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Abstract. We study the problem of constructing locally computable
Universal One-Way Hash Functions (UOWHFs) H : {0, 1}n → {0, 1}m.
A construction with constant output locality, where every bit of the out-
put depends only on a constant number of bits of the input, was estab-
lished by [Applebaum, Ishai, and Kushilevitz, SICOMP 2006]. However,
this construction suffers from two limitations: (1) It can only achieve a
sub-linear shrinkage of n − m = n1−ε; and (2) It has a super-constant
input locality, i.e., some inputs influence a large super-constant number
of outputs. This leaves open the question of realizing UOWHFs with con-
stant output locality and linear shrinkage of n −m = εn, or UOWHFs
with constant input locality and minimal shrinkage of n−m = 1.
We settle both questions simultaneously by providing the first construc-
tion of UOWHFs with linear shrinkage, constant input locality, and con-
stant output locality. Our construction is based on the one-wayness of
“random” local functions – a variant of an assumption made by Goldreich
(ECCC 2000). Using a transformation of [Ishai, Kushilevitz, Ostrovsky
and Sahai, STOC 2008], our UOWHFs give rise to a digital signature
scheme with a minimal additive complexity overhead: signing n-bit mes-
sages with security parameter κ takes only O(n+κ) time instead of O(nκ)
as in typical constructions. Previously, such signatures were only known
to exist under an exponential hardness assumption. As an additional
contribution, we obtain new locally-computable hardness amplification
procedures for UOWHFs that preserve linear shrinkage.

1 Introduction

The question of minimizing the parallel time complexity of cryptographic primi-
tives has been the subject of an extensive body of research. At the extreme, one
would aim for an ultimate level of efficiency at the form of constant-parallel time
implementation. Namely, the goal is to have “local” cryptographic constructions
in which each bit of the output depends only on a small constant number of
input bits, and each bit of the input influences only a constant number of out-
puts. Achieving both constant input locality and constant output locality allows
an implementation by constant-depth circuit of bounded fan-in and bounded
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fan-out [7]. Furthermore, such local constructions have turned to be surprisingly
helpful in speeding-up the sequential complexity of cryptography [17]. At a more
abstract level, the study of locally computable cryptography allows to under-
stand whether extremely simple functions can generate cryptographic hardness.

Intuitively, one may suspect that functions with local input-output depen-
dencies may be vulnerable to algorithmic attacks. Still, during the last decade it
was shown that, under standard intractability assumptions, many cryptographic
tasks can be implemented by local functions [6, 5, 7]. This includes basic primi-
tives such as one-way functions and pseudorandom generators, as well as, more
complicated primitives such as public-key encryption schemes. One notable ex-
ception, for which such a result is unknown, is hash functions with linear shrink-
age.

A collection of hash functions H = {h : {0, 1}n → {0, 1}m} shrinks a long
n-bit string into a shorter string of length m < n such that, given a random

function h
R← H and a target string x, it is hard to find a sibling y 6= x that

collide with x under h. The exact specification of the above game corresponds
to different notions of hashing. We will mainly consider universal one-way hash
functions (UOWHFs) [21], in which the adversary specifies the target string x
without seeing the function h. (This property is also known as target collision
resistance [8], TCR in short.) A central parameter of a hash function is the
amount of shrinkage it provides. We measure this as the difference between the
output length m and the input length n, namely the additive shrinkage n−m.
We say that the shrinkage is linear if n−m = Ω(n), i.e., m < (1− ε)n for some
constant ε. In this paper we ask:

Are there UOWHFs with linear shrinkage and constant output and/or
input locality ?

Previous results. The results of [6] show that any log-space computable UOWHF
can be converted into a UOWHF with constant output locality and sub-linear
shrinkage of n − m = nε, for a constant ε < 1. (A similar result holds for
collision-resistance hash functions.) This gives rise to UOWHFs with constant
output locality based on standard cryptographic assumptions (e.g., factoring),
or, more generally, on any log-space computable one-way function [21, 24, 15].
Although there are several ways to amplify the shrinkage of a UOWHF (cf. [21,
8]), none of these transformations preserve low locality, and so the question
of obtaining UOWHFs with linear shrinkage and constant output locality has
remained wide open.

The situation is even worse for constant input locality. In [7] it was shown that
tasks which involve secrecy (e.g., one-wayness, pseudorandomness, symmetric or
public-key encryption) can be implemented with constant input locality (under
plausible assumptions), while tasks which require some form of non-malleability
(e.g., MACs, signatures, non-malleable encryption) cannot be implemented with
constant input locality. Interestingly, hash functions escaped this characteriza-
tion. Although it is easy to find near-collisions in a function with constant input
locality (simply flip the first bit of the target x), it is unknown how to extend



this to a full collision. Overall, the question of computing UOWHFs with con-
stant input locality has remained open, even for the case of a single-bit shrinkage
n−m = 1.1

1.1 Main Result

We construct the first locally computable UOWHF with linear shrinkage. Our
construction has both constant input locality and constant output locality, and
is based on the one-wayness of random local functions (also known as Goldre-
ich’s one-way function [14]). The latter assumption asserts that a random local
function f : {0, 1}n → {0, 1}m is one-way where f is chosen uniformly at random
as follows. View the n inputs and m outputs as vertices in a bipartite graph G
and connect each output node yi to a random set of d distinct input nodes. To
compute the i-th output apply some fixed d-local predicate P : {0, 1}d → {0, 1}
to the d inputs that are connected to yi. This experiment defines a distribu-
tion FP,n,m over functions with output locality of d. (See Section 3 for a formal
definition.) We prove the following theorem.

Theorem 1. There exists a constant d and a predicate P : {0, 1}d → {0, 1} for
which the following holds. If the collection FP,n,m=O(n3) is one-way then there
exists a collection H of UOWHF with linear shrinkage, constant input locality,
and constant output locality.

The theorem is constructive, and can be applied to every predicate which satisfies
a simple criteria. In particular, we show that the predicate MSTd1,d2(x, y) =
(x1 ∧ . . . ∧ xd1)⊕ (y1 ⊕ . . .⊕ yd2) defined by [20] satisfies the theorem for every
d1 ≥ 2 and every sufficiently large constant d2. The hypothesis of the theorem
(one-wayness of random local functions) was extensively studied in the last few
years and it is supported both experimentally [22, 13] and theoretically [14, 2, 13,
10]. In fact, recent evidence suggest that, for a proper predicate, this collection
may even be pseudorandom [4, 3]. Interestingly, Theorem 1 can be proved under
the (possibly weaker) assumption that FP,n,m=O(n) is a weak pseudorandom
generator (i.e., its output cannot be distinguished from truly random string
with advantage better than, say, 0.1).

There are several interesting corollaries that follow from Theorem 1. First,
it is possible to reduce the output locality to 4 (which is almost optimal) while
preserving (tiny) linear shrinkage (i.e., m = (1 − ε)n for some small ε) via the
compiler of [6].2 Second, by self-composing H a constant number times, one
can get arbitrary linear shrinkage (i.e., m = εn for arbitrary constant ε > 0)
at the expense of increasing the locality to a larger constant. Furthermore, by
iterating H a logarithmic number of times we get a linear-time computable hash
function H′ with polynomial shrinkage factor of m = nε (the i-th level of the

1 We note that standard transformations from one-way functions to UOWHFs [21, 24,
15] are inherently non-local as they employ primitives such as k-wise independent
hash functions which cannot be computed locally.

2 When applied to local functions, the AIK compiler preserves linear shrinkage.



circuit contains O(n/2i) gates). As observed by [17], one can then employ the
Naor-Yung transform [21] and sign n-bit messages with linear time complexity
and only additive cryptographic overhead, i.e., O(n + κ). (See [17] for details.)
This is contrasted with standard signature schemes whose complexity grows
multiplicatively with the security parameter, i.e., O(nκ). Previously, such linear-
time computable UOWHFs and signatures were only known to exist assuming
that Goldreich’s collection is exponentially-hard to invert [17].3

1.2 Techniques

Hashing via Random Local Functions? As a starting point, we ask whether the
collection FP,n,m=n(1−ε) itself can be used, even heuristically, as a UOWHF.
To make the question non-trivial, let us assume that the distribution of the
input-output dependency graph is slightly modified such that the graph is (c, d)-
regular, i.e., each input affects c outputs and each output depends on d inputs.
(Otherwise, we are likely to have some inputs of degree 0, with no influence at
all.) For concreteness let us think of P as the majority predicate. A moment of
reflection suggests that collisions are easy to find even with respect to a random
target string x. Indeed, suppose that there exists an input variable xi that all
of its neighboring inputs (i.e., the inputs that share an output with xi) turn
to be zero. In this case, we can flip the insensitive input xi without affecting
the output of the function, and this way obtain a trivial collision. Observe that
each input variable has a constant probability of being insensitive as it has at
most cd = O(1) neighbors. Overall, one is likely to find Ω(n) insensitive inputs.
Furthermore, by collecting an independent set I of insensitive inputs (that do
not share any common output) one can simultaneously flip any subset of the
inputs in I without changing the output. Hence, we find exponentially many
collisions x′ which form a “ball” around x of diameter Ω(n). It is not hard to
show that a similar attack can be applied to FP,n,m for every predicate P except
for XOR or its negation. (Unfortunately, in the latter case collisions can be found
via Gaussian elimination.)

Despite this failure, let us keep asking: Can FP,n,m achieve some, possibly
weak, form of collision resistance ? Specifically, one may hope to show that it is
hard to find collisions which are β-far from the target x, for some (non-trivial)
constant β. This assumption is intuitively supported by study of the geome-
try of the solutions of random Constraint Satisfaction Problems (e.g., Random
SAT) [1]. Thinking of each output as inducing a local constraint on the inputs, it
can be essentially showed that, for under-constraint problems where m < n, the
space of solutions (siblings of x) is shattered into far-apart clusters of Hamming-
close solutions. It is believed that efficient algorithms cannot move from one
cluster to another as such a transition requires to pass through solutions x′

which violate many constraints (i.e., f(x′) is far, in Hamming distance, from

3 Exponential hardness assumptions do not seem to help in the context of locally
computable UOWHFs.



f(x)). Therefore, it seems plausible to conjecture that the collection FP,n,m is
secure with respect to β-far collisions.

As our main technical contribution, we prove that a weak form of this con-
jecture holds assuming the one-wayness of FP,n,m′ (where m′ > n > m). Specif-
ically, we prove that, for some constants ε, β, δ ∈ (0, 1), it is hard to find β-far
target collisions in FP,n,(1−ε)n with probability better than δ. To prove Theo-
rem 1, we show that (δ, β)-target collision resistance (TCR) can be locally am-
plified into standard TCR while preserving linear shrinkage. Let us sketch the
main ideas behind each of these steps.

One-wayness ⇒ (δ, β)-TCR. Assume that we have an algorithm A that, given a

random function h
R← FP,n,m=(1−ε)n and a random target w, finds a β-far sibling

with probability δ. We show how to use A to invert the collection FP,n,m′ with

output length of m′ ≈ 2m. Given a random function fG
R← FP,n,m′ specified

by a random input-output dependencies graph G, and an image y = fG(x) of

a random point x
R← {0, 1}n, we will recover the preimage x as follows. First,

we choose a target w uniformly at random and partition the graph G into two
subgraphs: G0 which contains only the output nodes for which fG(w) agrees
with y (and all input nodes), and G1 which contains the remaining subgraph.
Assuming that P is balanced, each subgraph contains roughly m′ outputs. Next,
we define h = fG0

to be the restriction of fG to the output nodes for which
fG(w) agrees with y, and ask A for a β-far sibling w′ of w under h. Let us
(optimistically) assume that w′ is statistically independent of the sub-graph G1

that was not used by h. That is, imagine that this part of the dependencies
graph is chosen uniformly at random after w′ is obtained. Since w is far from
w′, this pair is expected to disagree on a constant fraction γ of the remaining
coordinate of fG1 . Remembering that the pair (w, x) did not agree on any of
these coordinates, we conclude that x and w agree on a fraction of 1

2 +γ/2 of the
outputs of fG (i.e., γ-fraction of the coordinates of fG1 and all the coordinates of
h = fG0

). Assuming that P is sensitive enough, it follows that w′ and x must be
correlated – their Hamming distance is bounded by a constant which is strictly
smaller than 1

2 . At this point we employ a result of [9] that allows to fully recover
x given such a correlated string w′ (and additional O(n) outputs).

The above argument is over-optimistic, as there is no reason to assume that
w′ is statistically independent of the subgraph G1. Fortunately, we can show that
a failure of the above approach allows to distinguish the string y = f(x) from a
truly random string. At this point, we employ the result of [3] which shows that
this string is somewhat pseudorandom assuming the one-wayness of FP,n,m′′ for
larger m′′. Hence, we are in a win-win situation: we invert F either by finding
a correlated string, or by distinguishing its output from a random string. (See
Section 4 for details.)

(δ, β)-TCR ⇒ δ-TCR. The above reduction leaves us with a δ-secure β-TCR H
of linear shrinkage n −m = εn, where δ, β, ε are constants. Our first goal is to
get rid of β (i.e., obtain security with respect to standard, possibly close, colli-



sions). A tempting approach would be to compose H with an error correcting
code C, i.e., map an input x to a codeword C(x) and hash the result via h ∈ H.
A code of constant relative distance larger than β and constant rate smaller
than ε will fully eliminate β-close collisions (in an information theoretic sense),
while preserving linear shrinkage. Unfortunately, this transformation is inher-
ently non-local, as local functions cannot compute codes with constant relative
distance and constant rate.4 We solve the problem via a dual approach: Instead
of computing a codeword C(x) and composing the result with h, we concatenate
h(x) with the syndrome Mx where M is a sparse parity-check matrix M whose
dual relative distance is β. It is not hard to show that a pair of β-close strings
x and x′ will always be mapped by M to different outputs y 6= y′, and so the
mapping x 7→ (h(x),Mx) is immunized against β-close collisions. Unlike the case
of sparse generating matrices, whose distance is deemed to be non-constant, the
dual distance of sparse parity-check matrices can be constant (aka LDPC) and
so the transformation is locally computable. (See Section 5.2.)

δ-hard TCR ⇒ TCR. We move on to amplify the error parameter δ from con-
stant to negligible. Typically this is done via t-wise direct-product, i.e., x 7→
(h1(x), . . . , ht(x)) where the hi’s are chosen independently from H. The error δ
decreases exponentially fast and so any super-logarithmic t leads to a negligible
error [11]. Unfortunately, in our case even a super-constant t will completely ruin
the shrinkage and the input locality. An alternative, more economic, approach is
to first stretch the input x into a longer string C(x) = (c1, . . . , ct) ∈ ({0, 1}n)t via
an error-correcting code C, and then apply t-wise direct product [18, 11]. If the
code has a constant relative distance, any collision (x′, x) is translated into a pair

C(x), C(x′) which collide under Ω(t) of the coordinates of (h1, . . . , ht)
R← Ht.

Hence, the error parameter decreases exponentially with t while keeping the
shrinkage linear (for properly chosen parameters). Unfortunately, this optimiza-
tion is inherently non-local as it requires a code with good distance. Nevertheless,
we observe that even if C is replaced with a sparse generating matrix G, the re-
sulting transformation is not completely useless. Although the distance of G is
bad, it can be shown any pair of β-far inputs x, x′ will be mapped by G to a pair
(y, y′) which is Ω(t) far apart. As a result, the modified construction amplifies
hardness with respect to β-far collisions, but does not amplify hardness with
respect to close collisions. Fortunately, such collisions can be again eliminated
via LDPCs.5 (See Section 5.3.)

We note that the above transformations can also be used to locally amplify
collision resistance.

4 In fact, such codes are as bad as possible as their relative distance is O(1/n).
5 One can change the order of the transformations, namely, transform (δ, β)-TCR to
β-TCR and then to TCR. This allows to use LDPCs only once. Still we prefer the
current order as once β is eliminated (in the first step), it is easy to amplify the
shrinkage factor to a small constant via a constant number of self-compositions.
Overall, this results in a more flexible reduction that works for a wider range of
parameters.



2 Preliminaries

General. By default, logarithms are taken to base 2. For reals p, q ∈ (0, 1) we
let D2(p‖q) := p log(pq ) + (1 − p) log(1−p

1−q ) denote the relative entropy func-

tion. Observe that 1−D2(p‖ 12 ) equals to the binary entropy function H2(p) :=
−p log(p)−(1−p) log(1−p). We will use the following additive form of Chernoff-
Hoeffding bound. Let X1, . . . , Xn be i.i.d. random variables where Xi ∈ [0, 1] and
E[Xi] = p. Then, for every ε > 0, the average X̄ = n−1

∑
iXi satisfies

Pr
[
X̄ ≥ p+ ε

]
< 2−D2(p+ε‖p)n and Pr

[
X̄ ≤ p− ε

]
< 2−D2(p−ε‖p)n.

A simpler form follows by noting that D2(p+ ε‖p) > 2ε2.

Collection of Functions. We model cryptographic primitives as collections of
functions F =

{
fk : {0, 1}n → {0, 1}m(n)

}
k∈{0,1}s(n) equipped with a pair of ef-

ficient algorithms: (1) an evaluation algorithm which given (k ∈ {0, 1}s, x ∈
{0, 1}n) outputs fk(x); and (2) a key-sampling algorithm K which given 1n sam-
ples a index k ∈ {0, 1}s(n). We will sometimes keep the key-sampler implicit and

write f
R← F to denote the experiment where k

R← K(1n) and f = fk. A collec-
tion of functions has constant output locality (resp., constant input locality) if
there exists a constant d (which does not grow with n) such that for every fixed
k each output of the function fk depends on at most d inputs (resp., each input
of fk affects at most d outputs). The collection is locally computable if it has
both constant input locality and constant output locality.

One-wayness and pseudorandomness. A collection of functions F is δ-secure β
approximation-resilient one-way (in short, (δ, β) one-way) if for every efficient
adversary A the following event happens with probability at most δ: Given

f
R← F and y = f(x) for random x

R← {0, 1}n, the adversary A outputs a
list of candidates X ′ which contains some string x′ which is β-close to some
preimage of y. The special case of β = 0 corresponds to the standard notion
of δ-secure one-wayness, or simply one-wayness when δ = neg(n). A collection
of functions F is δ-pseudorandom if the distribution ensemble (f, f(x)) is δ
computationally-indistinguishable from the distribution ensemble (f, y), where

f
R← F , x R← {0, 1}n and y

R← {0, 1}m.

Hash Functions. Let m = m(n) < n be an integer-valued function. A collection
of functions H = {h : {0, 1}n → {0, 1}m} is δ-secure β target-collision resistance
((δ, β)-TCR) if for every pair of efficient adversaries A = (A1,A2) it holds that

Pr
(x,r)

R←A1(1
n)

h
R←H

[A2(h, x, r) = x′ s.t. ∆(x′, x) > β and h(x) = h(x′)] ≤ δ,

where ∆(·, ·) denotes relative Hamming distance. That is, first the adversary
A1 specifies a target string x and a state information r, then a random hash



function h is selected, and then A2 tries to form a β-far collision x′ with x under
h. The collection is δ-secure β random target-collision resistance ((δ, β) RTCR)
if the above holds in the special case where A1 outputs a uniformly chosen

target string x
R← {0, 1}n and empty state information. (As we will see, there

are standard local transformations from RTCR to TCR). The standard notions
of δ-RTCR and δ-TCR correspond to the case where β = 0 (or just β < 1/n). If,
in addition, δ is negligible we obtain standard RTCR and TCR. The shrinking
factor of H is the ratio m/n. When m/n < 1/(1+H2(β)) and δ = o(1) TCR and
RTCR become non-trivial in the sense that their existence implies the existence
of one-way functions. For an extensive study of hash functions see [8, 23].

3 Random Local Functions and Sensitivity

Let P : {0, 1}d → {0, 1} be a predicate, and let G = (S1, . . . , Sm) where each
Si ⊆ [n] is a subset of [n] that contains d distinct ordered elements Si,1, . . . , Si,d ∈
[n]. We will think of G as a bipartite graph with n input vertices and m output
vertices where each output i is connected to the d inputs in Si. We define the
function fG,P : {0, 1}n → {0, 1}m as follows: Given an n-bit input x, the i-th
output bit yi is computed by applying P to the restriction of x to the i-th set Si,
i.e., yi = P (xSi

). For m = m(n) and some fixed predicate P : {0, 1}d → {0, 1},
we let FP,n,m denote the collection

{
fG,P : {0, 1}n → {0, 1}m(n)

}
where the key

G is sampled by selecting m(n) sets uniformly and independently at random
from all the possible n · (n − 1) · . . . · (n − d + 1) ordered sets. We refer to the
latter distribution as the uniform distribution over (n,m, d) graphs and denote
it by Gn,m,d. When the predicate P is clear from the context, we omit it from
the subscript and write fG and Fn,m.

By definition, the ensemble FP,n,m has a constant output locality of d. How-
ever, some inputs will have large (super-constant) locality. Still, one can show,
via simple probabilistic argument, that the locality of most inputs will be close
to the expectation md/n which is constant when m = O(n). We will later use
this fact to reduce the input locality to constant.

3.1 Sensitivity

Let P : {0, 1}d → {0, 1} be a d-local predicate. For a pair of strings x, x′ ∈ {0, 1}n
let sP (x, x′) be the expected relative Hamming distance between the images f(x)
and f(x′) where f is randomly chosen from FP,n,m. Equivalently, we may write
sP (x, x′) as

Pr
S

[P (xS) 6= P (x′S)], (1)

where S is a random set of d distinct indices i1, . . . , id which are chosen from [n]
uniformly at random without replacement. Imagine the following experiment:
first x is chosen uniformly at random, and then an α-far string x′ is chosen
adversarially in order to minimize sP (x, x′). We will be interested in predicates
P for which, except with negligible probability, the value of sP (x, x′) in the



above experiment will be relatively high (as a function of α). To analyze this
property we make several simple observations. By symmetry, the strategy of the
adversary boils down to selecting the fraction α0,1 of 0’s which are flipped to
1, and the fraction α1,0 of 1’s which are flipped to 0’s (where α = α0,1 + α1,0).
Furthermore, it suffices to analyze a simpler experiment in which x is a random
string of Hamming weight n/2 and the set S (from Eq. 1) is chosen by selecting
d indices uniformly at random from [n] with replacement (i.e., the tuple may not
be distinct). We will show (in Lemma 1) that, with all but negligible probability
over x, these simplifications add a small o(1) error to the value of the experiment.

The above observations motivate a new quantitative measure of sensitivity
which refines the standard notion of noise sensitivity. For α0,1, α1,0 ∈ [0, 12 ],
let D(α0,1, α1,0) be a distribution over pairs w,w′ ∈ {0, 1}d where w is chosen
uniformly at random and the i-th bit of w′ is obtained by flipping the i-th bit of
w with probability 2α0,1 if wi = 0, and with probability 2α1,0 if wi = 1. (Hence,
Pr[(wi, w

′
i) = (01)] = α01, and Pr[(wi, w

′
i) = (00)] = 1

2 − α01, etc.) For α ∈ [0, 1]
let sP (α) denote the infimum of Pr

(w,w′)
R←D(α0,α1)

[P (w) 6= P (w′)] taken over

all α0,1 and α1,0 which sum-up to α. Call x typical if its Hamming weight is
n/2±n2/3. By Chernoff bound, a random string is typical with all but negligible
probability. The following lemma, whose proof is deferred to the full version,
relates sP (x, x′) to sP (α).

Lemma 1. For every predicate P , the function sP (α) is well defined and contin-
uous. Also, for every typical x and every string x′ sP (x, x′) ≥ sP (∆(x, x′))−o(1).

Good Predicates. We say that P is (β, γ) good if: (1) The value of sP (·) is lower-
bounded by γ in the interval [β, 1]; and (2) P has a sensitive coordinate meaning
that P (w) = w1 ⊕ P ′(w2, . . . , wd) for some (d− 1)-local predicate P ′. Observe
that the latter condition implies that P is balanced and that sP ( 1

2 ) = 1
2 .

In the next section we will use (β, γ)-good predicate to construct β-RTCRs
with shrinkage 1− ε where ε ∈ (0, 12 ) satisfies the inequality

ε < 1− 1

2(1−H2( 1
2 − γ))

, (2)

where H2 is the binary entropy function. In general, we would like to have a small
value of β > 0 and a large value of γ ≤ 1

2 (which leads to a larger ε and better
shrinkage). It turns out that by increasing the locality, one can simultaneously
push β arbitrarily close to 0 and γ arbitrarily close to 1

2 . This is illustrated by
the following family of predicates which generalizes the predicate from [20]. Let
MSTd1,d2 be the (d1 + d2) local predicate (x1 ∧ . . . ∧ xd1) ⊕ (y1 ⊕ . . . ⊕ yd2). In
the full version we will prove the following lemma.

Lemma 2. For every constants γ < 1
2 , β > 0 and integer d1 ≥ 2 there exists a

constant d2 for which MSTd1,d2 is (β, γ)-good.



4 Random Local Functions are (δ, β)-RTCR

Let P be (β, γ) good predicate. Assume that Eq 2 holds for some ε > 0 and let
m = (1− ε)n. In Section 4.1 we prove the following.

Theorem 2. For every δ1, δ2 ∈ (0, 1) there exists a constant µ > 0 such that if
FP,n,2m is both δ1-pseudorandom and (δ2,

1
2−µ) one-way then FP,n,m is δ′-secure

β-RTCR where δ′ = 2(δ1 + δ2) + neg(n).

It was shown in [9, Thm. 1.3] and [3, Prop. 3.4] that if Fn,m is one-way
for sufficiently long output length m, then it is also approximate one-way and
pseudorandom for shorter output lengths. Together with Theorem 2, we get:

Corollary 1. For every constant δ > 0, there exists a constant c such that
if FP,n,cn3 is one-way then FP,n,(1−ε)n is δ-secure β-RTCR. Furthermore, if
FP,n,(1−ε)n is δ-secure β-RTCR then for every constant η > 0 there exists a δ-

secure β
1−η -RTCR H with constant input and constant output locality and shrink-

age factor of 1−ε
1−η .

The “furthermore” part is obtained by randomly fixing a small fraction of the
inputs of FP,n,m (the ones with maximal influence). See full version for details.

4.1 Proof of Theorem 2

Assume, towards a contradiction, that FP,n,m is not δ′-secure β-RTCR. Namely,

there exists an efficient adversary A which, given a random target w
R← {0, 1}n

and a random graph G
R← Gn,m,d, finds, with probability δ′, a string z which

is a β-far sibling of w under fG. Assume that Fn,2m is δ1-pseudorandom. We
construct an attacker B who breaks the (δ2,

1
2 − µ) one-wayness of Fn,2m for

some constant µ whose value will be determined later. Given a graph G =
(S1, . . . , S2m) and a string y ∈ {0, 1}2m, the algorithm B is defined as follows:

1. Randomly choose w
R← {0, 1}n and let r = fG,P (w)⊕ y.

2. Fail, if the number of 0’s in r is smaller than m or larger than m+m2/3.
3. Let I0 be the set of the firstm indices i for which ri = 0, and I1 = {i : ri = 1}.

Let G0 = {Si : i ∈ I0} and G1 = {Si : i ∈ I1}.
(Note that fG0,P (w) = yI0 and that fG1,P (w) = 1⊕ yI1 .)

4. Apply A to (G0, w) and let z ∈ {0, 1}n denote the resulting output.
5. If P (zSi

) = yi for at least m(1 + γ)− 2m2/3 of indices i ∈ [2m] output z;
Otherwise, Fail.

We begin by bounding the failure probability of the algorithm. Intuitively,
the algorithm does not fail due to the following reasoning. Assuming that z is
a collision, we have that P (zSi

) = yi for all the m indices i ∈ I0. In addition,
if z is β-far from w and statistically independent of G1 then (since P is (β, γ)
good), the outputs fG1,P (w) and fG1,P (z) are expected to disagree on a set of
γm coordinates. Since fG1,P (w) = 1⊕yI1 , this translates to γm indices in I1 for



which P (zSi
) = yi. The above analysis is inaccurate as the random variables z

and G1 are statistically dependent (via the random variable (w,G0)). Still the
above approach can be used when the input y (as well as the graph G) is truly
random.

Claim 3. Pr
G

R←Gn,2m,d,y
R←{0,1}2m

[B(G, y) does not fail] > δ′/2− neg(n).

Proof. When the pair (G, y) is uniformly chosen, the process B(G, y) can be
equivalently described as follows. In the first step, we choose S1, . . . , S2m uni-

formly at random, choose a random string w
R← {0, 1}n, and a random string

r
R← {0, 1}2m. We let y = fG,P (w)⊕ r. Then steps 2–5 are performed exactly as

before. This process is clearly equivalent to B(G, y), but easier to analyze. The
main observation is that the string w is statistically independent of the graphs G0

and G1 which are just random graphs (whose size is determined by the random
variable r).

Specifically, consider the following event: (1) The number of zeroes in r is
larger than m/2; (2) The number of zeroes in r is smaller than m/2 +m2/3; (3)
A outputs β-far collision z with w under fG0,P ; (4) The Hamming weight of w
is n/2± n2/3; (5) P (zSi

) = yi for at least m(1 + γ)− 2m2/3 of indices i ∈ [2m].
Event (1) happens with probability 1

2 (this follows from the “mean in the
median” result for the binomial distribution, cf. [19]), and Event (2) happens
with all but negligible probability due to a Chernoff bound. Hence, by a union
bound (1) and (2) happen together with probability 1

2 − neg(n). Fix some r

which satisfies both (1) and (2) and let m1 ≥ m−m2/3 be the Hamming weight

of r. Now, w is a random string and G0
R← Gn,m,d, hence, A is invoked on

the “right” probability distribution and (3) happens with probability δ′. By a
Chernoff bound, (4) happens with all but negligible probability. Therefore, by
union bound, (3) and (4) happen simultaneously (conditioned on (1,2)) with
probability δ′−neg(n). Fix w and G0 which satisfy (3) and (4), and let us move
to (5).

Since w and z form a collision under fG0,P , we have that fG0,P (z) = yI0 and
therefore P (zSi) = yi for all the m indices i ∈ I0. Hence, it suffices to show that
P (zSi) = yi for at least

(γ −m−1/3)m1 ≥ γm− 2m2/3

of the indices in I1. (Recall that m1 > m − m2/3.) We claim that this hap-

pens with all but negligible probability (taken over the random choice of G1
R←

Gn,m1,d). To see this, define for every i ∈ I1 a random variable ξi which equals to
one if P (zSi) = yi. Equivalently, ξi = 1 if P (zSi) 6= P (wSi). Furthermore, since
the sets Si are distributed uniformly and independently, each ξi takes the value
1 independently with probability at least

sP (w, z) ≥ sP (∆(w, z))− o(1) > γ

where the first inequality follows from Lemma 1 and the fact that w is “typical”
(of Hamming weight n/2 ± n2/3); and the second inequality follows from the



goodness of P and the fact that ∆(w, z) ≥ β. Therefore, by Chernoff’s bound,

Pr
[∑

ξi < (γ −m−1/3)m1

]
< 2−D2(γ−m−1/3‖γ)m1 < e−Ω(m1/3),

which is negligible in n and so the claim follows. ut

Moving back to the case where y is an image of a random string x, we show
that when B does not fail its output is likely to be correlated with x.

Claim 4. There exists a constant µ such that the following holds. With all but

negligible probability over the choice of x
R← {0, 1}n and G

R← Gn,2m,d, there is
no string z such that fG,P (x) and fG,P (z) agree on at least m(1 + γ) − 2m2/3

coordinates but ∆(x, z) ∈ ( 1
2 ± µ).

Proof. Let µ > 0 be a small constant for which the value of sP (·) in the interval
( 1
2 ± µ) is lower bounded by a constant η which satisfies η > 1

2 − γ and

2(1− ε)D2(
1

2
− γ‖η) > 1. (3)

Observe that for µ = 0 we can take η = 1
2 (as sP ( 1

2 ) = 1
2 ) and so Eq 3 translates

to 2(1 − ε)H2( 1
2 − γ) > 1 which follows from Eq 2. Since sP is a continuous

function, and the LHS of Eq 3 is also continuous in η, we conclude that Eq 3
also holds for sufficiently small constant µ > 0.

Let us condition on the event that x is typical (as in Lemma 1), which, by a
Chernoff bound, happens with all but negligible probability. Fix some string z
for which ∆(x, z) ∈ ( 1

2±µ). For a random d size set S we have, by Lemma 1, that

Pr[P (xS) 6= P (zS)] ≥ sP (∆(x, z)) > η − o(1) > 1
2 − γ. Let G = (S1, . . . , Sm)

R←
Gn,2m,d. Since each set Si is chosen independently and uniformly at random,
we can upper-bound (via Chernoff) the probability that fG,P (x) and fG,P (z)
disagree on less than 2m − (m(1 + γ) − 2m2/3) = (1 − γ)m + 2m2/3 of the
coordinates by

p = 2−2mD2(
1
2−γ+o(1)‖s(x,z)) ≤ 2−2(1−ε)D2(

1
2−γ+o(1)‖η−o(1))n.

By a union bound over all z’s, we get that the claim holds with probability p ·2n
which is negligible since Eq.3 holds. ut

We can now complete the proof of the theorem. Let G
R← Gn,2m,d and y =

fG,P (x) where x
R← {0, 1}n. Consider the event that: (1) G and x satisfy Claim 4;

and (2) B(G, y) does not fail and outputs the string z. In this case, either the
string z or its negation has a non-trivial agreement of 1

2 + µ with x, which
may happen with probability at most δ2 due to the approximate one-wayness of
Fn,2m. Hence, it suffices to show that the above event happens with probability
at least δ′/2−δ1−neg(n). Indeed, (1) happens with all but negligible probability
(due to Claim 4), and (2) happens with probability δ′/2 − δ1 − neg(n) due to
Claim 3 and the fact that (G, y) is δ1-indistinguishable from (G, y′) for truly

random y′
R← {0, 1}2m. ut



5 From (δ, β)-RTCR to TCR

In this section we will start with δ-secure β-RTCR with shrinkage factor of 1− ε
and gradually amplify each of the parameters via locally computable transforma-
tions (described in Sections 5.1–5.3). Formally, we prove the following theorem.

Theorem 5. For every ε ∈ (0, 1) there exist universal constants δ, β ∈ (0, 1)
such that for every desired constant shrinkage factor ε′ ∈ (0, 1) the following
holds. Any locally computable δ-secure β-RTCR with shrinkage factor of 1 − ε
can be transformed into a locally computable TCR with shrinkage factor of ε′.

We note that the proof of the theorem can be adopted to the setting of collision
resistance hash functions. Namely, it allows to locally transform a δ-secure β-
collision resistance hash function with shrinkage factor 1 − ε into a standard
collision resistance hash function with arbitrary constant shrinkage.

Observe that our main theorem (Theorem 1) follows by combining Theorem 5
with Corollary 1 instantiated with (β, γ)-good predicate P where β < β∗ and
γ > γ∗ for some universal constants β∗ > 0 and γ∗ < 1

2 . The exact values of β∗

and γ∗ are determined by the quality of LDPC codes. (See section 5.2.)

5.1 Standard Transformations

We begin with two standard transformations.

Claim 6 (RTCR to TCR). Let H = {hk} be δ-secure β-RTCR with shrinkage

factor of 1− ε. Then the collection H′ =
{
h′k,y

}
defined by h′k,y(x) = hk(x⊕ y)

is δ-secure β-TCR.

Assume that we already have δ-secure standard-TCR (β = 0) with shrinkage
factor of 1 − ε. A standard way to amplify the shrinkage factor from 1 − ε to
(1 − ε)t is via iterated self-composition [21]. We note that when t = O(1) the
locality remains constant.

Claim 7 (Amplifying the Shrinkage Factor). Let H = {hk} be a δ-secure
TCR with shrinkage factor of 1−ε and key sampler K. For any constant integer
t ≥ 1, the collection Ht (defined below) is tδ-secure TCR with shrinkage factor
of (1− ε)t. The collection Ht is defined recursively, via

Ht = {hk1,...,kt} , hk1,...,kt(x) = hkt(hk1,...,kt−1
(x)), where ki

R← K(1n(1−ε)
i−1

).

A proof for t = 2 follows from [8, Lemma 3.2]. The case of arbitrary constant t
follows by induction (or can be proven directly via a similar argument).

5.2 Reducing the Distance Parameter β

In this section we transform β-TCR to standard TCR (with some loss in hardness
and shrinkage). Such a transformation can be easily obtained (non-locally) by
encoding the input x via an error-correcting code. Here we provide a local alter-
native which employs low-density parity-check matrices (LDPC). Such matrices
will also be used to amplify the hardness parameter δ in the next section.



LDPC. In order to amplify the distance parameter β we will need sparse parity
check matrices of a good code. Let m < n be an integer. We say that a matrix
M ∈ Zm×n2 has a dual (relative) distance of β ∈ (0, 1) if the Hamming weight
of every non-zero codeword x ∈ ker(M) = {x|Mx = 0} is larger than βn. We
say that a family Mm(n)×n of efficiently samplable distributions over matrices

in {0, 1}m(n)×n is a low-density parity check code with error δ and distance β (in

short, (δ, β)-LDPC) if (1) with probability at least 1−δ a matrix M
R←Mm(n)×n

has dual distance of β and (2) all matrices M in the support ofM are sparse in
the sense that the number of ones in each row and each column is bounded by
some absolute constant d which does not depend on n. We will make use of the
following proposition due to [12, Thm. 7.1].

Proposition 1. For every ε ∈ (0, 1) there exists an efficiently samplable distri-
bution Mεn×n of (0, β(ε))-LDPC for some β = ε/polylog(1/ε).

Lemma 3 (β-TCR to TCR). Let ε′ < ε and let Mε′n×n be an (δ′, β)-LDPC.
Let H = {hk} be δ-secure β-TCR with shrinkage factor of 1− ε and key sampler
K, and define

H′ =
{
h′k,M

}
h′k,M = (hk(x),Mx), where (k,M)

R← (K(1n),Mε′n×n)

Then, H′ is (δ + δ′)-secure TCR with shrinkage factor of 1− ε+ ε′.

Proof. We need the following observation: when M
R←M has a dual distance of

β, any pair of distinct strings x and x′ which collide under h′k,M must be β-far.
Indeed, if this is not the case then, since Mx = Mx′, the vector x ⊕ x′ is a
non-zero vector in the kernel of M whose Hamming weight is smaller than βn,
in contrast to our assumption. The lemma now follows easily.

Let A2 be an TCR adversary that, given (x, r)
R← A1(1n) and hk,M

R← H′,
finds a collision x′ with x under hk,M with probability δA. To prove the lemma

we define an adversary B that finds a β-close collision x′ with x
R← A1(1n)

under hk
R← H with probability δB ≥ δA − δ′. Given a key k

R← K(1n) and a

target/state pair (x, r)
R← A1(1n), the adversary B samples M

R← M and call
A2 with hk,M . Let good be the set of matrices whose dual distance is β and
let us say that A wins if it outputs a valid collision x′ with x under hk,M , i.e.,
x′ 6= x, hk(x) = hk(x′) and Mx = Mx′. Then we can write

δA = Pr
k,M,x,r

[A1(k,M, x, r) wins |M ∈ good] · Pr
M

[M ∈ good]

+ Pr
k,M,x,r

[A1(k,M, x, r) wins |M /∈ good] · Pr
M

[M /∈ good]

≤ Pr
k,M,x,r

[A1(k,M, x, r) wins |M ∈ good] · (1− δ′) + δ′

≤ δB + δ′,

where the last inequality follows from the observation. ut

Observe that the above transformation is local since the family M is sparse.



5.3 Hardness Amplification

We move on to amplify the hardness parameter δ from constant to negligible.
In addition to LDPCs (i.e., sparse shrinking linear transformations), we employ
Distance Amplifiers (i.e., sparse linear transformations which expands the input)
which has the property of mapping any pair (x, x′) of far-apart inputs to a pair
of far apart outputs (y, y′). This can be seen as a relaxation of standard error-
correcting codes which amplify the distance between any pair of distinct inputs.

Distance Amplifiers Let m > n be an integer and β, γ ∈ (0, 1) be constants.
We say that a matrix T ∈ Zm×n2 is (β → γ)-distance amplifying if for every
pair x, x′ ∈ {0, 1}n of β-far strings the m-bit strings Tx and Tx′ are γ-far.
(Jumping ahead, we note that γ is allowed to be smaller than β as long as
it is larger than the hardness parameter δ.) We say that a family Tm(n)×n of

efficiently samplable distributions over matrices in {0, 1}m(n)×n is a (β → γ)
sparse distance amplifier (in short, (β → γ)-SDA) if (1) with all but negligible

probability a matrix T
R← Tm(n)×n is (β → γ)-distance amplifying and (2) all

matrices T in the support of T are sparse, meaning that the number of ones in
each row and each column is bounded by some absolute constant d which does
not depend on n. In the full version we prove the following proposition.

Proposition 2. For every constant β ∈ (0, 1) and constant γ ∈ (0, 12 ) there ex-
ists an efficiently samplable (β → γ)-SDA Tcn×n where c = c(β, γ) is a constant.

Let T ∈ {0, 1}cn2×n2

. In the following we think of the linear mapping x 7→ Tx
as a mapping from n2-bit strings to a tuple of cn strings of length n each.
Accordingly, for i ∈ [cn] we let (Tx)i ∈ {0, 1}n denote the i-th entry of Tx.

Lemma 4 (Hardness Amplification). Let H = {hk : {0, 1}n → {0, 1}ε1n} be
δ-secure β-TCR with key sampler K, let Mε0n2×n2 be a β-LDPC, and Tcn2×n2

be a (β → γ)-SPA, where the constants ε0, ε, γ, δ ∈ (0, 1) and c > 1 satisfy
ε0 + εc < 1 and δ < γ. Then, the following collection H′ which shrinks n2-bit
strings by a factor of ε0 + εc is a standard TCR:

h′(k1,...,kcn),M,T : x 7→ (Mx, hk1((Tx)1), . . . , hkcn((Tx)cn)) ,

where M
R←Mε0n2×n2 , T

R← Tcn2×n2 and ki
R← K(1n) for i ∈ [cn].

Proof. Let A = (A1,A2) be an adversary that breaks H′ with probability δA.
We construct an adversary B = (B1,B2) that given cn independent samples of
H finds collisions on γ fraction of them with probability δB. Namely, let δB be

Pr
k

R←Kcn(1n)

(y,R)
R←B1(1

n)

[B2(k,y, R) = y′ s.t. | {i : (yi 6= y′i) ∧ (hki(yi) = hki(y
′
i))} | ≥ γcn],

where k = (k1, . . . , kcn),y = (y1, . . . , ycn), and y′ = (y′1, . . . , y
′
cn). A general

threshold direct product theorem of Impagliazzo and Kabanets [16, Thm 5.2]



shows that the advantage δB is upper-bounded by 2−cnD(γ‖δ) +neg(n) = neg(n).
Hence, to prove the lemma it suffices to show that

δA − neg(n) ≤ δB.

Let us define B. The target sampler B1(1n) samples M
R← Mε0n2×n2 , T

R←
Tcn2×n2 and (x, r)

R← A1(1n). It outputs the state R = (M,T, x, r) and the
target vector y = (y1, . . . , ycn) where yi = (Tx)i. Given (k,y, R = (x, r,M, T )),
the collision-finder B2 passes to A2 the key (k,M, T ), the target x, and the state
r, and asks for a collision x′ under h′k,M,T . The output of B2 is y′ = (y′1, . . . , y

′
cn)

where y′i = (Tx′)i. We say that A1(k,M, T, x, r) wins if its output x′ collide
with x under h′k,M,T and x 6= x′. A pair (M,T ) is good if M has dual distance
of β and T is (β → γ) distance amplifying. We claim that

δA − neg(n) ≤ Pr
k,M,T,x,r

[A1(k,M, T, x, r) wins |(M,T ) ∈ good] ≤ δB.

The first inequality follows from Bayes’ law together with Pr[good] > 1−neg(n).
As for the second inequality, observe that if A wins and (M,T ) are good then the
collision x and x′ must be β-far (as Mx = Mx′) and therefore Tx and Tx′ must
disagree on at least γcn2 coordinates. Hence, for at least γ fraction of i ∈ [cn] we
have that (Tx)i 6= (Tx′)i. Furthermore, hki((Tx)i) = hki((Tx

′)i) for all i ∈ [cn]
since A wins. Hence, in this case B wins as well and the claim follows. ut

Theorem 5 follows by combining Claims 6, 7 and Lemmas 3, 4 with properly
chosen parameters. See full version for details.
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