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Abstract. Current key sizes for symmetric cryptography are usually re-
quired to be at least 80-bit long for short-term protection, and 128-bit
long for long-term protection. However, current tools for security evalu-
ations against side-channel attacks do not provide a precise estimation
of the remaining key strength after some leakage has been observed, e.g.
in terms of number of candidates to test. This leads to an uncomfortable
situation, where the security of an implementation can be anywhere be-
tween enumerable values (i.e. 210−250 key candidates to test) and the full
key size (i.e. 260−2128 key candidates to test). In this paper, we propose
a solution to this issue, and describe a key rank estimation algorithm
that provides tight bounds for the security level of leaking cryptographic
devices. As a result and for the first time, we are able to analyze the full
complexity of “standard” (i.e. divide-and-conquer) side-channel attacks,
in terms of their tradeoff between time, data and memory complexity.

1 Introduction

Concrete security evaluations are at the core of cryptographic research. Taking
the example of symmetric cryptography, they are at the same time central in
formal definitions of security (e.g. as introduced by Bellare et al. [2]) and in the
evaluation of attacks such as linear and differential cryptanalysis [4, 22]. Their
goal is to provide bounds on the success probability of an adversary as a function
of the resources she expends, typically measured in time, data and memory. But
somewhat surprisingly, while such concrete (and complete) evaluations are usual
in the context of mathematical cryptanalysis (e.g. [3], Table 5), they appear much
harder to obtain in the context of physical cryptanalysis, even for “classical”
attacks such as Kocher et al.’s Differential Power Analysis (DPA) [20].

The challenging nature of physical security evaluations mainly relates to the
difficulty of capturing the “device-specificity” of the attacks. For example, statis-
tical models used to evaluate the complexity of linear and differential cryptanal-
ysis have been intensively studied for more than 20 years. They generally reflect
the peculiarities of actual block ciphers to a good extent [10, 19, 30]. Under rea-
sonable assumptions and using design tools such as the wide-trail strategy, one
can even guarantee security against large classes of statistical attacks [9]. By con-
trast, there is no general theory explaining how to build secure implementations,



and most countermeasures used by device manufacturers highly depend on the
chosen technology. Therefore, present security evaluations against side-channel
attacks need to rely on experimental validation. For example, certification reports
emitted by national authorities such as the ANSSI in France [1], or the BSI in
Germany [6], are based on extensive analysis from evaluation laboratories.

From a cryptographic point of view, a purely empirical approach is hardly sat-
isfying, as it only determines whether a given laboratory (with given equipment,
time, data and memory) is able to recover some secret information contained in
a leaking device. Hence, a fundamental question is to determine which parts of
the physical security evaluations actually need experiments. Since the leakage
in cryptographic implementations is technology-dependent, it is clear that some
characterization through measurements is unavoidable, in order to determine its
informativeness. Yet, given a certain amount of information leakage, it remains
to analyze the impact of the time and memory complexities on the success prob-
ability of actual side-channel attacks. Answering these two questions (i.e. infor-
mation extraction and exploitation) is the main goal of evaluation frameworks
such as [31]. In the context of block ciphers (that will be our running example),
most distinguishers published in the literature are based on a divide-and-conquer
strategy1. As a result, the usual solution to exploit computational power is to
perform enumeration [25, 32]. But this implies that present security evaluations
are limited to the computational power of the evaluator. That is, the only leaking
devices for which we can evaluate the security are the ones that are “practically
insecure” (i.e. for which the leakage allows key enumeration). It leaves the (most
interesting) evaluation of “practically secure” devices as an open problem. For
example, an evaluation laboratory could claim that he could consistently not
recover an AES key within time complexity 240 (i.e. after repeated experiments
and with good statistical confidence). But this does not give clear hints whether
the security level of the corresponding target leaking device is 241 or 2100.

Main result. We show that in the (realistic) scenario where the evaluator of a
leaking device knows its secret key, it is possible to estimate the probability of
success of “standard” side-channel attacks (e.g. the ones listed in footnote 1) that
he is unable to perform (e.g. attacks of time complexities beyond 280). For this
purpose, we provide a rank estimation algorithm solving the following problem:
“given a set of discrete probability distributions for independent parts of a key
and a correct key k∗ with posterior likelihood p∗, provide tight bounds for the
rank of this key among the set of all possible ones” (i.e. for the order statistic
of p∗ in the set of all key probabilities). The set of distributions is typically
the outcome of a template attack [8], but can also be derived from most non-
profiled side-channel attacks such as listed in Footnote 1. In fact, rank estimation
requires essentially the same inputs as key enumeration, excepted the correct key
and its likelihood (unknown during enumeration). Based on several experiments,

1 Including Kocher et al.’s DPA, Brier et al.’s Correlation Power Analysis (CPA) [5],
Chari et al.’s Template Attacks (TA) [8], Gierlichs et al.’s Mutual Information Anal-
ysis (MIA) [14], Schindler et al.’s stochastic approach [28], and many variations.



we further show that our algorithm features small ratios between the lower and
higher bounds on the key rank, and small running times (e.g. ratios between 22

and 210 for a 128-bit key are obtained in a couple of seconds on a PC).

Consequences. Besides being a tool of choice for side-channel evaluation labo-
ratories, our algorithm has a number of important consequences for the theory
and practice of side-channel attacks. First, and for the first time, it allows the
estimation of all the metrics put forward in [31] (namely, the success rates of
all orders and guessing entropy). For example, the estimation of the guessing
entropy for large master keys was previously impossible, as illustrated by the
reports of the DPA contests v1 and v2 [26]. Our rank estimation algorithm
could be directly used in further versions of such contests. Second, it provides a
method to connect actual side-channel attacks with the need of “limited informa-
tion leakage” in certain formal works aiming to prove security against physical
attacks. For example, it allows quantifying the hardness assumption in Dodis et
al.’s cryptography with auxiliary input [11], or the seed-preserving assumption
used in [34]. Although less directly connected, it also provides a lower bound
on the λ-bit leakage required in leakage-resilient cryptography [12]. Third, rank
estimation yields an exact solution to evaluate the complexity of a number of
“non-standard” side-channel attacks. For example, it is perfectly suited to es-
timate the workload of collision attacks such as [24, 29] (see [13], Section 5). It
would also be handy for analyzing the key-dependent algorithmic noise in the
CHES 2012 leakage-resilient PRF [23], where most subkeys cannot be highly
rated by the adversary. Fourth, our experiments suggest a cautionary note for
the use of lightweight ciphers with small key sizes in leaking devices, as a few
measurements can be enough to degrade their security within adversarial reach.
Finally, we note that the proposed algorithm is not limited to physical security
evaluations, and is potentially useful in any mathematical cryptanalysis setting
where experiments are still needed to validate an hypothetical model.

2 Rank estimation: an overview

This section describes the approach that allows us to perform efficient and accu-
rate rank estimations for standard key spaces (i.e. from 280 to 2256, typically).
Let us denote the independent parts of the key for which information has been
obtained as subkeys. Our general idea is to organize the key space by sorting
each of these subkeys according to their posterior likelihood, in decreasing order.
As a result, the full key space is partitioned into 2 main volumes. The first one is
defined by all key candidates with probability higher than the correct key. The
second one is defined by all key candidates with probability smaller than the cor-
rect key2. Given this geometrical representation, our rank estimation problem
can be stated as the one of finding bounds for the “higher” and “lower” volumes.

2 Between these volumes, we may find other volumes where all key candidates have
the same probability as the correct one - which will be considered by our algorithm.
Yet, in practice this “middle zone” usually contains the correct key only.



Organizing the key space with such volumes has one main advantage. Namely,
the “higher” (resp. “lower”) set of key candidates is delimited by a concave (resp.
convex) surface within the key space. This means that if we pick a key candidate
with a probability higher (resp. lower) than the target key, all keys with index
lower (resp. higher) will also have the same property. This fact is illustrated
in Figure 1 for a simplified 2-dimension case, with small subkey spaces. In this
example, the correct key is the blue circle, and the equipotential surface splits
the key space into candidates with higher (green, light) and lower (red, dark)
probabilities. If one picks a key candidate within the lower probability set (e.g.
the black circle), we notice that all candidates with higher indexes (inside the
gray rectangle) will be on the same side of the surface. Hence, they will have a
lower probability than that of the correct key. Taking advantage of this fact, our
method for rank estimation essentially consists in “carving” such boxes of key
candidates on each side of the probability surface, and use the volumes of these
boxes to progressively refine the (lower and higher) bounds on the key rank.

Fig. 1: Sorted key space in a simplified two-subkeys case.

Note that for small key spaces, standard quadrature tools such as Monte-
Carlo integration could be used to bound the key rank. But as soon as typical
cryptographic parameters are considered, e.g. 16 dimensions supported by 28

discrete points for the case of AES-128, these tools do not work anymore. Even
when partially merging some dimensions3 (e.g. in order to obtain 4 dimensions
with support 232), they fail to provide an answer in reasonable time. To the
best of our knowledge, the algorithm carefully described here is the first one to
provide an efficient solution that fits cryptographic evaluation purposes.

3 Algorithms for efficient rank estimation

This section aims at presenting the rank estimation algorithm. First, a high-level
description of the algorithm is provided. For this algorithm to work efficiently
in practice, several refinements are needed, detailed in the subsequent sections.

3 Which will generally be beneficial to improve the performances of our approach too.



3.1 High-level algorithm representation

Algorithm 1 is an high-level view of the rank estimation algorithm. For the sake
of simplicity, we assume that the target cipher is aes-128 (that is we are provided
16 subkey probability mass functions of support 28 each). The algorithm remains
valid for other ciphers by simply modifying the corresponding entries.

Algorithm 1: Rank estimation algorithm.

Input: Subkey distributions D = (Di)1≤i≤16 and the key probability p∗.
Output: An interval I = [I0; I1] containing the key rank.
L ← {[0; 255]16};
I ← [0; 2128];
PreProcess(D);
while L 6= ∅ do

(V,L)← PickVolume(L);
if IsCarved(V ) = false then

(V ′, I)←CarveBox(V, I, p∗,D);
L ← InsertVolume(L, V ′);

else
{V ′i } ← SplitVolume(V );
L ← InsertVolume(L, {V ′i });

return I;

As stated in Section 2, our algorithm is based on the fact that when distri-
butions are sorted by decreasing probability, the frontier between the “lower”
and “higher” key spaces is convex. Thus, a PreProcess() procedure is first used
to sort distributions. It also performs other treatments in order to improve the
algorithm efficiency (discussed in Section 3.2). After initializing a list L with a
volume containing the whole key space, we iterate over volumes in this list until
it is depleted or the target accuracy is reached. The volume to process is chosen
by the PickVolume() procedure that removes the largest volume from L. The
extracted volume is then processed. For reasons that will be clarified later in
the section, we store volumes as either simple boxes (i.e. a Cartesian product of
intervals), or the set difference of two such boxes that we will denote as carved
volumes. Depending on the case, two alternative procedures are possible.

If the extracted volume is a full box, the CarveBox() procedure is called,
that chooses a point on one side of the equipotential surface and carves a key set
from this point. The result is a carved volume V ′, which is actually a difference
between two key boxes. The rank estimate I is then updated with the carved set.
Afterwards, the remaining carved volume is inserted back into list L using the
InsertVolume() procedure. Else the volume extracted from list L is a carved
volume, in which case the SplitVolume() procedure is used first, that splits it



into smaller volumes having simpler geometries. As for the first case, these are
then inserted back into the list using the InsertVolume() procedure.

A run of the algorithm is illustrated in Figure 2. First, a box is carved from
the key space and subtracted from the higher bound. The resulting carved box is
then split in two. In the third step, a new box is carved on the green (light) side
of the top box, and added to the lower bound. In the fourth step, another box
is carved from the green (light) side of the bottom box. After several steps, an
exact bound can be given for the correct key in Figure 1. Note that during the
rank estimation for an actual cipher, the limiting surface has too many details
to be exactly computed, hence we are limited to an estimation of the rank.

I1

I0

I0

Fig. 2: Example run of Algorithm 1.

While this algorithm is seemingly simple, any direct implementation results in
either intractable computation time or too large memory requirements. We only
managed to attain tractability (and efficiency) through several specific choices
and refinements for the different procedures, described below.

3.2 The PreProcess procedure

In addition to sorting the distributions by decreasing probability, the PreProcess
procedure also lowers the number of dimensions in the key space by merging some
subkey lists. Instead of treating a 16-dimension cube of side length 28, we will
work, for instance, on a 6-dimension space with sides up to 224. This merging
step leads to significant improvements in the algorithm efficiency and should
be applied as far as memory allows it. The impact of such a merging on the
algorithm performances will be illustrated in the experiments of Section 4.

3.3 The PickVolume procedure

When extracting a volume from the list, one can either pick the largest one or the
smallest. Extracting the smallest volume leads to small memory requirements, as
we basically perform a depth-first exploration of the key space. But this strategy
has high computation time and becomes intractable as the algorithm gets lost in
the details of the equipotential surface. By contrast, picking the largest volume
first is equivalent to performing a breadth-first search, and allows bounds to
converge faster. Hence, we choose to maintain a list of largest volumes. Such a list



is efficiently implemented using an heap-based priority queue. Yet, its memory
cost can become critical (as many volumes have to be stored at any given time).
Improvements were needed to minimize this memory, as detailed next.

3.4 The InsertVolume procedure

When the number of volumes stored in the queue increases beyond what we
can efficiently store on a computer, we have two solutions: either switch to a
depth-first search (which does stop the storage increase but has the side-effect of
slowing down the convergence of bounds almost to a stop), or we can truncate
the smallest volumes in the heap (since we use a heap and not a binary tree,
we actually truncate volumes among the smallest ones, not exactly the smallest
ones). The second approach naturally leads to accuracy losses in the estimation.
Fortunately, we are not interested in the exact rank of the key but on “good
enough” bounds. Hence, we opted for this second strategy. In practice, truncation
is acceptable if the accuracy loss is small compared to the key rank, which
depends on the storage limit set in the algorithm. We will show in the Section 4
that current computer memories allow very satisfactory results in this respect.

3.5 The IsCarved procedure

Iterations of Algorithm 1 essentially take boxes from the key space and carve
other boxes out of them. If we were only able to represent plain boxes, we
would need to perform splits along each dimension each time a box is carved.
Essentially, carving a piece out of a box would lead to an increase in memory
requirements (due to the storage of the resulting pieces): a naive split generates
up to 2d− 1 new boxes with d the number of dimensions. The storage technique
suggested in Section 3.1 allows a significant reduction of this cost. By allowing
the representation of differences between key boxes, we can store carved volumes
within as much memory as “plain ones”. As a result, the IsCarved procedure is
used each time a volume is picked in Algorithm 1, in order to determine whether
the volume passed as an argument is a plain box or a carved one.

3.6 The SplitVolume procedure

Whenever the volume we extract from the list is not a box, but rather a difference
of two boxes, we have to simplify it and insert the resulting volumes back into the
list. As stated above, the naive approach of splitting along each dimension is very
inefficient and can generate up to 2d−1 new boxes. Instead, we propose another
way to perform this task. That is, given a volume consisting of a difference
between two boxes, we split it along a single axis. This results in two volumes,
one of which is a box, the other being either a box or a carved volume. The axis
used to split is chosen in order to maximize the volume of the resulting simple
box. This solution is illustrated in Figure 3. The carved box (left) can either be
split into seven smaller boxes (middle), or into a larger box and another carved



volume (right). We note that this alternative approach, on top of minimizing the
size of the volume list, also preserves larger volumes (which is positive since it
improves the refinement of bounds during the subsequent carving steps).

Fig. 3: Possible approaches to the volume split.

3.7 The CarveBox procedure

(a) The carving point. In order to refine rank estimation, we classify key
candidates inside a volume as more or less probable than the correct key, and
carve pieces of this volume. The easiest way to do this is to pick the central
point in the box, estimate its probability and carve the corresponding box. This
approach is inefficient as it only classifies one 2−d-th of the box volume where
d is the number of dimensions. Instead, we perform an heuristic optimization
on the number of keys contained in the carved part, repeated on both sides of
the equipotential surface. In practice, the surface is sufficiently “well-behaved”
so that simple heuristics such as hill climbing (with some random restarts) was
sufficient. More computationally intensive approaches that we tested (such as
simulated annealing) only offer a marginal improvement while hampering speed.

(b) The carving side. Iterations of Algorithm 1 provide two boxes for updating
either the inner or outer bound of the key rank. In order to choose between them,
we need a criteria. The naive proposal trying to minimize the difference between
the updated bounds is not efficient, as it will almost always choose the largest
carved volume of the two. Indeed, the rank of the key in a side-channel attack
usually tends to be small with respect to the size of the key space, with most key
candidates having probability smaller than the correct one (otherwise the attack
was ineffective). As a result, such a criteria will almost always update the higher
bound of the key rank and refine the lower one very late (i.e. when almost all key
candidates have been classified). In order to avoid such shortcomings, a better
criteria is to minimize the ratio (or log difference) between higher and lower
bounds. This way, the carving results in fast refinements of the bounds from a
computational point of view - with typical bounds within a few binary orders.



4 Experimental results

The goal of this section is two-fold. In a first part we evaluate the speed and
accuracy of our rank estimation algorithm. In a second part we apply this tool
in the context of a security evaluation and discuss its usefulness. The experi-
ments are based on a c++ implementation of the rank estimation algorithm.
Its functional correctness was tested by comparing the results to those of our
enumeration algorithm [32] for computationally reachable key ranks.

4.1 Performances of the rank estimation algorithm

We first tried to gauge the efficiency of the rank estimation algorithm in the
previous section. To this end, we used the results of simulated template attacks
against an unprotected aes-128 implementation for inputs. That is, we con-
sidered 16 attacks targeting the 16 S-boxes in the first aes round and taking
advantage of leakage samples of the shape: li = HW(S[xi ⊕ ki]) + ni, with HW
the Hamming weight function, xi (resp. ki) the ith byte of the plaintext (resp.
key), and ni a Gaussian-distributed noise variable. As a result, we obtained at-
tack outcomes in the form of 16 lists of 256 posterior likelihoods. Note that our
following analysis is quite independent of the exact type of side-channel attack
implemented. As discussed in [32], key enumeration (hence, rank estimation)
apply to any profiled or non-profiled DPA. The only important parameter for
our performance evaluations is the rank of the correct key candidate suggested
by the attack. In practice, we played with the noise variable and number of mea-
surements in order to make this rank vary. The main criteria used to measure the
efficiency of our algorithm are speed, memory and the tightness of the bounds.

In this context, a first task is the study of the impact of merging subkey
lists during the PreProcess procedure. We analyzed convergence of the bounds
obtained by our rank estimation algorithm as a function of the execution time
in the following contexts: (i) No merging has been done on the subkey posterior
distributions, i.e. the algorithm considers 16 dimensions of support 28, leading to
4 kb of memory requirements for the tables; (ii) Subkey lists were merged two
by two, i.e. the algorithm considers 8 dimensions of support 216, leading to 524
kb of memory requirements for the tables; (iii) Subkey lists were been merged
by three, i.e. the algorithm considers 5 dimensions of support 224 and one of 28,
leading to 83 mb of memory requirements for the tables. Merging further would
require more than 4gb of memory and was not necessary in our context. As
can be noticed in the example run of Figure 4, merging has a strongly positive
impact on the performances of the algorithm. It should always be performed
up to the memory limit. The different experiments presented in the rest of this
section were always obtained by merging the lists as per (iii).

The next point of interest is the rate of convergence of the proposed algo-
rithm. In Figure 5, the ratios between higher and lower bound on the estimated
rank are plotted against the actual rank. More precisely, if the algorithm returns
an estimated interval [i0; i1], then we plot log2(i1/i0) on the Y-axis to show the
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relative accuracy of the current estimation, against the geometrical mean of the
best estimated bounds on the X-axis. By repeating the experiment and removing
outliers4, we obtain the banana-shaped envelopes illustrated on the figure. Each
envelope corresponds to a given running-time between 5 and 900 seconds.
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These results highlight that in our setting, most of the estimation work is
done after 150 seconds. We also note that in 5 seconds, the ratio between higher
and lower bounds is at most of 14 binary orders of magnitude, which is actually a
very good indicator when evaluating the security of a cryptographic component.
In this respect, ranks from 260 to 2100 are the most difficult to estimate, while
ranks smaller than 230 can be accurately determined within a few seconds.

4 Corresponding to cases where the equipotential surface is so simple that the algo-
rithm returns a significantly more accurate interval compared to other experiments.



Eventually, another natural question is to determine how much our rank
estimation algorithm allows improving crude lower bounds obtained by simply
multiplying the subkey ranks together. Figure 6 shows the ratio between this
approximation and the bounds returned by our algorithm after only 30s. Esti-
mated intervals are plotted as gray vertical segments, with bound values divided
by the rank product estimate. It can be observed that the product bound un-
derestimates the actual rank by 20 to 40 binary orders of magnitude.
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Fig. 6: Improvement obtained by rank estimation over rank-product lower bound.

4.2 Using rank estimation in physical security evaluations

In general, the main objective of a physical security evaluation is to determine
how many encryption traces allow an adversary to recover the secret key with
non-negligible probability, given some reasonable restrictions of its computing
power and memory requirements. For this purpose, a natural solution is to esti-
mate the metrics introduced in [31], namely the o-th order success rate (which
gives the probability that the correct key stands among the o first ones provided
by the attack), and the guessing entropy (which is the expected rank of the cor-
rect key after the attack). However, and as already mentioned in introduction,
the estimation of these metrics was so far limited to subkeys, or to success rates
of enumerable orders for master keys. In the remainder of this section, we show
how efficient rank estimation can be used to mitigate this limitation, and provide
the complete picture for side-channel attack security evaluations.

For this purpose, we define an “all-order” success rate graph, which provides
the probability of a successful key recovery (on the Z axis or color map), depend-
ing on both the number of traces (on the X-axis) and the enumeration effort (on
the Y-axis). That is, any point in this graph corresponds to the success rate for
a given number of queries q = x and order o = y. In order to relate this graph
with the evaluation framework proposed in [31], we first remark that any of its



“slices” obtained for a fixed y corresponds to a y-th order success rate. Further-
more, any slice for a fixed x is a rank distribution graph for a given number of
measurements, the mean value of which equals the guessing entropy.

Building such a graph simply requires to perform several rank estimations,
for different values of the number of encryption traces measured. The outputs
provide a set of intervals that can then be used as input to a kernel density esti-
mation (e.g. with uniform kernels). What is actually of interest to an evaluator
is the cumulant of the density function resulting from this estimation: it indi-
cates the probability that a key will be found, depending of the amount of keys
that the adversary can enumerate. Interestingly, such density estimations con-
verge quickly. For example, the security graphs in Figures 7, 8 were obtained by
performing 100 attacks with random keys and estimating the key rank during 5
seconds, which amounts to less than 10 minutes of computation for each possible
number of traces. The continuous black (resp. white) lines indicate the minimum
(resp. maximum) ranks observed. Basically, any data/enumeration point below
the black line seems safe, while points above the white line lead to certain key
recovery. The medium zone indicates a non-negligible probability of key recovery.
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Fig. 7: Example of a security graph for a template attack against unprotected
AES.

For illustration, we produced the security graphs for implementations of the
block ciphers AES and LED [16], with respective key lengths 128 and 64 bits.
Our experiments exploited exactly the same leakage models as in the previous
section, with the same noise variance for both ciphers, and the number of target
subkey bytes as only difference. In the case of the AES implementation shown
in Figure 7, an adversary with a personal computer spending two weeks of com-
putation (i.e. enumerating ≈ 240 keys) will have a small chance of recovering
the master key when she has less than 15 traces at her disposal, and will al-
most certainly succeed if she has more than 60 traces. Comparing this result
with the first-order success rate curve, we observe that this success rate is still
stuck at zero for 60 traces, hence suggesting the necessity of key ranking in se-
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Fig. 8: Example of a security graph for a template attack against unprotected
LED.

curity evaluations. Besides, it is also interesting to observe that the impact of
side-channel leakage is more critical for LED, as a small number of traces (e.g.
5 in the example of Figure 8) already allows decreasing the computing power
required for possible key recovery down to approximately 240 (whereas it is still
around 280 for the AES given the same number of traces). This vulnerability is
simply due to the smaller key space. In general, the graphs of Figures 7 and 8 can
be used directly to determine the re-keying rate in a leakage-resilient construc-
tion. The designer just has to choose an enumeration threshold corresponding
to the computing power of the adversary considered, then extract the number
of measurements that can be tolerated without risking a key recovery (using
the figures black line minus a small security margin). Note that the rank and
related enumeration effort can be translated into both time and memory costs
thanks to the enumeration algorithm presented in [32]. Exemplary performances
are reported in Table 1 (where enumeration times do not include the key testing
as it depends on the cipher under attack). Figures 7 and 8 thus represent the
security of a target device for different data/time/memory trade-offs.

# of keys enumerated 220 230 240 250 260

Time 0.25 s 6 m 2 w 165 y 77× 105 y
Memory <3 mb 100 mb 11.5 gb 1.35 tb 157 tb

Table 1: Time and memory requirements for key enumeration using [32].

Eventually, and in order to confirm that the tools introduced in this paper
apply to actual implementations as easily as to simulated experiments, we built
the security graph corresponding the best attack submitted to the DPA contest
v2 [26], depicted in Figure 9. Producing this graph required approximately 20



minutes of computation on an 8-core computer, and did not imply any modifica-
tion of the rank estimation algorithm. Note that this evaluation was performed
on the public database of the contest, which is easier to attack than the private
one. This explains the small discrepancy between our graph and the “Hall of
Fame” available online. Namely, the best attack reported in the contest needs
1173 traces to reach an 80% key recovery success rate when no enumeration is
done. By adding enumeration up to rank 232, the data complexity requirement
falls down to only 439 traces! In the “easier” context of the public database (de-
scribed in Figure 9), the security graph shows that only 350 traces are needed
with a 232-key enumeration, while a first-order success rate reaches 80% for
935 traces. To conclude, we mention that just as our rank estimation applies
to profiled and non-profiled DPA, it also applies to protected implementations
(e.g. with masking [7, 15] or shuffling [17, 21]). The main reason is that standard
side-channel attacks against such implementations would produce lists of subkey
scores or probabilities, as described beforehand and exploited in this paper.
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Fig. 9: Security graph for the latest attack of DPA contest v2 (public traces).

5 Conclusion

In this paper, we presented an algorithm for key rank estimation. It can be seen
as the evaluator’s counterpart to the attacker’s key enumeration algorithm de-
scribed in [32]. The rank estimation algorithm allows an evaluator to predict the
workload of an attacker trying to recover a cryptographic key using the outcome
of a side-channel attack. It typically returns accurate interval estimates [2x; 2x+e]
of the key rank in a few seconds. By contrast, the enumeration algorithm returns
an exact rank for keys of which the rank is small enough (e.g. below 240), but
will fail for keys of which the rank is beyond computing power.

Besides their direct application to single attacks, these two algorithms nat-
urally gain additional interest in an evaluation setting where multiple attacks



can be launched to analyze the security of a leaking device with statistical con-
fidence. In particular, the combination of key enumeration and rank estimation
enables the efficient computation of the metrics defined in [31]. Taking advan-
tage of these tools, we are now able to produce security graphs that summarize
the success probabilities of side-channel attacks, according to both the number
of traces and the computational power available to an adversary.

We hope that these tools will be beneficial to researchers and evaluators and
allow more thorough physical security evaluations. To that purpose, open-source
C++ implementations (and matlab hooks) for both the enumeration and rank
estimation algorithms are distributed via the authors’ home pages.
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