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Abstract. We present new constructions of leakage-resilient cryptosys-
tems, which remain provably secure even if the attacker learns some
arbitrary partial information about their internal secret key. For any
polynomial `, we can instantiate these schemes so as to tolerate up to
` bits of leakage. While there has been much prior work constructing
such leakage-resilient cryptosystems under concrete number-theoretic
and algebraic assumptions, we present the first schemes under general
and minimal assumptions. In particular, we construct:
– Leakage-resilient public-key encryption from any standard public-key

encryption.
– Leakage-resilient weak pseudorandom functions, symmetric-key en-

cryption, and message-authentication codes from any one-way func-
tion.

These are the first constructions of leakage-resilient symmetric-key
primitives that do not rely on public-key assumptions. We also get the
first constructions of leakage-resilient public-key encryption from “search
assumptions”, such as the hardness of factoring or CDH. Although our
schemes can tolerate arbitrarily large amounts of leakage, the tolerated
rate of leakage (defined as the ratio of leakage-amount to key-size) is
rather poor in comparison to prior results under specific assumptions.
As a building block of independent interest, we study a notion of weak
hash-proof systems in the public-key and symmetric-key settings. While
these inherit some of the interesting security properties of standard hash-
proof systems, we can instantiate them under general assumptions.
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1 Introduction

A central goal in cryptography is to base cryptosystems on intractability
assumptions that are as weak and as general as possible; that way, if one
problem turns out to be susceptible to a new attack or if another turns out
to yield better performance, we may readily replace the underlying problem in
our cryptosystem. Another goal is to design cryptosystems in strong security
models that account for a wide range of possible attacks. Our work lies at
the intersection of these two areas, by studying leakage-resilient security under
general and minimal assumptions.

Leakage Resilience. Leakage-resilient cryptosystems maintain their security even
if an attacker can learn some partial information about the internal secret key.
Aside from being a basic question of theoretical interest, the study of leakage-
resilience is motivated by several real-world scenarios where information leaks.
One such scenario involves side-channel attacks, where the physical attributes
of a computing device (e.g., its power consumption, electromagnetic radiation,
timing, temperature, acoustics, etc.) can reveal information about its internal
secret state. See e.g., [1, 5, 24, 38, 39, 46–48] for many examples of such attacks
that completely break otherwise secure cryptosystems. Another source of leakage
occurs through imperfect erasures (such as in the cold-boot attack [27]), where
memory contents, including secret key information, aren’t properly erased and
some partial information becomes available to an attacker. Another source of
leakage occurs if the secret key is stored on a compromised system to which
the attacker has remote access. As suggested in prior work, we can impede an
attacker from retrieving the secret key in its entirety by making it deliberately
huge (e.g., many gigabytes in length), but the attacker can still obtain some
partial leakage [4, 12, 16, 21]. As yet another example, we may need to use a
cryptosystem within the context of a larger protocol that intentionally leaks
some information about the secret key as a part of its design. Leakage-resilience
provides a powerful tool, allowing us to easily analyze the security of such
constructions. In summary, we believe that leakage-resilience is an interesting
and fundamental property worth studying because of its relevance to many
diverse problems including (but not limited to) side-channel attacks.

Bounded-Leakage Model. There are several security models of leakage-resilience
in the literature, differing in their specification of what information can become
available to the attacker. In this work we will focus on a simple yet general
model, called the bounded-leakage (or sometimes memory leakage) model, which
has received much attention in recent years [2–4,6–9,11–13,18,22,25,29,35,37,43].
In this model, the attacker can learn arbitrary information about the secret key,
as long as the total number of bits learned is bounded by some parameter `, called
the leakage bound. We formalize this security notion by giving the attacker access
to a leakage oracle that she can repeatedly and adaptively query; each query to
the oracle consists of a leakage function f and the oracle responds with the
“leakage” f(sk) computed on secret key sk. The leakage oracle is only restricted
in the total number of bits that it outputs throughout its lifetime, which is
bounded by `. This model is particularly interesting because of its elegance and



simplicity and its wide applicability to scenarios such as incomplete erasure,
compromised systems, and information released by high-level protocols.

We note that several other models of leakage-resilience consider a more
complex scenario, where information can leak continually over time, with no
overall bound on the total amount of leakage. See [10,17,19,23,26,34,41,42,45]
for some examples. These models may offer a more realistic view of side-channel
attacks, where many measurements may be made by an attacker over time.
Many of these works rely on results from the bounded-leakage model as basic
building blocks. Therefore, we believe that a thorough understanding of the
bounded-leakage model is a necessary, but perhaps not sufficient, prerequisite
to understanding other more complex models. We mention that it remains
debatable how accurately any of the above models reflects realistic side-channel
attacks (see e.g., the discussion in [49]).

Prior Constructions. It turns out that essentially all cryptographic schemes
are already resilient against small amounts of leakage. In particular, they can
tolerate ` = O(log(λ)) bits of leakage, where λ is the security parameter, and
schemes with stronger exact security can tolerate correspondingly larger amounts
of leakage. Intuitively, this follows since we can correctly “guess” small leakage
values with reasonable probability and hence they cannot help in an attack.5

Most prior research in leakage-resilient cryptography attempts to construct
schemes that provably tolerate larger amounts of leakage, without making any
strong exact-security assumptions on the underlying primitives. Ultimately, we
aim to tolerate any polynomial leakage bound `(λ) just by instantiating the
scheme with a sufficiently large secret key. Prior to this work, we had such
results for public-key encryption [2, 8, 43], under specific assumptions such as
LWE, DDH, DCR, QR, or somewhat more generally, the existence of “hash-proof
systems”. We also had such results for signatures [4,18,37] assuming the existence
of NIZKs and public-key encryption. Essentially nothing better was known for
symmetric-key encryption or message-authentication codes, beyond simply using
the corresponding public-key constructions in the symmetric setting.

Our Main Results. We present new constructions of several leakage-resilient
cryptosystems under the minimal assumption that such cryptosystems exist in
the standard setting, without any leakage. For any polynomial leakage-bound
`(λ) in the security parameter λ, we can instantiate these schemes so as to resit
`(λ) bits of leakage. In particular, we construct the following primitives:

• Leakage-resilient public-key encryption from any public-key encryption.
• Leakage-resilient weak pseudorandom functions, symmetric-key encryption,

and message-authentication codes from any one-way function.
We only assume the underlying primitives satisfy the usual asymptotic notion of
security, and do not require any stronger levels of exact security. These results

5 This simple argument works for “unpredictability” applications such as signatures.
A more subtle argument also works for many “indistinguishability” applications,
including public-key encryption, weak-PRFs and symmetric-key CPA encryption
(but not, e.g., one-time encryption). See [20] for a general treatment of this question.



give us the first constructions of leakage-resilient symmetric-key primitives
that do not rely on public-key assumptions. They also give us the first
constructions of leakage-resilient public-key encryption from several specific
“search assumptions” such as the hardness of RSA, factoring, or CDH.

Leakage Amount vs. Rate. Although our schemes can tolerate an arbitrarily
large polynomial amount of leakage `, the tolerated rate of leakage (defined as
the ratio of ` to the secret-key size) in these constructions is rather poor. In
particular, the leakage rate in our schemes is O(log(λ)/s(λ)) where s(λ) is the
secret-key size of the underlying non-leakage-resilient primitives. In contrast, the
state-of-the-art constructions of leakage-resilient schemes from concrete number-
theoretic assumptions such as DDH can usually achieve a (1−o(1)) leakage rate,
meaning that almost the entire secret key can leak. Allowing higher leakage rates
under general assumptions remains as an open problem.

Extensions of Our Results. We explore several extensions of our main results.
Firstly, we show that all of the results also apply to an alternate notion of
entropy-bounded leakage [17, 43], where we restrict the amount of entropy-loss
caused by the leakage rather than restricting its length. Unlike length-bounded
leakage, achieving resilience to even 1-bit of entropy-bounded leakage is non-
trivial and does not follow from the standard security of a scheme. We also
show that our public/symmetric key encryption schemes provide resilience to
“after-the-fact” leakage as defined by Halevi and Lin [29]. In particular, if the
attacker can choose to learn some arbitrary `post bits of leakage on the secret
key adaptively after seing a challenge ciphertext, she learns no more than `post

bits of information about the encrypted message (in contrast, if the leakage is
independent of the challenge ciphertext, she learns nothing about the message).
Lastly, we extend our results to the bounded-retrieval model [4,12,16,21], where
we want to have efficient schemes tolerating huge amounts (many gigabytes) of
leakage, meaning that the efficiency of the scheme should not degrade even as
the leakage-bound ` increases. Since the secret-key size of such schemes must
exceed ` and therefore also be huge, these schemes cannot even read their entire
secret key during each cryptographic operation. This model is motivated by the
problem of system compromise, where an attacker can download large amounts
of data from a compromised system. Due to space limitations, we defer the
extensions of our results to entropy-bounded leakage, after-the-fact leakage, and
the bounded-retrieval model to the full version of this paper [31].

1.1 Overview of Our Techniques
Our starting point is a result of Naor and Segev [43] (journal version [44]),
which constructs leakage-resilient public-key encryption from any hash-proof
system (HPS) [15]. As observed in [4, 43], this construction does not require
the full security notion of HPS and it turns out that a weaker variant, which
we will call a weak HPS (wHPS), actually suffices.6 As our first result we show

6 Although this weaker variant was used by [4, 43] to simplify the exposition of HPS,
neither work seemed to considered the differences between wHPS and full HPS as
very significant.



that, surprisingly, wHPS can be constructed generically from any public-key
encryption scheme. This is in contrast to the full notion of HPS, which we only
know how to construct from concrete number-theoretic assumptions such as
DDH, DCR or QR. This gives us our results for public-key encryption. Next, we
also define a new and meaningful notion of a symmetric-key wHPS, which allows
us to construct leakage-resilient weak pseudo-random functions and symmetric-
key encryption. We show how to construct symmetric-key wHPS generically from
any pseudorandom function (PRF), and hence only under the assumption that
one-way functions exist. Lastly, we employ several additional ideas to construct
leakage-resilient message authentication codes.

We briefly define wHPS, how it relates to leakage resilience, and how to
construct it. We focus on the public-key setting since it is conceptually simpler.
Weak Hash-Proof Systems (wHPS). A weak hash-proof system (wHPS) can be
thought of as a special type of key-encapsulation mechanism. It consists of:
• A public-key encapsulation algorithm (c, k) ← Encap(pk) that creates a

ciphertext c encapsulating a random secret value k.
• A secret-key decapsulation algorithm k = Decap(sk, c) that recovers k from

the ciphertext c.
Within the security definition of wHPS, we also require an additional invalid
encapsulation algorithm c∗ ← Encap∗(pk), which is not used by honest parties.
The scheme must satisfy the following:
• Ciphertext Indistinguishability: Valid ciphertexts (c, ·) ← Encap(pk)

are computationally indistinguishable from invalid ciphertexts c∗ ← Encap∗(pk),
even given the secret key sk.

• Smoothness: Let (pk, sk) be a random wHPS key pair and c∗ ←
Encap∗(pk) be a random invalid ciphertext. Given pk and c∗, the output
k = Decap(sk, c∗) is uniformly random and independent (information
theoretically). The randomness of k comes from the choice of the secret key
sk consistent with pk, meaning that there must be multiple ones.

In other words, the secret key sk maintains real entropy even conditioned on
pk, and this entropy is transferred to the output k = Decap(sk, c∗) when we
decapsulate a random invalid ciphertext c∗.

The above definition of wHPS departs from that of standard hash-proof
systems in several ways, but most importantly, our “smoothness” property is
defined for an average-case invalid ciphertext c∗ ← wHPS.Encap∗(pk) rather
than a worst-case choice of c∗ from some invalid set. Indeed, this makes our
definition unsuitable for applications dealing with chosen-ciphertext (CCA or
even CCA-1) security, for which hash-proof systems were originally intended.
Leakage-Resilience from wHPS. Weak hash-proof systems are particularly suited
for leakage-resilience. Assume the attacker gets a wHPS public-key pk and
observes ` bits of leakage on the secret key sk. Later, the attacker sees a random
valid ciphertext c computed via (c, k) ← Encap(pk); what has she learned
about the hidden value k? Firstly, we can switch c to an invalid ciphertext
c∗ ← Encap∗(pk) and define k = Decap(c∗, sk). This change is indistinguishable



even given the secret key sk in full, and therefore also when only given leakage
on sk. Secondly, because k = Decap(c∗, sk) is information-theoretically random
even when given pk and c∗, the `-bits of leakage that the attacker observes about
sk can reduce the entropy of k by at most ` bits. Therefore, if k is sufficiently
large, it still has high entropy given the view of the attacker, and we can easily
convert it to a uniformly random value using a randomness extractor. The above
argument closely follows that of [43].

Constructing wHPS. Our main result for public-key encryption is to construct
wHPS from general assumptions. As a starting point, we give a very simple
construction where the output k ∈ {0, 1} consists of a single bit. We do so given
any standard public-key encryption (PKE) scheme, as follows:

• Choose two random PKE key-pairs (pk0, sk0), (pk1, sk1) and define the
wHPS public-key as pk = (pk0,pk1) and the wHPS secret key as sk =
(b, skb) where b← {0, 1} is a random bit. Notice that, given pk, there are at
least two possible consistent secret keys: (0, sk0) and (1, sk1).

• The valid encapsulation algorithm (c, k) ← Encap(pk) chooses a random
bit k ← {0, 1} and sets c = (c0, c1) where c0 ← PKE.Enc(pk0, k), c1 ←
PKE.Enc(pk1, k) both encrypt the same bit k.

• The invalid encapsulation algorithm c∗ ← Encap∗(pk) chooses a random
bit k ← {0, 1} and sets c∗ = (c0, c1) where c0 ← PKE.Enc(pk0, k), c1 ←
PKE.Enc(pk1, 1− k) encrypt opposite bits.

• The decapsulation algorithm Decap(sk, c) takes c = (c0, c1) and the secret
key sk = (b, skb), and outputs the decryption PKE.Dec(skb, cb) of the
ciphertext cb using the key skb.

Input indistinguishability follows since, even given the secret key sk = (b, skb),
the attacker cannot distinguish if the ciphertext c1−b encrypts the same bit k
as contained in cb or the opposite bit 1 − k. The smoothness property follows
since the decapsulation of a random invalid ciphertext c∗ = (c0, c1) is uniformly
random over the choice of the secret-key bit b.

Amplifying wHPS. The above construction only gives us a wHPS with 1-bit
output. However, we can easily amplify the output size of a wHPS to any
arbitrary polynomial n = n(λ), simply by taking n independent copies of the
scheme in parallel. Notice that in the new scheme, there will be at least 2n

possible secret keys consistent with any public key, and the output of the wHPS
on an invalid ciphertext will consist of n random and independent bits. Since
the amount of tolerated leakage ` is roughly equal to the wHPS output-size n,
we can set it to be arbitrarily high.

We note that the concept of amplifying leakage-resilience directly via parallel
repetition has been suggested and explored in several works [3,4,9,36,40], with
surprising counter-examples showing that it is not secure in general. In our
special case, we only argue that parallel repetition amplifies the output size of a
wHPS (which is trivial), and then use our connection between output size and
leakage resilience to indirectly argue that the latter amplifies as well.



The above construction can tolerate roughly n bits of leakage by storing n
decryption keys, meaning that the rate of leakage is roughly 1/s(λ), where s(λ)
is the size of the decryption key in the underlying PKE scheme. In our final
construction, we show how to increase this to any O(log(λ)/s(λ)) leakage rate.
Getting an even higher rate remains as an open problem.

Symmetric-Key wHPS. In the second part of our work, we carry the above
ideas over to the symmetric-key setting. To do so, we first define a notion of
a symmetric-key wHPS analogously to our public-key wHPS. We can think of
symmetric-key wHPS as a special type of pseudorandom function (PRF) fk(·)
with the following properties (simplified):
• input indistinguishability: There are two special distributions on the

inputs x which we call valid and invalid, and which are indistinguishable
from uniform even given the secret-key k.
• smoothness: Given multiple inputs/outptus {(x, fk(x))} for various random

valid x, and a random choice of an invalid input x∗, the output fk(x∗) is
uniformly random and independent (information theoretically), where the
randomness comes from the choice of a consistent key k.

In other words, the key k maintains real entropy even conditioned on seeing fk(x)
for many random valid inputs x, but this entropy comes out when evaluating
fk(x∗) at a random invalid input x∗.

We show how to use such symmetric-key wHPS schemes to construct
leakage-resilient symmetric-key encryption and weak PRFs. We then construct
symmetric-key wHPS generically from standard weak PRF, and therefore only
assuming that one-way functions exist. Our construction of MACs departs
somewhat from this abstraction and requires additional ideas.

2 Preliminaries

Notation. We let λ denote the security parameter. For an integer n, we let
[n] denote the set {1, . . . , n}. For a randomized function f , we write f(x; r)
to denote the unique output of f on input x with random coins r. We write
f(x) to denote a random variable for the output of f(x; r) over the random
coins r. For a distribution or random variable X, we write x ← X to denote
the operation of sampling a random x according to X. For a set S, we write
s ← S to denote sampling s uniformly at random from S. For distributions
X, Y , we write X ≡ Y to mean that X, Y are identically distributed, X ≈s Y
to mean that they are statistically close, and X ≈c Y to say that they are
computationally indistinguishable. We let negl(λ) denote the set of all negligible
function µ(λ) = λ−ω(1). We use calligraphic letters such as X to denote an
ensemble of sets X = {Xλ}λ∈N. To simplify notation, we often exclude the
subscript λ when clear from context, and write e.g. x ← X to denote x ← Xλ.
We say that an ensemble X is efficient if the operations of sampling a uniformly
random x← Xλ and testing x ∈ Xλ can be performed in poly(λ) time.

The Leakage Oracle. We model leakage attacks on a secret key sk by giving
the adversary access to a leakage oracle, which he can adaptively access to



learn information about the secret key. The leakage oracle, denoted O`
sk(·), is

parameterized by a secret key sk and a leakage parameter `. Each query to the
leakage oracle consists of a function fi : {0, 1}|sk| → {0, 1}`i (represented by a
circuit), to which the oracle answers with fi(sk).7 The oracle keeps track of the
output sizes `i of all the leakage queries so far, and only responds to the qth
leakage query if

∑q
i=1 `i ≤ `.

3 Leakage-Resilient Public-Key Encryption

We begin with a definition of leakage-resilient public-key encryption (PKE). Our
definition is equivalent to that used by prior works [2, 43].

Definition 1 (Leakage-Resilient PKE). An `(λ)-leakage-resilient PKE con-
sists of the algorithms (LR.Gen, LR.Enc, LR.Dec) and a message space M satis-
fying the following properties:

Correctness: For all (pk, sk) in the support of LR.Gen(1λ) and all messages
m ∈M, LR.Dec(sk, LR.Enc(pk,m)) = m.

Semantic Security with `-Leakage: For all PPT adversaries A, the advan-
tage of A in the following game is negligible in λ:
Key Generation: The challenger runs (pk, sk) ← LR.Gen(1λ) and gives

pk to A.
Leakage Queries: A is given access to the leakage oracle O`

sk(·). Without
loss of generality, we can assume that A queries O`

sk(·) only once with a
function f whose output is ` bits.

Challenge: A chooses two plaintexts m0,m1 ∈ M and gives these to the
challenger. The challenger chooses a random bit b ← {0, 1}, and sends
c∗ ← LR.Enc(pk,mb) to A. The attacker A outputs a bit b′.

We define the advantage of A as AdvA(λ) =
∣∣Pr[b′ = b]− 1

2

∣∣.
If an encryption scheme is 0-leakage-resilient we refer to it as semantically secure.

3.1 Leakage-Resilience from Weak Hash-Proof Systems

We specify our notion of weak hash-proof systems (wHPS). Our definition
essentially follows an informal description given in [43] and a formal definition
of [3], who considered a similar notion in the “identity based” setting.

Definition 2. A weak hash-proof system (wHPS) with output space K consists
of four algorithms (Gen,Encap,Encap∗,Decap) with the following syntax:
• (pk, sk)← Gen(1λ): Given security parameter λ, creates a key pair.
• (c, k) ← Encap(pk): Given a public key pk, creates a “valid” ciphertext c

encapsulating k ∈ K.
• c∗ ← Encap∗(pk): Given a public key pk, creates an “invalid” ciphertext c∗.
• k = Decap(c, sk): Given a ciphertext c and secret key sk, deterministically

recovers k ∈ K.
7 We insist on a circuit representation to ensure that a poly-time attacker can only

query poly-sized circuits, meaning that the leakage is poly-time computable.



We require a weak hash-proof system to satisfy the following properties:
Correctness: For all (pk, sk) in the range of Gen(1λ), and for (c, k) ←

Encap(pk), we have k = Decap(c, sk).
Ciphertext Indistinguishability: If we sample (pk, sk)← Gen(1λ), (c, k)←

Encap(pk), c∗ ← Encap∗(pk), we have the computational indistinguishabil-
ity: (pk, sk, c) ≈c (pk, sk, c∗). In other words, avalid ciphertext c created
with Encap is indistinguishable from an invalid ciphertext c∗ created with
Encap∗, even given the secret key sk.

Smoothness: If we sample (pk, sk)← Gen(1λ), c∗ ← Encap∗(pk), k ← K, and
set k∗ = Decap(c∗, sk), we have the distributional equivalence: (pk, c∗, k∗) ≡
(pk, c∗, k). In other words, the decapsulated value k∗ = Decap(c∗, sk) is
uniformly random over K and independent of c∗ and pk. Since all of the
randomness of k∗ must therefore come from the choice of sk, this implicitly
requires that there are many possible choices of sk for a fixed pk.

Constructing LR-PKE from wHPS. In the full version [31], we show how to
construct leakage-resilient PKE from wHPS by following the construction of
Naor and Segev [43], while formalizing that the the weaker security of wHPS is
sufficient. We apply an extractor to the output k of the wHPS, and then use the
extracted randomness as a one-time-pad to encrypt a message of our choice.

3.2 Constructing weak Hash-Proof Systems from any PKE
We present a weak hash proof system starting from any semantically secure
PKE. We begin by constructing a wHPS with a very small output-space K = Zm

for some polynomial m = m(λ). In other words, the entropy of the output is
only log(m) = O(log(λ)) bits. We will then amplify this via parallel repetition.
The construction below generalizes the scheme we described in the introduction,
which corresponds to the special case of m = 2 and the output is only 1 bit. By
increasing m, we get an improvement in the leakage rate of our scheme.

Basic Construction. Let m = m(λ) be some polynomial parameter and let
Π = (PKE.Gen, PKE.Enc, PKE.Dec) be a public-key encryption scheme with
message-space M ⊇ Zm.8 We construct a wHPS with output space K = Zm as
follows:
– wHPS.Gen(1λ): Generate m key pairs: {(pki, ski) ← PKE.Gen(1λ)}i∈[m].

Sample a random t← [m]. Output sk = (t, skt),pk = (pk1, . . . ,pkm).
– wHPS.Encap(pk): Choose k ← Zm, and set c := {ci ← PKE.Enc(pki, k)}i∈[m].

Output (c, k).
– wHPS.Encap∗(pk): Choose k ← Zm. Output c∗ = {c∗i ← PKE.Enc(pki, k +

i)}i∈[m], where the addition k + i is performed in the group Zm.
– wHPS.Decap(sk, c): Parse sk = (t, skt) and c = {ci}. Output k =

PKE.Dec(skt, ct).

Theorem 1. If (PKE.Gen,PKE.Enc,PKE.Dec) is a semantically secure public-
key encryption scheme, then the construction above is a weak hash-proof system
with output space K = Zm.
8 We can set M = {0, 1}dlog(m)e and naturally interpret it as containing Zm.



Output Amplification via Parallel Repetition. The above construction gives us
a public-key wHPS with a polynomial-sized output domain K = Zm, so that
the entropy of the output is only logarithmic. Unfortunately, we cannot use this
scheme directly to get a meaningful LR-PKE, since we don’t even have enough
entropy to extract a single bit! However, it turns out to be very simple to increase
the output-length of a wHPS just by taking several independent copies.

Theorem 2. Let Π be any wHPS with output-domain K. Let n = n(λ) be a
polynomial and Πn be the n-wise parallel-repetition of Π. Then Πn is a wHPS
with output-domain Kn.

By taking our basic construction of wHPS with parameter m and applying n-
wise parallel-repetition, we get a scheme with leakage resilience ` ≈ n · log(m)
and secret-key size ≈ n · s, meaning that we get a leakage-rate α ≈ log(m)/s.
By taking a sufficiently large n and m, the following theorem.

Theorem 3. Assume the existence of semantically-secure PKE with secret-key
size s = s(λ). Then, for any arbitrarily large polynomial ` = `(λ) and any
α = α(λ) = O

(
log λ
s(λ)

)
there exists an `-leakage-resilient PKE where the leakage

rate (ratio of ` to secret key size) is α.

4 Leakage-Resilient wPRF & Symmetric-Key Encryption

Defining LR-wPRF. We begin with the definition of a Leakage-Resilient weak
PRF (wPRF). Recall that the standard notion of a wPRF tells us that, given
arbitrarily many uniformly random inputs x1, . . . , xq, the outputs of the wPRF
y1 = fk(x1), . . . , yq = fk(xq) look pseudo-random. This is in contrast with
standard PRFs where the above holds for a worst-case (adversarial) choice
of inputs {xi}. Our definition of leakage-resilient wPRF requires that wPRF
security holds even if the attacker can leak some information about the secret
key. In particular, any future output of the wPRF on a fresh random input will
still look random. Note that, since the attacker can always leak a few bits of
fk(x) for some x of his choice, we cannot hope to achieve full PRF security in
the presence of leakage, and hence settling for wPRF security is a natural choice.

Definition 3 (Leakage-Resilient weak PRF (LR-wPRF)). Let X ,Y,K be
efficient ensembles and let F = { FK : X → Y}K∈K be some efficient function
family. We say that F is an `(λ)-leakage-resilient weak PRF (LR-wPRF) if, for
all PPT attackers A the advantage of A is negligible in the following game:

Initialization: The challenger chooses a random K ← Kλ.
Learning Stage: The attacker AO`

K(·),FK($)(1λ) gets access to the leakage
oracle O`

K(·) (allowing him to learn up to ` bits of information about K)
and also the wPRF oracle FK($) which does not take any input and, on each
invocation, chooses a freshly random X ← X and outputs (X, FK(X)).9

9 Without loss of generality, we can also assume that the attacker only makes a single
call to the leakage oracle O`

K(·) after making all of its calls to the wPRF oracle
FK($).



Challenge Stage: The challenger chooses a challenge bit b ← {0, 1} and a
random input X∗ ← X . If b = 0, it sets Y ∗ := FK(X∗) and if b = 1 it
chooses Y ∗ ← Y. The challenger gives (X∗, Y ∗) to A who outputs a bit b′.
We define the advantage of the attacker A as AdvA(λ) =

∣∣Pr[b′ = b]− 1
2

∣∣.
In the setting of no leakage we call a function F satisfying the above definition

a standard wPRF.

From wPRF to CPA Encryption. In the full version [31] we show how to
construct leakage-resilient CPA-secure (LR-CPA) symmetric-key encryption
from LR-wPRF.

4.1 Leakage-Resilience via Symmetric-Key wHPS

Toward the goal of constructing a LR-wPRF, we define a new notion of a
symmetric-key weak hash-proof system (SwHPS), which can be thought of as a
symmetric-key version of wHPS. In particular, we define a symmetric-key wHPS
as a type of wPRF family F = {FK : X → Y}K∈K with some special properties.

Other than being able to choose inputs X ← X uniformly at random from
their domain (which we refer to as the distribution Dist0), we can also define two
additional distributions Dist1 (valid), and Dist2 (invalid) over the input-domain
X . We require that samples from these various distributions are indistinguishable
even when given the secret key K. Furthermore, conditioned on seeing many
pairs {(Xi, FK(Xi))} for many different Xi ← Dist1 and a random choice of
X∗ ← Dist2, the output of FK(X∗) will be truly random and independent,
where the randomness comes from the choice of a consistent secret key K.

Definition 4 (Symmetric-Key wHPS). Let X ,Y,K be some efficient en-
sembles and let F = { FK : X → Y}K∈K be some efficient function family with
the following PPT algorithms:
• samK← SamGen(K) takes an input K ∈ K, outputs a sampling key samK.
• X ← Dist1(samK), X ← Dist2(samK) are two distributions that sample

X ∈ X using the sampling key samK. For convenience, we also define
the distribution X ← Dist0(samK) which just samples a uniformly random
X ← X and ignores the sampling key samK.

We say that F is a symmetric-key wHPS (SwHPS) if it satisfies the following
two properties:

Input Indistinguishability. For any polynomial q = q(λ) and any choice of
(b1, . . . , bq), (b′1, . . . , b

′
q) ∈ {0, 1, 2}q, the following distributions are computa-

tionally indistinguishable: (K, X1, . . . , Xq) ≈c (K, X ′
1, . . . , X

′
q), where K ←

Kλ, samK← SamGen(K), {Xi ← Distbi
(samK)}, {X ′

i ← Distb′
i
(samK)}.

Smoothness. For any polynomial q = q(λ) the following distributions are equiv-
alent: (X1, . . . , Xq, Y1, . . . , Yq, X

∗, Y ∗) ≡ (X1, . . . , Xq, Y1, . . . , Yq, X
∗, U),

where K ← Kλ, samK← SamGen(K), {Xi ← Dist1(samK), Yi := FK(Xi)}i∈[q],
X∗ ← Dist2(samK), Y ∗ = FK(X∗), and U ← Y. In other words, Y ∗

is uniformly random and independent of the other elements, where the
randomness comes from the choice of a key K.



Constructing LR-wPRF from SwHPS. We now construct a leakage-resilient
wPRF from any symmetric-key wHPS. As in the public-key setting, we simply
apply an extractor to the output of the symmetric-key wHPS.

Theorem 4. Assume that X ,Y,S,Z are efficient ensembles such that F =
{ FK : X → Y}K∈K is a symmetric-key wHPS and Ext : Y × S → Z is
a (log(|Y|) − `(λ), ε(λ))-extractor for some negligible ε(λ). Define the function
family F ′ = {F ′

K : (X × S)→ Z}K∈K via F ′
K((X, S)) := Ext(FK(X);S). Then

F ′ is an `(λ)-LR wPRF.

4.2 Constructing Symmetric-Key wHPS

We now construct symmetric-key wHPS (SwHPS) from any weak PRF, and
therefore also from the mere existence of one-way functions.

Basic Construction. Let m = m(λ) be some polynomial and let Fweak =
{fk : X → Zm}k∈K be a standard (0-LR) wPRF family.10 Let (Enc,Dec) be a
standard symmetric-key encryption scheme constructed from Fweak as follows:
• Enck(m): Choose x ← X and output c = (x, fk(x) + m), where the addition

is performed in Zm.
• Deck(c = (x, z)): Output m := z − fk(x).

Notice that this encryption scheme has message spaceM = Zm, ciphertext space
C = (X × Zm) and key-space K. A useful property of this encryption scheme
is that we can obliviously sample c ← C without knowing the key k, and this
induces the same distribution as encrypting a random m← Zm. Given the wPRF
Fweak and the resulting encryption scheme (Enc,Dec) as above, we define the
symmetric-key wHPS system: FSwHPS = {FK : Cm → Zm}K∈([m]×K) where

F(K=(t,k))(X = (c1, . . . , cm)) := Deck(ct).

Notice that we can efficiently sample random inputs X ← Cm without knowing
the key K. We define the additional algorithms needed for the definition of
SwHPS as follows:
• samK← SamGen(K). Parse K = (t, k). Choose m− 1 values {ki ← K : i ∈

[m], i 6= t} and define kt := k. Set samK := (k1, . . . , km).
• X ← Dist1(samK) (Valid). Choose r ← Zm and {ci ← Encki(r)}i∈[m]. Output

X = (c1, . . . , cm).
• X ← Dist2(samK) (Invalid). Choose r ← Zm and {ci ← Encki(r + i)}i∈[m]

where the addition is performed in Zm. Output X = (c1, . . . , cm).
For a valid X all of the ciphertexts ci decrypt to the same value r, and for an
invalid X they all decrypt to different values r + i. It is easy to see that the
distributions Dist1,Dist2 are indistinguishable from uniform (Dist0) even given
K = (t, k) since the ciphertext ct always is uniform on its own, and we cannot

10 If m is a power of 2, then we can just identify the elements of Zm with those
of {0, 1}log(m) in a natural way. Therefore, the existence of such wPRFs does not
require any special assumptions.



distinguish the ciphertexts ci : i 6= t from uniform by the security of the
wPRF. Furthermore, given many values {Xi, FK(Xi)} where Xi is valid, we
learn nothing (information theoretically) about the secret index t contained in
K = (t, k). Therefore, for a random invalid X∗ ← Dist2(samK), the output
FK(X∗) = Deckt

(ct) = r + t is truly random and independent.

Theorem 5. Assuming Fweak is a standard wPRF, the function family FSwHPS

as defined above is a symmetric-key wHPS.

Output Amplification via Parallel Repetition. The above construction only
obtains a polynomial-sized output domain, which means that the outputs only
have O(log(λ)) entropy. We amplify the output domain and entropy by using
“parallel repetition”. Formally,

Theorem 6. Assume that F = {fk : X → Y}k∈K is a symmetric-key wHPS
and let n = n(λ) be an arbitrary polynomial. Define Fn = {FK : Xn →
Yn}K∈Kn via F(k1,...,kn)(x1, . . . , xn) def= (fk1(x1), . . . , fkn

(xn)). Then Fn is also
a symmetric-key wHPS, whose output is amplified by a factor of n.

We summarize our final results by combining all the developed ingredients.

Theorem 7. Assuming the existence of one-way functions, there exist `(λ)-LR-
wPRFs and `(λ)-LR-CPA symmetric-key encryption schemes for any polynomial
`(λ). Furthermore, assuming the existence of standard wPRFs with key-size s(λ),
the above schemes exist for any leakage rate α(λ) = O (log(λ)/s(λ)).

5 Leakage-Resilient Message Authentication

In this section, we construct leakage-resilient message-authentication codes (LR-
MACs) from the minimal assumption that one-way functions exit.

Definition 5 (Leakage-Resilient MAC). A MAC consists of the algorithms
(Tag,Ver) and an efficient ensemble K of secret-keys. For correctness, we require
that for every message m ∈ {0, 1}∗, and every key K ∈ K, and every correctly
generated tag σ ← TagK(m), we have VerK(m, σ) = 1. For security, we consider
the following game between an attacker A and a challenger:

Initialization: The challenger chooses a random key K ← Kλ.
Learning Stage: The attacker AO`

K(·),TagK(·),VerK(·,·) can adaptively ask arbi-
trary leakage, tagging and verification queries to its oracles.

Forgery: The attacker provides a forgery (m∗, σ∗) and wins if m∗ was never
given as an input to the tagging oracle TagK(·) during the leaning stage and
VerK(m∗, σ∗) = 1.

We say that such a scheme is an `(λ)-leakage-resilient message authentication
code (`-LR-MAC) if, for all PPT attackers A, the probability that A wins in the
above game is negligible.

In addition to the above definition, we also define a weaker notion of security
against “no-verification-query attacks” (nvq-MAC), where the attacker does not
get access to the verification oracle VerK(·, ·) during the learning stage. See the
full version [31] for additional discussion. As a starting step, we instantiate a
leakage-resilient nvq-MAC and then upgrade it to achieve full security.



Constructing nvq-MACs. Let Fprf = {fk : {0, 1}∗ → Y}k∈K be a pseudorandom
function (PRF) family with super-polynomial output domain |Yλ| = λω(1). Let
n = n(λ), m = m(λ) be arbitrary polynomials. We construct a MAC with key-
space KMAC = (K× [m])n, by parsing K ∈ KMAC as K = ((k1, t1), . . . , (kn, tn))
where ki ∈ K, ti ∈ [m]. We define the algorithms (Tag,Ver) as follows:

• TagK(m): Parse K = ((k1, t1), . . . , (kn, tn)). Choose a random nonce r ←
{0, 1}λ and output the tag σ = (r, {σi,j}) where {σi,j} is an n ×m matrix
defined by:

σi,j :=
{

fki
(r||m) if j = ti

y ← Y otherwise
That is, each row i ∈ [n] of the matrix {σi,j} contains one pseudorandom
value under key ki in the column ti, and the rest of the row is truly random.

• VerK(m, σ): Parse σ = (r, {σi,j}). For all i ∈ [n], check that fki
(r||m) = σi,ti

.

Security Intuition. We explain the security of the above construction via several
abstract properties. Firstly, we can define an alternate tagging oracle, which is
computationally indistinguishable from the original one even given the secret key
K = ((k1, t1), . . . , (kn, tn)) in full. The alternate oracle initially chooses an entire
n×m matrix of PRF keys {ki,j}, where the keys ki,ti

:= ki are taken from K and
the rest of the keys ki,j for j 6= ti are chosen randomly. When answering tagging
queries, the alternate tagging oracle sets all of the values σi,j := fki,j

(r||m) to be
pseudorandom under the appropriate keys. Once we define the alternate tagging
oracle, we can also define two types of forgeries: valid and invalid. A forgery
m∗, σ∗ = (r∗, {σ∗i,j}) is valid if there is some pair (i, j) with j 6= ti such that
σ∗i,j = fki,j

(r∗||m∗), and is invalid otherwise. We have the following properties:
(1) Given access to the alternate tagging oracle and the key K in full, it is

computationally hard to come up with a valid accepting forgery. (Doing so
requires guessing a PRF output at some fresh point (r∗||m∗), for some PRF
key ki,j which doesn’t appear in K.)

(2) Given access to the alternate tagging oracle but not the key K, the
information-theoretic probability of outputting an invalid accepting forgery
is < 2−n log(m). (Doing so requires guessing the indices T = (t1, . . . , tn) since
the only pairs (i, j) for which σ∗i,j = fki,j

(r∗||m∗) are when j = ti. But T
has n log(m) bits of entropy and is independent of the above oracle.)

The above properties ensure leakage-resilience for up to ` = n log(m)−ω(log(λ))
bits of leakage on the key K. Given such leakage, producing a valid forgery
becomes no easier, since it is already hard given K in full. On the other hand,
the probability of producing an invalid forgery can go up by a factor of at most
2`, which remains negligible. We formalize this in the following theorem.

Theorem 8. If Fprf is a PRF family with parameters as above, then the given
construction is an `(λ)-leakage-resilient nvq-MAC for any `(λ) = n(λ) log(m(λ))−
ω(log(λ)).

In the full version [31], we show how to upgrade nvq-MAC security to full
MAC security. As a consequence, we get the following theorem.



Theorem 9. Assuming the existence of one-way functions, there exist `(λ)-
leakage-resilient MACs for any polynomial `(λ). Furthermore, assuming the
existence of PRFs with variable-length input-size, output size λ, and key-size
s(λ), such MACs exist for any leakage rate α(λ) = O (log(λ)/s(λ)).

6 Conclusions

We saw how to construct several leakage-resilient primitives under the minimal
assumption that they exists in the standard setting without any leakage. Perhaps
the main open question is to improve the leakage rate of such constructions (say,
to some constant fraction of the secret key), or to provide black-box separations
showing that this is not be possible. Another interesting open question is to
construct leakage-resilient signatures under the minimal assumption that one-
way functions exist. Lastly, it would be interesting to come up with other
applications where weak hash-proof systems (wHPS) can replace standard HPS.
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