
Limitations of the Meta-Reduction Technique:
The Case of Schnorr Signatures

Marc Fischlin1 and Nils Fleischhacker2

1 Technische Universität Darmstadt
www.cryptoplexity.de
2 Saarland University

ca.cs.uni-saarland.de

Abstract. We revisit the security of Fiat-Shamir signatures in the non-
programmable random oracle model. The well-known proof by Pointcheval
and Stern for such signature schemes (Journal of Cryptology, 2000) relies
on the ability to re-program the random oracle, and it has been unknown
if this property is inherent. Pailler and Vergnaud (Asiacrypt 2005) gave
some first evidence of the hardness by showing via meta-reduction tech-
niques that algebraic reductions cannot succeed in reducing key-only at-
tacks against unforgeability to the discrete-log assumptions. We also use
meta-reductions to show that the security of Schnorr signatures cannot
be proven equivalent to the discrete logarithm problem without program-
ming the random oracle. Our result also holds under the one-more dis-
crete logarithm assumption but applies to a large class of reductions, we
call single-instance reductions, subsuming those used in previous proofs
of security in the (programmable) random oracle model. In contrast to
algebraic reductions, our class allows arbitrary operations, but can only
invoke a single resettable adversary instance, making our class incompa-
rable to algebraic reductions.
Our main result, however, is about meta-reductions and the question if
this technique can be used to further strengthen the separations above.
Our answer is negative. We present, to the best of our knowledge for the
first time, limitations of the meta-reduction technique in the sense that
finding a meta-reduction for general reductions is most likely infeasible.
In fact, we prove that finding a meta-reduction against a potential reduc-
tion is equivalent to finding a “meta-meta-reduction” against the strong
existential unforgeability of the signature scheme. This means that the
existence of a meta-reduction implies that the scheme must be insecure
(against a slightly stronger attack) in the first place.

1 Introduction

On a technical level, we investigate the security of Fiat-Shamir (FS) signatures
[10] in the non-programmable random oracle model (NPROM), i.e., where pro-
gramming the hash function is prohibited. Such programming has been exploited
in the security proof for common FS signatures by Pointcheval and Stern [23],
bringing forward the question if the security result remains valid in the more

stringent model of non-programmable random oracles. Conceptually, though,
the more interesting result in the paper refers to limitations of so-called meta-
reductions. Such meta-reductions are also called “reductions against the reduc-
tions” as they basically treat the reduction as an adversary itself and reduce the
existence of such a reduction to a presumably hard problem, ruling out reductions
and therefore security proofs for the underlying scheme. This proof technique re-
cently gained quite some attention as it rules out certain reductions, especially
those which only treat the adversary but not the underlying primitive as a black
box (e.g., [9,20,15,14,21,16,2,27]). We show, via a “meta-meta-reduction”, that
one cannot use the meta-reduction technique to show impossibility results for
FS signatures in the NPROM.

1.1 Fiat-Shamir Signatures in the NPROM

The class of FS signatures comprises all transformed three-move identification
schemes in which the challenge ch, sent by the verifier in return of the prover’s
initial commitment com, is replaced by the hash value H(com,m) for message
m. The prover’s response resp, together with com, then yields the signature
(com,resp) for m. For some cases, like the Schnorr signature scheme [26], the
signature can be shortened by using (ch,resp) instead.

The common security proof for FS signature schemes in the random oracle
model [6], given in [23], basically works as follows. The reduction to the under-
lying problem, such as the discrete logarithm problem for the Schnorr scheme,
runs the adversary twice. In the first runs the reduction gets a signature forgery
(com,resp) for message m and challenge ch = H(com,m). In the second run
it re-programs H to yield a distinct challenge ch′ = H(com,m) and response
resp′. From both signatures the reduction can then compute a solution to the
underlying problem. Clearly, this technique relies on the programmability of the
hash function.3

Fischlin et al. [13] later defined reductions in the non-programmable random
oracle model (NPROM) by externalizing the hash function to both the adver-
sary and the reduction.4 In the NPROM the reduction may still observe the
adversary’s queries to the hash function, but cannot change the reply. Obvi-
ously, this non-programming property matches much closer our understanding
of “real” hash functions and instantiations through, say, SHA-3. Interestingly,
though, Fischlin et al. [13] do not investigate this arguably most prominent ap-
plication of the random oracle methodology. Instead, they separate programming
and non-programming reductions (and an intermediate notion called weakly pro-
gramming reductions) through the case of OAEP encryption, FDH signatures,

3 Note that this proof reduces the security of the signature scheme to the underlying
number-theoretic problem via special soundness. Abdalla et al. [1] more generally
consider FS schemes with reductions to the identification schemes. We do not cover
the latter type of reductions and schemes here.

4 The role of programmability was first investigated by Nielsen [18], even though not
for reductions as in the proofs of Fiat-Shamir schemes.

and trapdoor permutation based KEMs. Weakly programming reductions are
allowed to reset the random oracle and redirect the value to some (external)
random answer. Our first result is to formally confirm the intuition that FS sig-
natures should still be secure in the weakly programmable random oracle model.

1.2 Limitations Through Meta-Reductions

The more interesting question is if FS signatures can be shown to be secure in
the NPROM. Our first result in this regard is negative and applies to discrete
log schemes like the Schnorr signature scheme [26] or the RSA-based Guillou-
Quisquater scheme [17]. Namely, we first consider any reductionR which initiates
only a single (black-box) instance of the adversary A for some public key pk, but
such that it can reset A arbitrarily to the point after having handed over the
public key (from the fixed group). Note that the reduction in the programmable
ROM in [23] is of this kind, only that it can also change the behavior of the
random oracle, unlike our reductions here in the NPROM. We show that this
type of single-instance reduction to the discrete log problem cannot succeed in
the NPROM under the one-more discrete log assumption [5].

Our impossibility result follows from presenting a meta-reductionM against
R. That is, we show that if one can find a reduction R which successfully solves
the DL problem given black-box access to any successful adversary A against
the signature scheme, then there is a meta-reduction M breaking the one-more
DL problem directly. Since we also present a successful (unbounded) adversary
A which M can simulate towards R efficiently, we conclude that the existence
of reduction R would already contradict the one-more DL problem.

We observe that our meta-reduction, too, works in the NPROM and thus
cannot program the random oracle for R; else the meta-reduction would violate
the idea of modeling hash functions as non-programmable. It is also easy to
show that, if the meta-reduction, unlike the reduction, was allowed to program
the random oracle, this “unfair” situation would straightforwardly dismiss the
possibility of such reductions. However, such an approach seems to violate the
idea behind non-programmable oracles as a mean to capture real-world hash
functions over which no party, not even the meta-reduction, has control.

The noteworthy property of our meta-reduction M is that, unlike most of
the previous proposals (cf. [11]), it does not work by resetting the reduction
R. The reset strategy is usually used to rewind the reduction and, in case of
signature schemes, get an additional signature through a signing query in an
execution branch, and display this signature back to R as a forgery in the main
branch. However, this means that one needs to take care of correlations between
the additional signature and the reduction’s state. Instead of using such resets,
our meta-reduction will essentially run two independent copies of the reduction
and use the signatures of one execution in the other one. The independence of
the executions thus “decorrelates” the additional signature from the reduction’s
state, avoiding many complications from the resetting strategy.

1.3 Limitations of Meta-Reductions

Does our meta-reduction impossibility result for non-programming reductions
extend to other cases like the discrete logarithm problem? We show that this is
unlikely, thus showing limitations of the meta-reduction technique. The idea is to
consider the meta-reduction itself as a reduction, and to use the meta-reduction
technique against this reduction. Hence, we obtain a “meta-meta-reduction” N
which now simulates the reductionR forM, just as the meta-reduction simulates
the adversary for R.

More concretely, assume that we consider reductions R transforming an ad-
versary A against the signature scheme in a black-box way into a solver for
some cryptographic problem ΠR. Then, a meta-reductionM should turn R (to
which it has black-box access) into a successful solver for some problem ΠM. For
technical reasons, in our case this problem ΠM has to be non-interactive, e.g.,
correspond to the discrete logarithm problem; this also circumvents the case of
our previous meta-reduction for the interactive one-more DL problem. Then we
show that such a meta-reduction can be used to build a meta-meta-reduction N
against the strong unforgeabilty of the signature scheme.

In other words, the meta-reduction technique cannot help to rule out black-
box reductions to arbitrary problems, unless the signature is insecure in the first
place. Here, insecurity refers to the notion of strong unforgeability where the
adversary also succeeds by outputting a new signature to a previously signed
message. In fact, in the programmable ROM the security proof in [23] actually
shows that the FS schemes achieve this stronger notion.

1.4 Related Work

As mentioned before, meta-reductions have been used in several recent results
to rule out black-box reductions for Fiat-Shamir schemes, and especially for
Schnorr signatures. Paillier and Vergnaud [20] analyzed the security of Schnorr
Signatures in the standard model. They showed with the help of meta-reductions
that, if the one-more discrete logarithm assumption holds, the security of Schnorr
signatures cannot be reduced to the (one-more) discrete logarithm problem, at
least using algebraic reductions. While algebraic reductions where first defined
by Boneh and Venkatesan [7], Paillier and Vergnaud [20], however, use a slightly
more liberal definition of algebraicity. Their notion basically states that, given
the discrete logarithm of all of the reduction’s inputs and access to the reduction,
it is possible to compute the discrete logarithm of any group element output by
the reduction. We note that the ability to trace the discrete logarithms of the
group elements produced by the reduction is important to their result and allows
them to prove impossibility even for key-only attacks.

Paillier and Vergnaud [20] also extended their result to other signature schemes,
including the Guillou-Quisquater scheme [17] and the one-more RSA assump-
tion [5]. They also considered the tightness loss in the Pointcheval-Stern proof
for the Schnorr signature scheme in the programmable random oracle model.
They showed, again for algebraic reductions, that the security loss of a factor

√
qH is inevitable, where qH is the maximum number of random oracle queries

by the adversary. This bound was later raised to q
2/3
H by Garg et al. [15] in the

same setting. Seurin [27] recently improved this bound further to O(qH). Using
meta-reduction techniques and considering algebraic reductions, too, he proved
it is unlikely that a tighter reduction exists.

In a recent work, Baldimtsi and Lysyanskaya [4] showed, via meta-reductions,
that one cannot prove blind Schnorr signatures secure via black-box reduc-
tions. Their meta-reduction, like ours here, has the interesting feature of be-
ing non-resetting. Remarkably, though, they seem to rule out the more liberal
programming reductions, whereas our result is against the “more confined” non-
programming reductions. However, their result considers a special type of pro-
gramming reduction, called naive. This roughly means that one can predict the
reduction’s programmed random oracle answers by reading the reduction’s ran-
dom tape. This property is inherently tied to the programmability and is clearly
not fulfilled by non-programmable, external random oracles; for such oracles even
the reduction does not know the answers in advance. This, unfortunately, also
means that their meta-reduction technique may not apply to non-programmable
hash functions. In other words, one may be able to bypass their impossibil-
ity result and may still be able to find a cryptographic security proof for such
schemes, by switching to the non-programmable random oracle model, or even
to standard-model hash functions.

1.5 Organization

In Section 2 we first recall some basic facts about signatures and (general and
discrete-log specific) cryptographic problems. Then we show that FS signatures
are secure in the weakly programmable random oracle model, and prove our
meta-reduction impossiblity result for single-instance reductions in the NPROM
in Section 3. Our main result about meta-meta-reductions appears in Section 4.

2 Preliminaries

We use standard notions for digital signature schemes S = (KGen,Sign,Vrfy)
such as existential unforgeability and strong existential unforgeability. We usu-
ally assume (non-trivially) randomized signature schemes, where the signature
algorithm has super-logarithmic min-entropy for the security parameter κ, i.e.,
H∞(Sign(sk,m)) ∈ ω(log(κ)) for all keys sk, all messages m, and given the ran-
dom oracle. For formal definitions refer to the full version of this paper.

2.1 Cryptographic Problems

We define a cryptographic problem as a game between a challenger and an ad-
versary. The challenger uses an instance generator to generate a fresh instance of
the problem. The adversary is then supposed to find a solution for said instance.
The challenger may assist the adversary by providing access to some oracle, like

a decryption oracle in a chosen-ciphertext attack against indistinguishability.
Eventually the adversary outputs a solution for the problem instance and the
challenger uses a verification algorithm to check whether the solution is correct.

For many problems there exist trivial adversaries, e.g., succeeding in an indis-
tinguishability game by pure guessing. One is usually interested in the advantage
of adversaries beyond such trivial strategies. We therefore introduce a so-called
threshold algorithm to cover such trivial attacks and measure any adversary
against this threshold adversary.

Definition 1 (Cryptographic Problem). A cryptographic problem Π =
(IGen,Orcl,Vrfy,Thresh) consists of four algorithms:

– The instance generator IGen takes as input the security parameter 1κ and
outputs a problem instance z. The set of all possible instances output by
IGen is called Inst.

– The computationally unbounded and stateful oracle algorithm Orcl takes as
input a query q ∈ {0, 1}∗ and outputs a response r ∈ {0, 1}∗ or a special
symbol ⊥ indicating that q was not a valid query.

– The deterministic verification algorithm Vrfy takes as input a problem in-
stance z ∈ Inst and a candidate solution x ∈ Sol. The algorithm outputs

b ∈ {0, 1}. We say x is a valid solution to instance z if and only if b
?
= 1.

– The efficient threshold algorithm Thresh takes as input a problem instance z
and outputs some x. The threshold algorithm is a special adversary and as
such also has access to Orcl.

We note that the algorithms IGen, Orcl, Vrfy potentially have access to shared
state that persists for the duration of an experiment.

Definition 2 (Hard Cryptographic Problem). For a cryptographic prob-
lem Π = (IGen,Orcl,Vrfy,Thresh) and an adversary A we define the following
experiment:

ExpAΠ(κ) : [z ← IGen(1κ);x← AOrcl(z); b← Vrfy(z, x); output b].

The problem Π is said to be hard if and only if for all probabilistic polynomial-
time algorithms A the following advantage function is negligible in the security
parameter κ:

AdvAΠ(κ) = Pr
[
ExpAΠ(κ)

?
= 1

]
− Pr

[
ExpThreshΠ (κ)

?
= 1

]
,

where the probability is taken over the random tapes of IGen and A.

We sometimes require some additional properties of cryptographic problems,
summarized in the following definition:

Definition 3 (Specific Cryptographic Problems). Let Π = (IGen,Orcl,
Vrfy,Thresh) be a cryptographic problem as defined in Definition 1.

– The problem Π is said to be non-interactive if and only if Π.Orcl is the
algorithm that always outputs ⊥ and never changes the shared state.

– The problem Π is said to be efficiently generatable if and only if Π.IGen is
a polynomial-time algorithm.

– The problem Π is said to be solvable if and only if Π.Sol is recursively
enumerable, and the following holds:

∀z ← Π.IGen(1κ) : (∃x ∈ Π.Sol : Π.Vrfy(z, x)
?
= 1).

– The problem Π is said to be monotone if and only if for all instances z ←
Π.IGen(1κ), all solutions x ∈ Π.Sol, all n ∈ N, and all sequences of queries

(q1, . . . , qn) the following holds: If Π.Vrfy(z, x)
?
= 1 holds after executing the

queries Π.Orcl(q1); . . . ;Π.Orcl(qn), then this already held before Π.Orcl(qn)
was executed.

Intuitively, an algorithm solving a monotone problem is not punished for
issuing fewer queries. In particular, if a solution is valid after some sequence of
queries, it is also valid if no queries were executed at all.

2.2 Discrete Logarithm Assumptions

The discrete logarithm problem with its corresponding hardness assumption is a
specific instance of a non-interactive, efficiently generatable, and solvable prob-
lem. The assumption about the computational infeasibility of computing loga-
rithms in certain groups is formally defined in Definition 4.

Definition 4 (Discrete Logarithm Assumption). Let G = 〈g〉 be a group
of prime order q with |q| = κ. The discrete logarithm (DL) problem over G
—written DLG— is defined as follows:

Instance and Solution space: The instance space Inst is G and the solution
space Sol is Zq.

Instance Generation: The instance generator IGen(1κ) chooses z
$← G and

outputs z. Note that this sampling of z may require to pick a random w
$← Zq

and compute z = gw.
Verification: The verification algorithm Vrfy(z, x) computes z′ = gx. If z′

?
= z,

then it outputs 1, otherwise it outputs 0.

Threshold: The threshold algorithm Thresh(z) chooses x
$← Zq and outputs x.

The discrete logarithm assumption is said to hold over G if DLG is hard.

A natural extension of the discrete logarithm problem are the interactive, ef-
ficiently generatable, monotone, and solvable one-more discrete logarithm prob-
lems first introduced by Bellare et al. [5]. They are interactive, as the adversary
is given access to an oracle capable of solving the DLG problem. However, an ad-
versary computing n+ 1 discrete logarithms can only request at most n discrete
logarithms from the DL oracle, hence, the name one-more discrete-log problem.
The problems with their corresponding hardness assumptions are formally de-
scribed in Definition 5. The assumptions are believed to be stronger than the
regular DL assumption [8].

Definition 5 (n-One-More Discrete Logarithm Assumption [5]). Let
G = 〈g〉 be a group of prime order q with |q| = κ. The n-one-more discrete
logarithm (n-DL) problem over G –written n-DLG– is defined as follows:

Instance and Solution space: The instance space Inst is Gn+1 and the so-
lution space Sol is Zn+1

q .

Shared State: The shared state consists only of a single counter variable i.

Instance Generation: The instance generator IGen(1κ) initializes i := 0 in

the shared state, chooses z0, . . . , zn
$← G, and outputs (z0, . . . , zn).

Oracles: The oracle algorithm Orcl(z), on input z ∈ G, increments i := i + 1.

It then exhaustively searches Zq for an x such that gx
?
= z and outputs x.

On input some z 6∈ G, Orcl outputs ⊥.

Verification: The verification algorithm Vrfy((z0, . . . , zn), (x0, . . . , xn)) computes

z′j = gxj . If z′j
?
= zj for all j and if i ≤ n, then it outputs 1, otherwise it

outputs 0.

Threshold: The threshold algorithm Thresh(z) chooses x0, . . . , xn
$← Zq and

outputs (x0, . . . , xn).

The n-one-more discrete logarithm (n-DL) assumption is said to hold over G, if
and only if the n-DLG problem is hard.

3 Security of Schnorr Signatures

We first recall the definition of the Schnorr signature scheme (SSS) [25,26] as de-
rived from the Schnorr identification scheme via the Fiat-Shamir transform [10].
Afterwards, we analyze the security of the resulting signature scheme in two
variants of the random oracle model, in which reductions are limited in the way
they can program the random oracle.

Definition 6 (Schnorr Signature Scheme). Let G be a cyclic group of prime
order q with generator g and let H : {0, 1}∗ → Zq be a hash function modeled as
a random oracle. The Schnorr signature scheme, working over G, is defined as
follows:

Key Generation: The key generation algorithm KGen(1κ) proceeds as follows:

Pick sk
$← Zq, compute pk := gsk, and output (sk, pk).

Signature Generation: The signing algorithm Sign(sk,m; r) proceeds as fol-
lows: Use r ∈ Zq and compute R := gr. Compute c := H(R,m) and
y := r + sk · c mod q. Output σ := (c, y).

Signature Verification The verification algorithm Vrfy(pk,m, σ) proceeds as

follows: Parse σ as (c, y). If c
?
= H(pk−cgy,m), then output 1, otherwise

output 0.

3.1 Unforgeability of Schnorr Signatures Under Randomly
Programming Reductions

We begin by showing that the original proof by Pointcheval and Stern [22,23]
still holds for randomly programming reductions. Randomly programming reduc-
tions as defined in [13] do not simulate the random oracle themselves. Instead,
they can re-set the random oracle to another hash value. As shown in [13] such
randomly programming reductions are equivalent to the weakly-programmable
random oracle model (WPROM) which is in between the programmable and
non-programmable ROM. Whereas a conventional random oracle has only a sin-
gle interface implementing a random mapping from domain Dom to range Rng,
a weakly programmable random oracle has three interfaces, which allow for pro-
gramming but only in a weak sense: one cannot freely re-program the hash values
but only re-set them to another random value:

Definition 7 (Weakly Programmable Random Oracle). A weakly pro-
grammable random oracle (WPRO) exposes three interfaces to the caller:

Evaluation: The evaluation interface ROeval behaves as a conventional random
oracle, mapping Dom→ Rng.

Random: The random interface ROrand takes as input bit strings of arbitrary
length and implements a random mapping {0, 1}∗ → Rng.

Programming: The programming interface ROprog takes as input a pair (a, b) ∈
Dom× {0, 1}∗ and programs ROeval(a) to evaluate to ROrand(b).

The randomly programming reduction gets oracle access to all three inter-
faces, whereas the adversary only gets access to the ROeval interface. We now
show that randomly programming reductions are sufficient to prove SSS secure
in the ROM.

Theorem 1 (EUF-CMA Security of SSS Under Randomly Programming
Reductions). The EUF-CMA security of SSS is reducible to the discrete log-
arithm problem over G using a randomly programming reduction R.

The proof is close to the one in the programmable case and omitted here;
the reader may refer to the full version for a sketch. We thus show that the
limited programmability of a randomly programming random oracle is sufficient
to obtain a (loose) proof of security for Schnorr signatures. In particular, choosing
range points of the random oracle at will is not required for the proof. We note
that the above result transfers to other FS schemes such as [19,17,12].

3.2 Schnorr Signatures are not Provably Secure Under
Non-Programming Single-Instance Reductions

We now show that the Schnorr Signature Scheme cannot be proven existentially
unforgeable under chosen message attacks without programming the random
oracle —at least with respect to a slightly restricted type of reduction. We ac-
tually prove that, if such a reduction exists, the 1-one-more discrete logarithm
assumption does not hold over G.

We term the restricted class of reductions as single-instance reductions. Such
single-instance reductions only invoke a single instance of the adversary and,
while they may rewind the adversary, they may not rewind it to a point before
it received the public key for the first time. This class of reductions is espe-
cially relevant, because both the original security reduction by Pointcheval and
Stern [23] as well as the one in Theorem 1 are of this type.

Instead of simulating the random oracle itself, a non-programming reduction
works relative to an external fixed random function and it is required to honestly
answer all random oracle queries. That is, the black-box reduction can observe
the adversary’s queries to the random oracle, but cannot change the answers.
We omit a formal approach (see [13]) because the definition reflects the intuition
straightforwardly. We remark that the approach assumes fully-black-box reduc-
tions [24] (or, in terms of the CAP taxonomy of [3], the BBB-type of reduction)
which need to work for any (unbounded) adversary oracle. In particular, and we
will in fact exploit this below, the adversary can thus depend on the reduction.
We may therefore think of the adversary as a family A of adversaries AR,a,
depending on the reduction R and using some randomness a. We believe it is
conceptually easier in this case here to make the randomness a explicit, as op-
posed to having a single adversary that internally chooses a at the beginning of
the execution. It is nonetheless sometimes convenient to omit these subindices
and to simply write A.

Theorem 2 (Non-Programming Irreducibility for SSS). Assume that the
1-one-more discrete logarithm assumption holds over G. There exists no non-
programming single-instance fully-black-box reduction that reduces the EUF-CMA
security of SSS over G to the discrete logarithm problem over G.

More precisely, assume there exists a non-programming single-instance fully-
black-box reduction R that converts any adversary A against the EUF-CMA secu-
rity of SSS working in group G into an adversary against the DL problem over G.

Assume further that the reduction has success probability SuccR
A

DL,G(κ) for given
A and runtime TimeR(κ). Then, there exists a family A of successful (but pos-
sibly inefficient) adversaries AR,a against the EUF-CMA security of SSS and a
meta-reduction M that breaks the 1-DL assumption over G with non-negligible

success probability SuccM1-DL,G(κ) ≥ (SuccR
AR,a

DL,G (κ))2 for a random AR,a ∈ A and
runtime TimeM(κ) = 2 · TimeR(κ) + poly(κ).

Note that the fact that A breaks SSS working over G implies that for any public
key pk output by R it holds that pk ∈ G.

Proof. (Sketch) Roughly, the meta-reduction M – depicted in Figure 1 – with
inputs z0, z1 works as follows: It invokes two instances R0 and R1 of the re-
duction in a black-box way, on inputs z0 and z1, respectively, and independent
random tapes. When the instances ofR invoke the forger with public key pk0 and
pk1 respectively, M simulates a specific (inefficient) forger. To do so, the meta-
reduction queries random messages to the sign oracles and obtains signatures on
them. It then queries the quotient of the two public keys, i.e., pk0pk

−1
1 , to the

R0 A0

z0
pk0

m0

(R0, c0, y0)

(R1, c1, y
′
1)

A1 R1

z1
pk1

m1

(R1, c1, y1)

(R0, c0, y
′
0)

y′0 = y0 − δ · c0 y′1 = y1 + δ · c1

π = pk0pk
−1
1

m0,m1
$← {0, 1}κ

m0 6= m1

MR

DLOM

π

δ
=

sk
0
−

sk
1

M

z0, z1

x0, x1

RO

x0 x1

Fig. 1. The meta-reduction uses two instances of R and simulates the adversary A by
obtaining the difference between the secret keys and adapting the signatures output
by R to the other key, respectively.

DLOM oracle, thus obtaining the difference between the secret keys. The differ-
ence between the secret keys can then be used to adapt the obtained signatures
to the other public key, respectively. These adapted signatures are then returned
to the reductions as forgeries. As we are working in the (non-programmable) ran-
dom oracle model, the instances of R expect to see all the random oracle queries,
the (simulated) adversary would issue. The meta-reduction M therefore makes
sure to issue exactly those queries. Then the meta-reduction mimics the behavior
of the adversary closely, and succeeds in solving the 1-one-more DL problem. ut

Remark 1. Note that the restriction to single-instance reductions is crucial at
this point. Consider a reduction that would output a second public key, either by
invoking another instance of A or by rewinding the adversary to a point before
it received the public key. The meta-reduction would then need to issue another
query to the DLOM oracle to simulate the signing oracle. Obviously, M would
then have made 2 queries to the DLOM oracle and could, thus, no longer win in
the 1-DL experiment.

Remark 2. It should be noted, that the meta-reduction employed in the proof of
Theorem 2 only works because SSS is defined relative to a single fixed random
oracle. If one uses a common variant of the Fiat-Shamir transform, in which the
random oracle is “personalized” by including the public key in the hash query,
c = H(pk, R,m), the meta-reduction no longer works. This is due to the fact
that in this case signatures can no longer be simply adapted to another public
key, using only the secret keys’ difference.

Remark 3. The idea immediately applies to other FS signature schemes with
unique keys, where there is a related one-more problem, such as the RSA-GQ
scheme [17].

4 Limitations of the Meta-Reduction Technique

Paillier and Vergnaud [20], as well as we here, have used meta-reductions to
provide evidence that, once we drop programmability, the security of Schnorr
signatures might not be equivalent to the discrete log problem after all. However,
it is interesting to note that in both cases the meta-reduction-based proofs rely
on the one-more discrete log assumption. As the discrete log assumption does
not seem to imply its one-more variants [8] the results are, thus, conditional
and not as strong as they could be. The obvious question is therefore: “Can we
do better?” Unfortunately, the answer turns out to be “Not without finding an
actual adversary.”

Our results actually holds for any randomized signature scheme S (where, as
explained in Section 2, the signing algorithm has super-logarithmic min entropy)
for which the signing algorithm’s hash queries in any signature generation can al-
ways be reconstructed from the signature alone, in the right order. We call them
randomized signature schemes with reconstructible hash queries, for a formal def-
inition refer to the full version. These schemes include Fiat-Shamir transformed
schemes such as Schnorr but also cover (randomized versions of) FDH-RSA sig-
natures. We show that finding a meta-reduction to a non-interactive problem
such as the discrete log problem is at least as hard as finding an adversary
against the strong existential unforgeability of S. For this, we first describe an
inefficient reduction R that is capable of detecting when the forgery it receives is
actually one of the signatures it produced itself as an answer to a signing query.
For example, a meta-reduction may make several signing requests to a reduction
and then reset these requests in order to use one additional message-signature
pairs as the forgery. Our reduction will be able to spot such attempts.

The meta-reduction result of the previous section does not apply here, even
though our reduction here will be of the single-instance type. The reason is that
the meta-reduction there assumed an (interactive) one-more DL problem –and
made use of the DL oracle– whereas the meta-reduction here should work for
non-interactive problems such as the discrete log problem.

4.1 An Inefficient Reduction for Randomized Signature Schemes
with Reconstructible Hash Queries

Let S be a randomized signature scheme and let ΠR be a monotone solvable
problem. Let Q be the set of message-signature pairs (mi, σi) resulting from
queries to R’s signing oracle. Furthermore, let p be the maximum number of
signature queries issued by a forgerA and assume thatR knows the polynomially
bounded p. We note that for the adversary in our single-instance reductions
in the previous section, the reduction could have been given p = 1, too. For

the moment, the reader may think of the meta-reduction as running a single
instance of the reduction; we will later reduce the multi-instance case to the
single-instance case via standard “guess-and-insert” techniques.

The reduction R on input an instance z of ΠR first generates a key pair
(sk, pk)← S.KGen(1κ), then initializes the counter variable i := 0, and chooses a
random function O : {0, 1}2κ × Zp → Coinspk. The public key pk is then output
as the key under which the forger is supposed to forge a signature. When the
forger queries a message m to the signing oracle, R determines random coins
ω ← O(m, i), computes the signature as σ ← S.Sign(sk,m;ω), and returns σ
to the forger. The counter i is then incremented by one. If the counter is ever
incremented to p+ 1, then R aborts, as it is obviously not interacting with the
real adversary.

Eventually, the forger outputs a forgery (m∗, σ∗). If the signature does not

verify, i.e., S.Vrfy(pk,m∗, σ∗)
?
= 0, then R immediately aborts. Otherwise, the

reduction computes σj ← S.Sign(sk,m∗;ωj) with ωj ← O(m∗, j) for all j ∈
Zp and checks whether σj

?
= σ∗. If the check holds for any σj , then R also

immediately aborts. Otherwise, R enumerates all possible solutions x ∈ ΠR.Sol

and checks whether ΠR.Vrfy(x, z)
?
= 1. Once such an x is found, it is output by

R as the solution. Because ΠR is monotone and solvable, it is guaranteed that
there exists a valid solution even though R never issues a single oracle query
and that the enumeration of possible solutions will terminate in finite time.

Observe that the adversary A used byR is an EUF-CMA adversary, therefore,
whenever A forges successfully, it forges a signature for a message m∗ that has
not been queried before. The probability that R will reject such a forgery is
the probability that at least one of the σi collides with σ∗. As O is a random
function, all values to which O evaluates on input m∗ and some number i are
uniformly and independently distributed. For each σi, the probability that it
matches σ∗ is thus bounded through the min-entropy of the random variable

describing S.Sign(sk,m∗), i.e., ∀i ∈ Zp : (Pr[σi
?
= σ∗] ≤ 2−H∞(S.Sign(sk,m∗))).

Therefore, the probability that R will accept a forgery is at least 1 − p ·
2−H∞(S.Sign(sk,m∗)). As S is randomized, the probability for each σi to match is
negligible and thus

SuccR
A

ΠR(κ) ≥ (1− p · ε(κ)) · SuccS,AEUF-CMA(κ) = SuccS,AEUF-CMA(κ)− ε′(κ)

for negligible functions ε, ε′. Therefore, we conclude that SuccR
A

Π (κ) is non-
negligible for any successful adversary A and that R is, thus, a successful –albeit
inefficient– reduction from problem ΠR to the EUF-CMA security of S.

We next show that the checks of our reduction prevent the meta-reduction
to replay signatures to the reduction. This step relies on the fact that the meta-
reduction can only use the reduction in a black-box way, MR, and has for
example no control over the coin tosses of R. First, we show that we can restrict
ourselves to meta-reductions which actually take advantage of the reduction, at
least if the meta-reduction’s problem ΠM is hard:

Lemma 1 (Meta-Reductions Rely on the Reduction). Let M be a non-
programming meta-reduction that converts any (EUF-CMAS ΠR) reduction in
a black-box way into an adversary against some hard problem ΠM. Further, let
the reduction used byM be R as described above. Then it holds thatM provides
R with a forgery (m∗, σ∗) with non-negligible advantage.

Proof. Assume that this was not the case. Then one could easily simulate R and
the meta-reduction interacting with this reduction would solve ΠM efficiently
with non-negligible advantage. This contradicts the hardness of the problem. ut

Hence, from now on we condition on the meta-reduction to always provide
the reduction with a forgery, without losing more than a negligible advantage.
In this case we have:

Lemma 2 (Meta-Reductions Cannot Replay Signatures). Let M be a
non-programming meta-reduction that converts any (EUF-CMAS ΠR) reduc-
tion in a black-box way into an adversary against some hard problem ΠM. Let Q
be the set of message-signature pairs (mi, σi) resulting from M’s queries to the
reduction’s signing oracle, and let (m∗, σ∗) be the message-signature pair output
by M as a forgery on behalf of the adversary. Further, let the reduction used by
M be R as described above. Then it holds that (m∗, σ∗) 6∈ Q.

Proof. The proof is rather straightforward. Observe that by construction of R
the following holds: ∀(m,σ) ∈ Q : ∃i ∈ Zp : ω ← O(m, i) ∧ σ ?

= S.Sign(m, i;ω).
Therefore, it follows directly that, for (m∗, σ∗) ∈ Q, the reduction R will abort

and SuccR
M

ΠR (κ) = 0 for M if it replays an element of Q as a forgery. Note that
here we rely on the previous Lemma which assumes that M always provides
such a forgery. As it, thus, would not be a successful meta-reduction it must
hold that (m∗, σ∗) 6∈ Q. ut

4.2 A Reduction against the Meta-Reduction

Using the reduction described in the previous section, we now prove that finding
an efficient meta-reduction for a randomized signature scheme is at least as hard
as finding a strong existential forger.

Theorem 3 (Meta-Reductions to Non-Interactive Problems Are Hard).
Let S be a randomized signature scheme with reconstructible hash queries, ΠR
be a monotone solvable problem, and ΠM be a non-interactive, efficiently gener-
atable problem. If ΠM is hard, then finding an efficient meta-reduction M that
converts any successful (EUF-CMAS ΠR)-reduction in a black-box way into
an efficient successful adversary against ΠM is at least as hard as finding an
sEUF-CMA adversary against S.

More precisely, assume there exists an efficient non-programming black-box
meta-reduction M that converts any (EUF-CMAS ΠR)-reduction into an ad-
versary against ΠM. Then, there exists a meta-meta-reduction N that converts
M into an adversary against the sEUF-CMA security of S with non-negligible

success probability SuccS,N
M

sEUF-CMA(κ) ≥ 1
r ·Succ

MR
ΠM (κ) and runtime TimeNM(κ) =

TimeMR(κ) + poly(κ), where R is the reduction described above and r is the
maximal number of reduction instances invoked by M.

Note that, since M needs to work for any (black-box) R, we may assume
that R knows r. Indeed, we take advantage of this fact in the proof.

x← ΠM.IGen(κ)

R

N

M

Sign(sk, ·)

x

x

pk

m

σ

m∗, σ∗

pk
NM

Fig. 2. The meta-meta-reduction relies on the fact that M cannot replay an old sig-
nature. It simply outputs the forgery provided by M. The meta-meta-reduction can
be generalized for multiple instances of R using a standard guess-and-insert approach.

The proof is omitted here, but can be found in the full version. The idea
is outlined in Figure 2. The meta-meta-reduction picks one of the r reduction
instances run byM at random and substitutes this instance with the help of its
external signature oracle. The reconstruction property guarantees that N can
still pretend towards M to have made the hash queries of externally provided
signatures locally. All other reduction instances are simulated by N itself. In
order to be successful,M needs to provide a forgery to some of the R-instances,
and with probability 1/r it will be the one which is “externalized” by N . In this
case, Lemma 2 ensures that the forgery is a strong forgery against the external
signature oracle.

Acknowledgments

We thank the anonymous reviewers for valuable comments. Marc Fischlin was
supported by a Heisenberg grant Fi 940/3-1 of the German Research Foun-
dation (DFG). Part of this work was also supported by the German Federal
Ministry of Education and Research (BMBF) within EC SPRIDE. Nils Fleis-
chhacker was supported by the German Federal Ministry of Education and Re-
search (BMBF) through funding for the Center for IT-Security, Privacy and
Accountability (CISPA – www.cispa-security.org).

References

1. Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From identification to
signatures via the Fiat-Shamir transform: Minimizing assumptions for security
and forward-security. In Knudsen, L.R., ed.: Advances in Cryptology – EURO-
CRYPT 2002. Volume 2332 of Lecture Notes in Computer Science., Amsterdam,
The Netherlands, Springer, Berlin, Germany (April 28 – May 2, 2002) 418–433

2. Abe, M., Groth, J., Ohkubo, M.: Separating short structure-preserving signatures
from non-interactive assumptions. In Lee, D.H., Wang, X., eds.: Advances in Cryp-
tology – ASIACRYPT 2011. Volume 7073 of Lecture Notes in Computer Science.,
Seoul, South Korea, Springer, Berlin, Germany (December 4–8, 2011) 628–646

3. Baecher, P., Brzuska, C., Fischlin, M.: Notions of black-box reductions, revisited.
IACR Cryptology ePrint Archive (2013)

4. Baldimtsi, F., Lysyanskaya, A.: On the security of one-witness blind signature
schemes. IACR Cryptology ePrint Archive (2012)

5. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-
inversion problems and the security of Chaum’s blind signature scheme. Journal
of Cryptology 16(3) (June 2003) 185–215

6. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In Ashby, V., ed.: ACM CCS 93: 1st Conference on Computer
and Communications Security, Fairfax, Virginia, USA, ACM Press (November 3–5,
1993) 62–73

7. Boneh, D., Venkatesan, R.: Breaking RSA may not be equivalent to factoring.
In Nyberg, K., ed.: Advances in Cryptology – EUROCRYPT’98. Volume 1403 of
Lecture Notes in Computer Science., Espoo, Finland, Springer, Berlin, Germany
(May 31 – June 4, 1998) 59–71

8. Bresson, E., Monnerat, J., Vergnaud, D.: Separation results on the “one-more”
computational problems. In Malkin, T., ed.: Topics in Cryptology – CT-RSA 2008.
Volume 4964 of Lecture Notes in Computer Science., San Francisco, CA, USA,
Springer, Berlin, Germany (April 7–11, 2008) 71–87

9. Coron, J.S.: Optimal security proofs for PSS and other signature schemes. In
Knudsen, L.R., ed.: Advances in Cryptology – EUROCRYPT 2002. Volume 2332
of Lecture Notes in Computer Science., Amsterdam, The Netherlands, Springer,
Berlin, Germany (April 28 – May 2, 2002) 272–287

10. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and
signature problems. In Odlyzko, A.M., ed.: Advances in Cryptology – CRYPTO’86.
Volume 263 of Lecture Notes in Computer Science., Santa Barbara, CA, USA,
Springer, Berlin, Germany (August 1987) 186–194

11. Fischlin, M.: Black-box reductions and separations in cryptography. In:
AFRICACRYPT. Volume 7374 of Lecture Notes in Computer Science., Springer
(2012) 413–422

12. Fischlin, M., Fischlin, R.: The representation problem based on factoring. In Pre-
neel, B., ed.: Topics in Cryptology – CT-RSA 2002. Volume 2271 of Lecture Notes
in Computer Science., San Jose, CA, USA, Springer, Berlin, Germany (Febru-
ary 18–22, 2002) 96–113

13. Fischlin, M., Lehmann, A., Ristenpart, T., Shrimpton, T., Stam, M., Tessaro, S.:
Random oracles with(out) programmability. In Abe, M., ed.: Advances in Cryp-
tology – ASIACRYPT 2010. Volume 6477 of Lecture Notes in Computer Science.,
Singapore, Springer, Berlin, Germany (December 5–9, 2010) 303–320

14. Fischlin, M., Schröder, D.: On the impossibility of three-move blind signature
schemes. In Gilbert, H., ed.: Advances in Cryptology – EUROCRYPT 2010. Vol-
ume 6110 of Lecture Notes in Computer Science., French Riviera, Springer, Berlin,
Germany (May 30 – June 3, 2010) 197–215

15. Garg, S., Bhaskar, R., Lokam, S.V.: Improved bounds on security reductions
for discrete log based signatures. In Wagner, D., ed.: Advances in Cryptology
– CRYPTO 2008. Volume 5157 of Lecture Notes in Computer Science., Santa
Barbara, CA, USA, Springer, Berlin, Germany (August 17–21, 2008) 93–107

16. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In Fortnow, L., Vadhan, S.P., eds.: 43rd Annual ACM Sympo-
sium on Theory of Computing, San Jose, California, USA, ACM Press (June 6–8,
2011) 99–108

17. Guillou, L.C., Quisquater, J.J.: A practical zero-knowledge protocol fitted to secu-
rity microprocessor minimizing both trasmission and memory. In Günther, C.G.,
ed.: Advances in Cryptology – EUROCRYPT’88. Volume 330 of Lecture Notes in
Computer Science., Davos, Switzerland, Springer, Berlin, Germany (May 25–27,
1988) 123–128

18. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
The non-committing encryption case. In Yung, M., ed.: Advances in Cryptology
– CRYPTO 2002. Volume 2442 of Lecture Notes in Computer Science., Santa
Barbara, CA, USA, Springer, Berlin, Germany (August 18–22, 2002) 111–126

19. Okamoto, T.: Provably secure and practical identification schemes and corre-
sponding signature schemes. In Brickell, E.F., ed.: Advances in Cryptology –
CRYPTO’92. Volume 740 of Lecture Notes in Computer Science., Santa Barbara,
CA, USA, Springer, Berlin, Germany (August 16–20, 1993) 31–53

20. Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equivalent
to discrete log. In Roy, B.K., ed.: Advances in Cryptology – ASIACRYPT 2005.
Volume 3788 of Lecture Notes in Computer Science., Chennai, India, Springer,
Berlin, Germany (December 4–8, 2005) 1–20

21. Pass, R.: Limits of provable security from standard assumptions. In Fortnow, L.,
Vadhan, S.P., eds.: 43rd Annual ACM Symposium on Theory of Computing, San
Jose, California, USA, ACM Press (June 6–8, 2011) 109–118

22. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In Maurer, U.M.,
ed.: Advances in Cryptology – EUROCRYPT’96. Volume 1070 of Lecture Notes
in Computer Science., Saragossa, Spain, Springer, Berlin, Germany (May 12–16,
1996) 387–398

23. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind
signatures. Journal of Cryptology 13(3) (2000) 361–396

24. Reingold, O., Trevisan, L., Vadhan, S.P.: Notions of reducibility between cryp-
tographic primitives. In Naor, M., ed.: TCC 2004: 1st Theory of Cryptography
Conference. Volume 2951 of Lecture Notes in Computer Science., Cambridge, MA,
USA, Springer, Berlin, Germany (February 19–21, 2004) 1–20

25. Schnorr, C.P.: Efficient identification and signatures for smart cards. In Brassard,
G., ed.: Advances in Cryptology – CRYPTO’89. Volume 435 of Lecture Notes in
Computer Science., Santa Barbara, CA, USA, Springer, Berlin, Germany (Au-
gust 20–24, 1990) 239–252

26. Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptology
4(3) (1991) 161–174

27. Seurin, Y.: On the exact security of schnorr-type signatures in the random oracle
model. In Pointcheval, D., Johansson, T., eds.: Advances in Cryptology – EURO-
CRYPT 2012. Volume 7237 of Lecture Notes in Computer Science., Cambridge,
UK, Springer, Berlin, Germany (April 15–19, 2012) 554–571

