
Cryptanalysis of Full RIPEMD-128

Franck Landelle1 and Thomas Peyrin2,?

1 DGA MI, France
2 Division of Mathematical Sciences, School of Physical and Mathematical Sciences,

Nanyang Technological University, Singapore
landelle.franck@laposte.net thomas.peyrin@gmail.com

Abstract. In this article we propose a new cryptanalysis method for
double-branch hash functions that we apply on the standard RIPEMD-128,
greatly improving over know results. Namely, we were able to build a very
good differential path by placing one non-linear differential part in each
computation branch of the RIPEMD-128 compression function, but not
necessarily in the early steps. In order to handle the low differential prob-
ability induced by the non-linear part located in later steps, we propose
a new method for using the freedom degrees, by attacking each branch
separately and then merging them with free message blocks. Overall,
we present the first collision attack on the full RIPEMD-128 compression
function as well as the first distinguisher on the full RIPEMD-128 hash
function. Experiments on reduced number of rounds were conducted,
confirming our reasoning and complexity analysis. Our results show that
16 years old RIPEMD-128, one of the last unbroken primitives belonging
to the MD-SHA family, might not be as secure as originally thought.

Key words: RIPEMD-128, collision, distinguisher, hash function.

1 Introduction

Recent impressive progresses in hash function cryptanalysis [25, 28, 29, 27] led to
the fall of most standardized primitives, such as MD4, MD5, SHA-0 and SHA-1. All
these algorithms share the same design rationale for their compression functions
(i.e. they incorporate additions, rotations, xors and boolean functions in an un-
balanced Feistel network), and we usually refer to them as the MD-SHA family. As
of today, among this family only SHA-2, RIPEMD-128 and RIPEMD-160 remain
unbroken.

The notation RIPEMD represents several distinct hash functions related to
the MD-SHA-family, the first representative being RIPEMD-0 [2] that was recom-
mended in 1992 by the European RACE Integrity Primitives Evaluation (RIPE)
consortium. Its compression function basically consists in two MD4-like [20] func-
tions computed in parallel (but with different constant additions for the two

? Supported by the Singapore National Research Foundation Fellowship 2012 (NRF-
NRFF2012-06).

branches), with 48 steps in total. Early cryptanalysis by Dobbertin on a reduced
version of the compression function [9] seemed to indicate that RIPEMD-0 was a
weak function and this was fully confirmed much later by Wang et al. [27] who
showed that one can find a collision for the full RIPEMD-0 hash function with as
few as 216 computations.

However, in 1996, due to the cryptanalysis advances on MD4 and on the com-
pression function of RIPEMD-0, the original RIPEMD-0 was reinforced by Dob-
bertin, Bosselaers and Preneel [10] to create two stronger primitives RIPEMD-128
and RIPEMD-160, with 128/160-bit output and 64/80 steps respectively (two
other less known 256 and 320-bit output variants RIPEMD-256 and RIPEMD-320

were also proposed, but with a claimed security level equivalent to an ideal
hash function with a twice smaller output size). The main novelty compared
to RIPEMD-0 is that the two computation branches were made much more dis-
tinct by using not only different constants, but also different rotation values
and boolean functions, which greatly hardens the attacker’s task in finding good
differential paths for both branches at a time. The security seems to have in-
deed increased since as of today no attack is known on the full RIPEMD-128 or
RIPEMD-160 compression/hash functions and the two primitives are worldwide
ISO/IEC standards [12].

Even though no result is known on the full RIPEMD-128 and RIPEMD-160

compression/hash functions yet, many analysis were conducted in the recent
years. In [17], a preliminary study checked up to what extent can the known
attacks [27] on RIPEMD-0 apply to RIPEMD-128 and RIPEMD-160. Then, following
the extensive work on preimage attacks for MD-SHA family, [21, 19, 26] describe
high complexity preimage attacks on up to 36 steps of RIPEMD-128 and 31 steps of
RIPEMD-160. Collision attacks were considered in [16] for RIPEMD-128 and in [15]
for RIPEMD-160, with 48 and 36 steps broken respectively. Finally, distinguishers
based on non-random properties such as second-order collisions are given in [16,
22, 15], reaching about 50 steps with a very high complexity.

Our contributions. In this article, we introduce a new type of differential
path for RIPEMD-128 using one non-linear differential trail for both left and right
branches and, in contrary to previous work, not necessarily located in the early
steps (Section 3). The important differential complexity cost of these two parts
is mostly avoided by using the freedom degrees in a novel way: some message
words are used to handle the non-linear parts in both branches and the remain-
ing ones are used to merge the internal states of the two branches (Section 4).
Overall, we obtain the first cryptanalysis of the full 64-round RIPEMD-128 hash
and compression functions. Namely, we provide a distinguisher based on a differ-
ential property for both the full 64-round RIPEMD-128 compression function and
hash function (Section 5). Previously best-known results for non-randomness
properties only applied to 52 steps of the compression function, 48 steps of the
hash function. More importantly, we also derive a semi-free-start (SFS) collision
attack on the full RIPEMD-128 compression function (Section 5), significantly
improving the previous free-start (FS) collision attack on 48 steps. Any further
improvement of our techniques is likely to provide a practical SFS collision attack

Table 1. Summary of known and new results on RIPEMD-128 hash function

Function Size Key Setting Target #Steps Complexity Ref.
RIPEMD-128 128 comp. function preimage 35 2112 [19]
RIPEMD-128 128 hash function preimage 35 2121 [19]
RIPEMD-128 128 hash function preimage 36 2126.5 [26]
RIPEMD-128 128 comp. function collision 48 240 [16]
RIPEMD-128 128 comp. function collision 60 257.57 new
RIPEMD-128 128 comp. function collision 63 259.91 new
RIPEMD-128 128 comp. function collision Full 261.57 new
RIPEMD-128 128 hash function collision 38 214 [16]
RIPEMD-128 128 comp. function non-rand. 52 2107 [22]
RIPEMD-128 128 comp. function non-rand. Full 259.57 new
RIPEMD-128 128 hash function non-rand. 48 270 [16]
RIPEMD-128 128 hash. function non-rand. Full 2105.40 new

on the RIPEMD-128 compression function. In order to increase the confidence in
our reasoning, we implemented independently the two main parts of the attack
(the merge and the probabilistic part) and the observed complexity matched our
predictions. Our results and previous works complexities are given in Table 1 for
comparison.

2 Description of RIPEMD-128

RIPEMD-128 [10] is a 128-bit hash function that uses the Merkle-Damg̊ard con-
struction as domain extension algorithm: the hash functionH is built by iterating
a 128-bit compression function h that takes as input a 512-bit message block mi

and a 128-bit chaining variable cvi: cvi+1 = h(cvi,mi), where the message m
to hash is padded beforehand to a multiple of 512 bits3 and the first chaining
variable is set to a predetermined initial value cv0 = IV .

We refer to [10] for a complete description of RIPEMD-128. In the rest of this
article, we denote by [Z]i the i-th bit of a word Z, starting the counting from 0.
� and � represent the modular addition and subtraction on 32 bits, and ⊕, ∨,
∧, the bitwise “exclusive or”, the bitwise “or”, and the bitwise “and” function
respectively.

2.1 RIPEMD-128 compression function

The RIPEMD-128 compression function is based on MD4, with the particularity
that it uses two parallel instances of it. We differentiate these two computation
branches by left and right branch and we denote by Xi (resp. Yi) the 32-bit
word of left branch (resp. right branch) that will be updated during step i of the
compression function. The process is composed of 64 steps divided into 4 rounds
of 16 steps each in both branches.

Initialization. The 128-bit input chaining variable cvi is divided into 4 words
hi of 32 bits each, that will be used to initialize the left and right branch 128-bit

3 The padding is the same as for MD4: a “1” is first appended to the message, then
x “0” bits (with x = 512 − (|m| + 1 + 64 (mod 512))) are added, and finally the
message length |m| coded on 64 bits is appended as well.

internal state: X−3 = h0, X−2 = h1, X−1 = h2, X0 = h3, Y−3 = h0, Y−2 = h1,
Y−1 = h2, Y0 = h3

The message expansion. The 512-bit input message block is divided into
16 words Mi of 32 bits each. Each word Mi will be used once in every round
in a permuted order (similarly to MD4) and for both branches. We denote by
W l
i (resp. W r

i) the 32-bit expanded message word that will be used to update
the left branch (resp. right branch) during step i. We have for 0 ≤ j ≤ 3 and
0 ≤ k ≤ 15: W l

j·16+k = Mπl
j(k)

and W r
j·16+k = Mπr

j (k)
, where πlj and πrj are

permutations.

The step function. At every step i, the registers Xi+1 and Yi+1 are updated
with functions f lj and frj that depends on the round j in which i belongs:

Xi+1 = (Xi−3 � Φlj(Xi, Xi−1, Xi−2) �W l
i �Kl

j)
≪sli ,

Yi+1 = (Yi−3 � Φrj(Yi, Yi−1, Yi−2) �W r
i �Kr

j)≪sri ,

where Kl
j ,K

r
j are 32-bit constants defined for every round j and every branch,

sli, s
r
i are rotation constants defined for every step i and every branch, Φlj , Φ

r
j are

32-bit boolean functions defined for every round j and every branch. All these
constants and functions, as well as the IV and the permutations πlj and πrj can
be found in the original RIPEMD-128 documentation [10].

The finalization. A finalization and a feed-forward is applied when all 64 steps
have been computed in both branches. The four 32-bit words h′i composing
the output chaining variable are finally obtained by: h′0 = X63 � Y62 � h1,
h′1 = X62 � Y61 � h2, h′2 = X61 � Y64 � h3, h′3 = X64 � Y63 � h0

3 A new family of differential paths for RIPEMD-128

3.1 The general strategy

The first task for an attacker looking for collisions in some compression function
is to set a good differential path. In the case of RIPEMD and more generally
double or multi-branches compression functions, this can be quite a difficult task
because the attacker has to find a good path for all branches at the same time.
This is exactly what multi-branches functions designers are hoping: it is unlikely
that good differential paths exist in both branches at the same time when the
branches are made distinct enough (note that the weakness of RIPEMD-0 is that
both branches are almost identical and the same differential path can be used
for the two branches at the same time).

Differential paths in recent collision attacks on MD-SHA family are composed
of two parts: a low probability non-linear part in the first steps and a high prob-
ability linear part in the remaining ones. Only the latter will be handled proba-
bilistically and impact the overall complexity of the collision finding algorithm,
since during the first steps the attacker can choose message words independently.

This strategy proved to be very effective because it allows to find much better
linear parts than before by relaxing many constraints on them. The previous
approaches for attacking RIPEMD-128 [17, 16] are based on the same strategy,
building good linear paths for both branches, but without including the first
round (i.e. the first 16 steps). The first round in each branch will be covered by
a non-linear differential path and this is depicted left in Figure 1. The collision
search is then composed of two subparts, the first handling the low-probability
non-linear paths with the message blocks (step 1 and then the remaining steps
in both branches are verified probabilistically (step 2).

cvi cvi+1

Linear
Non

Linear

1 2

Linear
Non

Linear

1 2

cvi cvi+1

0 Linear
Non

Linear

1 32

Linear
Non

Linear

1 32

Fig. 1. The previous (left-hand side) and new (right-hand side) approach for collision
search on double-branch compression functions.

This differential path search strategy is natural when one will handle the
non-linear parts in a classic way (i.e. computing only forward) during the col-
lision search, but in Section 4 we will describe a new approach for using the
available freedom degrees provided by the message words in double-branch com-
pression functions (see right in Figure 1): instead of handling the first rounds
of both branches at the same time during the collision search, we will satisfy
them independently (step 1), then use some remaining free message words to
merge the two branches (step 2) and finally handle the remaining steps in both
branches probabilistically (step 3). This new approach broadens the search area
of good linear differential parts, and provides us better candidates in the case of
RIPEMD-128.

3.2 Finding a good linear part

Since any active bit in a linear differential path (i.e. a bit containing a difference)
is likely to cause many conditions in order to control its spread, most success-
ful collision searches start with a low-weight linear differential path, therefore
reducing the complexity as much as possible. RIPEMD-128 is no exception, and
because every message word is used once in every round of every branch in
RIPEMD-128, the best would be to insert only a single-bit difference in one of
them. This was considered in [16], but the authors concluded that none of all
single-word differences leads to a good choice and they eventually had to utilize
one active bit in two message words instead, therefore doubling the amount of
differences inserted during the compression function computation and reducing

the overall number of steps they could attack. By relaxing the constraint that
both non-linear parts must necessarily be located in the first round, we show
that a single-word difference in M14 is actually a very good choice.

Boolean functions. Analyzing the various boolean functions in RIPEMD-128

rounds is very important. Indeed, there are three distinct functions: XOR, ONX and
IF, with all very distinct behavior. The function IF is non-linear and can absorb
differences (one difference on one of its input can be blocked from spreading to
the output by setting some appropriate bit value conditions). In other words,
one bit difference in the internal state during an IF round can be forced to create
only a single bit difference 4 steps later, thus providing no diffusion at all. In the
contrary, XOR is arguably to most problematic function in our situation because
it can not absorb any difference. Thus, one bit difference in the internal state
during an XOR round will double the number of bit differences every step and
quickly lead to an unmanageable amount of conditions. Moreover, the linearity of
the XOR function makes it problematic when using the non-linear part search tool
that strongly leverages non-linear behavior to obtain a solution. In between, the
ONX function is non-linear for two inputs and can absorb difference up to some
extent. We can easily conclude that the goal for the attacker will be to locate
the biggest proportion of differences in the IF or if needed in the ONX functions,
and try to avoid the XOR parts as much as possible.

Choosing a message word. We would like to find the best choice for the
single-message word difference insertion. The XOR function located in the 4th

round of right branch must be avoided, so we are looking for a message word that
is incorporated either very early (so we can propagate the difference backward)
or very late (so we can propagate the difference forward) in this round. Similarly,
the XOR function located in the 1st round of left branch must be avoided, so we
are looking for a message word that is incorporated either very early (for a FS
collision attack) or very late (for a SFS collision attack) in this round as well. It
is easy to check that M14 is a perfect candidate, being the last inserted in 4th

round of right branch and the second-to-last in 1st round of left branch.

le
ft

round 1
XOR

0 1 2 3 4 5 6 7 8 9 101112131415

round 2
IF

7 4 13 1 10 6 15 3 12 0 9 5 2 1411 8

round 3
ONX

3 1014 4 9 15 8 1 2 7 0 6 1311 5 12

round 4
IF

1 9 1110 0 8 12 4 13 3 7 1514 5 6 2

ri
g
h
t

IF

5 14 7 0 9 2 11 4 13 6 15 8 1 10 3 12

ONX

6 11 3 7 0 13 5 101415 8 12 4 9 1 2

IF

15 5 1 3 7 14 6 9 11 8 12 2 10 0 4 13

XOR

8 6 4 1 3 1115 0 5 12 2 13 9 7 1014

Fig. 2. The shape of our differential path for RIPEMD-128. The numbers are the message
words inserted at each step and the red curves represent the rough amount differences
in the internal state during each steps. The arrows show where the bit differences are
injected with M14.

Building the linear part. Once we chose that the only message difference will
be a single bit in M14, we need to build the whole linear part of the differential
path in the internal state. By linear we mean that all modular additions will
be modeled as a bitwise XOR function. Moreover, when a difference is input of a
boolean function, it is absorbed when possible in order to remain as low weight
as possible (though, for a few special bit positions it might be more interesting to
not absorb the difference if it can erase another difference in later steps). We give
the rough skeleton of our differential path in Figure 2. Both differences inserted
in the 4th round of left and right branches are simply propagated forward for
a few steps and we are very lucky that this linear propagation leads to two
final internal states whose difference can be mutually erased after application of
the compression function finalization and feed-forward. All differences inserted
in the 3rd and 2nd rounds of left and right branches are propagated linearly
backward and will be later connected to the bit difference inserted in the 1st

round by the non-linear part. Note that since a non-linear part usually has a low
differential probability, we will try to make it as thin as possible. No difference
will be present in the input chaining variable, so the trail is well suited for a SFS
collision attack. We had to choose the bit position for the message M14 difference
insertion and among the 32 possible choices, the most significant bit was selected
because it is the one maximizing the differential probability of the linear part we
just built (this finds an explanation by the fact that at the most significant bit
position many conditions due to carry control in modular additions are avoided).

3.3 The non-linear differential part search tool

Finding non-linear differential path is a very complex task, but we implemented
a tool similar to [4] for SHA-1 in order to perform this task in an automated way.
Since RIPEMD-128 also belongs to the MD-SHA family, the original technique works
well, in particular when used in a round with a non-linear boolean function such
as IF.

We have to find one non-linear part in each branch and note that they can be
handled independently. We included the special constraint that the non-linear
parts should be as thin as possible (i.e. spreading on the fewer possible amount
of steps), so as to later reduce the overall complexity (linear parts have higher
differential probability than non-linear ones).

3.4 The final differential path skeleton

Applying our non-linear part search tool and reusing notations from [4], we
obtain the differential path in Figure 3, for which we provide at each step i the
differential probability Pl[i] and Pr[i] of left and right branch respectively. Also,
we give for each step i the accumulated probability P[i] starting from last step,

i.e. P[i] =
∏j=i
j=63(Pr[j] · Pl[j]).

One can check that the trail has differential probability 2−85.09 (that is∏63
i=0 Pl[i] = 2−85.09) in the left branch and 2−145 (i.e.

∏63
i=0 Pr[i] = 2−145)

Step Xi
l
i P

l
[i] Yi

r
i P

r
[i] P[i]

-3: --------------------------------

-2: --------------------------------

-1: --------------------------------

00: -----------------------0-------- | 0 0.00 | -----------------------0-------- | 5 -1.00 | -230.09

01: -------------------------------- | 1 0.00 | -----------------------1-------- | 14 -1.00 | -229.09

02: -------------------------------- | 2 0.00 | -----------------------n-------- | 7 0.00 | -228.09

03: -------------------------------- | 3 0.00 | -------------------------------- | 0 -7.00 | -228.09

04: -------------------------------- | 4 0.00 | --0000000----------------------- | 9 -8.00 | -221.09

05: -------------------------------- | 5 0.00 | --1111111----------------------- | 2 -7.00 | -213.09

06: -------------------------------- | 6 0.00 | --nuuuuuu----------------------- | 11 -6.00 | -206.09

07: -------------------------------- | 7 0.00 | --01-----------------------0-000 | 4 -5.00 | -200.09

08: -------------------------------- | 8 0.00 | -01------------------------0-011 | 13 -14.00 | -195.09

09: -------------------------------- | 9 0.00 | -1----------------10-0-----n-nnn | 6 -11.00 | -181.09

10: -------------------------------- | 10 0.00 | 1n010000----------11-1---------- | 15 -14.00 | -170.09

11: -------------------------------- | 11 0.00 | 00111111-----00--0nu-n---------- | 8 -17.00 | -156.09

12: -------------------------------- | 12 0.00 | nuuuuuuu-----11--11--0---------- | 1 -6.00 | -139.09

13: -------------------------------- | 13 0.00 | -------1-----nn--un--u---------- | 10 -5.00 | -133.09

14: -------------------------------- | 14 -1.00 | -------1----01----u------------- | 3 -11.00 | -128.09

15: -----------------------n-------- | 15 -7.00 | -------u----10----0------------- | 12 -6.00 | -116.09

16: -----------unnnn-------0-------- | 7 -12.09 | -----0-u----u------------------- | 6 -3.00 | -103.09

17: -------n---00000-------1-------- | 4 -7.00 | -----u-0----u------------------- | 11 -2.00 | -88.00

18: -------0---01111---------------- | 13 -4.00 | -----u------0------------------- | 3 -2.00 | -79.00

19: ---u---1-------n------------1--- | 1 -4.00 | 0----0-------------------------- | 7 -1.00 | -73.00

20: ---0-----------0------------0--- | 10 -3.00 | u------------------------------- | 0 -2.00 | -68.00

21: ---1-----------1------------n--- | 6 -6.00 | u----------------------------0-- | 13 -2.00 | -63.00

22: ---------------unnnn--------0--- | 15 -10.00 | 0----------------------------u-- | 5 -1.00 | -55.00

23: ---------------00000--------u--- | 3 -7.00 | -----------------------------1-- | 10 -2.00 | -44.00

24: -------------n-11101--------1--- | 12 -4.00 | ----------------------0------0-- | 14 -1.00 | -35.00

25: -----------n-0--------------1--- | 0 -4.00 | ----------------------u--------- | 15 -1.00 | -30.00

26: -------u---0-1------------------ | 9 -5.00 | ----------------------u--------- | 8 -1.00 | -25.00

27: 1------0---1-u------------------ | 5 -3.00 | ----------------------0--------- | 12 0.00 | -19.00

28: 0------1-----0------------------ | 2 -2.00 | -------------------------------- | 4 -1.00 | -16.00

29: n------------1------------------ | 14 -1.00 | -------0------------------------ | 9 -1.00 | -13.00

30: u------------------------------- | 11 -1.00 | -------u------------------------ | 1 -1.00 | -11.00

31: u------------------------------- | 8 -1.00 | -------1------------------------ | 2 -1.00 | -9.00

Fig. 3. The differential path for RIPEMD-128, after the non-linear parts search. The
notations are the same as in [4] and Pl[i], Pr[i] and P [i] are given in log2().

in the right branch. Its overall differential probability is 2−230.09 and since we
have 511 bits of message with unspecified value (one bit of M4 is already set to
“1”), plus 127 unrestricted bits of chaining variable (one bit of X0 = Y0 = h3 is
already set to “0”), we expect many solutions to exist (about 2407.91).

In order for the path to provide a collision, the bit difference inX61 must erase
the one in Y64 during the finalization phase of the compression function: h′2 =
X61�Y64�h3. Since the signs of these two bit differences are not specified, this
happens with probability 2−1 and the overall probability to follow our differential
path and to obtain a collision for a randomly chosen input is 2−231.09.

4 Utilization of the freedom degrees

In the differential path from Figure 3, the difference mask is already entirely
set, but almost all message bits and chaining variable bits have no constraint
with regards to their value. All these freedom degrees can be used to reduce the
complexity of the straightforward collision search (i.e. choosing random 512-bit
message values) that requires about 2231.09 RIPEMD-128 step computations. We
will utilize these freedom degrees in three phases:

• Phase 1: we first fix some internal state and message bits in order to prepare
the attack. This will allow us to handle in advance some conditions in the
differential path as well as facilitating the merging phase. This preparation
phase is done once for all.

• Phase 2: we will fix iteratively the internal state words X21, X22, X23, X24

from left branch, and Y11, Y12, Y13,Y14 from right branch, as well as message
words M12, M3, M10, M1, M8, M15, M6, M13, M4, M11 and M7 (the ordering
is important). This will provide us a starting point for the merging phase and
due to a lack of freedom degrees, we will need to perform this phase several
times in order to get enough starting points to eventually find a solution for
the entire differential path.

• Phase 3: we use the remaining unrestricted message words M0, M2, M5,
M9 and M14 to efficiently merge the internal states of the left and right
branches.

4.1 Phase 1: preparation

Before starting to fix a lot of message and internal state bit values, we need to
prepare the differential path from Figure 3 so that the merge can later be done
efficiently and so that the probabilistic part will not be too costly. Understand-
ing these constraints requires a deep insight of the differences propagation and
conditions fulfillment inside the RIPEMD-128 step function. Therefore, the reader
not interested in the details of the differential path construction is advised to
skip this subsection.

The first constraint that we set is Y3 = Y4. The effect is that the IF function
at step 4 of the right branch, IF(Y2, Y4, Y3) = (Y2 ∧ Y3) ⊕ (Y2 ∧ Y4) = Y3 = Y4,
will not depend on Y2 anymore. We will see in Section 4.3 that this constraint
is crucial in order for the merge to be performed efficiently.

The second constraint is X24 = X25 (except the two bit positions of X24 and
X25 that contain differences), and the effect is that the IF function at step 26 of
the left branch (when computing X27), IF(X26, X25, X24) = (X26∧X25)⊕(X26∧
X24) = X24 = X25, will not depend on X26 anymore. Before the final merging
phase starts, we will not know M0, and having this X24 = X25 constraint will
allow us to directly fix the conditions located on X27 without knowing M0 (since
X26 directly depends on M0). Moreover, we fix the 12 first bits of X23 and X24 to
“01000100u001” and “01000011110” respectively because this choice is among
the few that minimizes the number of bits of M9 that needs to be set in order
to verify many of the conditions located on X27.

The third constraint consists in setting the bits 18 to 30 of Y20 to zero. The
effect is that for these 13 bit positions, the ONX function at step 21 of the right
branch (when computing Y22), ONX(Y21, Y20, Y19) = (Y21 ∨ Y20) ⊕ Y19, will not
depend on the 13 corresponding bits of Y21 anymore. Again, because we will
not know M0 before the merging phase starts, this constraint will allow us to
directly fix the conditions on Y22 without knowing M0 (since Y21 directly depends
on M0).

Finally, the last constraint that we enforce is that the first two bits of Y22
are set to “10” and the first three bits of M14 are set to “011”. This particular
choice of bit values is among the ones that reduces the most the spectrum of
possible carries during the addition of step 24 (when computing Y25) and we
obtain a probability improvement to reach “u” in Y25 from 2−1 to 2−0.25.

We observe that all the constraints set in this subsection consume in total
32 + 51 + 13 + 5 = 101 bits of freedom degrees, and a huge amount of solutions
(about 2306.91) are still expected to exist.

4.2 Phase 2: generating a starting point

Once the differential path properly prepared in phase 1, we would like to utilize
the huge amount of freedom degrees available to fulfill directly as many con-
ditions as possible. Our approach is to fix the value of the internal states in
both the left and right branches (they can be handled independently), exactly in
the middle of the non-linear parts where the number of conditions is important.
Then, we will fix the message words one by one following a particular scheduling,
and propagating the bit values forward and backward from the middle of the
non-linear parts in both branches.

Fixing the internal state. We chose to start by setting the values of X21,
X22, X23, X24 in the left branch, and Y11, Y12, Y13, Y14 in the right branch,
because they are located right in the middle of the non-linear parts. We take the
first word X21 and randomly set all of its unrestricted “-” bits to “0” or “1”
and check if any direct inconsistency is created with this choice. If that is the
case, we simply pick another candidate until no direct inconsistency is deduced.
Otherwise, we can go to the next word X22, etc. If too many tries are failing for
a particular internal state word, we can backtrack and pick another choice for
the previous word. Finally, if no solution is found after a certain amount of time,
we just restart the whole process, so as to avoid being blocked in a particularly
bad subspace with no solution.

Fixing the message words. Similarly to the internal state words, we ran-
domly fix the value of message words M12, M3, M10, M1, M8, M15, M6, M13,
M4, M11 and M7 (following this particular ordering that facilitates the conver-
gence towards a solution). The difference here is that the left and right branch
computations are no more independent since the message words are used in both
of them. However, this does not change anything to our algorithm and the very
same process is applied: for each new message word randomly fixed, we compute
forward and backward from the known internal state values and check for any
inconsistency, using backtracking and reset if needed.

Overall, finding one new solution for this entire phase 2 takes about 5 minutes
of computation on a recent PC with a naive implementation4. However, when
one starting point is found, we can generate many for a very cheap cost by
randomizing message words M4, M11 and M7 since the most difficult part is
to fix the 8 first message words of the schedule. For example, once a solution
is found, one can directly generate 218 new starting points by randomizing a

4 Our message word fixing approach is certainly not optimal, but this phase is not the
bottleneck of our attack and we preferred to aim for simplicity when possible. In case
a very fast implementation is needed, a more efficient but more complex strategy
would be to find a bit per bit scheduling instead of a word-wise one.

certain portion of M7 (because M7 has no impact on the validity of the non-
linear part in the left branch, while in the right branch one has only to ensure
that the last 14 bits of Y20 are set to “u0000000000000”) and this was verified
experimentally.

We give an example of such a starting point in Figure 4 and we emphasize
that by “solution” or “starting point” we mean a differential path instance with
exactly the same probability profile as this one. The 3 constrained bit values
in M14 are coming from the preparation in phase 1, and the 3 constrained bit
values in M9 are necessary conditions in order to fulfill step 26 when computing
X27. It is also important to remark that whatever instance found during this
second phase, the position of these 3 constrained bit values will always be the
same thanks to our preparation in phase 1.

The probabilities displayed in Figure 4 for early steps (steps 0 to 14) are not
meaningful here since they assume an attacker only computing forward, while
in our case we will compute backwards from the non-linear parts to the early
steps. However, we can see that the uncontrolled accumulated probability (i.e.
step 3 in right side of Figure 1) is now improved to 2−29.32, or 2−30.32 if we
add the extra condition for the collision to happen at the end of the RIPEMD-128

compression function.

Step Xi W
l
i

l
i Yi W

r
i

r
i] P[i]

-3: --------------------------------

-2: --------------------------------

-1: --------------------------------

00: -----------------------0-------- | -------------------------------- 0 | -----------------------0-------- | -------------------------------- 5 | -287.32

01: -------------------------------- | 00000101111011100000110011000111 1 | ----------------------01-------- | x----------------------------011 14 | -285.32

02: -------------------------------- | -------------------------------- 2 | -----------------------n-------- | 01000010101100100011001110010110 7 | -284.32

03: -------------------------------- | 00101100100000110100001001011110 3 | 00000000001100101010101011000000 | -------------------------------- 0 | -252.32

04: -------------------------------- | 11110000101100100000101111111100 4 | 00000000001100101010101011000000 | ----------------------0---1-1--- 9 | -220.32

05: -------------------------------- | -------------------------------- 5 | 10111111101001001001010100111100 | -------------------------------- 2 | -189.32

06: -------------------------------- | 00100101011001000111000001010101 6 | 00nuuuuuu11000110111011001100100 | 10111001010001001100100111001100 11 | -157.32

07: -------------------------------- | 01000010101100100011001110010110 7 | 00011011111101110110010011100000 | 11110000101100100000101111111100 4 | -157.32

08: -------------------------------- | 00111100101111111010001110110000 8 | 10101101110101010010000001001011 | 01100011101010100010110001110011 13 | -157.32

09: -------------------------------- | ----------------------0---1-1--- 9 | 111000110011011100101010110n0nnn | 00100101011001000111000001010101 6 | -157.32

10: -------------------------------- | 10001010101010011100001100111101 10 | 1n010000110010011011010100011110 | 00000110110000101001110101001010 15 | -157.32

11: -------------------------------- | 10111001010001001100100111001100 11 | 001111111011100010nu1n1000110110 | 00111100101111111010001110110000 8 | -157.32

12: 00111010101011111111101110101000 | 01101001001010010010111011101100 12 | nuuuuuuu011101111111101101111001 | 00000101111011100000110011000111 1 | -125.32

13: 01110011001001011011001011011110 | 01100011101010100010110001110011 13 | 0101111110101nn10un11u1001001110 | 10001010101010011100001100111101 10 | -93.32

14: 11110100011110100101101111011100 | x----------------------------011 14 | 010111111110010000u1001100000001 | 00101100100000110100001001011110 3 | -61.32

15: 01101010101111000101111n00110110 | 00000110110000101001110101001010 15 | 1010100u111110000001000111001100 | 01101001001010010010111011101100 12 | -29.32

16: 01010110010unnnn0010011000101111 | 01000010101100100011001110010110 7 | 1100101u1111u0011110011000010000 | 00100101011001000111000001010101 6 | -29.32

17: 0100101n011000000000000111111001 | 11110000101100100000101111111100 4 | 11101u101111u0011111001011000010 | 10111001010001001100100111001100 11 | -29.32

18: 10100010110011111110100000101000 | 01100011101010100010110001110011 13 | 11010u11000000101001100110001111 | 00101100100000110100001001011110 3 | -29.32

19: 001u10010000101n0111000101111111 | 00000101111011100000110011000111 1 | 01010000011111101010011111100100 | 01000010101100100011001110010110 7 | -29.32

20: 01100001101001101110001100100101 | 10001010101010011100001100111101 10 | u0000000000000000000000000000000 | -------------------------------- 0 | -29.32

21: 1011110100111111111001101001n110 | 00100101011001000111000001010101 6 | u----------------------------0-- | 01100011101010100010110001110011 13 | -27.32

22: 101110111000101unnnn011010000111 | 00000110110000101001110101001010 15 | 01111011111011110100000101000u10 | -------------------------------- 5 | -27.32

23: 1011111110111000000001000100u001 | 00101100100000110100001001011110 3 | -----------------------------1-- | 10001010101010011100001100111101 10 | -26.32

24: 0100001011011n011101001000011110 | 01101001001010010010111011101100 12 | ---------------------10------0-- | x----------------------------011 14 | -24.32

25: 01000010110n10011101001000011110 | -------------------------------- 0 | ----------------------u--------- | 00000110110000101001110101001010 15 | -24.08

26: -------u---0-1------------------ | ----------------------0---1-1--- 9 | ----------------------u--------- | 00111100101111111010001110110000 8 | -21.08

27: 1------0---1-u------------------ | -------------------------------- 5 | ----------------------0--------- | 01101001001010010010111011101100 12 | -19.08

28: 0------1-----0------------------ | -------------------------------- 2 | -------------------------------- | 11110000101100100000101111111100 4 | -16.08

29: n------------1------------------ | x----------------------------011 14 | -------0------------------------ | ----------------------0---1-1--- 9 | -13.08

30: u------------------------------- | 10111001010001001100100111001100 11 | -------u------------------------ | 00000101111011100000110011000111 1 | -11.00

31: u------------------------------- | 00111100101111111010001110110000 8 | -------1------------------------ | -------------------------------- 2 | -9.00

32: 1------------------------------- | 00101100100000110100001001011110 3 | -------1------------------------ | 00000110110000101001110101001010 15 | -7.00

33: -------------------------------- | 10001010101010011100001100111101 10 | -------------------------------- | -------------------------------- 5 | -7.00

34: -------------------------------- | x----------------------------011 14 | u------------------------------- | 00000101111011100000110011000111 1 | -6.00

35: -------------------------------- | 11110000101100100000101111111100 4 | 0------------------------------- | 00101100100000110100001001011110 3 | -4.00

36: -------------------------------- | ----------------------0---1-1--- 9 | 1------------------------------- | 01000010101100100011001110010110 7 | -3.00

37: -------------------------------- | 00000110110000101001110101001010 15 | -------------------------------- | x----------------------------011 14 | -3.00

38: -------------------------------- | 00111100101111111010001110110000 8 | -------------------------------- | 00100101011001000111000001010101 6 | -3.00

39: -------------------------------- | 00000101111011100000110011000111 1 | -------------------------------- | ----------------------0---1-1--- 9 | -3.00

40: -------------------------------- | -------------------------------- 2 | -------------------------------- | 10111001010001001100100111001100 11 | -3.00

41: -------------------------------- | 01000010101100100011001110010110 7 | -------------------------------- | 00111100101111111010001110110000 8 | -3.00

42: -------------------------------- | -------------------------------- 0 | -------------------------------- | 01101001001010010010111011101100 12 | -3.00

43: -------------------------------- | 00100101011001000111000001010101 6 | -------------------------------- | -------------------------------- 2 | -3.00

44: -------------------------------- | 01100011101010100010110001110011 13 | -------------------------------- | 10001010101010011100001100111101 10 | -3.00

45: -------------------------------- | 10111001010001001100100111001100 11 | -------------------------------- | -------------------------------- 0 | -3.00

46: -------------------------------- | -------------------------------- 5 | -------------------------------- | 11110000101100100000101111111100 4 | -3.00

47: -------------------------------- | 01101001001010010010111011101100 12 | -------------------------------- | 01100011101010100010110001110011 13 | -3.00

48: -------------------------------- | 00000101111011100000110011000111 1 | -------------------------------- | 00111100101111111010001110110000 8 | -3.00

49: -------------------------------- | ----------------------0---1-1--- 9 | -------------------------------- | 00100101011001000111000001010101 6 | -3.00

50: -------------------------------- | 10111001010001001100100111001100 11 | -------------------------------- | 11110000101100100000101111111100 4 | -3.00

51: -------------------------------- | 10001010101010011100001100111101 10 | -------------------------------- | 00000101111011100000110011000111 1 | -3.00

52: -------------------------------- | -------------------------------- 0 | -------------------------------- | 00101100100000110100001001011110 3 | -3.00

53: -------------------------------- | 00111100101111111010001110110000 8 | -------------------------------- | 10111001010001001100100111001100 11 | -3.00

54: -------------------------------- | 01101001001010010010111011101100 12 | -------------------------------- | 00000110110000101001110101001010 15 | -3.00

55: -------------------------------- | 11110000101100100000101111111100 4 | -------------------------------- | -------------------------------- 0 | -3.00

56: -------------------------------- | 01100011101010100010110001110011 13 | -------------------------------- | -------------------------------- 5 | -3.00

57: -------------------------------- | 00101100100000110100001001011110 3 | -------------------------------- | 01101001001010010010111011101100 12 | -3.00

58: -------------------------------- | 01000010101100100011001110010110 7 | -------------------------------- | -------------------------------- 2 | -3.00

59: ------------------------0------- | 00000110110000101001110101001010 15 | -------------------------------- | 01100011101010100010110001110011 13 | -2.00

60: ------------------------1------- | x----------------------------011 14 | -------------------------------- | ----------------------0---1-1--- 9 | -1.00

61: ------------------------x------- | -------------------------------- 5 | -------------------------------- | 01000010101100100011001110010110 7 | -1.00

62: -------------------------------- | 00100101011001000111000001010101 6 | -------------------------------- | 10001010101010011100001100111101 10 | -1.00

63: -------------------------------- | -------------------------------- 2 | -------------------------------- | x----------------------------011 14 | -1.00

64: -------------------------------- | | ------------------------x-------

Fig. 4. The differential path for RIPEMD-128, after the second phase of the freedom
degree utilization. The notations are the same as in [4] and P [i] is given in log2().

4.3 Phase 3: merging left and right branches

At the end of the second phase, we have several starting points equivalent to the
one from Figure 4, with many conditions already verified and an uncontrolled
accumulated probability of 2−30.32. Our goal for this third phase is now to use
remaining free message words M0, M2, M5, M9, M14 and make sure that both
left and right branches start with the same chaining variable.

We recall that during the first phase we enforced that Y3 = Y4, and for
the merge we will require an extra constraint X≫5

5 �M4 = 0xffffffff. The
message words M14 and M9 will be utilized to fulfill this constraint, and message
words M0, M2 and M5 will be used to perform the merge of the two branches
only with a few operations, and with a success probability of 2−34.

Handling the extra constraint with M14 and M9. First, let us deal with
the constraint X≫5

5 � M4 = 0xffffffff, which can be rewritten as X5 =
(0xffffffff�M4)≪5 and then (0xffffffff�M4)≪5 = X≫11

9 � (X8⊕X7⊕
X6) �M8 �Kl

0 by replacing M5 using update formula of step 8 in left branch.
Finally, isolating and replacing X6 using update formula of step 9 in left branch:

M9 = X
≫13
10 � ((X

≫11
9 �M8 �K

l
0 � (0xffffffff �M4)

≪5
) ⊕X8 ⊕X7) �K

l
0 � (X9 ⊕X8 ⊕X7). (1)

All values on the right side of this equation are known if M14 is fixed. Therefore,
so as to fulfill our extra constraint, what we could do is to simply pick a random
value for M14, and then directly deduce the value of M9 thanks to equation
(1). However, one can see in Figure 4 that 3 bits are already fixed in M9 (the
last one being the 10th bit of M9) and thus a valid solution would be found
only with probability 2−3. In order to avoid this extra complexity factor, we
will first randomly fix the first 24 bits of M14 and this will allow us to directly
deduce the first 10 bits of M9 that fulfill our extra constraint up to the 10th

bit (because knowing the first 24 bits of M14 will lead to the first 24 bits of
X11, X10, X9, X8 and the first 10 bits of X7, which is exactly what we need
according to equation (1)). Once a solution is found after 23 tries on average,
we can randomize the remaining M14 unrestricted bits (the 8 most significant
bits) and eventually deduce the 22 most significant bits of M9 with equation (1).
With this method, we completely remove the extra 23 factor, because the cost
is amortized by the final randomization of the 8 most significant bits of M14.

Merging the branches with M0, M2 and M5. Once M9 and M14 fixed, we
still have message words M0, M2 and M5 to determine for the merging. One can
see that with only these three message words undetermined, all internal state
values except X2, X1, X0, X−1, X−2, X−3 and Y2, Y1, Y0, Y−1, Y−2, Y−3 are fully
known when computing backwards from the non-linear parts in each branch.

This is where our first constraint Y3 = Y4 comes into play. Indeed, when
writing Y1 from the equation from step 4 in right branch, we have:

Y1 = Y≫13
5 � (Y4 ∧ Y2 ⊕ Y3 ∧ Y2) �M9 �Kr

0 = Y≫13
5 � Y3 �M9 �Kr

0

which means that Y1 is already completely determined at this point (the bit
condition present in Y1 in Figure 4 is actually handled for free when fixing M14

and M9, since it requires to know the 9 first bits of M9). In other words, the
constraint Y3 = Y4 allowed Y1 to not depend on Y2 which is currently undeter-
mined. Another effect of this constraint can be seen when writing Y2 from the
equation from step 5 in right branch:

Y2 = Y≫15
6 �(Y5∧Y3⊕Y4∧Y3)�M2�K

r
0 = Y≫15

6 �(Y5∧Y3)�M2�K
r
0 = C0�M2

where C0 = Y≫15
6 � (Y5 ∧ Y3) �Kr

0 is a constant.
Our second constraint X≫5

5 �M4 = 0xffffffff is useful when writing X1

and X2 from the equations from step 4 and 5 in left branch

X2 = X≫8
6 � (X5 ⊕X4 ⊕X3) �M5 = C1 �M5

X1 = X≫5
5 � (X4 ⊕X3 ⊕X2) �M4 = X4 ⊕X3 ⊕X2 = X4 ⊕X3 ⊕ (C1 �M5)

where C1 = X≫8
6 � (X5 ⊕X4 ⊕X3) is a constant.

Finally, our ultimate goal for the merge is to ensure that X−3 = Y−3,
X−2 = Y−2, X−1 = Y−1 and X0 = Y0, knowing that all other internal states
are determined when computing backwards from the non-linear parts in each
branch, except Y2 = C0 �M2, X2 = C1 �M5 and X1 = X4 ⊕X3 ⊕ (C1 �M5).
We therefore write the equations relating these eight internal state words:

X0 = X
≫12
4 � (X3 ⊕X2 ⊕X1) �M3 = X

≫12
4 �X4 �M3

= Y0 = Y
≫11
4 � (Y3 ∧ Y1 ⊕ Y2 ∧ Y1) �M0 �K

r
0 = Y

≫11
4 � (Y3 ∧ Y1 ⊕ (C0 �M2) ∧ Y1) �M0 �K

r
0

X−1 = X
≫15
3 � (X2 ⊕X1 ⊕X0) �M2 = X

≫15
3 � (X4 ⊕X3 ⊕X0) �M2

= Y−1 = Y
≫9
3 � (Y2 ∧ Y0 ⊕ Y1 ∧ Y0) �M7 �K

r
0 = Y

≫9
3 � ((C0 �M2) ∧X0 ⊕ Y1 ∧X0) �M7 �K

r
0

X−2 = X
≫14
2 � (X1 ⊕X0 ⊕X−1) �M1 = (C1 �M5)

≫14 � (X4 ⊕X3 ⊕ (C1 �M5) ⊕X0 ⊕X−1) �M1

= Y−2 = Y
≫9
2 � (Y1 ∧ Y−1 ⊕ Y0 ∧ Y−1) �M14 �K

r
0 = (C0 �M2)

≫9 � (Y1 ∧X−1 ⊕X0 ∧X−1) �M14 �K
r
0

X−3 = X
≫11
1 � (X0 ⊕X−1 ⊕X−2) �M0 = (X4 ⊕X3 ⊕ (C1 �M5))

≫11 � (X0 ⊕X−1 ⊕X−2) �M0

= Y−3 = Y
≫8
1 � (Y0 ∧ Y−2 ⊕ Y−1 ∧ Y−2) �M5 �K

r
0 = Y

≫8
1 � (X0 ∧X−2 ⊕X−1 ∧X−2) �M5 �K

r
0

If these four equations are verified, then we have merged left and right branch
to the same input chaining variable. We first remark that X0 is already fully
determined and thus the second equation X−1 = Y−1 only depends on M2.
Moreover, it is a T-function in M2 (any bit i of the equation depends only on
the i first bits of M2) and can therefore be solved very efficiently bit per bit. We
explain in the full version how to solve this T-function and our average cost in
order to find one M2 solution is one RIPEMD-128 step computations.

Since X0 is already fully determined, from the M2 solution previously ob-
tained we directly deduce the value of M0 to satisfy the first equation X0 = Y0.
From M2 we can compute the value of Y−2 and we know that X−2 = Y−2 and
we calculate X−3 from M0 and X−2. At this point, the two first equations are
fulfilled and we still have the value of M5 to choose.

The third equation can be rewritten V≫14 = (V ⊕ C2) � C3, where V =
X[2] = (C1 �M5) and C2, C3 are two constants. Similarly, the fourth equation
can be rewritten V≫11 = (V � C4) ⊕ C5, where C4, C5 are two constants.

Solving either of these two equations with regards to V can be costly because of
the rotations, so we combine them to create simpler one: ((V ⊕C2) �C3)≪3 =
(V �C4)⊕C5. This equation is easier to handle because the rotation coefficient
is small: we guess the 3 most significant bits of ((V ⊕ C2) � C3) and we solve
simply the equation 3-bit layer per 3-bit layer, starting from the least significant
bit. From the value of V deduced, we straightforwardly obtain M5 = C1�V and
the cost of recovering M5 is equivalent to 8 RIPEMD-128 step computations (the
3-bit guess implies a factor of 8, but the resolution can be implemented very
efficiently with tables).

When all three message words M0, M2 and M5 have been fixed, the first, sec-
ond and a combination of the third and fourth equalities are necessarily verified.
However, we have a probability 2−32 that both the third and fourth equations
will be fulfilled. Moreover, one can check in Figure 4 that there is one bit condi-
tion on X0 = Y0 and one bit condition on Y2 and this further adds up a factor
2−2. We evaluate the whole process to cost about 19 RIPEMD-128 step computa-
tions on average: there are 17 steps to compute backwards after having identified
a proper couple M14, M9, and the 8 RIPEMD-128 step computations to obtain
M5 are only done 1/4 of the time because the two bit conditions on Y2 and
X0 = Y0 are filtered before.

To summarize the merging: we first compute a couple M14, M9 that satisfies
a special constraint, we find a value of M2 that verifies X−1 = Y−1, then we
directly deduce M0 to fulfill X0 = Y0, and we finally obtain M5 to satisfy a
combination of X−2 = Y−2 and X−3 = Y−3. Overall, with only 19 RIPEMD-128

step computations on average, one can merge the branches with probability 2−34.

5 Results and implementation

5.1 Complexity analysis and implementation

After the quite technical description of the attack in previous section, we would
like to rewrap everything to get a clearer view of the attack complexity, the
amount of freedom degrees etc. Given a starting point from phase 2, the attacker
can perform 226 merge processes (because 3 bits are already fixed in both M9

and M14, and the extra constraint consumes 32 bits) and since one merge process
succeeds only with probability of 2−34, he obtains a solution with probability
2−8. Since he needs 230.32 solutions from the merge to have a good chance to
verify the probabilistic part of the differential path, a total of 238.32 starting
points will have to be generated and handled.

From the end of phase 1, he generates 238.32 starting points in phase 2,
that is 238.32 differential paths like the one from Figure 4 (with the same step
probabilities). For each of them, in phase 3 he tries 226 times to find a solution
for the merge with an average complexity of 19 RIPEMD-128 step computations
for each try. The SFS collision final complexity is 19 · 226+38.32 RIPEMD-128

step computations, which corresponds to (19/128) · 264.32 = 261.57 RIPEMD-128

compression function computations (there are 64 steps in each branch).

The merge process has been implemented and we give in the full version of
the article an example of a message and chaining variable couple that verifies
the merge (i.e. they follow the differential path from Figure 3 until step 25 of the
left branch and step 20 of the right branch). We measured the efficiency of our
implementation in order to confront it to our theoretic complexity estimation.
As point of reference, we observed that on the same computer, an optimized
implementation of RIPEMD-160 (OpenSSL v.1.0.1c) performs 221.44 compression
function computations per second. With 4 rounds instead of 5 and about 3/4 less
operations per step, we extrapolated that RIPEMD-128 would perform at 222.17

compression function computations per second. Our implementation performs
224.61 merge process (both phase 2 and phase 3) per second on average, which
therefore corresponds to a SFS collision final complexity of 261.88 RIPEMD-128

compression computations. While our practical results confirm our theoretical
estimations, we emphasize that the latter are a bit pessimistic, since our attack
implementation is not optimized. As a side note, we also verified experimentally
that the probabilistic part in both left and right branch can be fulfilled.

A last point needs to be checked: the complexity estimation for the generation
of the starting points. Indeed, as much as 238.32 starting points are required at
the end of phase 2 and the algorithm being quite heuristic, it is hard to analyze
precisely. The amount of freedom degrees is not an issue since we already saw in
Section 4.1 that about 2306.91 solutions are expected to exist for the differential
path at the end of phase 1. A completely new starting point takes about 5 min-
utes to be outputted on average with our implementation, but from one such
path we can directly generate 218 equivalent ones by randomizing M7. Using
the OpenSSL implementation as reference, this amounts to 250.72 RIPEMD-128

computations to generate all the starting points that we need in order to find
a SFS collision. This gross estimation is extremely pessimistic since its doesn’t
even take in account the fact that once a starting point is found, one can also
randomize M4 and M11 to find many other valid candidates with a few opera-
tions. Finally, one may argue that with this method the starting points generated
are not independent enough (in backward direction when merging and/or in for-
ward direction for verifying probabilistically the linear part of the differential
path). However, no such correlation was detected during our experiments and
previous attacks on similar hash functions [13, 14] showed that only a few rounds
were enough to observe independence between bit conditions. In addition, even
if some correlations existed, since we are looking for many solutions, the effect
would be averaged among good and bad candidates.

Collision for the RIPEMD-128 compression function. We described in previ-
ous sections a SFS collision attack for the full RIPEMD-128 compression function
with 261.57 computations. It is clear from Figure 4 that we can remove the 4 last
steps of our differential path in order to attack a 60-step reduced variant of the
RIPEMD-128 compression function. No difference will be present in the internal
state at the end of the computation and we directly get a collision, saving a
factor 24 over the full RIPEMD-128 attack complexity.

We also give in the full version of the article a slightly different freedom de-
grees utilization when attacking 63 steps of the RIPEMD-128 compression function
(the first step being taken out), that saves a factor 21.66 over the collision attack.

Distinguishers We provide in the full version of this article a limited-birthday
distinguisher [11] on the full RIPEMD-128 compression but also hash function.

Conclusion

In this article, we proposed a new cryptanalysis technique for RIPEMD-128, that
led to a collision attack on the full compression function as well as a distinguisher
for the full hash function. We believe that our method still presents room for
improvements, and we expect a practical collision attack for the full RIPEMD-128
compression function to be found during the incoming years. While our results
don’t endanger the collision resistance of the RIPEMD-128 hash function as a
whole, we emphasize that SFS collision attacks are a strong warning sign which
indicates that RIPEMD-128 might not be as secure as the community expected.
Considering the history of the attacks on the MD5 compression function [7, 8],
MD5 hash function [29], and then MD5-protected certificates [24], we believe that
another function than RIPEMD-128 should be used for new security applications.
Future works include reducing the attack complexity and applying our methods
to RIPEMD-160 and other parallel branches-based functions.

References

1. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Keccak specifications.
Submission to NIST, 2008.

2. A. Bosselaers and B. Preneel (Eds.). Integrity Primitives for Secure Information
Systems, Final Report of RACE Integrity Primitives Evaluation RIPE-RACE 1040,
vol. 1007 of LNCS. Springer, 1995.

3. G. Brassard (Ed.). Advances in Cryptology - CRYPTO ’89, Proceedings, vol. 435
of LNCS. Springer, 1990.

4. C. De Cannière and C. Rechberger. Finding SHA-1 Characteristics: General Re-
sults and Applications. In X. Lai and K. Chen (Eds.), ASIACRYPT, vol. 4284 of
LNCS, pp. 1–20. Springer, 2006.

5. R. Cramer (Ed.). Advances in Cryptology - EUROCRYPT 2005, Proceedings, vol.
3494 of LNCS. Springer, 2005.

6. I. Damg̊ard. A Design Principle for Hash Functions. In Brassard [3], pp. 416–427.
7. B. den Boer and A. Bosselaers. Collisions for the Compressin Function of MD5. In

T. Helleseth (Ed.), EUROCRYPT, vol. 765 of LNCS, pp. 293–304. Springer, 1993.
8. H. Dobbertin. Cryptanalysis of MD5 compress. In Rump Session of Advances in

Cryptology EUROCRYPT 1996, 1996.
9. H. Dobbertin. RIPEMD with Two-Round Compress Function is Not Collision-

Free. J. Cryptology, 10(1):51–70, 1997.
10. H. Dobbertin, A. Bosselaers, and B. Preneel. RIPEMD-160: A Strengthened Ver-

sion of RIPEMD. In D. Gollmann (Ed.), FSE, vol. 1039 of LNCS, pp. 71–82.
Springer, 1996.

11. H. Gilbert and T. Peyrin. Super-Sbox Cryptanalysis: Improved Attacks for AES-
Like Permutations. In S. Hong and T. Iwata (Eds.), FSE, vol. 6147 of LNCS, pp.
365–383. Springer, 2010.

12. ISO. ISO/IEC 10118-3:2004: Information technology — Security techniques —
Hash-functions — Part 3: Dedicated hash-functions. pub-ISO, feb 2004.

13. A. Joux and T. Peyrin. Hash Functions and the (Amplified) Boomerang Attack.
In A. Menezes (Ed.), CRYPTO, vol. 4622 of LNCS, pp. 244–263. Springer, 2007.

14. S. Manuel and T. Peyrin. Collisions on SHA-0 in One Hour. In K. Nyberg (Ed.),
FSE, vol. 5086 of LNCS, pp. 16–35. Springer, 2008.

15. F. Mendel, T. Nad, S. Scherz, and M. Schläffer. Differential Attacks on Reduced
RIPEMD-160. In D. Gollmann and F. C. Freiling (Eds.), ISC, vol. 7483 of LNCS,
pp. 23–38. Springer, 2012.

16. F. Mendel, T. Nad, and M. Schläffer. Collision Attacks on the Reduced Dual-
Stream Hash Function RIPEMD-128. In A. Canteaut (Ed.), FSE, vol. 7549 of
LNCS, pp. 226–243. Springer, 2012.

17. F. Mendel, N. Pramstaller, C. Rechberger, and V. Rijmen. On the Collision Resis-
tance of RIPEMD-160. In S. K. Katsikas, J. Lopez, M. Backes, S. Gritzalis, and
B. Preneel, editors, ISC, vol. 4176 of LNCS, pp. 101–116. Springer, 2006.

18. R. C. Merkle. One Way Hash Functions and DES. In Brassard [3], pp. 428–446.
19. C. Ohtahara, Y. Sasaki, and T. Shimoyama. Preimage Attacks on Step-Reduced

RIPEMD-128 and RIPEMD-160. In X. Lai, M. Yung, and D. Lin (Eds.), Inscrypt,
vol. 6584 of LNCS, pp. 169–186. Springer, 2010.

20. R. L. Rivest. The MD4 message-digest algorithm. Request for Comments (RFC)
1320, Internet Activities Board, Internet Privacy Task Force, April 1992.

21. Y. Sasaki and K. Aoki. Meet-in-the-Middle Preimage Attacks on Double-
Branch Hash Functions: Application to RIPEMD and Others. In C. Boyd and
J.M. González Nieto (Eds.), ACISP, vol. 5594 of LNCS, pp. 214–231. Springer,
2009.

22. Y. Sasaki and L. Wang. Distinguishers beyond Three Rounds of the RIPEMD-
128/-160 Compression Functions. In F. Bao, P. Samarati, and J. Zhou (Eds.),
ACNS, vol. 7341 of LNCS, pp. 275–292. Springer, 2012.

23. Victor Shoup (Ed.). Advances in Cryptology - CRYPTO 2005, Proceedings, vol.
3621 of LNCS. Springer, 2005.

24. M. Stevens, A. Sotirov, J. Appelbaum, A. K. Lenstra, D. Molnar, D. Arne Osvik,
and B. de Weger. Short Chosen-Prefix Collisions for MD5 and the Creation of a
Rogue CA Certificate. In S. Halevi (Ed.), CRYPTO, vol. 5677 of LNCS, pp. 55–69.
Springer, 2009.

25. X. Wang, H. Yu, and Y. Lisa Yin. Efficient Collision Search Attacks on SHA-0. In
Shoup [23], pp. 1–16.

26. L. Wang, Y. Sasaki, W. Komatsubara, K. Ohta, and K. Sakiyama. (Second) Preim-
age Attacks on Step-Reduced RIPEMD/RIPEMD-128 with a New Local-Collision
Approach. In A. Kiayias (Ed.), CT-RSA, vol. 6558 of LNCS, pp. 197–212. Springer,
2011.

27. X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu. Cryptanalysis of the Hash Functions
MD4 and RIPEMD. In Cramer [5], pp. 1–18.

28. X. Wang, Y. Lisa Yin, and H. Yu. Finding Collisions in the Full SHA-1. In Shoup
[23], pp. 17–36.

29. X. Wang and H. Yu. How to Break MD5 and Other Hash Functions. In Cramer
[5], pp. 19–35.

