NIZK schemes mentioned
above are secure, there is a one-pass protocol, secure against a malicious
adversary, for evaluating any read-once, layered branching program. The protocol
achieves optimal privacy. For branching programs of width w and output domain
D, the runtime is polynomial in w, n and |D|, and it requires O(nw|D|)
exponentiations per party.

Branching Programs
Inputs: Player Pi holds input xi ∈ {0, 1}. Each also has a full description of
the branching program, BP = {G = {V,E},Sout, ϕV , ϕE} Let Li = {v1, . . . , vsi}
denote the nodes in layer i.
Protocol:
Player P1 begins the protocol. For each vj ∈ L1,

– P1 finds u ∈ Sout such that (u, vj) ∈ E and ϕE(u, vj) = x1.
– He computes ψj = Enc(p̃k2, ϕV (u)).

P1 sends C1 := (ψ1, . . . , ψs1) to the server.

For i = 2 . . . n:

– Party Pi receives ciphertexts Ci−1 = (ψ1, . . . , ψsi−1) from the server.
– For every vj ∈ Li,

• Pi finds uk ∈ Li−1 such that (uk, vj) ∈ E and ϕE(uk, vj) = xi. We let ψk

denote the ciphertext corresponding to uk.
• Pi sets ψ

′
j = Strip(p̃ki, ski, ψk).

– Pi sends Ci := (ψ′
1, . . . , ψ

′
si) to the server.

Output: Let Cn be the (single) ciphertext sent from Pn to the server. The server
computes and outputs Dec(skn+1, Cn).

Fig. 4. A protocol secure for computing branching program BP.

6 Realizing the Required Encryption & NIZK Schemes

In the full version, we present three threshold homomorphic encryption schemes.
Two are based on the DDH and DLIN assumptions, respectively, and support
homomorphic evaluation of the identity function (i.e., re-randomization). The
third is based on the DCR assumption, and supports homomorphic evaluation of
affine functions over ZN . We rely on the first two schemes for branching programs
and the last for sparse polynomials. The full details of our malicious-secure
protocol are given in the full version. There we also describe concrete and efficient
NIZK proofs, consistent with our instantiations of homomorphic threshold
encryption, for the statements described in the malicious-secure protocol.

In the random oracle model, it suffices to construct appropriate Σ-protocols
and then apply the Fiat-Shamir technique. We additionally use techniques
of Cramer et al. [6] to compose simple Σ-protocols using logical conjunction
and disjunction. The main challenge then is to show how party Pi can prove
that the ciphertexts Ci−1 and Ci are consistent, in that Ci was derived from
Ci−1 according to the protocol (with the encryption scheme’s Strip and Eval
operations). We eventually reduce this problem to the task of proving that two
ciphertexts encrypt the same value (under different aggregated public keys), for
which we provide efficient Σ-protocols.

Our instantiations based on the DDH and DLIN assumptions are compatible
with our protocol for evaluating branching programs. For these homomorphic
threshold schemes, we describe efficient NIZK proofs in the standard model,
using the NIZK scheme of Groth and Sahai [11].

Acknowledgements. We thank Yuval Ishai and Yehuda Lindell for helpful
discussions.

References

[1] B. Barak, R. Canetti, J. B. Nielsen, and R. Pass. Universally composable protocols
with relaxed set-up assumptions. In FOCS, pages 186–195, 2004.

[2] S. Benabbas, R. Gennaro, and Y. Vahlis. Verifiable delegation of computation
over large datasets. In CRYPTO, 2011.

[3] D. Boneh and D. M. Freeman. Homomorphic signatures for polynomial functions.
In EUROCRYPT, pages 149–168, 2011.

[4] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In CRYPTO,
pages 41–55, 2004.

[5] J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of
discrete logarithms. In CRYPTO, pages 126–144, 2003.

[6] R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge and
simplified design of witness hiding protocols. In CRYPTO, pages 174–187, 1994.

[7] I. Damg̊ard and T. Toft. Trading sugar beet quotas - secure multiparty
computation in practice. ERCIM News, 2008(73), 2008.

[8] C. Gentry, S. Halevi, and V. Vaikuntanathan. i-hop homomorphic encryption and
rerandomizable Yao circuits. In CRYPTO, pages 155–172, 2010.

[9] O. Goldreich. Foundations of Cryptography: Volume 2, Basic Applications.
Cambridge University Press, New York, NY, USA, 2004. ISBN 0521830842.

[10] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a
completeness theorem for protocols with honest majority. In STOC, pages 218–
229, 1987.

[11] J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups.
In EUROCRYPT, pages 415–432, 2008.

[12] S. Halevi, Y. Lindell, and B. Pinkas. Secure computation on the web: Computing
without simultaneous interaction. In CRYPTO, 2011.

[13] D. Harnik, Y. Ishai, and E. Kushilevitz. How many oblivious transfers are needed
for secure multiparty computation? In CRYPTO, pages 284–302, 2007.

[14] M. H. Ibrahim, A. Kiayias, M. Yung, and H.-S. Zhou. Secure function collection
with sublinear storage. In ICALP (2), pages 534–545, 2009.

[15] Y. Ishai and A. Paskin. Evaluating branching programs on encrypted data. In
TCC, pages 575–594, 2007.

[16] Y. Ishai, E. Kushilevitz, R. Ostrovsky, M. Prabhakaran, and A. Sahai. Efficient
non-interactive secure computation. In EUROCRYPT, pages 406–425, 2011.

[17] L. Kruger, S. Jha, E.-J. Goh, and D. Boneh. Secure function evaluation
with ordered binary decision diagrams. In ACM Conference on Computer and
Communications Security, pages 410–420, 2006.

[18] T. Sander, A. Young, and M. Yung. Non-interactive cryptocomputing for NC1.
In FOCS, pages 554–567, 1999.

[19] A. C.-C. Yao. How to generate and exchange secrets. In FOCS, pages 162–167,
1986.

