
Streaming Authenticated Data Structures

Charalampos Papamanthou1, Elaine Shi2, Roberto Tamassia3, and Ke Yi4

1 UC Berkeley, cpap@cs.berkeley.edu
2 University of Maryland, elaine@cs.umd.edu

3 Brown University, rt@cs.brown.edu
4 The Hong Kong University of Science and Technology, yike@cse.ust.hk

Abstract. We consider the problem of streaming verifiable computation, where
both a verifier and a prover observe a stream of n elements x1, x2, . . . , xn and
the verifier can later delegate some computation over the stream to the prover.
The prover must return the output of the computation, along with a cryptographic
proof to be used for verifying the correctness of the output. Due to the nature
of the streaming setting, the verifier can only keep small local state (e.g., loga-
rithmic) which must be updatable in a streaming manner and with no interaction
with the prover. Such constraints make the problem particularly challenging and
rule out applying existing verifiable computation schemes.
We propose streaming authenticated data structures, a model that enables ef-
ficient verification of data structure queries on a stream. Compared to previ-
ous work, we achieve an exponential improvement in the prover’s running time:
While previous solutions have linear prover complexity (in the size of the stream),
even for queries executing in sublinear time (e.g., set membership), we propose a
scheme withO(logM logn) prover complexity, where n is the size of the stream
and M is the size of the universe of elements. Our schemes support a series of
expressive queries, such as (non-)membership, successor, range search and fre-
quency queries, over an ordered universe and even in higher dimensions. The
central idea of our construction is a new authentication tree, called generalized
hash tree. We instantiate our generalized hash tree with a hash function based
on lattices assumptions, showing that it enjoys suitable algebraic properties that
traditional Merkle trees lack. We exploit such properties to achieve our results.

1 Introduction
With the growing market of cloud computing, it is crucial to construct protocols that en-
able the verification of computation performed by untrusted servers. For example, when
searching over our remotely stored Gmail inbox, it would be desirable if the search re-
sults could be accompanied by a cryptographic proof vouching for their correctness,
e.g., that no email was omitted (either deliberately or not) from the answer.

We consider verifiable computation in a streaming setting, where the dataset out-
sourced is rapidly evolving (e.g., stock quotes, network flows, sensor streams), and the
verifier can only store a small state as the stream goes by (which should be efficiently
updatable). Many prior verifiable computation schemes are unsuitable in the streaming
setting: Some schemes require that the verifier (client) has access to all the data ahead
of time, and performs some preprocessing (e.g., [17,40]) before outsourcing it to the
prover (server). Other existing schemes allow a client to update the dataset through an
interactive protocol between the client and the server (e.g., [35]). Particularly, since the

2

client does not have sufficient local storage to store all the data, the client needs the
server’s help to update its local state. Unfortunately, requiring an interactive protocol
for every update may be too expensive in a streaming setting. For example, consider a
network traffic accounting application [14], where an ISP charges a customer based on
the type and duration of its network flows. To enforce that the ISP is performing the ac-
counting correctly, the ISP logs a customer’s network flows such that the customer can
later make queries to the logs to perform auditing (typically the customer does not have
sufficient local storage to log all the flows). In such high link-speed settings, performing
an interactive protocol with every packet or flow sent is very expensive.
Our contributions. We introduce streaming authenticated data structures, and de-
sign expressive and efficient schemes that do not require any interaction between the
client and server while the stream is observed. In our scenario, streaming elements
x1, x2, . . . , xn are inserted into a data structure that is stored by the prover and the
verifier stores and updates small local state of size O(log n). At any point of time, the
verifier can send a data structure query to the prover, e.g., “return the predecessor of
y” or “return the elements in the range [a, b]”. Subsequently the prover can compute an
answer and a proof in time O(logM log n), where n is the size of the stream and M is
the size of the ordered universe from where the elements are drawn. Our protocols are
based on the difficulty of solving the small integer solution problem [30], and are the
first ones to achieve the following properties simultaneously:
1. Independence of prover and verifier. While elements x1, x2, . . . , xn are stream-

ing, the verifier and the prover update their states independently and with no inter-
action (there is not even unidirectional communication5). The only eligible inter-
action occurs in the querying phase (which is inherent anyways). Such interaction
consists only of one round as opposed to existing schemes in the statistical setting
that can have up to a logarithmic number of interactions (e.g., [11,12]).

2. Efficiency. The running times of the verifier and the prover (for both updates and
queries) as well as the proof size are all logarithmic in n andM , where n is the size
of the stream and M is the size of the elements universe. In comparison, existing
schemes in this setting (e.g., [10,11,12]) incur a linear proof generation overhead
on the server, even for sublinear computations (see Section 1.1). We thus achieve an
exponential improvement for many common queries in the prover’s running time.

3. Expressiveness. Our construction supports a wide range of queries over an ordered
universe, such as (non-)membership, successor, range search and frequencies. Our
results can also be extended for d-dimensional elements, by applying well-known
techniques from authenticated data structures [27]. To the best of our knowledge,
our construction is the first streaming verifiable protocol to support such an exten-
sive suite of queries with logarithmic prover and verifier complexity.

1.1 Related work
The research community has introduced streaming verifiable computation, both in the
statistical [11,12] and the cryptographic setting [10,42], where a verifier and a prover
observe a stream of n elements x1, x2, . . . , xn and the verifier can delegate some com-
putation over the stream to the prover. The protocols in [11,12] are probabilistic and

5 Such a property is not achieved in the recent work of Schröder and Schröder [42].

3

use multiple interactions for verification, which reveal the secret randomness. Thus
they support one-shot computation tasks, whereas we allow any number of queries.

Although most of the existing streaming verifiable protocols [10,11,12] are particu-
larly efficient in terms of verifier complexity (e.g., (poly-)logarithmic in the size of the
stream), the main shortcoming of all previous work (except for the work of Schröder and
Schröder [42], see next paragraph) is the fact that the prover complexity is linear in the
size of the stream, even for sublinear (logarithmic) computations, e.g., membership and
range search queries on a stream of elements drawn from an ordered universe.6 This sig-
nificantly limits the applicability of these protocols since such an overhead introduces a
large amount of latency, making them impractical for real-world deployment. Indeed, as
Cormode et al. [12] point out in their experimental results,“the chief bottleneck of these
protocols seems to beP’s time to make the proof”. In this paper, we address the prover’s
complexity bottleneck for queries of practical importance (e.g., range search) and we
design constructions supporting logarithmic prover and verifier complexity. Apart from
a major theoretical improvement, we believe our protocols comprise a significant step
towards practical verifiable streaming protocols.

The only efficient verifiable streaming protocol (with logarithmic prover complex-
ity) was recently introduced by Schröder and Schröder [42]. Their construction can be
applied only to sequential streams and hence it does not support data structures like
dictionaries, where the relative order is decided depending on the element that is be-
ing streamed. Therefore it cannot be used to verify range queries efficiently. Moreover,
there is unidirectional communication from the verifier to the prover per stream update.

Practical streaming verifiable computation has been also studied by the database
community, with often increased worst-case complexities. Li et al. [25] considered
verifying queries on a data stream with sliding windows, hence the verifier’s space
is proportional to the window size. The protocol of Papadopoulos et al. [33] verifies
continuous queries over a stream, again requiring linear verifier space in the worst case.

Other related works such as verifiable computation [2,5,15,16,17,18,34,40] and au-
thenticated data structures [13,20,21,31,35,36,37,38] are not directly applicable to the
streaming setting or their application yields high complexities or interactive protocols.

Why common solutions fail. Traditional Merkle trees [28] (using collision resistant
hash functions like SHA-2) can be used to provide very efficient proofs for membership
and range search queries in logarithmic time. However, since the client cannot keep
linear amount of local state, in order to update the digest when a new item is streamed,
the client needs to interact with the server, where the server returns and proves the
correctness of the path of the Merkle tree that is “touched” by the update (e.g., see [35]).

To avoid interaction with the prover, one could use accumulator-based solutions
(e.g., [9]). Indeed, accumulators have the attractive property that a set of elements can
be represented with a small digest that can be updated in a very straightforward way,
e.g., by performing an exponentiation and with no interaction. However, this property
comes at some significant cost, since proofs of membership can be computed in linear
time (or time O(nε), e.g., see [36]) which translates into increased prover complexity.

Our work combines the merits of the above paradigms, enabling flexible updates
with no interaction and at the same time achieving logarithmic prover complexity.

6 For linear-time computations, linear complexity at the prover is acceptable, e.g., see [11].

4

1.2 Our techniques
The core idea of our scheme is a new primitive called generalized hash tree, which
is a generalization of traditional Merkle trees [28]. Generalized hash trees can be in-
stantiated with various collision resistant hash functions. In our construction we choose
the hash function hn(x, y) = Lx + Ry mod q (originally introduced in [1]), where
L,R are picked at random from Zk×mq and x, y are m-dimensional vectors with entries
bounded by n < q. As in Merkle trees, we hierarchically apply this hash function over a
binary tree—however this creates a problem, since the output of the above hash function
is a vector of different dimensions and larger entries than its inputs. To overcome this
problem, we devise a way to map the outputs back to the input domain. Although many
mappings could be used, we choose one that maintains the function’s homomorphic
properties (Figure 4.2), allowing us to express the label of the root (i.e., the roothash) as
the sum of well-defined functions of the leaves called partial labels (see Definition 16).

For example if the stream contains elements {3, 4, 6, 7}, we can simply express the
label of the root of our hash tree as L(3) + L(4) + L(6) + L(7), where L(x) is the
partial label that depends only on x and on the public matrices L and R, and which
can be computed in logarithmic time. Clearly, such representation allows for efficient
streaming updates of the verifier’s state (label of the root), just like accumulators con-
structions [9]. More importantly (and unlike accumulators constructions), a proof for
any element can still be computed in logarithmic time, by having the prover maintain
an appropriate Merkle-tree-like authenticated data structure.

2 Definitions
We now present definitions for streaming authenticated data structures (SADS7). Our
definitions are similar to the ones given by Chung et al. [10] for streaming delegation,
adjusted to the data structures setting. We denote with k the security parameter and with
n = poly(k) an upper bound on the size of the stream.8 PPT stands for probabilistic
polynomial-time and neg(k) is a negligible function, i.e., a function less than 1/p(k),
for all polynomials p(k). Finally we define [n] = {0, 1, . . . , n}.

Definition 1 (SADS scheme). Let D be any data structure that supports queries q
and updates upd. An SADS (streaming authenticated data structure) scheme A is a
collection of the following six PPT algorithms:
1. pk← genkey(1k, n): On input the security parameter k and an upper bound n on

the size of the stream, it outputs a public key pk;
2. {auth(D0), d0} ← initialize(D0, pk): On input an empty data structure D0 and

the public key pk, it computes the authenticated data structure auth(D0) and the
respective state d0 of it;

3. dh+1 ← updateVerifier(upd, dh, pk): On input an update upd to data structure
Dh, the current state dh and the public key pk, it outputs the updated state dh+1

(run by verifier);
4. {Dh+1, auth(Dh+1)} ← updateProver(upd, Dh, auth(Dh), pk): On input an up-

date upd to data structure Dh, the authenticated data structure auth(Dh) and the
7 This acronym has also been used by Pappas et al. [39] to denote a private search system.
8 Otherwise (i.e., if n is not poly(k)) the server might need exponential space.

5

public key pk, it outputs the updated data structure Dh+1 along with the updated
authenticated data structure auth(Dh+1) (run by prover);

5. {α(q), Π(q)} ← query(q,Dh, auth(Dh), pk): On input a query q on data struc-
tureDh, the authenticated data structure auth(Dh) and the public key pk, it returns
the answer α(q) to the query, along with a proof Π(q) (run by prover);

6. {1, 0} ← verify(q, α(q), Π(q), dh, pk): On input a query q, an answer α(q), a
proof Π(q) for query q, a digest dh and the public key pk, it outputs either 1 (ac-
cepts) or 0 (rejects) (run by verifier);

As part of the data structure specification (and not of the above definition), we also
define the algorithm {0, 1} ← check(q, α,Dh) such that it outputs 1 if and only if α is
the correct answer to query q on data structure Dh (otherwise it outputs 0).

Note that there is no secret key in our definition, supporting in this way a stronger
definition with public verifiability, as opposed to other verifiable streaming construc-
tions that appear in the literature [10,42], where the verifier’s state needs to be secret.

There are two properties that an SADS scheme should satisfy, namely correctness
and security (as in signature schemes definitions).

Definition 2 (Correctness). Let A be an SADS scheme consisting of the set of algo-
rithms {genkey, initialize, updateVerifier, updateProver, query, verify}. We say that the
SADS scheme A is correct if, for all k ∈ N, for all pk output by algorithm genkey, for
all Dh, auth(Dh), dh output by one invocation of initialize followed by polynomially-
many invocations of updateVerifier and updateProver, where h ≥ 0, for all queries
q and for all Π(q), α(q) output by query(q,Dh, auth(Dh), pk), with all but negligible
probability neg(k), it holds that 1← verify(q,Π(q), α(q), dh, pk).

Definition 3 (Security). Let A be an SADS scheme consisting of the set of algorithms
{genkey, initialize, updateVerifier, updateProver, query, verify}, k be the security pa-
rameter, D0 be the empty data structure and pk← genkey(1k). Let also Adv be a PPT
adversary and let d0 be the state output by initialize(D0, pk).

– (Update) For i = 0, . . . , h− 1 = poly(k), Adv picks the update updi to data struc-
ture Di. Let di+1 ← updateVerifier(updi, di, pk) be the new state corresponding
to the updated data structure Di+1.

– (Forge) Adv outputs a query q, an answer α and a proof Π .
We say that the SADS schemeA is secure if for all k ∈ N, for all pk output by algorithm
genkey, and for any PPT adversary Adv it holds that

Pr

[
{q,Π, α} ← Adv(1k, pk); 1← verify(q, α,Π, dh, pk);

0← check(q, α,Dh).

]
≤ neg(k) . (2.1)

3 Small integer solution problem
The security of our constructions is based on the hardness of the small integer solution
problem, as given in the following definition:

Definition 4 (Problem SISq,µ,β). Given an integer q, a matrix M ∈ Zk×µq picked uni-
formly at random (where µ ≥ k) and a real β, find an integer vector z ∈ Zµ\{0} such
that Mz = 0 mod q and ‖z‖ ≤ β.

6

For certain parameters, Micciancio and Peikert [29] proved that SIVPγ (shortest
independent vector problem [41]), a hard problem in lattices, reduces to SISq,µ,β for
γ = poly(k). In the following we state an immediate corollary of Theorem 1.1 in [29]:

Corollary 1 (Reducing SIVPγ to SISq,µ,β [29]). Let SISq,µ,β be an instance of the
small integer solution problem. Let also β, µ, q be poly(k), where q is a prime such that
q ≥ β · kδ for some δ > 0. SISq,µ,β is as hard as approximating the problem SIVPγ in
the worst case to within certain γ = β

kδ
·O(β

√
k · poly(log k)).

For exponential values of γ, i.e., γ = 2O(k), one can use the LLL algorithm [24]
and solve the SIVPγ problem in polynomial time. However, for polynomial γ, no effi-
cient algorithm is known to date, even for factors slightly smaller than exponential [41].
Therefore, for the parameters of Corollary 1, SISq,µ,β is also hard, leading to the fol-
lowing assumption:

Assumption 1 (Hardness of SISq,µ,β) Let k be the security parameter and SISq,µ,β be
an instance of the small integer solution problem. Let also β, µ, q be poly(k), where q
is a prime such that q ≥ β · kδ for some δ > 0. There is no PPT algorithm for solving
SISq,µ,β , except with negligible probability neg(k).

3.1 Setting the parameters q, µ and β
For the application we are considering in this paper, we are using an instance of the
problem SISq,µ,β where β (i.e., the norm of the solution vector) takes polynomially-
large values depending on a polynomially-bounded application parameter n (n will be
the size of the stream). Specifically we are going to use the parameters q, µ, β as set by
the algorithm parameters(1k, n) in Figure 3.1.

We note here that the parameters in Figure 3.1 comply with Corollary 1: First, as
n = poly(k), all q, µ, β are poly(k). Second, q/

√
dlog qe ≥

√
2 · n · k0.5+δ ⇔ q ≥

β · kδ , since β = n
√
µ and µ = 2kdlog qe. Also note that there is always a prime

q = Θ(n · k0.5+δ ·
√
log k) satisfying the inequality above, for some δ > 0.

3.2 The hash function
Our construction uses a hash function that is a syntactic modification (it accepts two
inputs instead of one) of the collision resistant hash function presented by Micciancio
and Regev [30], following seminal work by Ajtai [1] and Goldreich et al. [19]. The
security of our function is based on the hardness of SISq,µ,β , using the parameters by
Micciancio and Peikert [29], as shown above. We note here that a similar two-input hash
function was also used to build a string commitment scheme by Kawachi et al. [23].

Definition 5 (Hash function [29,30]). Let k be the security parameter, n = poly(k)
and q, µ, β be the parameters output by algorithm parameters(1k, n). Set m = µ

2 . Let
also L,R ∈ Zk×mq be two k ×m matrices picked uniformly at random. We define the
function hn : [n]m × [n]m → Zkq as hn(x, y) = L · x + R · y mod q.

Theorem 1 (Collision resistance [29,30]). Let k be the security parameter, n = poly(k)
and {q, µ, β} ← parameters(1k, n). Set m = µ

2 . Let also L,R ∈ Zk×mq be matrices
picked uniformly at random. Assuming hardness of SISq,µ,β (see Assumption 1), there

7

Algorithm {q, µ, β} ← parameters(1k, n): For n = poly(k), let q be the smallest prime satis-
fying q/

√
dlog qe ≥

√
2 · n · k0.5+δ for some δ > 0. Set µ = 2kdlog qe and β = n

√
µ.

Fig. 3.1. Setting the parameters of SISq,µ,β as a function of the application parameter n.

is no PPT algorithm that outputs two distinct pairs of vectors (x1, y1) ∈ [n]m × [n]m

and (x2, y2) ∈ [n]m × [n]m such that L · x1 + R · y1 = L · x2 + R · y2 mod q, except
with negligible probability neg(k).

3.3 Binary representations
For our constructions, we are going to need binary representations of vectors:

Definition 6 (Binary representation of scalars). Let τ = dlog qe. Denote with b(a) =
[b0,b1, . . . ,bτ−1]T ∈ {0, 1}τ the binary representation of a ∈ Zq , i.e., a =

∑τ−1
i=0 bi2i.

Note now that Definition 6 can be naturally extended for vectors a ∈ Zkq : For i =
0, . . . , k− 1, ai is mapped to the respective τ entries b(ai) in the resulting vector b(a):

Definition 7 (Binary representation of vectors). Let a = [a0, a1, . . . , ak−1]T ∈ Zkq .
We denote with b(a) = [b(a0),b(a1), . . . ,b(ak−1)]T ∈ {0, 1}k·τ (τ = dlog qe) the
binary representation of a ∈ Zkq , where b(ai) is defined in Definition 6.

For example, if k = 2, q = 8 and a = [6, 3]T ∈ Z2
8, then b(a) = [0, 1, 1, 1, 1, 0]T,

since b(6) = [0, 1, 1]T and b(3) = [1, 1, 0]T.

4 Generalized hash trees
The main primitive of our construction is what we call a generalized hash tree. A gen-
eralized hash tree has several differences from the traditional Merkle hash tree [28].

First we recall that a Merkle hash tree is a labeled binary tree T where the label
λ(w) of every node w is the collision resistant hash (e.g., a SHA-2 hash) of the labels
λ(u) and λ(v) and of its children u and v, i.e., λ(w) = h(λ(u), λ(v)). When function
h is applied recursively on all the nodes of the tree, the label λ(r) of the root r has the
following property: A PPT adversary cannot find two different data sets at the leaves
that produce the same label at the root of a Merkle tree.

In our work, instead of using a hash function such as SHA-2 that lacks algebraic
structure, we employ the hash function hn described in Section 3. However, we cannot
directly apply this function since its domain (vectors in [n]m) is different from its range
(vectors in Zkq). Generalized hash trees, introduced in the next section, provide a way to
overcome this domain-range discrepancy problem.

4.1 Defining generalized hash trees
Let h : D × D → R be a collision resistant hash function accepting two inputs that
take values from domain D and outputting a value in a different range R. Generalized
hash trees solve the domain-range discrepancy problem (and at the same time maintain
the authentication and algorithmic properties of traditional Merkle hash trees [28]) as

8

follows: They require that the labels λ(u) ∈ D and λ(v) ∈ D of the children u and v
hash to a deterministic and easily computable projection function f : D → R of the
label λ(w) ∈ D of the parent w, i.e., f(λ(w)) = h(λ(u), λ(v)).

An immediate implication of this property is that the labels of a generalized hash
tree are generally not uniquely determined by the labels of the leaves: In the above ex-
ample, λ(w) can be any f -preimage of h(λ(u), λ(v)). However, the collision resistant
property of Merkle trees is still true: Any two valid hash trees representing different
data sets at the leaves but with the same root label yield a collision to the underlying
hash function. We now continue with defining generalized hash trees formally. We first
need the following definition for representing binary trees.

Definition 8 (Full binary tree). A full binary tree T is a non-empty tree where every
internal node has two children. It is represented with set of binary strings, where ε is the
empty string representing the root of T and w0 and w1 are the string representations
of the left and right children of a node having string representation w.

For example, a full binary tree with five nodes is T = {ε, 0, 1, 00, 01}. Note that
full binary trees need not be complete, i.e., not all leaves must lie at the same level.

Definition 9 (Labeled binary tree). A labeled binary tree (T, λ) is a full binary tree T
along with labels λ(w) for all w ∈ T .

Definition 10 (Generalized hash tree). Given functions h : D×D → R and f : D →
R, a generalized hash tree (T, λ, f, h) is a labeled binary tree (T, λ) such that (a) for
all w ∈ T , λ(w) ∈ D; (b) for all internal nodes w ∈ T , f(λ(w)) = h(λ(w0), λ(w1)),
where w0 and w1 are the left and right children of w respectively.

Definition 11 (Tree collision). A tree collision is a pair of two distinct generalized
hash trees (T, λ, f, h) and (T, l, f, h) such that λ(ε) = l(ε).

We now give our main security theorem, establishing collision resistance for gener-
alized hash trees. The proof is in the Appendix (see Section 7.1).

Theorem 2 (Collision resistance). Let k be the security parameter, T be a full binary
tree of poly(k) depth. If h is collision resistant, there is no PPT algorithm that can
output a tree collision (T, λ, f, h) and (T, l, f, h), except with probability neg(k).

4.2 An instantiation of generalized hash trees
In our application setting, we are using a structured binary tree which is a special case
of the full binary tree from Definition 8:

Definition 12 (Structured binary tree). Let M be a power of two. A structured binary
tree TC is a full binary tree T of logM levels where all the leaves lie at the last level of
the tree, storing values C = [c0, c1, . . . , cM−1], where ci ∈ Zq .
Definition 13 (Range of a node). Let w be a node of a structured binary tree TC . The
set range(w) contains the leaves of the subtree of TC rooted on w.

In the following sections, we instantiate the generalized hash tree for a structured
binary tree using the lattice-based hash function hn(x, y) = L·x+R·y from Definition 5,
where D = [n]m and R = Zkq—see Section 3 for the definition of all parameters
k, n,m, q. We will also show which projection function f to use and how to compute
the labels λ so that Definition 10 is satisfied.

9

Function y = f(x): Let τ = dlog qe. On input a vector x ∈ [n]m, where m = k · τ , output a
vector y of k entries such that each yi (i = 0, . . . , k − 1) is the number in Zq represented by the
radix-2 representation [xiτ , xiτ+1, . . . , x(i+1)τ−1]

T, namely

yi =
τ−1∑
j=0

xiτ+j2j mod q , for i = 0, . . . , k − 1 .

Fig. 4.2. The projection function f . It parses the input x as a vector of radix-2 representations and
convers it to a vector y (of smaller dimension) storing the respective numbers in Zq .

4.3 The projection function f
The projection function f : [n]m → Zkq we use is very simple. It parses the input
vector x as a radix-2 representation (i.e., a base-2 representation but not necessarily of
binary coefficients) and converts it to the respective vector in Zkq . We give the code of
the function in Figure 4.2. We now have the following corollary for function f :

Corollary 2 (Applying function f to binary representations). Let a ∈ Zkq . Then
f(b(a)) = a, where b(a) is the binary representation of a defined in Definition 6.

Clearly, function f is a linear function. This property (stated below) is crucial for
proving that the labels (defined in Section 4.4) comply with Definition 10:

Corollary 3 (Linearity of function f). Let x ∈ [n]m and y ∈ [n]m such that x + y ∈
[n]m. Then f(x + y) = f(x) + f(y).

4.4 Computing the labels
We now continue with defining the labels of the generalized hash tree (see Defini-
tion 16). Before that, we give some necessary definitions:

Definition 14. Define the functions g0 : [n]m → [n]m and g1 : [n]m → [n]m such that
g0(x) = b(L · x) and g1(x) = b(R · x). Also, for a bitstring w = b1b2 . . . be, define the
function gw : [n]m → [n]m as the composition gw(x) = gb1 ◦ gb2 ◦ . . . ◦ gbe(x).

Definition 15 (Partial labels of a node w). Let TC be a structured binary tree. The
partial label of a leaf node v with respect to itself is defined as Lv(v) = 1, where 1 =
[1, 1, . . . , 1]T ∈ [n]m. For every other node w of TC , and for every leaf v ∈ range(w),
the partial label Lw(v) of w with respect to v is defined as Lw(v) = gv−w(1), where
v − w is the result of removing prefix w from bitstring v.

E.g., for a structured binary tree of 8 leaves, the partial label of the root wrt leaves 2
and 3 are Lε(2) = b(L ·b(R ·b(L ·1))) and Lε(3) = b(L ·b(R ·b(R ·1))) respectively.

Definition 16. Let TC be a structured binary tree, where C = [c0, c1, . . . , cM−1]. For
every node w ∈ TC we define a function λ(w) =

∑
v∈range(w) cv · Lw(v).

Lemma 1. Let TC be a structured binary tree. If
∑M−1
i=0 ci ≤ n, then for all nodes

w ∈ TC it holds that λ(w) ∈ [n]m, where λ(w) is the function defined in Definition 16.

10

Proof. Write λ(w) as in Definition 16. Since
∑M−1
i=0 ci ≤ n and the entries of each

partial label Lw(v) are in {0, 1}, it follows that λ(w) ∈ [n]m. 2

Lemma 2. Let TC be a structured binary tree. If
∑M−1
i=0 ci ≤ n, then f(λ(w)) =

L ·λ(w0)+R ·λ(w1), where λ(w) is the function defined in Definition 16 and w is any
internal node of TC .

Proof. Let w be an internal node of the structured binary tree TC . Let w0 be its left
child and w1 be its right child. Since

∑
ci ≤ n, by Lemma 1, it is λ(w) ∈ [n]m, so we

can apply function f . Therefore we have

f(λ(w)) = f

 ∑
v∈range(w)

cv · Lw(v)

 (Def. 16)

=
∑

v∈range(w0)

cv · f (Lw(v)) +
∑

v∈range(w1)

cv · f (Lw(v)) (Cor. 3)

=
∑

v∈range(w0)

cv · f (gw−v(1)) +
∑

v∈range(w1)

cv · f (gw−v(1)) (Def. 15)

=
∑

v∈range(w0)

cv · f (g0(gw0−v(1))) +
∑

v∈range(w1)

cv · f (g1(gw1−v(1))) (Def. 14)

=
∑

v∈range(w0)

cv · f (g0(Lw0(v))) +
∑

v∈range(w1)

cv · f (g1(Lw1(v))) (Def. 15)

=
∑

v∈range(w0)

cv · f (b(L · Lw0(v))) +
∑

v∈range(w1)

cv · f (b(R · Lw1(v))) (Def. 14)

=
∑

v∈range(w0)

cv · L · Lw0(v) +
∑

v∈range(w1)

cv · R · Lw1(v) (Cor. 2)

= L · λ(w0) + R · λ(w1) (Def. 16). This completes the proof. 2

Theorem 3. Let TC be a structured binary tree. If
∑M−1
i=0 ci ≤ n, then (TC , λ, f, hn) is

a generalized hash tree, where hn(x, y) = L ·x+R ·y is the function from Definition 5,
λ is defined in Definition 16 and f is the function in Figure 4.2.

Proof. It follows from Lemmas 1 and 2 and by Definition 10. 2

4.5 Efficient updates of the labels
Note that Definition 16 enables very efficient updates of the label of any node, whenever
a leaf value changes. For example, if λ(ε) is the label of the root of a generalized
hash tree (TC , λ, f, hn) with eight leaves {0, 1, 2, . . . , 7} where c3 = 2, c4 = c6 =
c7 = 1 and c0 = c1 = c2 = c5 = 0, then the root label λ(ε) can be expressed
as 2Lε(3) + Lε(4) + Lε(6) + Lε(7). Particularly, each occurrence of an element i
contributes Lε(i) (i.e., partial label of the root ε with respect to i) to the root label.
Adding (or removing) an element x to the set is equivalent to adding Lε(x) (or−Lε(x))
to λ(ε). It is also important to note that the partial labels (defined in Definition 15)
required for such updates can be easily computed in polylogarithmic time:

11

Lemma 3. The partial label Lw(v) can be computed in time O(logM log2 n).

Proof. Computing Lw(v), by Definition 15, requires O(logM) recursive calls, each
one of which involves: (a) computing a binary representation of k O(log q)-bit numbers,
which takes time O(k log q); (b) multiplying a k × O(k log q) matrix with a vector of
O(k log q) bits, which takes time O(k log2 q). This completes the proof. 2

5 Our SADS construction
Let TC be a structured binary tree with M leaves corresponding to the universe of in-
teger values U = {0, 1, . . . ,M − 1}. For our construction, we are using a generalized
hash tree (TC , λ, f, hn) as described in the previous section, where λ is defined in Def-
inition 16, f is the function in Figure 4.2, hn is the hash function from Definition 5
and {c0, c1, . . . , cM−1} correspond to the frequency of elements {0, 1, . . . ,M − 1}
appearing in the stream. Note that even for an exponential value of M , the condition∑M−1
i=0 ci ≤ n of Theorem 3 still holds since for the elements x that do not appear in

the stream it is cx = 0. To store the generalized hash tree, we store only the labels that
are defined on the paths from non-zero leaves to the root (all other labels are zero). This
requires space proportional to O(ν logM), where ν is the number of distinct element
appearing in the stream. In this way, we avoid storingO(M) space, which is prohibitive
given the potential exponential universe size M .

Figure 5.3 presents our SADS scheme for frequency queries. We note that algo-
rithms query and verify are the same for all generalized hash trees, unlike the update
algorithms that are specific for the algebraic hash function hn.

5.1 Range search queries
In this section we show how to support range search queries. The proof for a range
search query [x, y] simply contains the two proofs Π(x) and Π(y) as output by algo-
rithms query(x,Dh, auth(Dh), pk) and query(y,Dh, auth(Dh), pk) respectively from
Figure 5.3. It also contains the frequencies Cxy = {ca1 , ca2 , . . . , cas} of the reported
range as an answer. Let now Rxy = {a1, a2, . . . , as} denote the respective reported
range that corresponds to Cxy .

For verification, the proofs Π(x) and Π(y) are verified first by using algorithm
verify from Figure 5.3. If this verification is successful, perform the following test (else
reject): If for all labels λ(v) ∈ Π(x) ∪ Π(y) such that range(v) ∩ Rxy is not empty,
the following relation (as in Definition 16)

λ(v) =
∑

i∈range(v)∩Rxy

ci · Lv(i) (5.3)

is true, output 1 (i.e., accept), else output 0 (i.e., reject). The above relation ensures
that all the range (with the correct frequencies) has been reported, or otherwise, the
adversary could find a collision. The above technique can be also used for verifying
successor queries, where the reported range is empty.

We now give our final result stating the formal security guarantee of our algorithms,
along with their detailed asymptotic performance. The correctness of our scheme fol-
lows easily by inspecting the algorithms, therefore its proof is omitted. The security
proof and the proof of asymptotic performance are in the Appendix.

12

Algorithm pk← genkey(1k, n): Call {q, µ, β} ← parameters(1k, n) from Figure 3.1, on input
the security parameter k and a bound n on the size of the stream. Set pk = {L,R, q,U}, where U
is a universe such that |U| =M and L,R are picked uniformly at random from Zmq for m = µ

2
.

Algorithm {auth(D0), d0} ← initialize(D0, pk): Let D0 be a structured binary tree TC where
ci = 0 (i = 0, . . . ,M − 1). The algorithm outputs the generalized hash tree (TC , λ, f, hn) as
auth(D0), where λ(v) = 0 ∈ [n]m for all nodes v in TC . Also it outputs d0 = 0 ∈ [n]m.

Algorithm dh+1 ← updateVerifier(x, dh, pk): Let x ∈ U be the current element of the stream.
The algorithm updates the local state by setting dh+1 = dh + Lε(x), where ε is the root of TC
and Lε(x) is defined in Definition 15.

Algorithm {Dh+1, auth(Dh+1)} ← updateProver(x,Dh, auth(Dh), pk): Let x ∈ U be the
current element of the stream. The algorithm sets cx = cx + 1, outputting the updated tree TC .
Let v`, . . . , v1 be the path in TC from node v` (v` stores cx) to the child v1 of the root ε of TC .
Set

λ(vi) = λ(vi) + Lvi(x) for i = `, `− 1, . . . , 1 , (5.2)

where Lvi(x) is defined in Definition 15. The new authenticated data structure auth(Dh+1) is
the new generalized hash tree with the updated labels as computed in Equation 5.2.

Algorithm {α(q), Π(q)} ← query(q,Dh, auth(Dh), pk): Let q be a frequency query for el-
ement x ∈ U . Set α(q) = cx (note that if cx = 0, x is not contained in the collection). Let
v`, . . . , v1 be the path in the structured binary tree TC from node v` (v` stores the value cx) to the
child v1 of the root ε of TC . Let also w`, . . . , w1 be the sibling nodes of v`, . . . , v1. Proof Π(q)
contains the ordered sequence of the pairs of labels belonging to the tree path from leaf v` to the
root ε of the tree, i.e., the pairs {(λ(v`), λ(w`)), (λ(v`−1), λ(w`−1)), . . . , (λ(v1), λ(w1))}.

Algorithm {1, 0} ← verify(q, α(q), Π(q), dh, pk): Let q be a frequency query for element
x ∈ U . Parse Π(q) as {(λ(v`), λ(w`)), . . . , (λ(v1), λ(w1))} and α(q) as cx.
If λ(v`) 6= cx1 or λ(v`), λ(w`) 6= [n]m, output 0. Compute values y`−1, y`−2, . . . , y0 as yi =
L · λ(vi+1) + R · λ(wi+1) (if vi+1 is vi’s left child) or yi = R · λ(vi+1) + L · λ(wi+1) (if vi+1

is vi’s right child). For i = ` − 1, . . . , 1, if f(λ(vi)) 6= yi or λ(vi), λ(wi) /∈ [n]m output 0. If
f(dh) 6= y0, output 0. Output 1.

Fig. 5.3. Algorithms of the SADS scheme for verifying frequency queries.

Theorem 4 (Streaming authenticated frequency with range search). Let k be the se-
curity parameter, n = poly(k) be an upper bound on the size of a stream containing el-
ements from an ordered universe U of size M , {q, µ, β} ← parameters(1k, n) and ν be
the number of unique elements that have appeared in the stream. There exists a stream-
ing authenticated data structure scheme for one-dimensional frequency queries and
one-dimensional range queries (outputting the respective frequencies) such that: (a) It
is correct according to Definition 2 and secure according to Definition 3 and assuming
hardness of SISq,µ,β (Assumption 1); (b) Algorithms updateVerifier and updateProver
run inO(logM log2 n) time; (c) Algorithm query (both for frequency and range search
queries) runs in O(logM log n) time, outputting a proof of size O(logM log n); (d)
A frequency query can be verified in O(logM log2 n) time and a range search query

13

can be verified in O(s logM log2 n) time, where s is the size of the output range; (e)
The space required at the verifier is O(log n) and the space required at the prover is
O(ν logM log n).

Our algorithms can be extended to two (or multiple) dimensions by leveraging ex-
isting methods for multidimensional range queries [27], carefully adjusted in our frame-
work. Due to space limitations, we defer such extensions to the full version of our paper.

6 Applications
In this section we present three applications of our construction.

Cryptographic accumulator with efficient witness generation. A cryptographic ac-
cumulator [4,6] allows one to hash a set of inputs into one short accumulation value,
such that there is a witness that a given input was incorporated into the accumulator,
and at the same time, it is infeasible to find a witness for a value that was not accumu-
lated. In CRYPTO 2002, Camenisch and Lysyanskaya [9] introduced dynamic accumu-
lators, that enable updating the accumulation value when inputs are dynamically added
or deleted, such that the cost of an update is independent of the number of accumu-
lated inputs. However, all dynamic accumulator constructions that appeared since then
(e.g., [3,8,9,26,32]) share one common limitation: Computing a witness, in absence of
the trapdoor information (which has many practical applications, e.g., [36]), takes at
least linear time. We observe that our construction comprises a dynamic accumulator
that does not have this limitation: Specifically, for a set of elementsX ⊆ {0, 1, . . . ,M−
1}, our accumulation value, from Definition 16, is acc(X) =

∑
i∈X Lε(i). To update

the accumulation value with element y, one has to set acc(X) = acc(X) + γ · Lε(y),
where γ ∈ {1,−1} depending on whether we add or remove y from the set. Our con-
struction satisfies basic accumulator properties such as quasi-commutativity and effi-
cient updates [9]. Moreover, one can use the generalized hash tree and compute wit-
nesses in logarithmic time (see Theorem 4), as opposed to linear time.

Parallel online memory checking in the public key setting. Memory checking [7]
studies the problem of cryptographically verifying the correctness of untrusted indexed
storage by only storing small local memory. Many checkers with logarithmic sequential
query complexity (number of reads and writes to the untrusted memory), e.g., [7,31,20],
have appeared in the literature. However, parallelizing existing checker constructions
can only be achieved in the secret key setting (e.g., see [22]). Checkers in the public key
setting (e.g., [20]) cannot be naturally parallelized because they are traditionally imple-
mented with Merkle trees [28]: Whenever a leaf value of the checker tree is written,
the roothash can be updated only after the value of its child has been updated, which
is an inherently sequential process. Our generalized hash tree can be used to overcome
this barrier, yielding a parallel memory checker in the public key setting (recall we do
not use any secret keys in our construction). This is because in our construction, when-
ever a leaf value i is written, changing its value from c to c′, we can execute algorithm
updateProver from Section 5 in parallel (note the loop described in Relation 5.2 is fully
parallelizable) and by accessing only the old value c, thus issuing O(1) queries to the
untrusted memory. Therefore our construction yields the first parallel memory checker
in the public key setting with O(1) query complexity using O(logM) processors.

14

Authenticated data structure with logarithmic space at the trusted source. Our con-
struction can be used for implementing an authenticated dictionary with improved space
bounds in the three-party model—the traditional model of authenticated data struc-
tures [43]. Specifically, we can reduce the space of the trusted source from O(n) to
O(log n). This is because in the three-party model of authenticated data structures, the
only goal of the trusted source is to update the publish the latest digest dh, which, in our
construction can be achieved in a streaming fashion (by storing only the previous di-
gest dh−1) and without having access to all the elements of the dictionary (only access
to the element of the update is required, see Algorithm updateVerifier). In previous
implementations however (e.g., [20,36]), the source keeps all the Merkle tree locally
(otherwise the digest cannot be updated), therefore requiring O(n) local space.

Acknowledgments
This work was supported by the Center for Geometric Computing and the Kanellakis
fellowship at Brown University, by a NetApp Faculty Fellowship, by Intel through the
ISTC for Secure Computing and by the NSF grant CNS-1228485. Part of the work was
performed while the first author was at Brown University.

We are grateful to Chris Peikert for his continuous feedback and support during
the early stages of this work and to Daniele Micciancio for his insightful feedback
on improving the presentation of our result. We particularly thank Bobby Bhattachar-
jee for suggesting the bandwidth sharing application and the idea of composing mul-
tiple streams. We also thank Aris Anagnostopoulos, Hubert Chan, Michael Goodrich,
Christopher Imbriano, Jonathan Katz, Behzad Koosha, Dave Levin, Anna Lysyanskaya,
Shay Mozes, Franco Preparata, Nikos Triandopoulos and Vinod Vaikuntanathan for
useful discussions, and the EUROCRYPT 2013 program committee for their helpful
reviews.

References
1. M. Ajtai. Generating hard instances of lattice problems. In STOC, pp. 99–108, 1996.
2. B. Applebaum, Y. Ishai, and E. Kushilevitz. From secrecy to soundness: Efficient verification

via secure computation. In ICALP, pp. 152–163, 2010.
3. M. H. Au, P. P. Tsang, W. Susilo, and Y. Mu. Dynamic universal accumulators for DDH

groups and their application to attribute-based anonymous credential systems. In CT-RSA,
pp. 295–308, 2009.

4. N. Baric and B. Pfitzmann. Collision-free accumulators and fail-stop signature schemes
without trees. In EUROCRYPT, pp. 480–494, 1997.

5. S. Benabbas, R. Gennaro, and Y. Vahlis. Verifiable delegation of computation over large
datasets. In CRYPTO, pp. 111–131, 2011.

6. J. C. Benaloh and M. de Mare. One-way accumulators: A decentralized alternative to digital
signatures. In EUROCRYPT, pp. 274–285, 1993.

7. M. Blum, W. S. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the correctness of
memories. Algorithmica, 12(2/3):225–244, 1994.

8. J. Camenisch, M. Kohlweiss, and C. Soriente. An accumulator based on bilinear maps and
efficient revocation for anonymous credentials. In PKC, pp. 481–500, 2009.

9. J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to efficient revo-
cation of anonymous credentials. In CRYPTO, pp. 61–76, 2002.

15

10. K.-M. Chung, Y. T. Kalai, F.-H. Liu, and R. Raz. Memory delegation. In CRYPTO, pp.
151–168, 2011.

11. G. Cormode, M. Mitzenmacher, and J. Thaler. Practical verified computation with streaming
interactive proofs. In ITCS, pp. 90–112, 2012.

12. G. Cormode, J. Thaler, and K. Yi. Verifying computations with streaming interactive proofs.
PVLDB, 5(1):25–36, 2011.

13. P. Devanbu, M. Gertz, A. Kwong, C. Martel, G. Nuckolls, and S. Stubblebine. Flexible
authentication of XML documents. Journal of Computer Security, 6:841–864, 2004.

14. C. Estan and G. Varghese. New directions in traffic measurement and accounting: Focusing
on the elephants, ignoring the mice. ACM Trans. Comput. Syst., 21(3):270–313, 2003.

15. D. Fiore and R. Gennaro. Improved publicly verifiable delegation of large polynomials and
matrix computations. Cryptology ePrint Archive, Report 2012/434.

16. D. Fiore and R. Gennaro. Publicly verifiable delegation of large polynomials and matrix
computations, with applications. In CCS, pp. 501–512, 2012.

17. R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: Outsourcing
computation to untrusted workers. In CRYPTO, pp. 465–482, 2010.

18. R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs and succinct
NIZKs without PCPs. In EUROCRYPT, 2013.

19. O. Goldreich, S. Goldwasser, and S. Halevi. Collision-free hashing from lattice problems.
Electronic Colloquium on Computational Complexity, 3(42), 1996.

20. M. T. Goodrich, R. Tamassia, and A. Schwerin. Implementation of an authenticated dictio-
nary with skip lists and commutative hashing. In DISCEX II, pp. 68–82, 2001.

21. M. T. Goodrich, R. Tamassia, and N. Triandopoulos. Efficient authenticated data structures
for graph connectivity and geometric search problems. Algorithmica, 60(3):505–552, 2011.

22. E. Hall and C. S. Julta. Parallelizable authentication trees. In SAC, pp. 95–109, 2005.
23. A. Kawachi, K. Tanaka, and K. Xagawa. Concurrently secure identification schemes based

on the worst-case hardness of lattice problems. In ASIACRYPT, pp. 372–389, 2008.
24. A. K. Lenstra, H. W. L. Jr, and L. Lovasz. Factoring polynomials with rational coefficients.

Math.Ann., (261):515–534, 1982.
25. F. Li, K. Yi, M. Hadjieleftheriou, and G. Kollios. Proof-infused streams: enabling authenti-

cation of sliding window queries on streams. In VLDB, pp. 147–158, 2007.
26. J. Li, N. Li, and R. Xue. Universal accumulators with efficient nonmembership proofs. In

ACNS, pp. 253–269, 2007.
27. C. U. Martel, G. Nuckolls, P. T. Devanbu, M. Gertz, A. Kwong, and S. G. Stubblebine. A

general model for authenticated data structures. Algorithmica, 39(1):21–41, 2004.
28. R. C. Merkle. A certified digital signature. In CRYPTO, pp. 218–238, 1989.
29. D. Micciancio and C. Peikert. Hardness of SIS and LWE with small parameters. Cryptology

ePrint Archive, Report 2013/069.
30. D. Micciancio and O. Regev. Worst-case to average-case reductions based on gaussian mea-

sures. SIAM J. Comput., 37(1):267–302, 2007.
31. M. Naor and K. Nissim. Certificate revocation and certificate update. In USENIX Security,

pp. 217–228, 1998.
32. L. Nguyen. Accumulators from bilinear pairings and applications. In CT-RSA, pp. 275-292,

2005.
33. S. Papadopoulos, Y. Yang, and D. Papadias. Continuous authentication on relational streams.

VLDB Journal, 19(2):161–180, 2010.
34. C. Papamanthou, E. Shi, and R. Tamassia. Signatures of correct computation. In TCC, pp.

222-242, 2013.
35. C. Papamanthou and R. Tamassia. Time and space efficient algorithms for two-party authen-

ticated data structures. In ICICS, pp. 1–15, 2007.

16

36. C. Papamanthou, R. Tamassia, and N. Triandopoulos. Authenticated hash tables. In CCS,
pp. 437–448, 2008.

37. C. Papamanthou, R. Tamassia, and N. Triandopoulos. Optimal authenticated data structures
with multilinear forms. In PAIRING, pp. 246–264, 2010.

38. C. Papamanthou, R. Tamassia, and N. Triandopoulos. Optimal verification of operations on
dynamic sets. In CRYPTO, pp. 91–110, 2011.

39. V. Pappas, M. Raykova, B. Vo, S. M. Bellovin, and T. Malkin. Private search in the real
world. In ACSAC, pp. 83–92, 2011.

40. B. Parno, M. Raykova, and V. Vaikuntanathan. How to delegate and verify in public: Verifi-
able computation from attribute-based encryption. In TCC, pp. 422-439, 2012.

41. O. Regev. On the complexity of lattice problems with polynomial approximation factors.
The LLL algorithm, pp. 475–496, 2010.

42. D. Shroeder and H. Shroeder. Verifiable data streaming. In CCS, pp. 953-964, 2012.
43. R. Tamassia. Authenticated data structures. In ESA, pp. 2–5, 2003.

Appendix
7.1 Proof of collision resistance (proof of Theorem 2)
Since generalized hash trees (T, λ, f, h) and (T, l, f, h) comprise a collision, it is λ(ε) =
l(ε) and there exists v` ∈ T such that λ(v`) 6= l(v`)—see Definition 11. Consider now
the path of nodes v`, v`−1, . . . , v1, v0 = ε from node v` to the root v0 = ε of T . Let also
w`, w`−1, . . . , w1 be the siblings of the nodes v`, v`−1, . . . , v1 respectively. We define
the following events: (1) E`,0: l(v`) 6= λ(v`); (2) Ei,0: l(vi) 6= λ(vi) for i = `−1, . . . , 1;
(3) Ei,0: l(vi) = λ(vi) for i = `− 1, . . . , 1; (4): E0,1: λ(ε) = l(ε). The probability that
a PPT algorithm can output a collision (T, λ, f, h) and (T, l, f, h) is at most

Pr[E`,0 ∩ (E`−1,0 ∪ E`−1,1) ∩ (E`−2,0 ∪ E`−2,1) ∩ . . . ∩ E0,1]

≤ Pr[E`,0 ∩ E`−1,1] + . . .+ Pr[E1,0 ∩ E0,1] =
∑

0≤i≤`−1

Pr[Ei+1,0 ∩ Ei,1] .

Note that the event Ei+1,0 ∩ Ei,1 is equivalent to the set of conditions: (i) l(vi+1) 6=
λ(vi+1); (ii) l(vi) = λ(vi) (recall v0 = ε).

It is easy to see that if h is collision resistant, the probability Pr[Ei+1,0 ∩ Ei,1]
is neg(k) since it is equivalent with outputting a collision to function h: Since both
(T, λ, f, h) and (T, l, f, h) are generalized hash trees it is f(l(vi)) = h(l(vi+1), l(wi+1))
and f(λ(vi)) = h(λ(vi+1), λ(wi+1)). Since now λ(vi) = l(vi) we have f(λ(vi)) =
f(l(vi)). But l(vi+1) 6= λ(vi+1) and therefore (λ(vi+1), λ(wi+1)) is a collision with
the pair (l(vi+1), l(wi+1)). Therefore the probability Pr[Ei,0|Ei−1,1] is neg(k), imply-
ing that the sum

∑`−1
i=0 Pr[Ei,0|Ei−1,1] is also neg(k), as T has polynomial depth and `

is no greater than T ’s depth. 2

7.2 Proof of security (stated in Theorem 4)
Fix the security parameter k and output pk = (L,R, q,U) by calling algorithm genkey.
Let Adv be a PPT adversary. Let D0 an initial structured binary tree TC where ci = 0
for i = 0, . . . ,M − 1 and let d0 be the state output by initialize(D0, pk).
1. Update. For t = 1, . . . , h ≤ n, the adversary Adv picks an element xt ∈ U . Let
dt be the final state output by calling updateVerifier for every element xt and let

17

TC be the final structured binary tree Dt after all the updates have been performed,
where C = [c0, c1, . . . , cM−1].

2. Forge. Let x ∈ U be a query element and α 6= cx be an incorrect value for index x
picked by Adv (as in Definition 3). The adversary Adv outputs

Π(x) = {(l(v`), l(w`)), (l(v`−1), l(w`−1)), . . . , (l(v1), l(w1))}

as the proof for element x, where v` is the node corresponding to index x.
We prove that the probability that 1 ← verify(x, α,Π(x), dh, pk) while α 6= cx is
negligible. To do that we consider the full binary tree T (see Definition 8) defined by
the nodes (v`, w`), (v`−1, w`−1), . . . , (v1, w1) and the root node ε. It is easy to see
that since the verification algorithm accepts, (T, l, f, hn) is a generalized hash tree as
defined in Definition 10, and where l is the labeling in Π(x).

Consider now the structured binary tree TC (where C = [c0, c1, . . . , cM−1]) as de-
fined in Definition 12. Let T ′C be the subtree of TC that has the same nodes as T . By The-
orem 3, the adversary can compute (T, λ, f, hn), which is also a generalized hash tree.
However, since α 6= cx this means that l(v`) 6= λ(v`). Note now that λ(ε) = l(ε) = dh
and therefore the adversary has output a tree collision, which, by Theorem 2, happens
with probability neg(k) since hn is collision resistant (see Theorem 1). A same argu-
ment applies for the range search query. This completes the proof. 2

7.3 Proof of asymptotic performance (stated in Theorem 4)
Algorithm updateVerifier requires computing the partial label Lε(x), where x is the
element of the update and ε is the root of TC . Computing Lε(x) can be achieved in
O(logM log2 n) time, by Lemma 3.

Algorithm updateProver needs to compute the partial labels Lvj (x) (j = `, . . . , 0),
where v`, v`−1, . . . , v0 are the nodes of the structured binary tree from element x to the
root of the tree. By Definition 15, all these labels can be computed in O(logM log2 n)
time during the computation of Lε(x) (i.e., in one pass). However, to update a label
λ(vi), one needs to retrieve it from the underlying data structure that stores the “useful”
portion of the generalized hash tree (and either store it back or delete if the label be-
comes 0). Therefore updateProver needs to spend an extra O(log ν) time in the worst
case, where ν is the number of the currently stored elements. Since however ν ≤ n, it
follows that the time required is O(logM log2 n).

Algorithm query for membership and successor queries needs to retrieve O(logM)
binary representations of O(log n) bits each, spending O(log ν) time to retrieve each
one of them. Since ν ≤ n, it follows that query runs in O(logM log n) time. The
proof has also size O(logM log n), since it contains O(logM) binary representations
of O(log n) bits each. Since range search is implemented via s successor queries, the
same bounds apply multiplied with s, where s is the size of the output range.

Finally, for the space at the client, it is required that the client store dh, which
consists of k O(log n)-bit numbers, therefore the space at the client isO(log n). For the
space at the prover, we recall that we only store labels λ(v) that lie on tree paths starting
from leaves x such that cx > 0 (all these labels are also non-zero and have O(log n)
bits). Since at every point in time there are ν elements stored in the data structure, it
follows that the space at the server is O(ν logM log n).

	Streaming Authenticated Data Structures

