
Batch Fully Homomorphic Encryption over the
Integers?

Jung Hee Cheon1, Jean-Sébastien Coron2, Jinsu Kim1, Moon Sung Lee1,
Tancrède Lepoint3,4, Mehdi Tibouchi5, and Aaram Yun6

1 Seoul National University (SNU), Republic of Korea
{jhcheon,kjs2002,moolee}@snu.ac.kr

2 Tranef, France
jscoron@tranef.com

3 CryptoExperts, France
4 École Normale Supérieure, France

tancrede.lepoint@cryptoexperts.com
5 NTT Secure Platform Laboratories, Japan

tibouchi.mehdi@lab.ntt.co.jp
6 Ulsan National Institute of Science and Technology (UNIST), Republic of Korea

aaramyun@unist.ac.kr

Abstract. We extend the fully homomorphic encryption scheme over
the integers of van Dijk et al. (DGHV) into a batch fully homomor-
phic encryption scheme, i.e. to a scheme that supports encrypting and
homomorphically processing a vector of plaintexts as a single ciphertext.
We present two variants in which the semantic security is based on different
assumptions. The first variant is based on a new decisional problem, the
Decisional Approximate-GCD problem, whereas the second variant is
based on the more classical computational Error-Free Approximate-GCD
problem but requires additional public key elements.
We also show how to perform arbitrary permutations on the underlying
plaintext vector given the ciphertext and the public key. Our scheme
offers competitive performance even with the bootstrapping procedure:
we describe an implementation of the homomorphic evaluation of AES,
with an amortized cost of about 12 minutes per AES ciphertext on a
standard desktop computer; this is comparable to the timings presented
by Gentry et al. at Crypto 2012 for their implementation of a Ring-LWE
based fully homomorphic encryption scheme.

Keywords: Fully Homomorphic Encryption, Batch Encryption, Chinese
Remainder Theorem, Approximate GCD, Homomorphic AES.

1 Introduction

Fully Homomorphic Encryption (FHE). Fully homomorphic encryption
allows a worker to perform implicit additions and multiplications on plaintext

? This paper is a merger of two independent works [CLT13,KLYC13] built on the same
basic idea but with different contributions. The respective full versions are posted on
ePrint.



values while exclusively manipulating encrypted data. The first construction of
a fully homomorphic scheme (based on ideal lattices) was described by Gentry
in [Gen09], and proceeds in several steps. First, one constructs a somewhat
homomorphic encryption scheme, which only supports a limited number of
multiplications: ciphertexts contain some noise that becomes larger with successive
homomorphic multiplications, and only ciphertexts whose noise size remains below
a certain threshold can be decrypted correctly. The second step is to squash the
decryption procedure associated with an arbitrary ciphertext so that it can be
expressed as a low degree polynomial in the secret key bits. Then, Gentry’s key
idea, called bootstrapping, consists in homomorphically evaluating this decryption
polynomial on encryptions of the secret key bits, resulting in a different ciphertext
associated with the same plaintext, but with possibly reduced noise. This refreshed
ciphertext can then be used in subsequent homomorphic operations. By repeatedly
refreshing ciphertexts, the number of homomorphic operations becomes unlimited,
resulting in a fully homomorphic encryption scheme.

Since Gentry’s breakthrough result, many improvements have been made,
introducing new variants, improving efficiency, and providing new features. Re-
cently, Brakerski, Gentry and Vaikuntanathan described a different framework
where the ciphertext noise grows only linearly with the multiplicative level instead
of exponentially [BGV12], so that bootstrapping is no longer necessary to obtain
a scheme supporting the homomorphic evaluation of any given polynomial size
circuit. Currently three main families of fully homomorphic encryption schemes
are known:

1. Gentry’s original scheme [Gen09] based on ideal lattices. An implementation
of Gentry’s scheme was proposed by Gentry and Halevi in [GH11] with
a public key of 2.3 GB and a ciphertext refresh procedure of 30 minutes;
the implementation is based on many interesting algorithmic optimizations,
including some borrowed from Smart and Vercauteren [SV10].

2. van Dijk, Gentry, Halevi and Vaikuntanathan’s (DGHV) scheme over the
integers [DGHV10]. It was recently shown how to significantly reduce the
public key size in DGHV, yielding a 10.3 MB public key and an 11-minute
refresh procedure [CNT12].

3. Brakerski and Vaikuntanathan’s scheme based on the Learning with Errors
(LWE) and Ring Learning with Errors (RLWE) problems [BV11a,BV11b],
and follow-up works (e.g. the scale-free variant of Brakerski [Bra12] and the
NTRU-variant [LATV12]). An implementation is described in [GHS12b] with
an efficient (given the current state of knowledge) homomorphic evaluation
of the full AES encryption circuit. The authors use the batch RLWE-based
scheme proposed in [BGV12,GHS12a], that allows one to encrypt vectors
of plaintexts in a single ciphertext and to perform any permutation on the
underlying plaintext vector while manipulating only the ciphertext [SV11].

Our Contributions. In this paper we focus on the DGHV scheme. Our goal is
to extend DGHV to support the same batching capability as in RLWE-based



schemes [BGV12,GHS12a], and to homomorphically evaluate a full AES circuit
with roughly the same level of efficiency as [GHS12b], in order to obtain an
implementation of a FHE scheme with similar features but based on different
techniques and assumptions.

In the original DGHV scheme, a ciphertext has the form

c = q · p+ 2r +m

where p is the secret key, q is a large random integer, and r is a small random
integer (noise); the bit message m ∈ {0, 1} is recovered by computing m =
[c mod p] mod 2. The scheme is clearly homomorphic for both addition and
multiplication, since addition and multiplication of ciphertexts correspond to
addition and multiplication of plaintexts modulo 2.

To encrypt multiple bits mi into a single ciphertext c, we use the Chinese Re-
mainder Theorem with respect to a tuple of (`+1) coprime integers q0, p0, . . . , p`−1.
The batch ciphertext has the form

c = CRTq0,p0,...,p`−1
(q, 2r0 +m0, . . . , 2r`−1 +m`−1),

and correctly decrypts to the bit vector (mi) given by mi = [c mod pi] mod 2 for
all 0 6 i < `.7 Modulo each of the pi’s the ciphertext c behaves as in the original
DGHV scheme. Accordingly, the addition or multiplication of two ciphertexts
yields a new ciphertext that decrypts to the componentwise sum or product
modulo 2 of the original plaintexts.

The main challenge, however, was to prove the semantic security of our new
scheme. In the original DGHV scheme, public-key encryption is performed by
masking the message m with a random subset sum of the public key elements
xj = qj · p+ rj as

c =

[
m+ 2r + 2

∑
j∈S

xj

]
x0

. (1)

The semantic security is proved by applying the Leftover Hash Lemma on the
subset sum modulo q0, and using the random 2r in (1) to further randomize the
ciphertext modulo p.

To prove semantic security for the batch scheme our first technique is to rely
on a new assumption, namely the Decisional Approximate-GCD assumption.
Under this assumption the integers xj in the subset-sum from (1) are assumed to
be indistinguishable from random modulo x0; semantic security is then proved
by applying the Leftover Hash Lemma modulo x0; the additional random 2r in
(1) becomes unnecessary. Extending DGHV public-key encryption to the batch
setting is then straightforward; namely one can use the same random subset sum
technique with public key elements xj having a small residue modulo each of
the pi’s instead of only modulo p. We show that our batch DGHV scheme can
encrypt ` = Õ(λ3) bits in a single ciphertext; therefore the ciphertext expansion
ratio becomes Õ(λ2) instead of Õ(λ5) in the original scheme.

7 We denote by CRTq0,p0,...,p`−1(q, a0, . . . , a`−1) the unique integer u with 0 6 u <

q0 ·
∏`−1
i=0 pi such that u ≡ q (mod q0) and u ≡ ai (mod pi) for all 0 6 i < `.



In Section 4 we describe a different technique that does not rely on a new
decisional assumption but on the known (computational) Error-Free Approximate-
GCD assumption used in previous work [DGHV10,CMNT11,CNT12]. For the
proof of semantic security to go through in the batch setting, the ciphertext c
should be independently randomized modulo each of the pi’s, which is not easy
to achieve without knowing the pi’s. Indeed, if we only use a single additive term
2r as in Equation (1), then the same random term 2r = 2r mod pi is added
modulo each of the pi, which breaks the security proof. Our technique is to
replace the term 2r in (1) by another subset sum of public key elements which,
taken modulo each of the pi’s, generate a lattice with special properties. We then
apply the Leftover Hash Lemma modulo this lattice instead of only modulo q0,
which proves semantic security.

In addition to componentwise addition and multiplication, we also show how
to perform any permutation on plaintext bits publicly. As opposed to RLWE
based schemes [BGV12,GHS12a], we cannot use an underlying algebraic structure
to perform rotations over plaintext bits (clearly, the automorphisms of Z do
not provide any useful action on ciphertexts). Instead we show how to perform
arbitrary permutations on the plaintext vector during the ciphertext refresh
operation at no additional cost (but with a slight increase of the public key size).
Our ciphertext refresh operation Recrypt is done in parallel over the ` slots, with
the same complexity as a single Recrypt operation in the original scheme.

Finally, we describe an implementation of our batch DGHV scheme of Sec-
tion 4, with concrete parameters. We perform an homomorphic evaluation of the
full AES encryption circuit. For the “Large” parameters with 72 bits of security,
our implementation homomorphically encrypts up to 531 AES ciphertexts in
parallel in an amortized time of 12 minutes per AES ciphertext on a desktop
computer. This is comparable to the timings presented by Gentry et al. at Crypto
2012 for their implementation of an RLWE-based scheme [GHS12b].8

While our batch variant of DGHV does not provide additional features nor
significantly improved efficiency over the RLWE-based scheme of [GHS12a], we
believe it is interesting to obtain FHE schemes with similar properties but based
on different techniques and assumptions.

2 The Somewhat Homomorphic DGHV Scheme

We first recall the somewhat homomorphic encryption scheme over the integers
of van Dijk, Gentry, Halevi and Vaikuntanathan (DGHV) in [DGHV10]. Let λ
be the security parameter, τ be the number of elements in the public key, γ their
bit-length, η the bit-length of the secret key p and ρ (resp. ρ′) the bit-length of
the noise in the public key (resp. in a fresh ciphertext).

For a real number x, we denote by dxe, bxc, and dxc the upper, lower, and
nearest integer part of x. For integers z, p we denote the reduction of z modulo
p by (z mod p) or [z]p with −p/2 < [z]p 6 p/2.

8 Notice that our implementation uses bootstrapping whereas the implementation
of [GHS12b] used a leveled homomorphic encryption scheme without bootstrapping.



For a specific η-bit odd integer p, we use the following distribution over γ-bit
integers:

Dγ,ρ(p) =

{
Choose q ← Z ∩ [0, 2γ/p), r ← Z ∩ (−2ρ, 2ρ) :

Output x = q · p+ r

}
.

DGHV.KeyGen(1λ). Generate an η-bit random prime integer p. For 0 6 i 6 τ ,
sample xi ← Dγ,ρ(p). Relabel the xi’s so that x0 is the largest. Restart unless
x0 is odd and [x0]p is even. Let pk = (x0, x1, . . . xτ ) and sk = p.

DGHV.Encrypt(pk,m ∈ {0, 1}). Choose a random subset S ⊆ {1, 2, . . . , τ} and
a random integer r in (−2ρ

′
, 2ρ
′
), and output the ciphertext:

c =

[
m+ 2r + 2

∑
i∈S

xi

]
x0

. (2)

DGHV.Evaluate(pk, C, c1, . . . , ct). Given the circuit C with t input bits and t
ciphertexts ci, apply the addition and multiplication gates of C to the
ciphertexts, performing all the additions and multiplications over the integers,
and return the resulting integer.

DGHV.Decrypt(sk, c). Output m← [c mod p]2.

As shown in [DGHV10] the scheme is somewhat homomorphic, i.e., a limited
number of homomorphic operations can be performed on ciphertexts. More
precisely, given two ciphertexts c = q ·p+2r+m and c′ = q′ ·p+2r′+m′ where r
and r′ are ρ′-bit integers, the ciphertext c+ c′ is an encryption of m+m′ mod 2
under a (ρ′ + 1)-bit noise and the ciphertext c · c′ is an encryption of m ·m′ with
noise bit-length ' 2ρ′. Since the ciphertext noise must remain smaller than p to
maintain correctness, the scheme roughly allows η/ρ′ successive multiplications
on ciphertexts. The scheme is semantically secure under the Approximate-GCD
assumption (see [DGHV10]):

Definition 1 (Approximate GCD). The (ρ, η, γ)-approximate GCD problem
consists, given a random η-bit odd integer p and given polynomially many samples
from Dγ,ρ(p), in outputting p.

3 Batch DGHV Scheme Based on a new Decisional
Assumption9

We describe our first extension of the DGHV scheme for the batch setting. We
extend the DGHV scheme by packing ` plaintexts m0, . . . , m`−1 into a single
ciphertext, using the Chinese Remainder Theorem. Moreover, for somewhat
homomorphic encryption, this allows us to encrypt not only bits but elements
from rings of form ZQ.

9 A part of this section was made public through [Mem12].



Therefore, for public parameters Q0, . . . , Q`−1, we encrypt (m0, . . . ,m`−1) ∈
ZQ0
× · · · × ZQ`−1

into a ciphertext of the following form:

c = CRTq0,p0,...,p`−1
(q,Q0r0 +m0, . . . , Q`−1r`−1 +m`−1),

where q is uniform random modulo q0 and ri’s are small noises. Decryption can
be done by

mi = [c mod pi]Qi
.

Homomorphic addition and multiplication is done by the corresponding arithmetic
operations on ciphertexts.

This scheme can be considered as encrypting vectors (m0, . . . ,m`−1) and
supporting parallel, componentwise additions and multiplications. Or, if we choose
the Qi’s to be pairwise coprime, then using the isomorphism Z∏

Qi
∼=
∏

ZQi
, we

may regard this as a somewhat homomorphic encryption supporting arithmetic
operations on ZQ, with Q =

∏
Qi.

In order to allow public-key encryption, we provide integers x′i and xi in the
public key, such that x′i mod pj = Qjr

′
i,j + δi,j , and xi mod pj = Qjri,j for all i,

j where δi,j is the Kronecker delta. Then, a plaintext vector m = (m0, . . . ,m`−1)
is encrypted as follows:

c =

[
`−1∑
i=0

mi · x′i +
∑
i∈S

xi

]
x0

.

As explained in the introduction, the additional, larger noise 2r from the
DGHV scheme is not used in this version. This simplifies the construction,
with the trade-off of a new decisional assumption and a larger security loss. In
Section 4, we present another version which handles this issue differently. In
Section 5, we describe a transformation to fully homomorphic encryption schemes
where Q0 = · · · = Q`−1 = 2.

3.1 Description

IDGHV.KeyGen(1λ, (Qj)06j<`). Choose η-bit distinct primes pj , 0 6 j < `, and
denote π their product. Let us define the error-free public key element
x0 = q0 ·π, where q0 ← Z∩ [0, 2γ/π) is a 2λ

2

-rough integer.10 Make sure that
gcd(Qj , x0) = 1 for 0 6 j < `, and abort otherwise.11

Choose the following integers xi and x′i with a quotient by π uniformly and
independently distributed in Z ∩ [0, q0), and with the following distribution
modulo pj for 0 6 j < `:

1 6 i 6 τ, xi mod pj = Qjri,j , ri,j ← Z ∩ (−2ρ, 2ρ),

0 6 i 6 `− 1, x′i mod pj = Qjr
′
i,j + δi,j , r′i,j ← Z ∩ (−2ρ, 2ρ).

10 An integer a is b-rough when it does not contain prime factors smaller than b. As

in [CMNT11] one can generate q0 as a product of 2λ
2

-bit primes.
11 Note that the abort case happens with negligible probability.



Finally, let pk =
{
x0, (Qi)06i6`−1 , (xi)16i6τ , (x

′
i)06i6`−1

}
and let sk =

(pj)06j6`−1.

IDGHV.Encrypt(pk,m). For any m = (m0, . . . ,m`−1) with mi ∈ ZQi
, choose a

random binary vector b = (bi)16i6τ ∈ {0, 1}τ and output the ciphertext:

c =

[
`−1∑
i=0

mi · x′i +

τ∑
i=1

bi · xi

]
x0

. (3)

IDGHV.Decrypt(sk, c). Output m = (m0, . . . ,m`−1) where mj ← [c mod pj ]Qj
.

IDGHV.Add(pk, c1, c2). Output c1 + c2 mod x0.

IDGHV.Mult(pk, c1, c2). Output c1 · c2 mod x0.

3.2 Parameters and Correctness

The size of the message space is determined by ` and the binary length of the
Qj ’s, which can be an integer from 2 to η/8 depending on the multiplicative
depth of the scheme. The parameters should satisfy the following constraints:

• ρ = Ω̃(λ), to be secure against Chen-Nguyen’s attack [CN12] and Howgrave-
Graham’s attack [HG01],

• η = Ω̃(λ2 + ρ · λ), to resist the factoring attack using the elliptic curve
method [Len87], and to permit enough multiplicative depth,

• γ = ω(η2 log λ), to resist Cohn and Heninger’s attack [CH11] and the attack
using Lagarias algorithm [Lag85] on the approximate GCD problem,

• τ = γ + ω(log λ), in order to use leftover hash lemma (see Section 3.3).

We choose γ = Õ(λ5), η = Õ(λ2), ρ = 2λ, τ = γ + λ which is similar to the
DGHV’s convenient parameter setting [DGHV10]. We remark that bi can be
chosen in a much larger interval so as to reduce the public key size as in Section 4.

Notice that the above scheme is correct as is proved in the full version
[KLYC13] with the definition of correctness for homomorphic encryption schemes,
with respect to a set of permitted circuits.

3.3 Semantic Security

Here we show the semantic security of the IDGHV scheme, based on a new
assumption called `-DACDQ. In fact, this rather complicated assumption is
given only as an intermediate step for the proof, and in Section 3.4, we prove
this assumption from a simpler decisional assumption, called the Decisional
Approximate GCD assumption (DACD). So the security of our scheme is
eventually based on this assumption.

Given two integer vectors p = (p0, . . . , p`−1), Q = (Q0, . . . , Q`−1) of length
` and an integer q0, let us define the distribution Dρ(p;Q; q0) as follows. The
output of the distribution is

x = CRTq0,p0,...,p`−1
(q,Q0r0, . . . , Q`−1r`−1),



where q ← Z ∩ [0, q0) and ri ← Z ∩ (−2ρ, 2ρ) for i = 0, . . . , `− 1.

Definition 2 (`-Decisional Approximate GCDQ Problem: `-DACDQ).
The (ρ, η, γ, µ)-`-decisional approximate GCDQ problem is: for η-bit distinct
primes p0, . . . , p`−1 and µ-bit integers Q0, . . . , Q`−1, given a γ-bit integer x0 :=
q0p0 · · · p`−1, with gcd(x0, Qi) = 1 for i = 0, . . . , ` − 1, and polynomially many
samples from D := Dρ(p;Q; q0) and a set X consisting of ` integers x′i =
CRTq0,p0,...,p`−1

(qi, Q0r
′
i,0 + δi,0, . . . , Q`−1r

′
i,`−1 + δi,`−1) where qi, r

′
i,j are chosen

as qi ← Z ∩ [0, q0), r′i,j ← Z ∩ (−2ρ, 2ρ) for all i, j ∈ {0, . . . , ` − 1}, determine
b ∈ {0, 1} from z = x+ r · b mod x0 where x← D and r ← Z ∩ [0, x0).

The (ρ, η, γ, µ)-`-decisional approximate GCDQ assumption then states that
this problem is hard for any polynomial time distinguisher.

Theorem 1. The IDGHV scheme is semantically secure under the `-decisional
approximate GCDQ assumption.

Proof. We provide a sketch of the proof. See the complete proof in the full
version [KLYC13].

Essentially, the idea of the proof is that the IDGHV scheme is a lossy encryp-
tion [BHY09]. Both the correctly generated public key pk and the lossy key pk′

have the following form{
x0, (Qi)06i6`−1 , (xi)16i6τ , (x

′
i)06i6`−1

}
,

but note that, for the real public key pk, xi are chosen as xi ← Dρ(p;Q; q0), and
for the lossy public key pk′, xi ← Z ∩ [0, x0).

Now we may rely on the standard hybrid argument to show that pk and pk′ are
computationally indistinguishable, under the (ρ, η, γ, µ)-`-decisional approximate

GCDQ assumption: for each ı̂ ∈ {1, . . . , τ}, we define pk(ı̂), where

xi ←

{
Z ∩ [0, x0) for 1 6 i 6 ı̂,

Dρ(p;Q; q0) for ı̂ < i 6 τ .

Then pk(0) is identical to pk, and pk(τ) is identical to pk′, and using the (ρ, η, γ, µ)-

`-decisional approximate GCDQ assumption, we may show that pk(ı̂) is indis-

tinguishable from pk(ı̂+1) for ı̂ = 0, . . . , τ − 1, proving that pk and pk′ are
computationally indistinguishable.

Next, we show that under the lossy key pk′, the IDGHV scheme is semantically
secure: for any two plaintexts m and m′, the distributions of their corresponding
ciphertexts c, c′ under the lossy key pk′ are statistically close. Namely, recall that
from Equation (3), we have

c =

[
`−1∑
i=0

mi · x′i +

τ∑
i=1

bi · xi

]
x0

.



Now, when we choose xi from the lossy public key pk′, xi are uniform on
Z ∩ [0, x0), and we may use the Leftover Hash Lemma. In fact we may use
the simplified version shown in Lemma 1 of [DGHV10] to conclude that the
distribution of [

∑τ
i=1 bi · xi]x0 is statistically close to the uniform distribution on

Z ∩ [0, x0), when the parameters are chosen according to Section 3.2. Therefore,
the distribution of c is uniformly random, regardless of the plaintext vector m.
This shows that IDGHV is a lossy encryption scheme, and the semantic security
directly follows from that. ut

3.4 Hardness Assumption

We show that the semantic security of our scheme can be based on a simpler
decisional assumption with a single prime p. For two specific integers p and q0,
we use the following distribution over γ-bit integers:

Dρ(p, q0) := {Choose q ← [0, q0), r ← Z ∩ (−2ρ, 2ρ) : Output y = q · p+ r} .

Definition 3 (Decisional Approximate GCD Problem: DACD). The
(ρ, η, γ)-decisional approximate GCD problem is: for a random η-bit prime p,
given a γ-bit integer x0 = q0 · p and polynomially many samples from Dρ(p, q0),
determine b ∈ {0, 1} from z = x + r · b mod x0 where x ← Dρ(p, q0) and
r ← Z ∩ [0, x0).

The (ρ, η, γ)-decisional approximate GCD assumption then states that this
problem is hard for any polynomial time distinguisher.

We now give a sketch of the proof of the following lemma. For the detailed
proof, see the full version [KLYC13].

Lemma 1. The `-decisional approximate GCDQ problem is hard under the
decisional approximate GCD assumption.

Proof (Sketch). The main difference between DACD and 1-DACDQ is the
existence of Q0 in the latter problem. When Q0 is coprime to x0, it is easy to
see that both problems are equivalent. Namely, multiplying by Q0 modulo x0
efficiently converts samples from Dρ(p, q0) to Dρ((p); (Q0); q0).

Now, we need to show that the `-DACDQ problem is hard under the
1-DACDQ assumption. We use a hybrid argument. From the 1-DACDQ prob-
lem instance x0 = q0 ·p and samples from Dρ((p); (Q0); q0), we choose `−1 primes
ourselves. Putting a prime p from 1-DACDQ at a random position i0 among the
pi’s, we can construct samples from Dρ(p;Q; q0) using the Chinese Remainder
Theorem with samples from Dρ((p); (Q0); q0). And a set X also can be efficiently
constructed. For the challenge z, we construct a `-DACDQ challenge z′ such
that

z′ = CRTx0,(pi)i6=i0
(z, r′0Q0, . . . , r

′
i0−1Qi0−1, e

′
i0+1, . . . , e

′
`−1)

where r′i ← Z ∩ (−2ρ, 2ρ) and e′i ← Z ∩ [0, pi). By the hybrid argument, it can
be shown that any `-DACDQ distinguisher can be efficiently converted to a
1-DACDQ distinguisher. This terminates the proof of Lemma 1. ut



Corollary 1. The IDGHV scheme is semantically secure under the decisional
approximate GCD assumption.

3.5 Application to Secure Large Integer Arithmetic

Secure integer arithmetic is one of the most important applications of homo-
morphic encryption schemes. It includes frequently used statistical functions
such as mean, standard deviation, logistical regression, and secure evaluation of
a multivariate function over the integers. Some applications may require very
large integer inputs in the computation of these functions. For the homomorphic
computation of these functions, one may use FHE supporting homomorphic
bit operations. However, the large ciphertext expansion and rather high cost of
bootstrapping make this cumbersome and inefficient. In fact, even an addition of
two λ-bit integers using bit operations needs computing degree-O(λ) polynomial
over Z2 due to the carry computation. For this reason, it is very important to
construct an efficient somewhat homomorphic scheme supporting large integer
arithmetic on encrypted data.

As mentioned earlier in this section, IDGHV scheme supports arithmetic
operations on ZQ with Q =

∏`−1
i=0 Qi when all Qi’s are pairwise coprime. We can

freely choose ` up to Õ(λ3) depending on the applications. And the advantage of
our scheme in the overhead stands out, as the plaintext space gets larger.

4 Batch DGHV Scheme Based on the Error-Free
Approximate-GCD

In this section, we present a variant of the previous IDGHV scheme but based on
a (weaker) computational assumption instead of the decisional assumption from
Def. 3. This is made possible by adding a new set of elements in the public key
but yields a more intricate scheme.12

Ideally we would like to base the security of the new batch DGHV scheme
on the same assumption as the original single-bit DGHV scheme, i.e. the
Approximate-GCD assumption from Definition 1. However we can only show its
security under the (stronger) Error-Free Approximate-GCD assumption already
considered in [DGHV10,CMNT11,CNT12]. For two specific integers p and q0, we
use the following distribution over γ-bit integers:

Dρ(p, q0) = {Choose q ← [0, q0), r ← Z ∩ (−2ρ, 2ρ) : Output y = q · p+ r} .

Definition 4 (Error-free approximate GCD). The (ρ, η, γ)-error-free ap-
proximate-GCD problem is: For a random η-bit prime p, given y0 = q0 ·p where q0
is a random integer in [0, 2γ/p), and polynomially many samples from Dρ(p, q0),
output p.

12 For the sake of simplicity, we use Q0 = · · · = Q`−1 = 2 throughout the rest of the
paper; however the security proof extends to general Qi’s as in Section 3.



In the following we briefly explain our proof strategy. In the original DGHV
scheme, public-key encryption is performed by masking the message m with a
random subset sum of the public key elements xj = qj · p+ rj as

c =

[
m+ 2r + 2

∑
j∈S

xj

]
x0

. (4)

The semantic security is proved by applying the Leftover Hash Lemma on the
subset sum modulo q0, and using the random 2r in (4) to further randomize the
ciphertext modulo p.

However in the batch scheme it would not be sufficient to add such random
term 2r; namely the same random 2r = 2r mod pi would be added modulo each of
the pi’s, whereas for the security proof to go through these random terms should
be independently distributed modulo each of the pi’s. Therefore a new technique
is required to extend DGHV to a semantically secure batch encryption scheme,
whose security can be based on the Error-Free Approximate-GCD problem.

In the following, we start by describing a variant of DGHV still for a single
bit message m only, but which does extend naturally to the batch setting. We
first consider the DGHV scheme without the additional random 2r, since this
term is of no use in the batch setting. A single message bit m is then encrypted
as

c =
[
m+ 2

∑
i∈S

xi

]
x0

where xi = qi · p+ ri. In order to prove semantic security as in [DGHV10], one
should prove that the values q and r′ given by c = q · p+ 2r′ +m are essentially
random and independently distributed. The randomness of q = 2

∑
i∈S qi mod q0

follows from the Leftover Hash Lemma (LHL) modulo q0. However we cannot
apply the LHL to r′ =

∑
i∈S ri because it is distributed over Z instead of modulo

an integer. Note that in the original scheme the randomness of r′ followed from
adding a random 2r in (4), much larger than the ri’s.

Let us assume that we could somehow reduce the integer variable r′ =
∑
i∈S ri

modulo some integer $. Then we could apply the LHL simultaneously modulo
q0 and modulo $, and the distributions of q mod q0 and r′ mod $ would be
independently random as required. However, during public-key encryption we
certainly do not have access to the variable r′ =

∑
i∈S ri, so we cannot a priori

reduce it modulo an integer $ in the encryption phase.
Our technique is the following: instead of reducing the variable r′ modulo $,

we add a large random multiple of $ to r′. This can be done by extending the
public key with a new element Π such that Π mod p = $. Encryption would
then be performed as

c =
[
m+ 2b ·Π + 2

∑
i∈S

xi

]
x0

(5)

for some large random integer b. Modulo p this gives a new integer r′′ = r′+ b ·$,
and we argue that this enables to proceed as if r′ was actually reduced modulo $.



Namely, if we generate the ri’s such that the sum r′ =
∑
i∈S ri is not much larger

than $, then reducing r′ modulo $ would just subtract a small multiple of $,
which is negligible compared to the large random multiple b ·$ obtained through
(5). Formally the distribution of r′+b ·$ is statistically close to (r′ mod $)+b ·$,
which enables us to apply the LHL to r′ mod $ and eventually obtain a security
proof.

Now the advantage of (5) is that it can be easily extended to the batch
setting. Instead of using a single random multiple of Π, we use a subset sum of `
such multiples Πi, where Πi mod pj = $i,j . The Leftover Hash Lemma is then
applied modulo the lattice generated by the $i,j . This shows that the random
noise values modulo the pi’s follow essentially independent distributions, and
eventually leads to a security proof based on the Error-Free Approximate-GCD
problem above.

4.1 Description

BDGHV.KeyGen(1λ). Generate a collection of ` random η-bit primes pj , 0 6 j <
`, and denote π their product. Let us define the error-free public key element
x0 = q0 · π, where q0 ← Z ∩ [0, 2γ/π) is a 2λ

2

-rough integer.

Generate the following integers xi, x
′
i and Πi with a quotient by π uniformly

and independently distributed in Z∩[0, q0), and with the following distribution
modulo pj for 0 6 j < `:

1 6 i 6 τ, xi mod pj = 2ri,j ,

0 6 i 6 `− 1, x′i mod pj = 2r′i,j + δi,j ,

0 6 i 6 `− 1, Πi mod pj = 2$i,j + δi,j · 2ρ
′+1,

with ri,j ← Z ∩ (−2ρ
′−1, 2ρ

′−1) and r′i,j , $i,j ← Z ∩ (−2ρ, 2ρ). Finally, let

pk =
{
x0, (xi)16i6τ , (x

′
i)06i6`−1 , (Πi)06i6`−1

}
and sk = (pj)06j6`−1.

BDGHV.Encrypt(pk,m ∈ {0, 1}`). Choose random integer vectors b = (bi) ∈
(−2α, 2α)τ and b′ = (b′i)06i6`−1 ∈ (−2α

′
, 2α

′
)` and output the ciphertext:

c =

[
`−1∑
i=0

mi · x′i +

`−1∑
i=0

b′i ·Πi +

τ∑
i=1

bi · xi

]
x0

. (6)

BDGHV.Decrypt(sk, c). Output m = (m0, . . . ,m`−1) where mj ← [c]pj mod 2.

BDGHV.Add(pk, c1, c2). Output c1 + c2 mod x0

BDGHV.Mult(pk, c1, c2). Output c1 · c2 mod x0.



4.2 Parameters and Correctness

The parameters must meet the following constraints (where λ is the security
parameter):

• ρ = Ω(λ) to avoid brute force attack on the noise [CN12,CNT12],

• η > α′ + ρ′ + 1 + log2(`) for correct decryption,

• η > ρ ·Θ(λ log2 λ) for homomorphically evaluating the “squashed decryption”
circuit

• γ = ω(η2 · log λ) in order to thwart lattice-based attacks [DGHV10,CMNT11];

• ρ′ > ρ+ λ and α′ > α+ λ for the proof of semantic security,

• α · τ > γ + λ and τ > ` · (ρ′ + 2) + λ in order to apply the leftover hash
lemma.

To satisfy the above constraints one can take ρ = 2λ, η = Õ(λ2), γ = Õ(λ5),
α = Õ(λ2), τ = Õ(λ3) as in [CNT12], with ρ′ = Õ(λ), α′ = Õ(λ2) and ` = Õ(λ2).
We refer to Section 5.4 for concrete parameters and timings. We show in [CLT13,
Appendix A] that the above scheme is correct for a set of permitted circuits.

4.3 Semantic Security

To prove the semantic security of our scheme, we first introduce a temporary
decisional assumption that is implied by the Error-Free Approximate-GCD
assumption.

Given integers q0 and p0, . . . , p`−1, we define the oracle Oq0,(pi)(v) which,

given as input a vector v ∈ Z`, outputs x with

x = CRTq0,(pi)(q, v0 + 2r0, . . . , v`−1 + 2r`−1)

where q ← [0, q0) and ri ← (−2ρ, 2ρ). Therefore Oq0,(pi)(v) outputs a ciphertext
for the plaintext v. Note that the components vi can be any integer, not only
0, 1.

Definition 5 (O-`-dAGCDλ,γ,η). The oracle `-decisional-approximate-GCD
problem is as follows. Pick random η-bit integers p0, . . . , p`−1 of product π, a

random 2λ
2

-rough q0 ← Z ∩ [0, 2γ/π), a random bit b, set v0 = (0, . . . , 0) and
v1 ← {0, 1}`. Given x0 = q0p0 · · · p`−1, z = Oq0,(pi)(vb) and oracle access to
Oq0,(pi), guess b.

This decisional problem is somehow to distinguish between an encryption of
0 and an encryption of a random message. To prove the semantic security of our
scheme, we must show that this still holds when using the public-key encryption
procedure instead of the oracle Oq0,(pi); this essentially amounts to applying a
variant of the Leftover Hash Lemma. We refer to the full version [CLT13] for the
proof.



Theorem 2. The batch DGHV scheme is semantically secure under the oracle
`-decisional-approximate-GCD assumption.

Lemma 2. The oracle-`-decisional-approximate-GCD problem is hard if the
error-free-approximate-GCD problem is hard.

Corollary 2. The batch DGHV scheme is semantically secure under the error-
free-approximate-GCD assumption.

5 Making the Scheme Fully Homomorphic

In this section, we follow Gentry’s blueprint [Gen09] to transform a somewhat
homomorphic encryption scheme into a fully homomorphic encryption scheme.
This technique applies directly to both schemes described in Section 3 and 4.

5.1 The Squashed Scheme

As mentioned in the introduction, to follow Gentry’s blueprint and make our
somewhat homomorphic schemes amenable to bootstrapping, we first need to
squash the decryption circuit, i.e. change the decryption procedure so as to
express it as a low degree polynomial in the bits of the secret key.

We use the same technique as in the original DGHV scheme [DGHV10]
but generalize it to the batch setting. We add to the public key a set y =
{y0, . . . , yΘ−1} of rational numbers in [0, 2) with κ bits of precision after the
binary point, such that for all 0 6 j 6 ` − 1 there exists a sparse subset
Sj ⊂ [0, Θ − 1] of size θ with

∑
i∈Sj

yi ' 1/pj mod 2. The secret-key is replaced
by the indicator vector of the subsets Sj . Formally the scheme is modified as
follows:

BDGHV.KeyGen(1λ). Generate sk∗ = (p0, . . . , p`−1) and pk∗ as before. Set xpj ←
b2κ/pje for j = 0, . . . , `− 1. Choose at random Θ-bit vectors sj = (sj,0, . . . ,
sj,Θ−1), each of Hamming weight θ, for 0 6 j < `. Choose at random Θ
integers ui ∈ [0, 2κ+1) for 0 6 i < Θ, fulfilling the condition that xpj =∑Θ−1
i=0 sj,i · ui mod 2κ+1 for all j. Set yi = ui/2

κ and y = (y0, . . . , yΘ−1).
Hence, each yi is a positive number smaller than two, with κ bits of precision
after the binary point, and verifies

1

pj
=

Θ−1∑
i=0

sj,i · yi + εj mod 2 (7)

for some |εj | < 2−κ. Finally, output the key pair

sk = (s0, . . . , s`−1) and pk = (pk∗, y0, . . . , yΘ−1) .



BDGHV.Expand(pk, c). The ciphertext expansion procedure takes as input a
ciphertext c and computes an expanded ciphertext: for every 0 6 i 6 Θ − 1,
compute zi given by zi = bc · yie mod 2 with n bits of precision after the
binary point. Define the vector z = (zi)i=0,...,Θ−1 and output the expanded
ciphertext (c, z).

BDGHV.Decrypt(sk, c,z). Output m = (m0, . . . ,m`−1) with

mj ←

[⌊
Θ−1∑
i=0

sj,i · zi

⌉]
2

⊕ (c mod 2) . (8)

This completes the description of the scheme. We use n = dlog2(θ + 1)e as
in [CMNT11].

5.2 Bootstrapping

As in [DGHV10], we get that the BDGHV scheme is bootstrappable. Moreover,
the Recrypt procedures works naturally in parallel over the plaintext bits.

Namely the decryption equation (8) for the batch scheme can be evaluated
homomorphically by providing for all 0 6 i < Θ an encryption σi of the `
secret-key bits sj,i, with:

σi = Encrypt(s0,i, . . . , s`−1,i) .

This gives a new ciphertext that encrypts the same `-bit plaintext vector, but with
a (possibly) reduced noise. Notice that the ` equations in (8) are homomorphically
evaluated in parallel, one in each of the ` plaintext slots of the ciphertext.
Therefore, with the same complexity as a single Recrypt operation in the original
scheme, the batch Recrypt operation is performed in parallel over the ` slots.

From Gentry’s theorem, we obtain a homomorphic encryption scheme for
circuits of any depth. The proof of the following theorem is identical to the proof
of [CMNT11, Theorem 5.1].

Theorem 3. Let E be the above scheme, and let DE be the set of augmented
(squashed) decryption circuits. Then DE ⊂ C(PE).

5.3 Complete Set of Operations for Plaintext Vectors

From what precedes, we can implement homomorphic SIMD-type operations
on our packed ciphertexts, where the Add and Mult operations are applied to
` different input bits at once. However, a desired feature when dealing with
packed ciphertexts is the ability to move values between plaintext slots with
a public Permute operation. As opposed to [GHS12a] we cannot rely on an
underlying algebraic structure. Instead we show how to perform such Permute at
ciphertext refresh time, i.e. when performing a Recrypt. This feature is therefore
supported at no extra cost assuming a ciphertext refresh operation has to be
carried out anyway (i.e. after each Mult gate). Notice that a similar technique



was independently described in [BGH13] for the RLWE-based fully homomorphic
schemes [BV11a,BV11b,GHS12a].

For any permutation ζ over {0, . . . , `− 1}, we want to homomorphically
evaluate the function

`-Permute (ζ, (u0, . . . , u`−1)) =
(
uζ(0), . . . , uζ(`−1)

)
.

Let ζ be a permutation to be applied homomorphically on the plaintext bits.
During the KeyGen operation, the authority can define for each i ∈ [0, Θ − 1]

σζi = Encrypt(sζ(0),i, . . . , sζ(`−1),i).

Now, performing the ciphertext refresh operation (“recryption”) with the σζi ’s
instead of the σi’s gives a ciphertext of the plaintext vector (mζ(0), . . . ,mζ(`−1))
which is exactly the desired result. Therefore any permutation ζ can be imple-
mented by putting the corresponding σζi ’s in the public key.

To be able to perform arbitrary permutations on the plaintext vector, one
can augment the public key by a minimal set of permutations ζ’s that generates
the whole permutation group S` over {0, . . . , `− 1}, such as the transposition
(1, 2) and the cycle (1, 2, . . . , `). In that case the impact on the public key is small
(as only 2 · Θ · γ bits are added), but the performance overhead is significant,
since as many as O(`) ciphertext refresh operations may be needed to carry out
a desired permutation.

A more practical solution is to use a Beneš network [Ben64] of permutations
as in [GHS12a]. In that case it suffices to add 2 log2(`) permuting elements to the
public key to enable circular rotations by ±2i bit position. Then any permutation
can be obtained in (2 log(`)− 1) steps. At each step, at most two rotations and
two Select operations are performed, where the Select operation on c1 and c2
constructs a ciphertext where each of the ` plaintext slot is chosen either from c1
or c2; such Select operation is easily obtained with two Mult (and two recryptions)
and one Add, see [GHS12a]. This approach has a limited impact on the public
key (2 log2(`) ·Θ · γ more bits), and any permutation can then be performed with
at most 6 · (2 log2 `− 1) recryptions.

In practice, however, the circuit to be homomorphically evaluated is likely to
be known in advance, so it is possible to put a set of distinguished permutations
in the public key that provides an optimal time-memory trade-off. In the next
section, we describe two variants of homomorphic evaluations of the full AES
circuit that require respectively only four permutations and no permutation at
all.

5.4 Implementation Results

We provide in Table 1 concrete key sizes and timings for the batch DGHV scheme,
based on a C++ implementation using the GMP library. We use essentially the
same parameters as in [CNT12,CT12]; in particular, the parameters take into
account the attack from [CN12]. We use the same compressed public-key variant



as in [CNT12]; a complete description of the scheme is given in [CLT13]. As
in [CMNT11,CNT12], we take n = 4 and θ = 15 for all security levels.

We obtain essentially the same running times as in [CNT12]. The main
difference is that the Recrypt operation is now performed in parallel over ` = 531
bits (for the “Large” setting) instead of a single bit.

Instance λ ` ρ η γ/106 τ Θ pk size

Small 52 37 41 1558 0.90 661 555 13 MB
Medium 62 138 56 2128 4.6 2410 2070 304 MB
Large 72 531 71 2698 21 8713 7965 5.6 GB

KeyGen Encrypt Decrypt Expand Recrypt

1.74s 0.23s 0.02s 0.08s 1.10s
73s 3.67s 0.45s 1.60s 11.9s

3493s 61s 9.8s 28s 172s

Table 1. Benchmarking for our Batch DGHV with a compressed public key on a
desktop computer (Intel Core i7 at 3.4Ghz, 32GB RAM).

6 Homomorphic Evaluation of the AES Circuit

In this section, we show how to homomorphically evaluate the AES-128 en-
cryption circuit using the batch encryption scheme of Section 4 with com-
pressed public key elements (see [CLT13]), and provide concrete timings. A
similar implementation with the RLWE-based fully-homomorphic encryption
scheme [BV11a,BV11b,GHS12a] was already described in [GHS12b]. As men-
tioned in [SV11,NLV11,GHS12b], such an implementation can be used to optimize
the communication cost in cloud-based applications. Indeed, since the ciphertext
expansion ratio in most fully-homomorphic encryption schemes is huge, data
can rather be sent encrypted under AES with a ciphertext expansion equal to 1,
along with the public key pkFHE of the FHE scheme as well as the AES secret-key
encrypted under pkFHE. Then, before the cloud performs homomorphic operations
on the data, it can first run the AES decryption algorithm homomorphically to
obtain the plaintext data encrypted under pkFHE.

We consider our BDGHV scheme with ` slots. We describe two variants of our
implementation which we call byte-wise bitslicing and state-wise bitslicing.

Byte-Wise Bitslicing. In this representation, the 16-byte AES state is viewed
as a matrix of 16 rows of 8 bits each (one row for every byte). Each of the
8 columns is then stored on a different ciphertext. Therefore an AES state is
stored in 8 ciphertexts, and one can perform k = `/16 AES encryptions in
parallel using these 8 ciphertexts. Formally the AES state is composed of the
ciphertexts c0, . . . , c7, where the underlying plaintexts m0, . . . ,m7 are such that
mi[k · 16 + j] is the i-th bit of the j-th element of the AES state of the k-th
AES (see Figure 1).13 We briefly describe how to implement the AES stages; full
details on the implementation are given in [CLT13].

13 Thus, m0 represents the LSBs of the AES states of the k AES-plaintexts, and m7

the MSBs. This construction is similar to general-purpose bitslicing [Bih97,KS09].



A
E

S
1

A
E

S
2

. . .

A
E

S
k

A
E

S
1

A
E

S
2

. . .

A
E

S
k

A
E

S
1

A
E

S
2

. . .

A
E

S
k

A
E

S
1

A
E

S
2

. . .

A
E

S
k

. . .

A
E

S
1

A
E

S
2

. . .

A
E

S
k

. . .

A
E

S
1

A
E

S
2

. . .

A
E

S
k

Row 0 Row 1 Row 2 Row 3 . . . Row 0 . . . Row 3
Column 0 . . . Column 3

Fig. 1. Bit ordering in mi in the byte-wise bitslicing representation

The AddRoundKey stage performs a XOR between the AES state and the
current round key. This operation only consists of 8 Add operations. To minimize
the number of Recrypt during the SubBytes stage, we used the 115 gates circuit
of Boyar and Peralta [BP10] to compute the Sbox.14 Thus, this step needs 17
Recrypt operations on 9 of the temporary variables and on the 8 outputs. In total,
this stage costs 83 Add, 32 Mult and 17 Recrypt.

The ShiftRows stage consists in performing a permutation of the state. For
this we add the σζi ’s of the associated permutation ζ in the public key, and
the rotation is performed at no additional cost during the final Recrypt of the
SubBytes stages. Finally the MixColumns stage requires 3 permutations of the
AES state; this yields a total of 3× 8 = 24 Recrypt and 38 Add, and the addition
of the σζi ’s of three permutations ζ to the public key.

In total, our byte-wise implementation of AES requires 1260 Add, 320 Mult,
and 377 Recrypt.

State-Wise Bitslicing. In this representation, each of the 128 bits of the AES state
is stored in a different ciphertext. One can then perform k = ` AES encryptions
in parallel. This corresponds to a full bitslice implementation of AES. More
precisely the AES state is composed of 128 ciphertexts c0, . . . , c127, where the
underlying plaintexts m0, . . . ,m127 are such that mi+j·8[k] is the i-th bit of the
j-th byte of the state of the k-th AES.

The AddRoundKey stage requires 128 Add operations. The SubBytes stage
is implemented using the same circuit as above. Since the circuit needs to be
evaluated on each of the 16 bytes of the AES state, the stage costs 16×83 = 1328
Add, 16 × 32 = 512 Mult, and 16 × 17 = 272 Recrypt. The ShiftRows stage
consists in performing a permutation of the state, and this is done by permuting
the indices of bits in the homomorphic AES state at no additional cost. The
MixColumns stage requires 608 Add. The total cost the AES evaluation is then
14688 Add, 5120 Mult and 2448 Recrypt.

Implementation Results. We implemented both variants using the concrete
parameters from Table 1; our results are summarized in Table 2. The relative
time is the total time of AES evaluation divided by the number of encryptions
processed in parallel. Notice that the state-wise bitslicing variant yields better
relative times.

Our timings are comparable to [GHS12b] for the RLWE-based scheme, where
a relative time of 5 minutes per block is reported; the authors used a 24-core

14 To minimize the number of bootstrappings in a given circuit we refer to [LP13].



(a) Timings for byte-wise representation

Instance λ ` # of enc. Add- ShiftRows Mix- Total AES Relative
in parallel RoundKey & SubBytes Columns (in hours) time

Small 52 48 3 0.04s 21s 29s 0.125 2min 30s

Medium 62 144 9 0.3s 210s 290s 1.25 8min 20s

Large 72 528 33 1.6s 2970s 4165s 18.3 33min

(b) Timings for state-wise representation

Instance λ ` # of enc. Add- Sub- Shift- Mix- Total AES Relative
in parallel RoundKey Bytes Rows Columns (in hours) time

Small 52 37 37 0.06s 309s 0s 0.09s 0.74 1min 12s

Medium 62 138 138 4.5s 3299s 0s 0.44s 7.86 3min 25s

Large 72 531 531 27s 47656s 0.04s 2.8s 113 12min 46s

Table 2. Timings of byte-wise and state-wise homomorphic AES developed in C++
with GMP, running on a desktop computer (Intel Core i7 at 3.4Ghz, 32GB RAM).

server with 256GB of RAM, while our program runs on a more modest desktop
computer with 4 hyper-threaded cores and 32GB of RAM (the whole public key
fits in RAM). We claim a slightly lower security level, however: 72 bits versus 80
bits for the implementation from [GHS12b].

Acknowledgments. We would like to thank Taekyoung Kwon and Hyung Tae
Lee for valuable comments. The first, third, and fourth authors were supported
by the National Research Foundation of Korea (NRF) grant funded by the
Korea government (MEST) (No. 2012-0001243). The fourth author was also
supported by Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education, Science and
Technology (No. 2012R1A1A2039129). The last author was supported by the
National Research Foundation of Korea (NRF) grant funded by the Korean
government (MEST) (No. 2011–0025127).

References

[Ben64] Václad E. Beneš. Optimal rearrangeable multistage connecting networks.
Bell Systems Technical Journal, 43(7):1641–1656, 1964.

[BGH13] Zvika Brakerski, Craig Gentry, and Shai Halevi. Packed ciphertexts in
LWE-based homomorphic encryption. In Kaoru Kurosawa and Goichiro
Hanaoka, editors, PKC 2013, volume 7778 of Lecture Notes in Computer
Science, pages 1–13. Springer, 2013.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully
homomorphic encryption without bootstrapping. In Shafi Goldwasser, editor,
ITCS 2012, pages 309–325. ACM, 2012.

[BHY09] Mihir Bellare, Dennis Hofheinz, and Scott Yilek. Possibility and impossibility
results for encryption and commitment secure under selective opening. In



Antoine Joux, editor, EUROCRYPT 2009, volume 5479 of Lecture Notes in
Computer Science, pages 1–35. Springer, 2009.

[Bih97] Eli Biham. A fast new DES implementation in software. In FSE ’97, volume
1267 of Lecture Notes in Computer Science, pages 260–272. Springer, 1997.

[BP10] Joan Boyar and René Peralta. A new combinational logic minimization
technique with applications to cryptology. In Paola Festa, editor, Exper-
imental Algorithms, volume 6049 of Lecture Notes in Computer Science,
pages 178–189. Springer, 2010.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching
from classical GapSVP. In Reihaneh Safavi-Naini and Ran Canetti, editors,
CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, pages
868–886. Springer, 2012.

[BV11a] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic
encryption from (standard) LWE. In Proceedings of the 2011 IEEE 52nd
Annual Symposium on Foundations of Computer Science, FOCS’11, pages
97–106. IEEE Computer Society, 2011.

[BV11b] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption
from Ring-LWE and security for key dependent messages. In Phillip Rogaway,
editor, CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science,
pages 505–524. Springer, 2011.

[CH11] Henry Cohn and Nadia Heninger. Approximate common divisors via lattices.
Cryptology ePrint Archive, Report 2011/437, 2011. http://eprint.iacr.

org/.

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Batch fully
homomorphic encryption over the integers. Cryptology ePrint Archive,
Report 2013/036, 2013. http://eprint.iacr.org/.

[CMNT11] Jean-Sébastien Coron, Avradip Mandal, David Naccache, and Mehdi Ti-
bouchi. Fully homomorphic encryption over the integers with shorter public
keys. In Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of Lecture
Notes in Computer Science, pages 487–504. Springer, 2011.

[CN12] Yuanmi Chen and Phong Nguyen. Faster algorithms for approximate com-
mon divisors: Breaking fully-homomorphic-encryption challenges over the
integers. In David Pointcheval and Thomas Johansson, editors, EURO-
CRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages
502–519. Springer, 2012.

[CNT12] Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. Public key
compression and modulus switching for fully homomorphic encryption over
the integers. In David Pointcheval and Thomas Johansson, editors, EURO-
CRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages
446–464. Springer, 2012.

[CT12] Jean-Sébastien Coron and Mehdi Tibouchi. Implementation of the fully
homomorphic encryption scheme over the integers with compressed public
keys in sage, 2012. https://github.com/coron/fhe.

[DGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan.
Fully homomorphic encryption over the integers. In Henri Gilbert, editor,
EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer Science,
pages 24–43. Springer, 2010.

[Gen09] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford
University, 2009. http://crypto.stanford.edu/craig.



[GH11] Craig Gentry and Shai Halevi. Implementing Gentry’s fully-homomorphic
encryption scheme. In Kenneth Paterson, editor, EUROCRYPT 2011,
volume 6632 of Lecture Notes in Computer Science, pages 129–148. Springer,
2011.

[GHS12a] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryp-
tion with polylog overhead. In David Pointcheval and Thomas Johansson,
editors, EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer
Science, pages 465–482. Springer, 2012.

[GHS12b] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation
of the AES circuit. In Reihaneh Safavi-Naini and Ran Canetti, editors,
Advances in Cryptology - CRYPTO 2012, volume 7417 of Lecture Notes in
Computer Science, pages 850–867. Springer, 2012.

[HG01] Nick Howgrave-Graham. Approximate integer common divisors. In CaLC,
pages 51–66, 2001.

[KLYC13] Jinsu Kim, Moon Sung Lee, Aaram Yun, and Jung Hee Cheon. CRT-based
fully homomorphic encryption over the integers. Cryptology ePrint Archive,
Report 2013/057, 2013. http://eprint.iacr.org/.

[KS09] Emilia Käsper and Peter Schwabe. Faster and timing-attack resistant AES-
GCM. In Christophe Clavier and Kris Gaj, editors, CHES 2009, volume
5747 of Lecture Notes in Computer Science, pages 1–17. Springer, 2009.

[Lag85] J. C. Lagarias. The computational complexity of simultaneous diophantine
approximation problems. SIAM J. Comput., 14(1):196–209, 1985.

[LATV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-
fly multiparty computation on the cloud via multikey fully homomorphic
encryption. In Proceedings of the 44th Symposium on Theory of Computing
Conference, STOC 2012, pages 1219–1234. ACM, 2012.

[Len87] Jr. Lenstra, H. W. Factoring integers with elliptic curves. The Annals of
Mathematics, 126(3):pp. 649–673, 1987.

[LP13] Tancrède Lepoint and Pascal Paillier. On the minimal number of bootstrap-
pings in homomorphic circuits. In WAHC 2013, Lecture Notes in Computer
Science. Springer, 2013. To appear.

[Mem12] Memoirs of the 6th Cryptology Paper Contest, arranged by Korea Commu-
nications Commission, 2012.

[NLV11] Michal Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. Can homomor-
phic encryption be practical? In Proceedings of the 3rd ACM workshop on
Cloud computing security workshop, CCSW ’11, pages 113–124. ACM, 2011.

[SV10] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic encryption
with relatively small key and ciphertext sizes. In Phong Nguyen and David
Pointcheval, editors, PKC 2010, volume 6056 of Lecture Notes in Computer
Science, pages 420–443. Springer, 2010.

[SV11] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic SIMD opera-
tions, 2011. To appear in Designs, Codes and Cryptography.


