
How to Hide Circuits in MPC
An Efficient Framework for Private Function

Evaluation

Payman Mohassel and Saeed Sadeghian

University of Calgary

Abstract. We revisit the problem of general-purpose private function
evaluation (PFE) wherein a single party P1 holds a circuit C, while each
Pi for 1 ≤ i ≤ n holds a private input xi, and the goal is for a subset (or
all) of the parties to learn C(x1, . . . , xn) but nothing else. We put forth a
general framework for designing PFE where the task of hiding the circuit
and securely evaluating its gates are addressed independently: First, we
reduce the task of hiding the circuit topology to oblivious evaluation of
a mapping that encodes the topology of the circuit, which we refer to
as oblivious extended permutation (OEP) since the mapping is a gener-
alization of the permutation mapping. Second, we design a subprotocol
for private evaluation of a single gate (PFE for one gate), which we refer
to as private gate evaluation (PGE). Finally, we show how to naturally
combine the two components to obtain efficient and secure PFE.
We apply our framework to several well-known general-purpose MPC
constructions, in each case, obtaining the most efficient PFE construction
to date, for the considered setting. Similar to the previous work we only
consider semi-honest adversaries in this paper.

1 Introduction

In a private function evaluation (PFE) protocol, a party P1 holds a function
f , and its corresponding circuit Cf , while every party Pi holds a private input
xi; their goal is for a subset (or all) of the parties to learn f(x1, . . . , xn) with-
out learning any information beyond this. In particular, besides the size of the
circuit, and the length of P1’s inputs and outputs, Pi (i ≥ 2) should not learn
anything else about the circuit. This is in contrast to the standard setting for
secure multi-party computation where the function f and the corresponding cir-
cuit Cf are publicly known to all the participants. PFE is particularly useful
in scenarios where learning the function compromises privacy, reveals security
vulnerabilities, or when service providers need to hide the function or a specific
implementation of it to protect their Intellectual Property. A number of papers
in the literature have considered the design of efficient general-purpose private
function evaluation protocols [1,2,3,4].
Solutions Based on Universal Circuits. Most general-purpose PFE solu-
tions reduce the problem to secure computation of a universal circuit Ug that

takes as input the circuit Cf (with at most g gates), and the parties’ private
inputs x1, . . . , xn, and outputs f(x1, . . . , xn). The main objective of this line
of work is to design smaller size universal circuits, and to optimize their im-
plementation using existing MPC constructions such as Yao’s garbled circuit
protocol [2,5,3].

The Universal circuit approach works with any secure MPC protocol for
evaluating boolean circuits and is applicable to both the two-party and the
multi-party settings. Its main disadvantage, and the main motivation for other
alternatives is the additional overhead in efficiency due to the size of univer-
sal circuits and the complexity of designing and implementing such circuits.
Valiant [6] showed a construction of a boolean universal circuit achieving an
optimal circuit size of |Ug| ≈ 19g log g. Kolesnikov and Schneider [2] gave an
alternative construction of universal circuits. They obtain a worse asymptotic
bound of |Ug| ≈ 1.5g log2 g, but their techniques lead to smaller constant fac-
tors and seem to yield smaller universal circuits than Valiant’s construction for
circuit sizes less than 5000. Furthermore, the universal circuit approach does
not provide a satisfactory solution in case of arithmetic circuits. While universal
arithmetic circuits exist (e.g. see [7] and [8]), their sizes are too large for any
practical purpose (e.g. as high as O(g5)).

Solutions Based on Homomorphic Encryption. It is relatively easy to de-
sign a PFE based on a fully homomorphic encryption scheme [9]. While asymp-
totically optimal, this solution is not practical due to its high computational cost.
Recently, Katz and Malka [4] designed a novel two-party PFE protocol based on
a singly homomorphic encryption. Complexity of the resulting protocol is linear
in the size of the circuit but the number of public-key operations is also linear
in the size of the circuit. Standard techniques for reducing public-key operations
(e.g. OT extension) do not seem applicable either. Given the significant gap be-
tween the efficiency of public- vs. symmetric-key operations, this new approach
improves over the universal circuit only when dealing with large circuits. Finally,
this solution only works in the two-party setting.

Our Contribution. Practical design and implementation of MPC has been the
subject of active research in the last few years. As discussed above, however,
when it comes to PFE the situations is not the same. The existing solutions are
considerably less scalable and more expensive compared to their MPC counter-
parts, and no good solution exists for the multiparty case, or when considering
arithmetic circuits. We revisit private function evaluation with the intention of
designing more practical two-party and multi-party constructions. In particular,
we put forth a general framework for designing PFE and show how it enables us
to construct more efficient PFE variants of the well-known MPC protocols.

Our Framework for Designing PFE. In order to fully hide a circuit C, one needs
to hide two types of information about it: (i) the topology of the circuit, and (ii)
the function of the gates in the circuit (AND, OR, XOR). Note that these are in
addition to what is already hidden in a MPC setting. Following this observation
we divide the task of private function evaluation into two different functionalities:
(1) the Circuit Topology Hiding (CTH) functionality, and (2) the Private Gate

Evaluation (PGE) functionality. Next, we describe these two functionalities in
more detail:

CTH Functionality. We observe that the topology of a circuit C can be fully
described using a mapping πC : {1 . . . |OW|} → {1 . . . |IW|} where OW (outgoing
wires) is the union of the set of input wires {ow1 = x1, . . . , own = xn}, and the
output wires for each non-output gate in the circuit {own+1, . . . , own+g−o} (g is
the circuit size and o is the number of output gates), and IW (incoming wires) is
the set of input wires to all the gates in the circuit {iw1, . . . , iw2g}. πC maps i to j
(πC(i) = j) if and only if wire owi ∈ OW is connected to iwj ∈ IW, in the circuit C.
Note that since the fan-out for each gate can be more than one, πC is not always
a function, but it is easy to check that its inverse π−1C is. Note that the party
who knows the function f and the corresponding circuit C can efficiently compute
πC . Figure 1 demonstrates an example circuit and its corresponding mapping.
Intuitively the FCT H functionality provides a mechanism for obliviously applying
the mapping πC to the n input values and the (g − o) values for intermediate
outgoing wires (i.e. mapping them to incoming wires) in an on-demand fashion,
and as the MPC protocol proceeds.

PGE Functionality. The PGE functionality can be seen as a PFE protocol where
the function is a single gate. P1 provides the gate’s functionality, while all parties
including P1 provide their shares of the two inputs to the gate. The functionality
returns to each party, his share of the gate’s output.

These two functionalities can be naturally composed to obtain a complete
PFE protocol as described in Figure 4. A visual demonstration of the steps
appears in Figure 2.

Circuit C

G2

G1

ow1 = x1 ow6

ow7

y1

ow1
ow2
ow3
ow4

ow6

ow7

iw1

iw2

iw3

iw4

iw5

iw6

n = 5

g − o = 2

CTH

2g = 8

y2

ow5

iw7

iw8

G3

G4

ow2 = x2

ow3 = x3

ow4 = x4

ow5 = x5

iw5

iw6

iw3

iw4

iw1

iw2

iw7

iw8

Fig. 1: An example circuit and the corresponding mapping

Efficient Realizations of FCT H. We refer to the mapping πC : {1 . . . |OW|} →
{1 . . . |IW|} discussed above as an extended permutation (EP) since it not only
permutes the elements in {1 . . . |OW|}, but also can replicate them as many
times as needed. A main component of our FCT H realization is a protocol for
oblivious evaluation of this extended permutation (OEP) on a vector of inputs:

the first party holds πC and a blinding1 vector t of size |IW|, while the second
party holds an input vector x of size |OW|. Their goal is to let the second party
learn the output of πC applied to x, blinded by t. Neither party should learn
anything else. OEP can be instantiated using a singly homomorphic encryption,
or any general-purpose 2PC. As discussed in the Full version, however, neither
solution is efficient enough for use in practice. We introduce a new and efficient
construction for OEP based on generalized switching networks and oblivious
transfer.
OEP via Generalized Switching Networks. First, we show how to efficiently
implement an extended permutation using a generalized switching network SN.
Once the EP is represented using a SN, we solve the OEP problem by designing
a new OT-based protocol for Oblivious Switching Network evaluation (OSN)
where one party P1 holds the selection bits to SN, and a blinding vector t, while
the other party P2 holds the input vector x to the SN. The goal is for P2 to learn
the output of SN applied to the input vector x, blinded by t. Our OSN protocol
runs in a constant number of rounds and requires O(g) oblivious transfers where
g is the number of switches in the network. We also need a multiparty variant of
our OEP protocol where the mapping is known to a single party while the input
vector x and the blinding vector t are shared among the players. We show how
to construct such an m-party OEP protocol via m invocations of the two-party
version.

2j − 1

2j

1

2g

1

n+ j − o

n+ g − o

CTH

Reveal(2j − 1)

Reveal(2j)

[a]i

[b]i
If P1 then Gj

PGE

OMAP([c]i, n + j − o)
[c]i

PGE(Gj, [a], [b])

1

2

3

Fig. 2: Steps of framework for party i and the jth gate in a topological order.

Improved Oblivious Shuffling. Digressing from the main topic of this paper, we
note that OSN is a generalization of the previously studied problems such as
oblivious shuffling [10] (a subprotocol used for private set intersection), or se-
cure two-party permutation [11,12]. Our new construction yields more efficient
solutions to these problems as well, improving on the previous proposals based

1 The nature of blinding is intentionally left unspecified as different protocols may use
different blinding functions. Our constructions use XOR or addition in a finite Ring
for this purpose.

on garbled circuit implementation of sorting networks, permutation networks,
or randomize shell sort [10,11,12]. See Table 1 for efficiency comparison with
previous work.

Oblivious Shuffling Protocols Asymptotic Complexity

HE-Based O(N) Asym.

Garbled Circuit-Based [10] (4`(N logN−N+1)
3

+ 2N`) Sym. + O(k) Asym.

OSN-Based (our paper) (2N logN − 2N + 2) Sym. + O(k) Asym.

Table 1: Comparison of oblivious shuffling protocols. N is number of shuffled elements,
` is the length of each, and k is the security paremeter.

Applying our Framework to Existing MPC. We apply the above framework to the
GMW protocol [13], Yao’s garbled circuit protocol [14], and secure computation
of arithmetic circuits via homomorphic encryption [15]. In each case we obtain
the most efficient PFE construction to date, for the considered setting.
Linear Multi-party PFE. We apply our framework to the seminal GMW
protocol [13] to obtain a multiparty PFE against a dishonest majority. The
CTH component can be instantiated using either the HE-based or the SN-based
OEP discussed above. We also design a simple and efficient multiparty PGE
functionality given a multiparty OT as in [16]. To the best of our knowledge,
this is the first multiparty PFE besides the generic solutions of applying MPC to
universal circuits. When instantiated using a HE-based OEP, it yields the first
multiparty PFE with linear complexity (in the circuit size) and when instantiated
using our new SN-based OEP, it yields a black-box construction based solely on
OT. What makes the second instantiation desirable from a practical point of
view, as demonstrated in some recent GMW implementations [17,18], is that it
only uses oblivious transfers. As a result, one can use OT extension [19] and
pre-processing techniques [20] to significantly reduce the number of public-key
operations, and to shift the bulk of the computation to an offline phase. Table 2
compares the efficiency of these two constructions with the only other alternative,
i.e. using GMW with universal circuits.

Multi-Party PFE Complexity

[2] Universal Circuits O(m2g log2 g) Sym. + O(k) Asym.

[6] Universal Circuits O(m2g log g) Sym. + O(k) Asym.

GMW-PFE (SN-OEP) O(m2g +mg log g) Sym. + O(k) Asym.

GMW-PFE (HE-OEP) O(m2g) Sym. + O(mg) HE. + O(k) Asym.

Table 2: Comparison of m-party PFE protocols. g denotes the number of gates.

More Efficient Two-party PFE. We also design a constant round two-party
PFE based on Yao’s garbled circuit protocol [14]. Once again, the FCT H func-

tionality is realized using our OEP constructions and for the FPGE functionality
we use Yao’s garbling/ungarbling algorithms. To ensure that functions of the
gates are hidden, we build the circuit entirely out of NAND gates. As we will
see in Section 5.3, multiple subtleties need to be addressed for this work and
in particular to guarantee that the circuit evaluator can unblind garbled keys
during the evaluation of the garbled circuit without learning the values for the
intermediate wires.

We note that the construction of [4] also fits in the general framework de-
scribed above (though not presented in this way). However, our new abstraction
helps us gain more efficiency improvements. When using our HE-OEP, we ob-
tain a two-party PFE with linear complexity that is simpler and more efficient
than that of [4] (see Full Version for details), and when implemented using our
SN-OEP, the resulting protocol is concretely more efficient for most circuit sizes,
since the number of public-key operations can be made independent of the circuit
size (via OT extension). Our construction is both asymptotically and concretely
more efficient than the previous work of [2] based on universal circuits. It is
concretely more efficient than Valiant’s construction [6]. Table 3 summarizes ef-
ficiency comparison of our two-party PFE with all previous constructions. In
the full version of this paper [21], we show (thorough operations counting) that
our construction concretely improves over previous constructions for benchmark
circuits such as AES, RSA and Edit-distance.

2-Party PFE Complexity Gain

[2] 1.5g log2 g sym. + O(k) Asym. 3-6

[6] 19g log g sym. + O(k) Asym. 2

[4] O(g) Sym. + O(g) (HE+HM+HA) + O(k) Asym. -

Yao-PFE (HE-OEP) O(g) Sym. + O(g) (HE+HA) + O(k) Asym. -

Yao-PFE (SN-OEP) O(g log g) Sym. + O(k) Asym. 1

Table 3: Comparison of 2-party PFE protocols. (HM: Homomorphic Multiplication,
HA: Homomorphic Addition, HE: Homomorphic Encryption). Last column shows con-
crete gain over universal circuit approaches for benchmark circuits, AES, RSA and
Edit-distance (refer to Full version for detailed discussion). g denotes the number of
gates.

Linear 2PC for Arithmetic Circuits. We also apply our framework to the
construction for secure computation of arithmetic circuits based on a homomor-
phic encryption [15], and obtain the first two-party PFE for arithmetic circuits
with linear complexity. Besides utilizing our FCT H realizations, we instantiate
the FPGE functionality by designing a secure gate evaluation protocol wherein
only one party knows/learns the functionality (multiplication or addition) but
both parties learn their share of the output (product or sum).

2 Preliminaries

Notations. For a set D, we denote its size by |D|. We use the same notation to
show the size (number of gates) of a circuit C. We denote a vector by v. We use
[a] to denote secret sharing of a value a among multiple parties. We intentionally
do not specify the sharing scheme used. In our constructions we use a number of
different schemes such as XOR sharing, and additive sharing over a finite ring.
We denote the ith party’s shared by [a]i. We use {1...n} to denote the set of
positive integers less than equal to n.

Generalized Switching Networks. A switching network SN is a set of inter-
connected switches that takes N inputs and a set of selection bits, and outputs
N values. Each switch in the network accepts two `-bits strings as input and
outputs two `-bit strings. In our generalized notion of a switch, each of the two
output strings can take the value of each of the two input strings. Therefore,
assuming input values (x0, x1), and output values (y0, y1), four different switch
types are possible. The two selection bits s0 and s1 determine the switch type.
In particular, the output of the switch will be y1 = xs1 ,and y0 = xs0 . In the rest
of the paper, we drop the term generalized and simply refer to these networks
as switching networks.

Definition 1 (Mapping for a Switching Network). The mapping π : {1...N} →
{1...N} corresponding to a switching network SN is defined such that π(i) = j
if and only if after evaluation of SN on the N inputs, the value of the input
wire i is assigned to the output wire j (assuming a standard numbering of the
input/output wires).

Note that the mapping π need not be a function since the value for each input
wire maybe mapped to multiple output wires in the network. On the other hand,
π−1 is always a function.

Permutation Networks. A permutation network PN is a switching network
for which the mapping is a permutation. In constructing a permutation network,
one only needs to use two of the four switch types described above. Particularly,
for each switch (also called a permutation cell) with inputs I0 and I1, one se-
lection bit is sufficient to select between the two possible outputs (I0, I1) and
(I1, I0).

An optimal construction for a permutation network was proposed by Waks-
man [22]. The main theorem of [22] states that for any N power of 2, there exists
a permutation network with N logN −N + 1 switches, and depth of 2 logN − 1.
We refer the reader to [22] for the details of the construction which can be
efficiently implemented with O(N logN) complexity.

In the remainder of the paper, if a switch takes two selection bits, we refer
to it as a 2-switch, and otherwise we use the term 1-switch.

Security Definitions. Security definitions are the standard notions of security
against semi-honest adversaries (see Full version).

3 Our Framework for Designing PFE Protocols

Similar to the previous work on private function evaluation, we assume that
the following information about the circuit is publicly known: the number of
gates in the circuit, the number of each party’s input wires, and the number of
output wires. Everything else about the circuit is considered private information.
We aim to hide the circuit through the CTH and PGE functionalities discussed
earlier. In this section we formally describe these functionalities and explain how
they can be combined to obtain a PFE.

Our interpretation of sharing (denote using []) in the following discussion
is very general. In the GMW-based PFE we use XOR sharing, for arithmetic
circuits we use additive shares over a finite ring, and in Yao’s garbled circuit,
one party holds one random key (in a key pair) while the other party holds the
mapping of each key to its actual bit value.

The FCT H functionality with circuit parameters n (number of input wires),
g (number of gates), o (number of output wires), and internal variables
Out[i, j] for 1 ≤ i ≤ m and 1 ≤ j ≤ 2g where m is the number of parties,
and Out[i, j] denote Pi’s share for the value of the j-th incoming wire in
the circuit.
Parties Setup: P1 computes the mapping πC corresponding to cir-

cuit C. He also generates m random vectors ti, 1 ≤ i ≤ m, where
ti =< ti[1], . . . , ti[2g] >. Pi for 2 ≤ i ≤ m generates a random key vector
ki =< ki[1], . . . , ki[2g] >.
On Queries:

OMAP([x], j):

– P1’s Input: πC , t1, . . . , tm.
– Pi’s (1 ≤ i ≤ m) Input: [x]i, ki, index j for outgoing wire owj .

It sends to P1, Out[i, l] = [x]i ⊗ ki[l]⊗ ti[l] for all l where πC(j) = l. Other
parties do not receive any output.

Reveal(j):

– Pi’s (1 ≤ i ≤ m) Input: index j for the incoming wire iwj .

It reveals Out[i, j] to Pi for i ≥ 2. (Note that Pi can unblinds Out[i, j] using
ki[j] and recover his fresh random share of [x]i ⊗ ti[j].)

Fig. 3: The Circuit-Topology Hiding Functionality (FCT H)

CTH Functionality. As described in the introduction, the interconnection of wires
in the circuit can be represented by a mapping πC . The CTH functionality is
responsible for obliviously applying this mapping to the values of the input
wires and the intermediate wires in the circuit, in an on-demand fashion. Our
definition of the CTH functionality captures this useful property refered to as
on-demand mapping via use of the OMAP/Reveal queries. The OMAP queries

allow the participants in the CTH to feed their shares of the values for each
outgoing wire to the mapping (individually) and obtain the mapped/blinded
outcomes for each incoming wire through the Reveal queries. Our new realization
of the CTH functionality as well as the existing constructions all possess the on-
demand property (see full version). Figure 3 describes the CTH functionality
more formally.

The role of vectors k is to prevent P1 from learning the other parties’ shares
and the role of vectors t is to hide P1’s mapping πC from the other parties. The
operator⊗ is used to denote a blinding operation. Depending on the CTH realiza-
tion, the blinding operation can be XORing, modular addition, or homomorphic
addition using an additively homomorphic encryption.
The PGE Functionality.The PGE functionality can be seen as a PFE protocol
where the function is a single gate. A formal description is as follows.

Inputs: P1’s input is G, [a]1, [b]1. Pi’s input (i ≥ 2) is [a]i, [b]i.
Output: Pi’s output is fresh random shares of G(a, b), i.e. [c]i = [G(a, b)]i

Our PFE Framework. These two functionalities can be naturally composed to
obtain a complete PFE protocol as described in Figure 4. Our framework can
be seen as a way to extend a PFE protocol for one gate (PGE) to a PFE pro-
tocol for the complete circuit (by employing the CTH functionality). We give
an overview next. In the initialization phase, P1, knowing the circuit C, sorts
the gates topologically and computes the mapping πC corresponding to it. Next,
each party distributes shares of its input to all parties. The idea is for the parties
to send the value of each outgoing wire to the CTH functionality as soon as it is
ready. Hence, at the start of the protocol they send shares of their input values
to FCT H (the input wires are the first set of outgoing wires in the circuit). The
FCT H maps these values to the corresponding incoming wires (through OMAP
queries). This ends the initialization phase. Parties then individually evaluate
the gates. For the current gate being evaluated, parties obtain their shares for
the two input values using two Reveal queries to the FCT H. Next, parties invoke
the PGE functionality to receive fresh random shares for the output of the cur-
rent gate. Parties send these newly learnt shares to the CTH functionality and
repeat the process until all gates are evaluated.A visual demonstration of the
steps appears in Figure 2.

Theorem 1. Given secure realizations of FCT H and FPGE against semi-honest
adversaries, the above PFE framework is secure against semi-honest adversaries.

4 Realizing the CTH Functionality via OEP

What is an Extended Permutation? Before describing our construction in more
detail, we need to explain the notion of an extended permutation. Recall that a
mapping π : {1...N} → {1...N} is a permutation if it is a bijection (i.e. one-to-
one and onto). An extended permutation generalizes this notion as follows:

Definition 2 (Extended Permutation). For positive integers M and N , we
call a mapping π : {1...M} → {1...N} an extended permutation (EP) if for

every y ∈ {1...N} there is exactly one x ∈ {1...M} such that π(x) = y. We often
denote x by π−1(y).

Note that in an extended permutation, unlike a standard permutation map-
ping, the mapping can also replicate/omit elements (as many times as needed)
hence allowing the range to be larger or smaller than the domain.
CTH and The OEP Problem. To realize the CTH functionality we have to imple-
ment n+g−o OMAP queries, one for each outgoing wire, and 2g Reveal queries,
one for each incoming wire. When combined, these OMAP/Reveal queries natu-
rally form a problem we refer to as oblivious evaluation of the extended permuta-
tion (OEP). We define the two-party OEP problem here. In the full version, we
describe a natural generalization of the problem to the m-party case and show
how to efficiently realize it using m invocations of the two-party variant (wee
need the multiparty variant for our GMW-based PFE).

P1’s Inputs: The circuit C with g gates, n input wires, and o output gates.
Denote the corresponding mapping by πC .
Pi’s Input (1 ≤ i ≤ m): xj for all input wires j in the circuit belonging
to Pi.
Outputs: For 1 ≤ i ≤ m, Pi learns his share of the values for the output
wires.

Initialization:

1. P1 sort the gates in the circuit, topologically. Denote the ordered gates
by G1, . . . , Gg.

2. For 1 ≤ i ≤ m, Pi distributes shares of his inputs among all parties.
3. For 1 ≤ j ≤ n, parties make the query OMAP([xj], j) to the FCT H.

Private Function Evaluation:
For 1 ≤ j ≤ g:

1. Parties make the queries Reveal(2j − 1) , and Reveal(2j) to the FCT H.
Denote the output Pi receives by [a]i and [b]i, respectively.

2. Parties invoke the FPGE where Pi’s input is ([a]i, [b]i), while P1’s input
also includes the gate functionality (Gj). Each party Pi receives its
share of the gate’s output, i.e. [Gj(a, b)]i.

3. If j < g − o, parties send the query OMAP([Gj(a, b)], n+ j) to FCT H.

For g − o < j ≤ g, parties reveal their shares of [Gj(a, b)], and everyone
reconstructs the value of the o output wires.

Fig. 4: A General Framework For m-Party PFE of Circuits.

Definition 3 (The Two-party OEP Problem: 2-OEP(π,x, t)). In this prob-
lem, the first party P1 holds an extended permutation π : {1...M} → {1...N} for
two positive integers M and N , and a blinding vector t = (t1, . . . , tN) while the
second party P2 holds a vector of inputs x = (x1, . . . , xM). Both the xis and

tis are `-bit strings where ` is a positive integer. At the end of the protocol, P2

learns (xπ−1(1) ⊕ t1, . . . , xπ−1(N) ⊕ tN)2, while P1 does not learn anything.

4.1 A New OEP Protocol

Next, we design a novel OEP protocol that improves on the efficiency of the
above constructions. First, we show how to efficiently implement any extended
permutation using a switching network. Then, we design a new and efficient
protocol for oblivious evaluation of a switching network (OSN).
Building EPs out of Switching Networks. We first show how to construct an
extended permutation using a switching network. Note that in a switching net-
work, the number of inputs and outputs are the same which is in contrast
to an extended permutation. Since for circuits we only deal with the case of
N ≥ M , the switching network we build for simulating an extended permuta-
tion π : {1...M} → {1...N}, takes M real inputs of the EP and N−M additional
dummy inputs.

We divide the switching network into three components: (i) dummy-value
placement, (ii) replication, and (iii) permutation (See Figure 5). Each component
takes the output of the previous one as input.
Dummy-value placement component. takes the real and dummy values as
input and for each real input that is mapped to k different outputs according to
π, outputs the real value followed by k − 1 dummy values. This is repeated for
each real value. This process can be efficiently implemented using a Waksman
permutation network.
Replication component. takes the output of the previous component as input.
It directly outputs each real value but replaces each dummy input with the real
input that precedes it. Each replacement can be implemented using a 1-switch
(with a single selection bit) choosing between rows 1 and 3 of Figure 5 (a), as
discussed in Section 2. The entire replication phase can be implemented using
N − 1 such switches. At the end of this step, we have the necessary copies for
each real input and the dummy inputs are eliminated.
Permutation component. takes the output of the replication component as
input and permutes each element to its final location as prescribed by π. Once
again, this can be efficiently implemented using a Waksman permutation net-
work.
Size of the Switching Network for an EP. Adding up the three components,
the total number of 1-switches needed to implement the extended permutation
described above is 2(N logN −N + 1) +N − 1 = 2N logN −N + 1.
Oblivious Evaluation of Switching Networks (OSN). Next, we design a new and
efficient protocol for oblivious evaluation of a generalized switching network.
In this problem, P2 holds the input vector x while P1 holds the selection bits
into the switching network, and a blinding vector t. P2 learns the output of
the network on his vector x blinded using vector t. We start with a high level
overview. A complete description appears in the full version.

2 For simplicity we use XOR as the blinding function but one can replace XOR with
any other natural blinding function.

2-SW

ri

xj ⊕ rj

xi ⊕ ri

rj

rk

rl

(s1, s0)

y1

y2

xi ⊕ rk xi ⊕ rl

(s1, s0) y1

(0, 0)

y2

xi ⊕ rk xj ⊕ rl(0, 1)

xj ⊕ rk xi ⊕ rl(1, 0)

xj ⊕ rk xj ⊕ rl(1, 1) Dummy Placement

1-SW

1-SW

1-SW

Permutation

Permutation

Network

Replication
Phase Phase Phase

Permutation

Network

Fig. 5: (a) A 2-Switch (Left), (b) A Switching Network for an EP (Right)

Secure evaluation of a single 2-switch. The idea can be best explained by de-
scribing the procedure for secure evaluation of a single 2-switch u in the network.
Consider a 2-switch with input wires wi and wj and output wires wk and wl.
P2 assigns four uniformly random values ri, rj , rk, rl to the four wires. P1 holds
the blinded values xi ⊕ ri and xj ⊕ rj for the two input wires. The goal is to
let P1 learn the blinded values for the output wires (see Figure 5). Particularly,
depending on the value of his two selection bits s0(u) and s1(u), P1 learns one of
the four possible output pairs: (xi⊕rk, xj⊕rl), (xi⊕rk, xi⊕rl), (xj⊕rk, xi⊕rl),
or (xj ⊕ rk, xj ⊕ rl).

To implement this step, P2 creates a table with four rows: (ri ⊕ rk, rj ⊕ rl),
(ri⊕ rk, ri⊕ rl), (rj ⊕ rk, ri⊕ rl), and (rj ⊕ rk, rj ⊕ rl). Then, P1 and P2 engage
in a 1-out-of-4 oblivious transfer in which P2’s input is the four rows of the
table he just created, and P1’s input is his two selection bits for the switch u.
Without loss of generality suppose that P1’s selection bits are 0, and 0. Hence,
P1 retrieves the first row in the table, i.e. (ri⊕ rk, rj⊕ rl). He then XORs xi⊕ ri
and ri ⊕ rk to recover xi ⊕ rk and XORs xj ⊕ rj and rj ⊕ rl to recover xj ⊕ rl,
i.e. the blinded values for the output wires.
Evaluating the entire switching network. The above protocol can be extended to

securely evaluate the entire switching network in constant round. In an offline
stage, P2 generates a set of random values for every wire in the network, and
computes a table for each as described above. Then, P1 and P2 engage in a series
of parallel 1-out-of-4 oblivious transfers, one for each switch, where P1 learns a
single row of each table according to his selection bits.

In the online stage, P2 blinds his input vector using the randomness for the
input wires, and sends them to P1. P1 now has all the information necessary
to evaluate the switches in the network in a topological order, and recover the
blinded values for the output wires (at this stage, P1 locally performs a sequence
of XORs discussed above). He then applies an additional layer of blinding using
his random vector t, and returns the result to P2. P2 can remove his own blinding
(i.e. the randomness he generated for the output wires in the network) to learn
the output of the switching network blinded only with P1’s vector t.

The above OSN protocol runs in a constant number of rounds and requires
one invocation of an oblivious transfer per switch in the network. We omit the
proof of the following theorem.

Theorem 2. In the OT-hybrid model, the above OSN protocol (and the resulting
OEP) is secure against semi-honest adversaries.

Efficiency of the new OEP. We can now evaluate the efficiency of the OEP
protocol that results from applying our OSN construction to the switching
network corresponding to an EP. As discussed earlier, the total number of
switches needed to implement an extended permutation π : {1...M} → {1...N}
is 2N logN −N + 1. Furthermore, we only need to use 1-switches to implement
an EP which means we only need 1-out-of-2 OT as opposed 1-out-of-4 OT. This
yields an OEP protocol with O(k) public-key operations and 4N logN − 2N + 2
symmetric-key operations. The communication of the protocol is dominated by
O(N logN) hash values.
How OSN Realizes FCT H Queries. It remains to show how our OSN implemen-
tation of OEP realizes the queries in FCT H. While it is obvious that our OSN
protocol securely performs all the OMAP/Reveal queries combined, for it to fully
satisfy the CTH, we need the ability to make these queries on-demand (see full
version for details).

5 Efficient PFEs From MPC

5.1 Multi-Party Private Function Evaluation

In this section we apply our framework to the seminal GMW protocol to obtain
a multi-party PFE variant. In particular, we need to describe how the CTH and
the PGE functionalities are designed and then plug them into the framework
to obtain the desired multiparty PFE. We implement the PGE functionality by
means of a multi-party private gate evaluation (m-XOR-PGE(G, a, b)) protocol.
In such a protocol, only P1 knows the functionality of the gate G while each
party holds his XOR share of the input bits a and b and obtains his XOR share
of the output bit G(a, b). See full version, for an efficient instantiation based on
oblivious transfer. The protocol requires the same number of OTs as a single
gate evaluation in the standard GMW. Hence, making the gate functionality
private comes for free in terms of computation or communication.

For the CTH functionality, we can use the multiparty variant of either the
HE-OEP or the SN-OEP constructions discussed earlier, where each party uses
his XOR shares of the outgoing wires as input to the OEP and obtains his share
of the value for the incoming wires.

The following theorem is implied by the security of our framework (The-
orem 1), secure instantiations of the OEP and the PGE functionalities and a
standard sequential composition theorem [23].

Theorem 3. Given that the OEP and m-XOR-PGE protocols are secure against
semi-honest adversaries, the Multi-Party PFE protocol based on our framework
is also secure against semi-honest adversaries.

Efficiency. The resulting protocol requires a single invocation of the m-OEP
protocol (even though the protocol is executed in an on-demand fashion), and
one invocation of the m-XOR-PGE per gate. Using the HE-OPE instantiation, we
obtain a protocol with linear complexity (linear number of exponentiations), and

using the SN-OPE, we obtain a protocol that uses O(m2g+mg log g) invocations
of OT (O(m2g) for the PGE and O(mg log g) for the OEP). The number of rounds
is equal to the number of gates since they are evaluated sequentially.

5.2 Private Function evaluation for Arithmetic Circuits

PGE for Arithmetic Circuits. Let E = (Gen,Enc,Dec) be a semantically secure
and additively homomorphic encryption scheme. Suppose a = [a]1 + [a]2 and
b = [b]1 + [b]2 are the inputs to the gate, and c = [c]1 + [c]2 is the output of the
gate (where the addition occurs over the domain of plaintexts for the encryption
scheme). [a]i, [b]i, [c]i are the shares of Pi. In order to hide the functionality of
the gate, we design a PGE protocol in which P2’s actions are independent of
the functionality of the gate (i.e. addition or multiplication). To achieve this, P2

sends to P1 encryption of [a]2, [b]2, and [a]2[b]2. Given these three ciphertexts,
P1 can compute an encryption of both the sum and the product of a and b using
homomorphic properties of the scheme. He then sends an encrypted random
shares of the outcome to P1 to decrypt (See Full version for details). It is easy
to see that the protocol is secure again semi-honest adversaries if the encryption
scheme is semantically secure. We omit the proof of the following theorem.

Theorem 4. Given E = (Gen,Enc,Dec) a semantically secure encryption scheme,
2-Arith-PGE protocol is secure against semi-honest adversaries.

We plug in the above PGE and our HE-OEP protocols in our general frame-
work to obtain an efficient and secure 2PC for arithmetic circuits with linear
complexity. The following theorem is implied by the security of our framework
(Theorem 1), secure instantiations of the OEP and the PGE functionalities and
a standard sequential composition theorem [23].

Theorem 5. Given that the OEP and 2-Arith-PGE protocols are secure against
semi-honest adversaries, the 2-Party Arithmetic PFE protocol based on our
framework is secure against semi-honest adversaries.

Efficiency. Each PGE invocation requires a constant number of public-key oper-
ations adding up to a total of O(g) public-key operations. The HE-OEP has a
linear complexity leading to a PFE protocol with similar complexity. The number
of rounds is equal to the number of gates since they are evaluated sequentially.

5.3 A Constant-round Two-party PFE

In this section we apply the PFE framework to Yao’s garbled circuit protocol.
We only describe the high level ideas here. A full description of the protocol
(2-PFE) appears in the Full version of the paper [21]. At first sight, it may not
be obvious how to interpret the sharing mechanism in Yao’s protocol. But a
closer look at the garbling and evaluation steps reveals that the bit value a for
a wire in the circuit is shared by having P2 (garbler) hold the mapping of a pair
of random keys to their bit value (k0 → [a]2,k1 → [a]2), and P1 (the evaluator)

holding one of the two keys (k[a]1). Note that one may wonder why we do not
simplify the sharing scheme by always letting [a]2 = 0. But such a sharing would
indeed be insecure in our PFE framework, and more specifically would allow the
evaluator to learn values for the intermediate wires as he evaluates the circuit
(since he creates and knows the mapping of keys). Making the CTH component
work with this sharing scheme turns out to be the main technical difficulty in
designing an efficient Yao-base PFE.

General Idea. Recall Yao’s garbled circuit protocol in the semi-honest case. In
our construction, the evaluator is the party who holds the circuit, while we
intend to hide the circuit from the garbler. We need to hide the topology of the
circuit from him using the CTH functionality: first, the Garbler generates his
own random shares for the output wires of all the gates in the circuit (i.e. the
permuted garbled key pairs for all those wires). Next, he sends all his shares
to the CTH functionality, and receives his output which are his shares for the
input wires to all the gates in the circuit (i.e. garbled key pairs for all those
wires). The garbler now has all garbled keys he needs to garble the circuit. If
we assume that all the gates are NAND, there would be no need to hide the
gates functionalities. Therefore, our FPGE functionality realization consists of
the normal garbling of the gates by the garbler and the standard evaluation of
the gates by the evaluator. Next, we go into the details of each component and
address some of the subtleties that arise.

PGE realization. Realization of the FPGE functionality is simple. Lets assume
that the inputs are shared using the above sharing scheme. P2 first randomly
generates his own share of the output wire for the current gate, which is basically
generating two random keys and assigning them to bits zero and one. He then
sends his share to CTH functionality. Upon receiving his shares for input wires
to the gates, from CTH functionality, P2 garbles each gate using his shares for
the input and output wires of the gate. He then sends the garbled gates to P1

who can use his own share of the input wires to ungarble a single row and learn
his own share of the output wire.

We now need to integrate our CTH realization with the above PGE con-
struction. For this to work, we need to modify our standard CTH realization,
particularly to make sure that its outputs are fresh shares based on the sharing
scheme above (i.e. [a]1 and [a]2, and the key pair are fresh and random).

CTH realization. During the evaluation, P1 needs to XOR his share with its cor-
responding blinding value(s) to obtain his correct input share for evaluating the
next garbled gate. But observing which blinding value enables correct decryption
of the next garbled gate (potentially) reveals the value of that intermediate wire.
To avoid this issue, we need to ensure that the shares generated by the CTH are
truly random. In particular, we need to ensure that P1 cannot associate the first
blinding with key 0 and the second blinding with key 1. As a first solution, P2

randomly swaps the key pairs to prevent such association by P1.

P2 swaps each key pair randomly. We solve this problem by having P2

swap each key pair randomly and independently (using a random bit-vector v)
before using them in the OMAP queries (for the CTH). Each pair should be

swapped using a different bit since using the same bit would reveal whether the
bit values for certain intermediate wires are the same or not. If the first(second)
blinding is used for two or more wires we learn that their value is the same,
though we don’t know if it zero or one. This solves the issue above, but under-
mines correctness of the protocol. When P2 sends the swapped key pairs to P1,
he gets back an extended permuted (and blinded) set of key pairs. As a result,
P2 does not know the correct order for each pair, and will not be able to perform
the garbling of the gates without knowing which key is for 0 and which is for 1.

P1 and P2 jointly swap each key pair into its original form. A naive
fix would be to attach each “swapping bit” to its corresponding key pair as it
goes through the CTH, and reveal the bit to P2 as part of the output of the CTH,
who then uses it to swap the key pair back to its original order. But this would
allow P2 to learn some information about πC (and the topology of the circuit)
by comparing the swapping bits in the input and output key pairs for the CTH.

To address this issue, P1 and P2 perform this step together, each holding
an XOR share of swapping bits. In particular, the random bit vector v will be
fed to the CTH, but P2 only learns a blinded version, i.e. v′′i = vπ−1(i) ⊕ v′i for
1 ≤ i ≤ 2g, where the blinding vector v′ = (v′1, . . . , v

′
2g) is only known to P1. To

swap each key pair back to its original order, P1 first swaps the pair using v′i,
and sends it to P2. P2 then swaps it one more time using v′′i which puts the key
pair back in its original order. Of course, at this point, the key shares are fresh
and random.

If we use a homomorphic-based OEP, this solution is sufficient, but when
using the CTH functionality in a black-box way, and particularly when using
our SN-OEP construction, there is one more issue to address. The described
solution does not use the OEP in a black-box fashion, since P1 needs to swap
the outcome using v′, before sending it to P2. But if the pair is swapped using
a random bit vector not known to P2, he cannot use the appropriate random
values to unblind the result (recall the final step of the OEP where P2 removes
his blinding from the output).

P1 does his swapping using an OSN protocol. To handle this problem,
we require that P1’s swapping procedure based on the bit-vector v′ takes place
as part of an oblivious switching network evaluation where the v′is are P1’s
selection bits to the network. This requires the use of an additional layer of
switches attached to the original switching network for the OEPs. This also has
the advantage of making the usage of the OEP and the OSN protocols black-box.

When using our SN-OEP in the above construction, the total number of
symmetric operations required for the protocol is 8g log 2g + 5g + 2. We discuss
our efficiency in detail in the Full version [21] where we also prove the following
theorem.

Theorem 6. Given that the OSN and the OEP protocols are secure against
semi-honest adversaries, and that Yao’s protocol uses a symmetric-key encryp-
tion with related-key security, the 2-PFE protocol is secure against semi-honest
adversaries.

References

1. Abadi, M., Feigenbaum, J.: Secure circuit evaluation. Journal of Cryptology 2
(1990) 1–12

2. Kolesnikov, V., Schneider, T.: A practical universal circuit construction and secure
evaluation of private functions. In: Financial Cryptography and Data Security.
Volume 5143 of LNCS. (2008) 83–97

3. Sadeghi, A.R., Schneider, T.: Generalized universal circuits for secure evaluation
of private functions with application to data classification. In: ICISC 2008. Volume
5461 of LNCS. (2009) 336–353

4. Katz, J., Malka, L.: Constant-round private function evaluation with linear com-
plexity. In: Advances in Cryptology ASIACRYPT 2011. Volume 7073 of LNCS.
(2011) 556–571

5. Schneider, T.: Practical secure function evaluation (2008)
6. Valiant, L.: Universal circuits (preliminary report). In: Proceedings of the eighth

annual ACM STOC. (1976) 196–203
7. Shpilka, A., Yehudayoff, A.: Arithmetic circuits: A survey of recent results and

open questions. (2010)
8. Raz, R.: Elusive functions and lower bounds for arithmetic circuits. In: Proceedings

of the 40th annual ACM STOC. (2008)
9. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of

the 41st annual ACM. STOC ’09, ACM (2009) 169–178
10. Huang, Y., Evans, D., Katz, J.: Private set intersection: Are garbled circuits better

than custom protocols? In: Proceedings of 19th NDSS Conference. (2012)
11. Wang, G., Luo, T., Goodrich, M.T., Du, W., Zhu, Z.: Bureaucratic protocols for

secure two-party sorting, selection, and permuting. In: Proceedings of the 5th
ACM ASIACCS. (2010) 226–237

12. Du, W.: A Study of Several Specific Secure Two-party Computation Problems.
PhD thesis, Department of Computer Sciences, Purdue University (2001)

13. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In:
Proceedings of the nineteenth annual ACM. STOC ’87, ACM (1987) 218–229

14. Yao, A.C.C.: How to generate and exchange secrets. In: 27th Annual Symposium
on Foundations of Computer Science. (oct. 1986) 162 –167

15. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Multiparty computation from threshold
homomorphic encryption. In: Advances in Cryptology. EUROCRYPT ’01 (2001)
280–299

16. Franklin, M., Gondree, M., Mohassel, P.: Multi-party indirect indexing and appli-
cations. Advances in Cryptology–ASIACRYPT 2007 (2007) 283–297

17. et al., S.G.C.: Secure multi-party computation of boolean circuits with applications
to privacy in on-line marketplaces. In: Proceedings of CT-RSA. (2012)

18. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical
active-secure two-party computation. Advances in Cryptology–CRYPTO 2012

19. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. Advances in Cryptology-CRYPTO 2003 (2003) 145–161

20. Beaver, D.: Precomputing oblivious transfer. In Coppersmith, D., ed.: Advances
in Cryptology CRYPT0 95. Volume 963 of LNCS. (1995) 97–109

21. Mohassel, P., Sadeghian, S.: How to hide circuits in mpc: An efficient framework
for private function evaluation (2013) Available at http://eprint.iacr.org/.

22. Waksman, A.: A permutation network. J. ACM 15 (January 1968) 159–163
23. Canetti, R.: Security and composition of multiparty cryptographic protocols. Jour-

nal of Cryptology 13(1) (2000) 143–202

http://eprint.iacr.org/

	How to Hide Circuits in MPC An Efficient Framework for Private Function Evaluation
	Introduction
	Preliminaries
	Our Framework for Designing PFE Protocols
	Realizing the CTH Functionality via OEP
	A New OEP Protocol

	Efficient PFEs From MPC
	Multi-Party Private Function Evaluation
	Private Function evaluation for Arithmetic Circuits
	A Constant-round Two-party PFE

	References

