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Abstract. Recently, a number of relations have been established among
previously known statistical attacks on block ciphers. Leander showed
in 2011 that statistical saturation distinguishers are on average equiva-
lent to multidimensional linear distinguishers. Further relations between
these two types of distinguishers and the integral and zero-correlation
distinguishers were established by Bogdanov et al. [6]. Knowledge about
such relations is useful for classification of statistical attacks in order to
determine those that give essentially complementary information about
the security of block ciphers. The purpose of the work presented in this
paper is to explore relations between differential and linear attacks. The
mathematical link between linear and differential attacks was discovered
by Chabaud and Vaudenay already in 1994, but it has never been used
in practice. We will show how to use it for computing accurate estimates
of truncated differential probabilities from accurate estimates of correla-
tions of linear approximations. We demonstrate this method in practice
and give the first instantiation of multiple differential cryptanalysis us-
ing the LLR statistical test on PRESENT. On a more theoretical side,
we establish equivalence between a multidimensional linear distinguisher
and a truncated differential distinguisher, and show that certain zero-
correlation linear distinguishers exist if and only if certain impossible
differentials exist.
Keywords: statistical cryptanalysis, block cipher, key-alternating block
cipher, multiple differential attack, truncated differential, multidimen-
sional linear attack, zero-correlation, impossible differential

1 Introduction

Block ciphers are used as building blocks for many symmetric cryptographic
primitives for encryption, authentication, pseudo-random number generation,
and hash functions. Security of these primitives is evaluated in regard to known
attacks against block ciphers. Among the different types of attacks, the statistical
ones exploit non-uniform behaviour of the data extracted from the cipher to
find information about the secret key. Linear cryptanalysis [25] and differential
cryptanalysis [4] are the most prominent statistical attacks against block ciphers.

Recently, a number of relations have been established among some previ-
ously known statistical attacks on block ciphers. Leander [23] observed that the



statistical saturation distinguishers [15] are on average equivalent to multidi-
mensional linear distinguishers [20]. Further relations between these two types
of distinguishers and the integral and zero-correlation distinguishers were estab-
lished by Bogdanov et al. [6]. The goal of the work presented in this paper is to
explore relations between linear and differential attacks. The strength of linear
distinguishers relies on exceptionally high correlation, or a complete lack of it,
while differential distinguishers are measured based on their probabilities. In the
latter case also impossible differentials can be meaningful. The mathematical link
between differential probability and linear correlation was presented by Chabaud
and Vaudenay already in 1994 [12], but has never been used in practice due to its
large computational complexity. In spite of this link, it is well known that resis-
tance against differential cryptanalysis does not imply resistance against linear
cryptanalysis. Also examples of the converse situation are known in the classical
setting of distinguishers based on single differentials and single linear approx-
imations [28]. In this paper, we will see that the situation changes when the
distinguishers involve multiple differentials and linear approximations. Indeed,
we will establish relations between multidimensional linear distinguishers and
truncated differential distinguishers, and show, in particular, that existence of
a zero-correlation relation is equivalent to existence of an impossible differential
property.

The second major goal of the current paper is to apply the Chabaud-Vaudenay
link in practice. The main motivation is due to the fact that, for some ciphers, it
may be easier to evaluate probabilities of differentials than correlations of linear
approximations, and for some other ciphers, the other way round. The block ci-
pher PRESENT [5] is known to have a clear structure of linear approximations
and their correlations have previously been evaluated accurately in [14] and [23].
On the other hand, the differentials over PRESENT split to numerous differen-
tial trails and their probabilities are hard to evaluate directly using traditional
methods such as branch-and-bound algorithms [26,7] or transition matrices [16].

As computation of the exact formula of the Chabaud-Vaudenay link between
differential probabilities and squared correlations is not feasible, we develop a
method based on theoretical arguments and assumptions to reduce the time
complexity of the computation. The validity of these assumptions is then tested
on a reduced-round version of PRESENT and PUFFIN [13].

Recently, an attack called multiple differential cryptanalysis (MDC) was pro-
posed as an “all-in-one” generalisation of differential cryptanalysis [2,9]. In these
papers, distributions of differences for small block ciphers were evaluated to pro-
vide attacks using LLR and χ2 scoring functions. This model, which improves and
generalises differential, truncated differential, and impossible differential crypt-
analysis methods remained, however, to be completed. To apply the LLR sta-
tistical test to actual block ciphers, cryptanalysts must be able to provide an
upstream evaluation of the differential probabilities [9]. Up to now, computation
of differential probabilities has been challenging for many ciphers. Given the
method described above, we compute accurate estimates of truncated differen-



tial probabilities and give the first practical instantiation of multiple differential
cryptanalysis using the LLR statistical test on PRESENT.

The rest of the paper is organised as follows. In Section 2, we first recall the
basic definitions, the link between differential probabilities and linear correla-
tions, and present the theoretical foundations for reducing the time complexity
of using the link in practice. We then establish two new links between linear and
differential cryptanalysis. The first one expresses the capacity of a multidimen-
sional linear approximation in terms of a truncated differential probability, and
the second one shows a relation between zero-correlation approximations and im-
possible differentials. In Section 3 we present the method for computing squared
correlations for key-alternating block ciphers. Section 4 is devoted to the MDC
method, the related LLR test, and its data complexity. In Section 5, parameters,
like time complexity of the computation and time complexity of the MDC are
described. In Section 6 we present the results from practical experiments and
conclude in Section 7.

2 Links Between Differential and Linear Cryptanalysis

2.1 Differential Probabilities and Correlations of Linear
Approximations

In differential cryptanalysis [4], the attacker is interested in finding and exploiting
non-uniformity in occurrences of plaintext and ciphertext differences. Given a
vectorial Boolean function F : Fn

2 → F
m
2 , a differential is a pair (δ,∆) where

δ ∈ F
n
2 and ∆ ∈ F

m
2 and its probability is defined as

P[δ
F
→ ∆] = PX [F (X) ⊕ F (X⊕ δ) = ∆] ,

where the probability is taken over the distribution ofX. Throughout this paper,
it will be assumed that X is uniformly distributed in F

n
2 in which case

P[δ
F
→ ∆] = 2−n#{x ∈ F

n
2 |F (x)⊕ F (x ⊕ δ) = ∆}.

Linear cryptanalysis [25] uses a linear relation between bits from plaintexts,
corresponding ciphertext and encryption key. Linear relations are expressed as
Boolean functions of the plaintext and the key. The strength of the linear relation
is measured by its correlation.

Let f : F
n
2 → F2 be a Boolean function. Its correlation is defined as its

correlation with the all-zero function as

corx(f) = 2−n
[

# {x ∈ F
n
2 |f(x) = 0} −# {x ∈ F

n
2 |f(x) 6= 0}

]

,

where the quantity within brackets can be computed as the Walsh transform of
f evaluated at zero, see e.g. [11].

Given a vectorial Boolean function F : Fn
2 → F

m
2 we are interested in Boolean

functions f(x) = a · x ⊕ b · F (x) defined by linear relations where a ∈ F
n
2 and



b ∈ F
m
2 are called linear input and output masks. Chabaud and Vaudenay showed

that differential probabilities and squared linear correlations are linked to each
other by the Walsh transform .

Theorem 1 ([12]). Let F : F
n
2 → F

m
2 be a vectorial Boolean function. The

probability of the differential (δ,∆) over F can be given as

P[δ
F
→ ∆] = 2−m

∑

a∈F
n
2

∑

b∈F
m
2

(−1)a·δ⊕b·∆cor2x (a · x⊕ b · F (x)) . (1)

This formula has not been used before to compute differential probabilities of
block cipher in practice. Indeed, the direct application of it would require com-
putation and summing up 2n+m squared correlations where n is the length of
the input and m is the length of the output in bits of the function F . Later
we will see that restricting attention to truncated differentials of a block cipher
would allow us to reduce the size of the output space. Still, the problem with the
large input space remains. Next, let us recall an important result of correlations
of restrictions of Boolean functions.

Theorem 2. Let F : Fs
2 × F

t
2 → F

m
2 be a vectorial Boolean function, and let

xt ∈ F
t
2 be uniformly distributed. Then

∑

xt∈F
t
2

cor2xs
(a · xs + b · F (xs, xt)) = 2t

∑

c∈F
t
2

cor2xs,xt
(a · xs + c · xt + b · F (xs, xt)) ,

for all a ∈ F
s
2 and all b ∈ F

m
2 .

This fact appeared in the context of Boolean functions as Lemma 4 of [24],
see also [11], and was named as Fundamental Theorem in [27]. It describes
the underlying principle for computing the average squared linear correlation,
see Theorem 4 below, as well as for demonstrating the existence of the link
between statistical saturation attack and the multidimensional attack [23]. We
will use it now to derive the first result for reducing computations of differential
probabilities according to Formula (1).

In our experiments, we observed that for SPN type block ciphers the number
of active Sboxes at the first round influences the probability of the differen-
tial. Large probabilities can be found only with small number of active S-boxes.
Hence, from the cryptanalyst’s point of view, it seems reasonable to select the
input difference δ to have a small Hamming weight. In such a situation we can
apply Theorem 2 and reduce the space over which the correlations are computed.

Lemma 1. Let Fn
2 = F

s
2×F

t
2 and δ ∈ F

n
2 be such that δ = (δs, δt) where δs ∈ F

s
2

and δt ∈ F
t
2. If δt = 0, then we have, for any fixed b ∈ F

m
2 ,

∑

a∈F
n
2

(−1)a·δcor2x (a · x⊕ b · F (x))

= 2−t
∑

xt∈F
t
2

∑

as∈F
s
2

(−1)as·δscor2xs
(as · xs ⊕ b · F (xs, xt)),

where x = (xs, xt) ∈ F
s
2 × F

t
2 and as ∈ F

s
2.



This formula involves restricting the input space artificially by fixing a part of
the input to xt ∈ F

t
2, and then taking the average over these fixations. Accord-

ing to our experiments this average can be accurately estimated in practice by
restricting xt to a small subset T of Ft

2. How to choose T depends on the spe-
cific structure of the cipher under consideration and will help to reduce the time
computation from 2n to 2s.

2.2 Links Between Multidimensional Linear Approximations and
Truncated Differentials

In this section, we present new links between multidimensional linear and trun-
cated differential attacks. A multidimensional linear relation (approximation)
of a vectorial Boolean function is a linear space formed by a number of linear
relations. Without loss of generality, we can assume that the input space and
output space is split into two subspaces so that F : Fs

2 × F
t
2 → F

q
2 × F

r
2. Let us

consider linear approximations of the form

(as, 0) · x⊕ (bq, 0) · F (x), as ∈ F
s
2, bq ∈ F

q
2,

and truncated differentials of the form

(δs, ∗)
F
→ (∆q, ∗), δs ∈ F

s
2, ∆q ∈ F

q
2,

and define the probability of such a truncated differential as

Pr((δs, ∗)
F
→ (∆q, ∗)) = 2−t

∑

δt∈F
t
2

∑

∆r∈F
r
2

Pr((δs, δt)
F
→ (∆q, ∆r)).

Then by summing up on both sides of Equation (1) over all δt ∈ F
t
2 and ∆r ∈ F

r
2,

we obtain the following link between truncated differentials and multidimen-
sional linear approximations.

Theorem 3. For all δs ∈ F
s
2 and ∆q ∈ F

q
2 it holds that

Pr((δs, ∗)
F
→ (∆q, ∗)) = 2−q

∑

as,bq

(−1)as·δs⊕bq·∆qcor2x((as, 0) · x⊕ (bq, 0) · F (x)).

As an application of this result, let us consider a function, which satisfies an
integral [17], for which some part of the output is uniformly distributed if some
part of the input is fixed to an arbitrary value. One example of such a func-
tion is a three-round Feistel network with a bijective round-function. Another
example is a function formed by three rounds backward or four rounds forward
of the AES encryption function [22,18]. As corollary of Theorem 3 we obtain
the equivalence between such an integral condition and a condition on certain
truncated differentials.

Corollary 1. Let F : Fs
2 × F

t
2 → F

q
2 × F

r
2. Then the following are equivalent:



(i) corxt
((bq, 0) · F (xs, xt)) = 0 for all xs ∈ F

s
2 and bq ∈ F

q
2 \ {0},

(ii) corx((as, 0) · x⊕ (bq, 0) · F (x)) = 0 for all as ∈ F
s
2 and bq ∈ F

q
2 \ {0},

(iii) Pr((δs, ∗)
F
→ (∆q, ∗)) = 2−q for all δs ∈ F

s
2 and ∆q ∈ F

q
2,

(iv) Pr((0, ∗)
F
→ (0, ∗)) = 2−q.

Proof. The equivalence of (i) and (ii) follows from Theorem 2. By Theorem 3, (ii)
implies (iii). The implication from (iii) to (iv) is trivial, and finally, (iv) implies
(ii) by Theorem 3.

The first condition means that the distribution of the first q bits of the output
is uniform when taken over a fixed component xs and variable component xt

in the input. Obviously, the conditions of Corollary 1 can hold only if t ≥ q.
In case t = q, we have the following equivalence between zero-correlation linear
approximations and impossible differentials.

Corollary 2. Let F : Fs
2 × F

t
2 → F

t
2 × F

r
2 be a vectorial Boolean function. Then

all non-trivial linear relations (as, 0) · x ⊕ (bq, 0) · F (x), as ∈ F
s
2, bq ∈ F

q
2 \ {0},

have correlation zero if and only if all non-trivial differentials (0, δq)
F
→ (0, ∆r),

δq ∈ F
q
2 \ {0}, ∆r ∈ F

r
2, are impossible.

3 Key-Alternating Block Cipher

3.1 Linear Correlations

Let EK : Fn
2 → F

n
2 be a key-alternating block cipher, parametrised by a master

key K, and comprising r′ applications of the round function Rk, parametrised
by the round key k. Let (k0, k1, k2, · · · , kr′) be the round keys derived from the
master key K. Without loss of generality, we assume that the key addition is
the last component of the round function, that is, Rki

(x) = R(x) ⊕ ki, for all
i = 1, . . . , r′. Then the block cipher EK is defined as follows

EK(x) = Rkr′
◦ · · ·Rk2

◦Rk1
(x⊕ k0).

In the context of last rounds attacks, let us denote by FK the first r rounds of
the cipher. Then

EK(x) = Rkr′
◦ · · · ◦Rkr+1

◦ FK(x⊕ k0).

By guessing (parts of) the keys kr+1, . . . , kr′ the ciphertext can be (partially)
decrypted over these rounds to achieve (partial) information about output data
of FK . Success of the attacks depends of many criteria. In the context of statis-
tical attack, an evaluation of a non-uniform behaviour of r rounds of the cipher,
allow the attacker to first build a distinguisher that will be used after to mount
the attack.

As shown by Daemen [16] the correlation of a linear approximation (a · x⊕
b · FK(x)) can be computed as a sum of key-dependent signed products of cor-
relations of linear approximations that are chained over consecutive rounds. A
chain of masks U = (u0, u1 · · · , ur) ∈ (Fn

2 )
r+1, where ui−1 and ui are the input



and output masks over R at round i, is called a linear trail. If k0, · · · , kr are the
round keys derived from a fixed master key K, then

corx (a · x⊕ b · FK(x))

=
∑

U ;u0=a;ur=b

(−1)u0·k0⊕···⊕ur·kr

r−1
∏

i=0

corx(ui · x⊕ ui+1 · R(x)). (2)

Success and data complexity estimates in differential cryptanalysis are based
on the average differential probabilities taken over all possible keys. We obtain a
formula for this quantity by application of (1) for F = FK , and then taking the
average of both sides over K. It remains to compute the averages of the squared
correlations. Next we recall the frequently used estimate of average squared cor-
relations. This general form is obtained directly from Formula (2) by squaring
both sides and taking the average over the round keys, or alternatively, by ap-
plication of Theorem 2 by setting y = K and F (x,K) = FK(x). By Ex(F (x))
we denote the average value of F taken over x.

Theorem 4. Using the notation given in this section and assuming that the
round keys k0, . . . , kr are independent and uniformly distributed, we have

Ek0,...,kr

[

cor2x(a · x⊕ b · FK(x))
]

=
∑

U ;u0=u;
ur=w

r−1
∏

i=0

cor2x(ui · x⊕ ui+1 ·R(x)). (3)

3.2 Algorithm for Computing Average Squared Correlations

Daemen’s formula (2) describes a way how to compute correlations round by
round using correlation matrices. Similarly, Formula (3) can be implemented as
a product of transition matrices corresponding to squared correlations of linear
approximations over one round of the cipher.

In practice, as all correlations of one round linear approximations cannot be
stored, a selection of the most significant linear approximations must be done,
and only the squared correlations of the selected trails should be stored in the
transition matrix. For instance, in the case of PRESENT, the single-bit linear
trails are dominant, and a sharp estimate of the expected squared correlations
of the cipher can be computed based only on these trails [14,23].

Let Ω be a N ×N matrix consisting of the squared correlations of the dom-
inant one round linear approximations. We denote

Ω[i, j] = Ek

[

cor2x(ui · x⊕ uj · Rk(x))
]

,

where wi, i = 1, . . . , N , are the selected masks and k is the round key. Then by

(3), if z rounds of the cipher with master key K is denoted by R
(z)
kz , we have

Ekz

[

cor2x(wi · x⊕ wj ·R
(z)
kz )

]

≈ Ωz [i, j],

where Ωz is the z-th power of the matrix Ω.



As only the masks corresponding to the most dominant approximations can
be reached using the transition matrix Ω, rounds at the beginning and at the end
should be added to complete the computation of the expected squared correlation
for other input and output masks.

4 Multiple Differential Cryptanalysis

In the context of linear cryptanalysis, generalisations using distribution vectors
and LLR and χ2 statistical tests were provided first by Baignères, Junod and
Vaudenay [3], and more recently, with applications to practical ciphers, by Her-
melin, Cho, Nyberg [19]. For differential cryptanalysis, such multidimensional
extensions appeared not until 2012 [2,9]. In [2], a framework for such attacks
was presented and tested for small block cipher. Cryptanalysis using multiple
differentials on real ciphers, however, requires selection of suitable subsets of
output differences, or grouping them in an appropriate way. In an attack model
called “unbalanced partitioning” [9], a subspace of output differences is taken
into consideration. In this model, the probability distributions involved ordi-
nary differential probabilities, while the “balanced partitioning” model involves
probability distributions of truncated differentials. The latter approach allows
considering information from the whole output space. Advantages and disadvan-
tages of both partitioning functions are discussed in [9]. In this article, we focus
on MDC using balanced partitioning and probability distributions of truncated
differentials, for the simple reason that those can be efficiently computed using
the method of squared correlations.

4.1 Truncated Differentials

Let FK : F
n
2 → F

n
2 be, as before, r rounds of the block cipher. We aim at

computing the probability distribution of truncated differentials, where the input
difference δ is fixed, and the output differences are truncated and vary over all
possible values. More concretely, let ∆ be an output difference in a vector space
V ⊂ F

n
2 . Let V̄ be a complementary subspace of V , that is V̄ ⊕ V = F

n
2 . Then

S∆ = ∆⊕ V̄ is a truncated output difference and ∪∆∈V S∆ = F
n
2 .

The probability of the truncated differential (δ, S∆) is defined
1

P
[

δ
F
→ S∆

]

=
∑

γ∈S∆

P
[

δ
F
→ γ

]

= P
[

δ
G
→ ∆

]

, (4)

where GK = π ◦ FK and π is a projection from F
n
2 to V .

In what follows in this paper, we assume that δ is fixed and ∆ takes all possible

values in V . We study the non-uniformity of the distribution vector p = [P(δ
G
→

v)]v∈V , and denote pv = P(δ
G
→ v), for v ∈ V . Then

pv =
1

|V |
·
∑

a∈F
n
2

∑

b∈V

(−1)a·δ⊕b·vEK

(

cor2x (a · x⊕ b ·GK(x))
)

. (5)

1 A more general definition is given in Formula (2)



Using the optimisations given in Lemma 1 and Section 3.2 we can efficiently
compute estimates of the expected values of the squared correlationsEK(cor2x(a·
x ⊕ b · GK(x)), for all a ∈ F

n
2 and b ∈ V . In all our experiments we compute

correlations over two rounds “by hand” without the transition matrix at the
beginning and at the end, to obtain the following formula

1

|T |

∑

xt∈T

N
∑

i,j=1

cor2xs
(as ·xs ⊕ wi ·R

2(xs, xt))Ω
r−4[i, j]cor2x(wj ·x⊕ b·π(R2(x)), (6)

where in the computation of the first correlation x = (xs, xt) ∈ F
s
2 × F

t
2 and

as ∈ F
s
2. Sometimes, depending of the cipher more that two rounds of correlations

can be used before going to selected correlations represented by the matrix Ω.

4.2 LLR Statistical Test and Data Complexity

We adopt the classical model of statistical cryptanalysis and assume that the
Wrong-Key Randomisation Hypothesis holds. It means that for a wrong key
guess the corresponding distribution is assumed to be uniform. We will denote
the uniform distribution vector by θ = [θv]v∈V where each θv = 1

|V | .

When evaluating the security of the cipher or the complexity of a statistical
distinguisher, accurate estimates of the differential probabilities are important.
In [9], the authors studied the complexities of MDC for the LLR and the χ2 dis-
tinguishers. When a good estimate of the expected probabilities is available, then
the LLR distinguisher provides better data and memory complexities than the
one based using χ2 statistics. Nevertheless, it is well known that a small devia-
tion in the estimation of the expected probability distribution will not allow the
construction of a distinguisher using the LLR test. We demonstrate the accuracy
of the estimates computed using Equation (6) by performing simulated attacks
using the LLR distinguisher and by comparing the theoretical and the observed
data complexity. Next we recall results from [3,9] concerning the complexity of
an attack using the LLR statistical test.

Definition 1. Let p = [pv]v∈V be the expected probability distribution vector, θ
the uniform one and qk the observed one for a key candidate k. For a given num-
ber of sample NS, the optimal statistical test consists in comparing the following
statistic to a fixed threshold.

LLR(qk, p, θ)
def
= NS

∑

v∈V

qv log

(

pv

θv

)

.

Definition 2. Let p and p′ be two probability distribution vectors over V . The
relative entropy (aka. Kullback-Leibler divergence) between p and p′ is

D (p||p′)
def
=

∑

v∈V

pv log

(

pv

p′v

)

.



We also define the following metrics

D2 (p||p
′)

def
=

∑

v∈V

pv log
2

(

pv

p′v

)

, and ∆D (p||p′)
def
= D2 (p||p

′)−D (p||p′)
2
.

Theorem 5. Let a be the advantage (see [31]) of an attack then the data com-
plexity required to reach success probability PS is

N = 2 ·

[

√

∆D (p||θ)Φ−1
0,1(PS) +

√

∆D (θ||p)Φ−1
0,1 (1− 2−a)

]2

[D (p||θ) +D (θ||p)]
2 , (7)

where Φ0,1 is the cumulative function of the standard normal distribution.

5 Practical Applications

Computation of the truncated differential probabilities using (6) depends on
the ciphers. To compose the transition matrix, cryptanalyst must identify the
important linear trails of the cipher. We consider this problem for two SPN block
ciphers PRESENT[5] and PUFFIN[13].

5.1 Description of the Ciphers

The block cipher PRESENT is designed as a lightweight primitive which operates
on 64-bit blocks of data. Ciphertexts are obtained after 31 iterations of the round
function. The 16 Sboxes of PRESENT are all identical and are defined as a 4-bit
non-linear permutation. PRESENT is parametrised by a 80-bit or a 128-bit key.
More details on the specification can be found in [5].

The lightweight block cipher PUFFIN was introduced in [13]. It is defined as
a 64-bit SPN block cipher parametrised with a 128-bit key. The round function
as described in [13] is applied 32 times2. The structure of this cipher is similar
to the one of PRESENT. By choosing involution components, the designers aim
at efficient implementation in hardware.
Even if PUFFIN might not be of general interest, we selected it as a reference
cipher for our experiments on PRESENT. As the Sboxes and the linear diffusion
of these ciphers are essentially different, the linear and differential attacks have
different impact on these ciphers. For PRESENT, linear cryptanalysis is more
powerful (26 rounds [14]) than differential cryptanalysis (18 rounds [8,34]). For
PUFFIN, the best linear and differential types of attacks are about equally strong
[10,23]. The observed differences are largely due to the fact that PRESENT has
the particularity of having strong single-bit linear relations over the S-box. The
Sbox of PUFFIN is built in such a way that differences of Hamming weight
one have high probabilities but the single-bit linear relations are not among the
strongest. In our experiments, the transition matrix for PRESENT is composed

2 Later, the same authors propose a new version of this cipher called PUFFIN2 [32].



of correlations for single-bit masks, while for PUFFIN we use a matrix consisting
of all single-bit and two-bit linear approximations of the Sbox. By this choice
we also aim at showing that the estimation method (6) works also in case when
the single-bit linear trails are not dominant.

5.2 Parameters in Practice

In the context of differential cryptanalysis the attacker builds a distinguisher
over all but a small number of the last rounds of the cipher and wants to recover
information on the subkeys used at these last rounds. As partial decryption
(inversion of some Sboxes) over the last rounds is time consuming, the ratio
between the number of guessed keys and the number of Sbox inversions is often
maximised. With this aim in mind, it is reasonable to choose a projected output
space V which corresponds to a group of active Sboxes in the following round.
Since PRESENT and PUFFIN use 4-bit Sboxes, we conduct experiments with
|V | = 24, 28, 212, 216.

The MDC attack described in Section 4 takes into consideration all cipher-
texts in the computation of the observed probability distributions. Contrary
to classical differential cryptanalysis, there is no sieving, which means that the
time complexity of the attack is always larger than the data complexity [9]. For
instance, for an SPN cipher, where only part of the last round key is guessed
during the attack, the time complexity is of the order of |V | ×N , where |V | is
the size of the projected output difference space and N the data complexity as
derived in Theorem 5. As stated in [9], the memory complexity of multiple dif-
ferential attacks using the LLR statistical test is dominated by the storage of the
expected distribution p and the storage of an array of counters for recording the
observed frequencies. When only the last round subkey is guessed, the memory
complexity is then the storage of 2× |V | counters.

5.3 Time Complexity of Computation of Differential Probability

In practice, difficulty of the computation of the truncated differential proba-
bilities using square correlations depends of the structure of the cipher and
of the number of square correlations to compute. Formula (6) shows that for
a fixed truncated differential, this computation can be decomposed into three
steps consisting of computing the correlations over the first rounds, the inter-
mediate rounds and the last rounds. In the case of PRESENT and PUFFIN an
efficient computation of r-round squared correlation can be done using transi-
tional matrices on r− 4 rounds and by adding two rounds at the beginning and
the end. For other ciphers than PRESENT, larger transition matrices should be
taken into consideration. In the case of PUFFIN, computation of the powers of
this matrix remain easy and fast using the two-bit linear trails. Using Lemma 1,
computation for the first two rounds is done by computing the squared corre-
lation over xs ∈ F

s
2 for a certain small number of restrictions specified by a set

T of randomly selected xt. Experiments show that the distribution of output
differences is less uniform if the fixed input difference δ is selected such that



only one Sbox is active. Hence we can choose xs ∈ F
4
2. Computation over T = 28

random xt has been seen to be enough for the ciphers studied in this paper. For
the last two rounds, an average over 220 random x, gives also a good estimate
of the squared correlations corx(wj · x⊕ b · π(R2(x)).

If we store values used many times, the time complexity of the computation
of a truncated differential is dominated by the computation of the squared cor-
relations over the first and and last rounds. It corresponds to a small number of
encryptions. Using squared correlations and the transition matrix, computation
of the expected differential probabilities can then be considered as independent of
the number of rounds. In comparison, the complexity of the branch-and-bound
algorithm is exponential in the number of rounds[8]. Hence, the computation
of the truncated probabilities depends only on the size of V . For V = 24 this
computation takes less than one minute on a standard computer.

In Section 4, we motivated why to use truncated differential probabilities in
MDC. Truncated differential probabilities should be computed for all v ∈ V . As
Formula (5) can be decomposed as

pv =
1

|V |

∑

b∈V

(−1)b·v ·
∑

a∈F
n
2

(−1)a·δEK

(

cor2x (a · x⊕ b ·GK(x))
)

,

computation can be done efficiently by storing first the estimates of the sum
over the input mask a computed using Lemma 1, for all b ∈ V . Then all pv,
v ∈ V , can be computed simultaneously using Fast Fourier Transform with time
complexity |V | log |V |.

6 Experiments and Attacks

6.1 Experiments

In this section we describe the experiments done with PRESENT and PUFFIN.
We build an LLR distinguisher using the computed estimates of theoretical prob-
ability distributions over r rounds to attack r+1 rounds of the cipher. These ex-
periments have been conducted in the following order: computation of the square
correlation using transitional matrices, simulation of 100 multiple differential at-
tacks using the LLR statistical test, and comparison between experimental data
complexity and the theoretical one given by Theorem 5.

We conducted experiments on the ciphers PRESENT and PUFFIN with
different numbers of rounds, different input differences, and different projected
output spaces V of different sizes. Figure 1 illustrates the accuracy of the theo-
retical estimates in the case of the PRESENT cipher, for different sizes of V and
different numbers of rounds. In this figure, we compare the differences in data
complexity between the theoretical formula of Theorem 5 and the data require-
ments obtained using a mean over 100 simulated attacks. For the experiments
presented in this figure, we selected δ = 0xf00000. The advantage a is equal to 4
for |V | ≥ 28, and equal to 2 for |V | = 24. The numbering of Sboxes corresponds
to the one given in the specification [5]. Results of experiments on PUFFIN are
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Fig. 1. Data complexity of attacks on 9, 10, 11 rounds of PRESENT

given in Appendix A. The obtained results from our simulations of MDC at-
tacks are two-fold. First, it is well known that the LLR statistical test is efficient
only if the analyst can provide a good estimate of the theoretical distribution.
As the results of these experiments presented in Figure 1, 2 are tight, we can
conclude that we were able to provide sufficiently accurate estimates of the dif-
ferential probabilities using Formula (6). Secondly, we show for the first time an
instantiation of an MDC attack on a full block size version of a state-of-the-art
cipher.

6.2 Attacks on PRESENT

In the case of PRESENT with 80-bit key, the time complexity is bounded from
above by 280. If the attack needs the full codebook then the size of the probability
distribution must be less than 216. Different parameters are possible for the at-
tack. As example, we propose an attack over 18 rounds using MDC distinguisher
over 17 rounds. Parameters of this attack, with input difference δ = 0xf00000

and projected output difference space concentrated on Sboxes S5, S9 and S13,
correspond to the ones used in attacks on a reduced-round version of the cipher
(cf. Figure 1 with |V | = 212). Using the full codebook, this attack recovers 6-
bits of the key with a success probability of 85% and has a time complexity of
276 on which we add the exhaustive search of the 274 remaining keys. Memory



complexity of this attack, is defined by the storage of the expected distribution
vector and the storage of the counter array, and is equal to 213 counters.
For the 128-bit key, partial inversion of the last two rounds is possible. Therefore
using the same distinguisher over 17 rounds, we can propose an attack on 19
rounds. The choices of parameters for this attack are resumed in Table 1. We

Table 1. Parameters of attacks on PRESENT

#rounds Key Length Data Comp. Adv. Success Prob. Time Memory

18 80 264 6 bits 85% 276 + 274 213

18 80 262 2 bits 85% 274 + 278 213

19 128 264 6 bits 85% 2124 + 2122 260

19 128 262 2 bits 85% 2122 + 2126 260

conclude that the MDC distinguisher using truncated differentials described in
this paper is the best distinguisher on PRESENT in the context of differential
cryptanalysis. On the other hand, the key recovery attacks presented in this
paper do not significantly improve over the previous differential attack on this
cipher (18 rounds for both the 80-bit key and the 128-bit key). Best attacks on
PRESENT are summarised in Table 2. We present a comparison between the
attacks in this paper and the ones in [8,34] which are based on simple differen-
tials. Output differences of these simple differential focus on a small number of
Sboxes. In this case, a sieving process can be applied, for both key schedules,
and therefore one can invert two rounds of the cipher. Thus, using a 16-round
distinguisher, 18 rounds can be attacked. In this paper, distribution of output
differences over the the whole output space is taken into consideration. As no
sieve is applied before guessing the key, the time complexity is larger and per-
mits to invert only one round, for the 80-bit key. This explains why using the
17-round distinguisher, we are able to attack only 18 rounds of PRESENT-80
and 19 rounds for PRESENT-128.
Overall, the multiple differential attack presented in this paper corresponds quite
well to the known differential properties of the PRESENT cipher. On the other
hand, our simulations show that for PUFFIN truncated differentials do not pro-
vide better attacks than simple differential distribution.

7 Conclusion

Relations and dependencies between statistical attacks are of great importance
when analysing the security of primitives based on block ciphers. In this paper,
we extracted new relations between multiple differential and multidimensional
linear distinguishers, and subsequently, between zero-correlation and impossible
differential distinguishers. We used, for the first time, the relation between corre-
lation of linear approximation and differential probability in practice to compute
estimates of truncated differential probabilities of state-of-the-art ciphers from
squared correlations of a selected set of linear approximations. We also derived
a method to reduce the number of correlations needed to be computed, and in



this manner, succeeded to speed up the computation of these correlations to
make the computation possible on a standard computer. Time complexity of
this method is immune to the number of rounds, while for branch-and-bound
algorithm it increases exponentially with the number of rounds.

The method developed in this paper was tested experimentally on the block
ciphers PRESENT and PUFFIN and was further developed to a multiple dif-
ferential attack on PRESENT which improves the best known attack in the
differential context.

An interesting topic left for further research is to instantiate Theorem 3 on
some ciphers and investigate it more closely. In this theorem, the truncated dif-
ferentials and the multidimensional linear approximations occupy disjoint parts
of the cipher, while in the method described in this paper the truncated differ-
entials are located in the areas covered by known strong linear approximations.
Therefore it may lead to essentially different results.

Table 2. Summary of the attacks on PRESENT.

#rounds version type of attack data time memory reference

16 80 Differential 264.0 264.0 232.0 [33]

18 80 Multiple Differential 264.0 264.0 232.0 [8]
18 80 Multiple Differential 264.0 264.0 232.0 [34]
18 80 Multiple Differential (LLR) 262 278 213 This paper
19 128 Algebraic Differential 262.0 2113.0 n/r [1]
19 128 Multiple Differential (LLR) 262 2126 260 This paper
24 80 Linear 263.5 240.0 240.0 [30]
24 80 Statistical Saturation 257.0 257.0 232.0 [15]
25 128 Linear 264.0 296.7 240.0 [29]
26 80 Multiple Linear 264.0 272.0 232.0 [14]
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A Appendices

Figure 2 presents results of some experiments on a reduced-round version of
PUFFIN. Distribution over r rounds was computed using Formula (6) to simulate
multiple differential attack on r + 1 rounds. Different experiments have been
conducted. In this figure we illustrate the results for the input difference δ = 0x2

and output projected space V concentrated on S3 and S5 (for |V | = 28) and
S3, S5, S9 (for |V | = 212).
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Fig. 2. Data complexity of attacks on 12, 13, 14 rounds of PUFFIN
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