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Abstract. We propose a scheme for watermarking cryptographic functions. In-
formally speaking, a digital watermarking scheme for cryptographic functions
embeds information, called a mark, into functions such as (trapdoor) one-way
functions and decryption functions of public-key encryption. It is required that a
mark-embedded function is functionally equivalent to the original function and
it is difficult for adversaries to remove the embedded mark without damaging
the function. In spite of its importance and usefulness, there have only been a
few theoretical studies on watermarking for functions (or program), and we do
not have rigorous and meaningful definitions of watermarking for cryptographic
functions and concrete constructions.
To solve the above problem, we introduce a notion of watermarking for cryp-
tographic functions and define its security. We present a lossy trapdoor function
(LTF) based on the decisional linear (DLIN) problem and a watermarking scheme
for the LTF. Our watermarking scheme is secure under the DLIN assumption in
the standard model. We use the techniques of dual system encryption and dual
pairing vector spaces (DPVS) to construct our watermarking scheme. This is a
new application of DPVS.
Keywords: digital watermarking, dual pairing vector space, dual system encryp-
tion, vector decomposition problem

1 Introduction

1.1 Background

Digital watermarking is a method of embedding information, called a “mark”,
in digital objects such as images, movies, and audio files. Marked objects look
similar to the original objects and it is difficult to remove embedded marks with-
out destroying the object. One of the applications of watermarking is protecting
copyright, i.e., we can prevent unauthorized copying of digital content by de-
tecting watermarks. Another application is tracing and identifying owners of
digital content, that is, if we find illegally copied digital content, we can detect
a watermark and identify the owner who distributed the illegal copy. Most wa-
termarking methods have been designed for perceptual objects, such as images,
and only a few studies have focused on watermarking for non-perceptual ob-
jects (e.g., software, program). Software is digital content, so it can be easily
copied. Software piracy is a serious problem today. Watermarking for programs



is one of tools to solve the problem and has very useful, attractive, and practical
applications, but they are little understood.

We briefly explain related studies on program watermarking below. Nac-
cache, Shamir, and Stern introduced the notion of copyrighted functions and
proposed a method for tracking different copies of functionally equivalent al-
gorithms containing “marks” [14]. This is related to watermarking schemes for
program (functions), but their security definition is a bit weak and not sufficient
for program watermarking. Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vad-
han, and Yang considered the notion of software watermarking (program wa-
termarking) from a cryptographic point of view in their seminal work [1]. They
proposed a formalization of software watermarking and its security definition,
but the definition is simulation based and too strong. They gave an impossibility
result for general-purpose program watermarking by using impossibility results
of general-purpose program obfuscation [1]. “General-purpose” means that pro-
gram watermarking/obfuscation can be applied to any program. Their security
requirements cannot be achieved, so they leave positive theoretical results about
watermarking (achieving concrete constructions for specific function families
by using a game-based security definition) as an open problem. Yoshida and
Fujiwara introduced the notion of watermarking for cryptographic data and a
concrete scheme for signatures [23]. Their idea is very exciting, but they did
not propose a formal security definition of watermarking for cryptographic data
and their scheme is not provably secure. They claim that the security of their
scheme is based on the vector decomposition (VD) problem, which was intro-
duced by Yoshida, Mitsunari, and Fujiwara [24], but their proof is heuristic and
they showed no reduction.

Hopper, Molnar, and Wagner proposed a rigorous complexity-theoretic (game-
based) definition of security for watermarking schemes, but they focused on wa-
termarking for only perceptual objects [8]. They gave no concrete construction
that satisfies their security definition.

1.2 Motivations and Applications

As explained in the previous section, there is no watermarking scheme for (cryp-
tographic) functions that is provably secure in a complexity-theoretic definition
of security. We consider functions as a kind of program. Copyrighted functions
by Naccache et al. are provably secure based on the factoring assumption, but
their definition of security is weaker than that of watermarking, and their con-
struction can embed a bounded number of marks [14].
Traceable cryptographic primitives. One application of watermarking for cryp-
tographic functions (we sometimes call it cryptographic watermarking) is con-
structing various traceable cryptographic primitives. If we have a watermarking
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scheme for cryptographic functions, for example, trapdoor one-way functions,
collision-resistant hash functions (CRHF), and decryption functions, we can
construct a variety of traceable primitives or copyrighted cryptographic prim-
itives since private-key encryption, public-key encryption (PKE), digital signa-
tures, and so on are constructed from trapdoor one-way functions and often use
CRHFs in their algorithms.

As pointed out by Naccache et al., watermarked functions have the follow-
ing applications [14]:

– If we consider software or program that generates ciphertexts of the Feistel
cipher based on a one-way function [13], signatures of Rompel’s signature
scheme [21], or decrypted values of ciphertexts under PKE schemes based
on a trapdoor one-way function, and a malicious user illegally makes copies
of such software and distributes them, then a company that sold the software
can trace them and identify the guilty users.

– If a company sells MAC-functions based on watermarked one-way func-
tions to users and records user IDs and marked functions in a database and
the users use them to log-in a member web site, then they do not need to
disclose their identity since all marked functions are functionally equivalent.
However, if a malicious user distributes an illegal copy and it is discovered,
then the company can identify the guilty identity by detecting an embedded
mark.

Black-box traitor tracing. Kiayias and Yung proposed a method of construct-
ing black-box traitors tracing schemes from copyrighted PKE functions [10].
When we want to broadcast digital content to a set of legitimate subscribers, we
can use broadcast encryption schemes. If some of the subscribers leak partial
information about their decryption keys to a pirate, who is a malicious user in
broadcast encryption systems, then the pirate may be able to construct a pirate-
decoder. Traitor tracing enables us to identify such malicious subscribers called
traitor [3]. Our cryptographic watermarking scheme can be seen as a generalized
notion of copyrighted functions and our construction is based on identity-based
encryption (IBE) schemes whose private keys for identities are marked (these
are copyrighted decryption functions of PKE), so our construction technique
can be used to construct black-box traitor tracing schemes and it has a quite
powerful application.

Theoretical treatment of watermarking. There are many heuristic methods for
software watermarking [4], but there have only been a few studies that theo-
retically and rigorously treat the problem in spite of its importance. Functions
can be seen as a kind of software (and program) and a large amount of software
uses cryptographic functions, especially in a broadcast system, users must use
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software with decryption functions to view content. We believe that our scheme
is an important step toward constructing practical software watermarking.

1.3 Our Contributions and Construction Ideas

We introduce the notion of watermarking for cryptographic functions, a game-
based security definition of them, and a concrete construction. Our watermark-
ing scheme is provably secure under the decisional linear (DLIN) assumption.
To the best of our knowledge, this is the first provably secure watermarking
scheme for functions (program) in terms of theoretical cryptography.

Our security notion is based on the notion of strong watermarking intro-
duced by Hopper et al. [8]. Their definition takes into account only percep-
tual objects and they modeled the notion of similarity by a perceptual metric
space on objects that measures the distance between objects. Therefore, to con-
struct watermarking schemes for cryptographic functions, we should modify
their definition. We define the similarity by preserving functionality, that is, if
a marked function is functionally equivalent to an original function, then we
assume the marked function is similar to the original function. Watermarking
schemes should guarantee that no adversary can generate a function which is
functionally equivalent to a marked function but unmarked, that is, no adversary
can remove embedded marks without destroying functions.

We propose a watermarking scheme for lossy trapdoor functions (LTFs)
[20]. LTFs are quite powerful cryptographic functions. They imply standard
trapdoor one-way functions, oblivious transfers, CRHFs, and secure PKE schemes
against adaptive chosen ciphertext attacks (CCA) [20]. The watermarking scheme
consists of four algorithms, key generation, mark, detect, and remove algo-
rithms. Marked function indices are functionally equivalent to the original ones,
that is, for any input, outputs of marked functions are the same as those of the
original function. The construction can be used to construct an IBE scheme that
can generate marked private keys for identities and marked signatures since our
LTFs are based on IBE schemes, as explained in the next paragraph. That is, we
can construct decryption algorithms in which watermarks can be embedded.

Key Techniques and Ideas Behind Our Construction. Our construction is based
on the dual pairing vector space (DPVS) proposed by Okamoto and Takashima
[16, 17, 19]. We use the IBE scheme of Okamoto and Takashima [19] (which
is a special case of their inner-product predicate encryption (IPE) scheme) and
that of Lewko [11] to construct LTFs. Loosely speaking, LTFs are constructed
from homomorphic encryption schemes, and the IBE schemes of Okamoto-
Takashima and Lewko are homomorphic. There are many other homomorphic
encryption schemes but we selected Okamoto-Takashima and Lewko IBE schemes
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because they are constructed by DPVS and the dual system encryption method-
ology introduced by Waters [22]. The methodology is a key technique to achieve
a watermarking scheme.

We apply the dual system encryption technique to not only security proofs
but also constructions of cryptographic primitives. In the dual system encryp-
tion, we can use semi-functional ciphertexts and semi-functional keys. Semi-
functional ciphertexts can be decrypted using normal keys and normal cipher-
text can be decrypted using semi-functional keys, but semi-functional cipher-
texts cannot be decrypted using semi-functional keys. Normal ciphertexts/keys
are computationally indistinguishable from semi-functional ciphertexts/keys. In
most cases, function indices of LTFs consist of ciphertexts of homomorphic en-
cryption [5, 7, 20], so, intuitively speaking, if we can construct a function index
by using not only (normal) ciphertexts but also semi-functional keys, then the
function index is functionally equivalent to a function index generated by (nor-
mal ciphertexts and) normal keys as long as normal ciphertexts are used. More-
over, if we use semi-functional ciphertexts, we can determine whether a function
index is generated by semi-functional keys or not since semi-functional cipher-
texts cannot be decrypted using semi-functional key. Thus, a function index
that consists of semi-functional keys can be seen as a marked index and semi-
functional ciphertexts can be used in a detection algorithm of a watermarking
scheme. This is the main idea. Note that our construction technique can be used
to construct an IBE scheme whose private keys can be marked because our LTFs
are based on such an IBE scheme.

Our watermarking scheme is based on DPVS. We can set a hidden linear
subspace by concealing the basis of a subspace from public parameters due
to a nice property of DPVS. A pair of dual orthonormal bases, B and B∗, are
generated using a random linear transformation matrix. We use a hidden linear
subspace spanned by a subset of B/B∗ for semi-functional ciphertexts/keys (We
denote the subset by B̂ ⊂ B, B̂∗ ⊂ B∗, respectively). A hidden linear subspace
for semi-functional ciphertexts and keys can be used as a detect key and a mark
key of our watermarking scheme, respectively. Thus, we can embed “marks”
into the hidden linear subspace and they are indistinguishable from non-marked
objects because the decisional subspace problem is believed to be hard [15,17].
Informally speaking, the decisional subspace problem is determining whether a
given vector is spanned by B (resp, B∗) or B \ B̂ (resp, B∗ \ B̂∗).

Okamoto and Takashima introduced complexity problems based on the DLIN
problem to prove the security of their scheme [17, 19] and these problems are
deeply related to the VD problem [24] and the decisional subspace problem. The
VD problem says that it is difficult to decompose a vector in DPVS into a vector
spanned by bases of a subspace. Lewko also introduced the subspace assump-
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tion [11], which is implied by the DLIN assumption and highly related to the de-
cisional subspace assumption introduced by Okamoto and Takashima [15] and
the VD problem. All assumptions introduced by Okamoto-Takashima [17, 19]
and Lewko [11] are implied by the standard DLIN assumption.

If we can decompose a vector in DPVS into each linearly independent vec-
tor, then we can convert semi-functional ciphertexts/keys into normal cipher-
texts/keys by eliminating elements in hidden linear subspaces, that is, we can
remove an embedded mark from a marked function index. Galbraith and Ver-
heul and Yoshida, Mitsunari, and Fujiwara argued that the VD problem is re-
lated to computational Diffie-Hellman problem [6, 24]. It is believed that the
VD problem is hard. Therefore, no adversary can remove marks of our water-
marking scheme (this is a just intuition). However, we do not directly use the
VD problem but the DLIN problem to prove the security of our scheme. On the
other hand, if we have a linear transformation matrix behind dual orthonormal
bases of DPVS, then we can easily solve the VD problem [15, 17], that is, we
can remove a mark if we have the matrix. Such an algorithm was proposed by
Okamoto and Takashima [15].

Our construction is a new application of DPVS. DPVS has been used to
construct fully secure functional encryption, IPE, IBE and attribute-based sig-
natures [11,12,16–19], but to the best of our knowledge, a linear transformation
matrix for dual orthonormal bases in DPVS has never been explicitly used for
algorithms of cryptographic schemes. This is of independent interest.

Remark. In this extended abstract, we do not have enough space to give com-
plete proofs and all definitions, so we omitted some of them.

2 Preliminaries

Notations. For any n ∈ N \ {0}, let [n] be the set {1, . . . , n}. When D is
a random variable or distribution, y R← D means that y is randomly selected
from D according to its distribution. If S is a set, then x U← S means that x
is uniformly selected from S. We denote y is set, defined or substituted by z
by y := z. When b is a fixed value, A(x) → b (e.g., A(x) → 1) denotes
the event that probabilistic polynomial-time (PPT) machine (or algorithm) A
outputs a on input x. We say that function f : N → R is negligible in λ ∈ N
if f(λ) = λ−ω(1) (We write f < negl(λ)). We denote the finite field of order
q by Fq, and Fq \ {0} by F×q . A bold face small letter denotes an element of
vector space V, e.g., x ∈ V. Set GL(n,Fq) denotes the general linear group
of degree n over Fq. Let Gbm be a parameter generation algorithm that takes as
input security parameter λ and outputs (q,G,GT , e, g). If we use g/G to denote
a generator in G, then we use multiplicative/additive notation, respectively.
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2.1 Function Family of Lossy Trapdoor Functions

Definition 1 (Lossy Trapdoor Functions [20]). A lossy trapdoor function LTF
with domain D consists of four efficient algorithms satisfying three properties
Injective Key Generation: LTF.IGen outputs (ek , ik) where ek /ik is an eval-

uation/inversion key.
Evaluation: LTF.Evalek (X) (X ∈ D) outputs an image Y = fek (X).
Inversion: LTF.Invertik (Y ) outputs a pre-image X = f−1ik (Y ).
Lossy Key Generation: LTF.LGen outputs (ek ′,⊥).
Correctness: ∀(ek , ik) R← LTF.IGen(1λ) and ∀X ∈ D, f−1ik (fek (X)) = X .
Indistinguishability: Let λ be a security parameter. For all PPTA, AdvINDLTF,A(λ)

:=
∣∣Pr[A(1λ, [LTF.IGen(1λ)]1)]− Pr[A(1λ, [LTF.LGen(1λ)]1)]

∣∣ < negl(λ).
Lossiness: We say that LTF is `-lossy if for all ek ′ generated by using LTF.LGen

(1λ), the image set fek ′(D) is of size at most |D| /2`.

We define a function family of LTF, LTFλ := {LTF.Evalek (, ·)|(ek , ik)
R←

LTF.Gen(1λ, b), b ∈ {0, 1}} where LTF.Gen(1λ, 0) := LTF.IGen(1λ) and
LTF.Gen(1λ, 1) := LTF.LGen(1λ).

2.2 Dual Pairing Vector Space [12, 16, 17]

Definition 2. “Dual pairing vector space (DPVS)” (q,V,GT ,A, e) by a direct
product of symmetric pairing groups (q,G,GT , e,G) are a tuple of prime q, N -
dimensional vector space V := GN over Fq, cyclic group GT of order q, canon-
ical basis A := (a1, . . . ,aN ) of V, where ai := (0, . . . , 0, G, 0, . . . , 0) (only
the i-th coordinate is G), and pairing e : V× V → GT . The pairing is defined
as e(x,y) :=

∏N
i=1 e(Gi, Hi) ∈ GT where x := (G1, . . . , GN ) ∈ V and y :=

(H1, . . . ,HN ) ∈ V. This is non-degenerate bilinear, i.e., e(sx, ty) = e(x,y)st

and if e(x,y) = 1 for all y ∈ V, then x = 0. For all i and j, e(ai,aj) =
e(G,G)δi,j where δi,j = 1 if i = j, and 0 otherwise, and e(G,G) 6= 1. DPVS
also has linear transformations φi,j on V s.t. φi,j(aj) = ai and φi,j(ak) = 0
if k 6= j, which can be easily achieved by φi,j(x) := (0, . . . , 0, Gj , 0, . . . , 0)
(only the i-th coordinate is G) where x := (G1, . . . , GN ). We call φi,j canon-
ical maps. DPVS generation algorithm Gdpvs takes input 1λ and N ∈ N and
outputs a description of pp′V := (q,V,GT ,A, e) with security parameter λ and
N -dimensional V. It can be constructed using Gbm.

Canonical basis A is changed to dual orthonormal bases B := (b1, . . . , bN )
and B∗ := (b∗1, . . . , b

∗
N ) of V. We describe random dual orthonormal bases gen-

erator Gob(1λ, N): Generate pp′V := (q,V,GT ,A, e)
R← Gdpvs(1λ, N), X :=

(χi,j)
U← GL(N,Fq), ψ

U← F×q , (ϑi,j) := ψ(X>)−1, gT := e(G,G)ψ, ppV :=
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(pp′V, gT ), bi :=
∑N

j=1 χi,jaj ,B := (b1, . . . , bN ), b∗i :=
∑N

j=1 ϑi,jaj ,B∗ :=
(b∗1, . . . , b

∗
N ), return (ppV,B,B∗). It holds that e(bi, b∗j ) = (gT )

δi,j .

Vector decomposition problem. The VD problem was originally introduced by
Yoshida, Mitsunari, and Fujiwara [24]. We present the definition of a higher
dimensional version by Okamoto and Takashima [15] to fit the VD problem
into DPVS. Note that a specific class of the CVDP instances that are specified
over canonical basis A are tractable.

Definition 3 (CVDP: (`1, `2)-Computational Vector Decomposition Prob-
lem [15]). For `1 > `2 and all λ ∈ N, we define the advantage

AdvCVDP
A,(`1,`2)(λ) := Pr

ω =

`2∑
i=1

xibi

∣∣∣∣∣∣∣
(ppV,B,B∗)

R← Gob(1λ, `1),
(x1, . . . , x`1)

U← (Fq)`1 ,
v :=

∑`1
i=1 xibi, ω

R← A(1λ, ppV,B,v)

 .
The CVDP(`1,`2) assumption : For any PPT A, AdvCVDP

A,(`1,`2)(λ) < negl(λ).

Trapdoor. If we have a trapdoor, matrix X behind B, then we can efficiently
decompose vectors in DPVS, i.e., solve CVDP(`1,`2) by using the efficient algo-
rithm Decomp given by Okamoto and Takashima [15]. The input is (v, (b1, . . . ,
b`2),X,B) such that v :=

∑`1
i=1 yibi is a target vector for decomposition,

(b1, . . . , b`2) is a subspace to be decomposed into, X is a trapdoor, and B :=
(b1, . . . , b`1) is a basis generated by using X . Algorithm Decomp(v, (b1, . . . ,
b`2),X,B): computes u :=

∑`1
i=1

∑`2
j=1

∑`1
κ=1 τi,jχj,κφκ,i(v) where φ is the

canonical map in Definition 2, (χi,j) =X and (τi,j) := (X)−1.

Lemma 1 (Okamoto-Takashima [15]). Algorithm Decomp efficiently solves
CVDP(`1,`2) by usingX := (χi,j) such that bi :=

∑`1
j=1 χi,jaj .

Multiplicative Notation of DPVS by Lewko [11]. We introduce a multiplicative
notation by Lewko [11]. For ~v, ~w ∈ Fnq , a ∈ Fq, and g ∈ G, we define g~v :=

(gv1 , . . . , gvn), ga~v := (gav1 , . . . , gavn), g~v+~w := (gv1+wn , . . . , gvn+wn), and
e(g~v, g ~w) :=

∏n
i=1 e(g

vi , gwi). Lewko defined algorithm Dual(Fnq ) as follows:

It chooses~bi,~b∗j ∈ Fnq and ψ U← Fq such that~bi ·~b∗j = 0 mod q for i 6= j,~bi ·~b∗i =
ψ mod q for all i ∈ [n] and outputs (B,B∗) where B := (~b1, . . . ,~bn) and
B∗ := (~b∗1, . . . ,

~b∗n). We use the notation (B,B∗) to express dual orthonormal
bases in Fq to distinguish from bases (B,B∗) in V. We can consider bi = g

~bi ,

b∗j = g
~b∗j , ~bi = (χi,1, . . . , χi,n), ~b∗i = (ϑi,1, . . . , ϑi,n) where X = (χi,j) and

ψ(X−1)
>
= (ϑi,j).
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2.3 Complexity Assumptions

Definition 4 (DLIN Assumption). Let Gdlinb (1λ) be an algorithm that gener-
ates Γ := (q,G,GT , e, g)

R← Gbm(1λ), chooses ξ, κ, δ, σ, ζ U← Fq, lets Q0 :=
gδ+σ, Q1 := gζ , and outputs I := (Γ, f, h, f δ, hσ, Qb). The advantage is
AdvdlinA (λ) := |Pr[A(I)→ 1|I R← Gdlin0 (1λ)]−Pr[A(I)→ 1|I R← Gdlin1 (1λ)]|.
We say that the DLIN assumption holds if for all PPT A, AdvdlinA (λ) < negl(λ).

Definition 5 (Subspace Assumption). Let Gdssb (1λ) be an algorithm that gen-
erates Γ R← Gbm(1λ), chooses η, β, τ1, τ2, τ3, µ1, µ2, µ3

U← Fq, (B,B∗)
R←

Dual(Fnq ), for i ∈ [k] where 3k ≤ n lets Ui := gµ1
~bi+µ2~bk+i+µ3~b2k+i , Vi :=

gτ1η
~b∗i+τ2β

~b∗k+i , Wi := gτ1η
~b∗i+τ2β

~b∗k+i+τ3
~b∗2k+i , D := (g

~b1 , . . . , g
~b2k , g

~b3k+1 , . . . ,

g
~bn , gη

~b∗1 , . . . , gη
~b∗k , gβ

~b∗k+1 , . . . , gβ
~b∗2k , g

~b∗2k+1 , . . . , g
~b∗n , U1, . . . , Uk, µ3), Q0 :=

(V1, . . . , Vk), Q1 := (W1, . . . ,Wk), and outputs I := (Γ,D,Qb). The ad-
vantage is AdvdssA (λ) := |Pr[A(I) → 1|I R← Gdss0 (1λ)] − Pr[A(I) → 1|I R←
Gdss1 (1λ)]|. We say that the subspace assumption holds if for all PPTA, AdvdssA (λ)
< negl(λ).

Theorem 1 (Lewko [11]). The DLIN assumption implies the subspace assump-
tion.

3 Definitions of Cryptographic Watermarking

We define watermarking schemes for cryptographic functions (one-way func-
tions, hash functions, etc.). Our definition of watermarking schemes can be ex-
tended to treat cryptographic data introduced by Yoshida and Fujiwara [23]. We
consider a family of functions F := {Fλ}λ. For example, LTFs are crypto-
graphic functions and function F is sampled from family LTFλ := {fek (·)|(ek ,
ik)

R← LTF.IGen(1λ)}. A watermarking key generation algorithm takes as in-
puts security parameter λ and family F and outputs public parameter pk, secret
key sk, mark keymk, detect key dk, and remove key rk. That is, our watermark-
ing schemes is an asymmetric key watermarking scheme. Public parameter pk
includes sampling algorithm SampF , which outputs a function F R← Fλ (note
that we include the case in which the sampling algorithm takes sk as an input).
Note that the description of SampF does not include sk. Our cryptographic wa-
termarking scheme for cryptographic functions F uses public parameter pk and
secret key sk to choose a function F R← Fλ from the function family. A mark
key allows us to embed a mark in function F . A marked function F ′ should be
similar to original function F . A detect/remove key allows us to detect/remove
a mark in marked function F ′.
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Definition 6. A watermarking scheme for family F is a tuple of algorithms
CWMF := {WMGen,Mark,Detect,Remove} as follows:

WMGen: The key generation algorithm takes as input security parameter λ
and function family F , outputs public parameter pk (including sampling
algorithm SampF ), secret key sk, mark key mk, detect key dk, and remove
key rk, that is, (pk, sk,mk, dk, rk) R←WMGen(1λ,F).

Mark: The mark algorithm takes as inputs mk and unmarked function F and
outputs marked function F̃ , that is, F̃ R← Mark(pk,mk, F ) (hereafter, we
often omit pk from inputs).

Detect: The detect algorithm takes as inputs dk and function F ′ and outputs
marked (detect a mark) or unmarked (no mark), that is, Detect(pk, dk, F ′)→
marked/unmarked.

Remove: The remove algorithm takes as inputs rk and marked function F̃ and
outputs unmarked function F := Remove(pk, rk, F̃ ), that is functionally
equivalent to the original one.

As Hopper et al. noted [8], we do not allow any online communication between
the Detect and Mark procedures. We sometimes use notation WM(F ) to denote
a marked function of F .

We define the security of cryptographic watermarking based on the def-
inition of strong watermarking with respect to the metric space proposed by
Hopper et al. [8] and software watermarking proposed by Barak et al. [1]. We
borrow some terms from these studies. Hopper et al. defined a metric space
equipped with distance function d and say that object O1 and O2 are similar
if d(O1, O2) ≤ δ for some δ, but we do not use it since we do not consider
perceptual objects.

Basically, the following properties should be satisfied: Most objects F ∈ Fλ
must be unmarked. We define similarity by a functional preserving property,
that is, for all input x, output distributions F (x) and F ′(x) are identical. Given
marked function F ′, an adversary should not be able to construct a new function
F̃ , which is functionally equivalent to F ′ but unmarked without remove key rk.

Our definitions of the non-removability and unforgeability are game-based
definitions and based on the notion of strong watermarking by Hopper et al. [8].
Our definitions are specialized to focus on cryptographic functions (do not con-
sider metric spaces). The non-removability states that even if the adversary is
given marked functions, it cannot find a function that is similar to a marked
function but does not contain any mark. This is based on the security against
removal introduced by Hopper et al. [8]. The unforgeability states that the ad-
versary cannot find a new marked function. This is based on the security against
insertion introduced by Hopper et al. [8].
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Experiment WMarkF,A(λ)

keys
R←WMGen(1λ,F);

kesy = (pk, sk,mk, dk, rk);
MList := ∅; CList := ∅;
(β, F )

R← AMO,CO,DO(1λ, pk);
If β = 0, then Detect(dk, F )→ b;
IdealDtc(F )→ B′;
if b = unmarked and B′ = {marked};
then return (0,win) else return lose
If β = 1, then Detect(dk, F )→ b;
IdealDtc(F )→ B′;
if b = marked, and B′ = {unmarked};
then return (1,win) else return lose

OracleMO(F )

F ′
R← Mark(mk,F );

MList := MList ∪ {F ′};
return F ′;

Oracle COFλ()

F
R← Fλ;

F ′
R← Mark(mk,F );

CList := CList ∪ {F ′};
MList := MList ∪ {F ′};
return F ′

Oracle DO(F )

Detect(dk, F )→ b;
return b

Procedure IdealDtc(F )

if
(∃F ′ ∈ CList : F ≡ F ′);
then return {marked}
else if
(∃F ′ ∈ MList : F ≡ F ′)
then return
{marked, unmarked}
else return {unmarked}

Fig. 1. Experiment for non-removability and unforgeability

Definition 7 (Secure Watermarking for Functions). A watermarking scheme
for function family F is secure if it satisfies the following properties.

Meaningfulness: It holds that for any F ∈ Fλ, Detect(dk, F )→ unmarked.
Correctness: For any F ∈ Fλ, (pk, sk,mk, dk, rk) R← WMGen(1λ,F) and

WM(F )
R← Mark(mk,F ), it holds that Detect(dk,WM(F )) → marked

and Detect(dk,Remove(rk,WM(F )))→ unmarked.
Preserving Functionality: For any input x ∈ {0, 1}n and F ∈ Fλ, it holds

that WM(F )(x) = F (x). If function F ′ preserves the functionality of func-
tion F , then we write F ≡ F ′.

Polynomial Slowdown: There exists a polynomial p such that for any F ∈ Fλ,
|WM(F )| ≤ p(|F |+ |mk|).

Non-Removability: We say that a watermarking scheme is non-removable if
it holds that AdvRemove

F ,A (1λ) := Pr[WMarkF ,A(λ) → (0,win)] < negl(λ).
Experiment WMarkF ,A(λ) is shown in Figure 1.

Unforgeability: We say that a watermarking scheme is unforgeable if it holds
that AdvForgeF ,A (1λ) := Pr[WMarkF ,A(λ)→ (1,win)] < negl(λ).

The adversary tries to find a function such that the outputs of the actual
detection algorithm and the ideal detection procedure are different. The ideal
detection procedure searches a database and outputs a decision by using on-
line communication to the marking algorithm. The adversary has access to or-
acles, i.e., the mark, detect, and challenge oracles. The mark oracle returns a
marked function for a queried non-marked function. The detect oracle deter-
mines whether a queried function is marked or not. The challenge oracle gen-
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erates a new (non-marked) function, embeds a mark in the new function, and
returns the marked function (the original non-marked function is hidden). Even-
tually, the adversary outputs function F and bit β. When β = 0, it means that
the adversary claim that it succeeded in removing a mark from some marked
function F ′ without the remove key. This case is for security against removal.
When β = 1, it means that the adversary claim that it succeeded in embedding a
mark in some original function F ′ without the mark key. This case is for security
against forgery.

As Hopper et al. explained [8], we must introduce the challenge oracle be-
cause if it does not exist, then a trivial attack exists. If the adversary samples
an unmarked function F ∈ Fλ, queries it to the mark oracle, and finally out-
puts them as solutions for β = 0. The actual detect algorithm returns unmarked
but the ideal detect procedure returns {marked, unmarked} since an equivalent
function is recorded in MList.

4 Proposed Watermarking Scheme

We present LTFs and a watermarking scheme for LTFs that are secure under the
DLIN assumption. Generally speaking, LTFs can be constructed from homo-
morphic encryption schemes as discussed in many papers [5,20]. Lewko/Okamoto-
Takashima proposed an IBE/IPE scheme based on DPVS, which is homomor-
phic and secure under the DLIN assumption. We can easily construct an LTF
from the IBE scheme by applying the matrix encryption technique introduced
by Peikert and Waters [20]. In this extended abstract, we present a scheme based
on only the Lewko IBE scheme due to page limitations (since cryptographers
are used to multiplicative notation). See a full version of this paper for a scheme
based on the Okamoto-Takashima IPE scheme.

Basically, we use homomorphic PKE schemes to construct LTFs, but we
use homomorphic IBE schemes to achieve watermarking scheme since we want
to use identities as tags for function indices and dual system encryption. To
construct LTFs based on IBE schemes, we use not only ciphertexts under some
identity but also a private key for the identity. If there is no private key (we call
it conversion key in the scheme), then we cannot obtain valid outputs that can
be inverted by an inversion key of the LTF. Note that the conversion key is not a
trapdoor inversion key for the LTF. Our LTF LTFmult based on the Lewko IBE
is as follows:

LTF.IGen(1λ) : It generates (D,D∗)
U← Dual(F8

q), chooses α, θ, σ U← Fq,
ψ := (ψ1, . . . , ψ`)

U← F`q, and sets gT := e(g, g)αθ
~d1·~d∗1 and gTj := g

ψj
T

for all j ∈ [`]. It chooses si,1, si,2
U← Fq for all i ∈ [`] and generates
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ui,j := g
si,1
Tj
·gmi,jT and vi := gsi,1

~d1+si,1ID~d2+si,2 ~d3+si,2ID~d4 for all i, j ∈ [`]
where mi,i = 1 and mi,j = 0 (if i 6= j). For a conversion key, it chooses
r1, r2

U← Fq and generates kID := g(α+r1ID)θ~d∗1−r1θ~d∗2+r2IDσ~d∗3−r2σ~d∗4 . It
returns ek := (U ,V ,kID) := ({ui,j}i,j , {vi}i ,kID) (i, j ∈ [`]), ik := ψ.
Note ek includes ID, but we omit it for simplicity.

LTF.LGen(1λ) : This is the same as LTF.IGen except that for all i, j ∈ [`],
mi,j = 0 and ik := ⊥.

LTF.Eval(ek , ~x): For input ~x ∈ {0, 1}`, it computes yj :=
∏
i u

xi
i,j = g~x·~s1Tj

g
xj
T ,

y`+1 :=
∏
i v

xi
i = g~x·~s1

~d1+~x·~s1ID~d2+~x·~s2 ~d3+~x·~s2ID~d4 where ~s1 := (s1,1, . . . ,

s1,`), ~s2 := (s2,1, . . . , s2,`), and y′`+1 := e(y`+1,k0) = e(g, g)αθ
~d1·~d∗1~x·~s1

and returns output y := (y1, . . . , y`, y
′
`+1).

LTF.Invert(ik ,y): For input y, it computes x′j := yj/(y
′
`+1)

ψj = g~x·~s1Tj
g
xj
T /g

~x·~s1·ψj
T

and let xj ∈ {0, 1} be such that x′j = g
xj
T . It returns ~x = (x1, . . . , x`).

Theorem 2. LTFmult is a lossy trapdoor function if the DBDH assumption holds.

We omit the proof and the definition of the DBDH assumption (this assumption
is implied by the DLIN assumption).

Next, we present our watermarking scheme. We added extra two dimensions
of DPVS to the original Lewko IBE scheme since we use the extra dimensions
to embed watermarks. Even if we add a vector spanned by ~d∗7 and ~d∗8 to kID,
which is spanned by ~d∗1, . . . ,

~d∗4, it is indistinguishable from the original since
vectors ~d7, ~d8, ~d∗7, ~d

∗
8 are hidden. Moreover, the marked index works as the orig-

inal non-marked index since V is spanned by ~d1, . . . , ~d4 and components ~d∗7, ~d
∗
8

are canceled. However, if we have a vector which is spanned by ~d7, ~d8, then
we can detect the mark generated by ~d∗7, ~d

∗
8. If we have complete dual orthonor-

mal bases (D,D∗), then we can use the decomposition algorithm introduced in
Section 2.2 and eliminate the vector spanned by ~d∗7,

~d∗8, i.e., watermarks. Our
watermarking scheme CWMmult for LTFmult is as follows:

WMGen(LTFmult): It generates (D,D∗) U← Dual(F8
q), chooses α, θ, σ U← Fq,

gT := e(g, g)αθ
~d1·~d∗1 , and sets D̂ := (gT , g

~d1 , . . . , g
~d4) pk := (D̂,Samp),

sk := (gαθ
~d∗1 , gθ

~d∗1 , gσ
~d∗2 , gσ

~d∗3 , g
~d∗4), mk := (g

~d∗7 , g
~d∗8), dk := (g

~d7 , g
~d8),

and rk := (D,D∗). The sampling algorithm Samp(ppV, D̂, sk) chooses
ψ

U← F`q, ~s1, ~s2
U← F`q, and generates (ek, ik) := ((U ,V ,kID),ψ) as

LTF.IGen. It computes kID := g(α+r1ID)θ~d∗1−r1θ~d∗2+r2IDσ~d∗3−r2σ~d∗4 . Note
that sk is not included in the description of Samp. Keys sk, mk, and rk are
secret. Key dk can be disclosed.
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Mark(mk, ek): It parses ek = (U ,V ,kID), chooses t1, t2
U← Fq, and com-

putes k̃ID := kID · gt1
~d∗7+t2

~d∗8 by using g
~d∗7 and g

~d∗8 . It outputs marked
function index WM(ek) = (U ,V , k̃ID).

Detect(dk, ẽk): It parses ẽk = (U ,V , k̃ID), chooses z1, z2
U← F×q , and com-

putes c := gz1
~d7+z2 ~d8 . Next, it computes ∆ := e(c, k̃ID). If it holds that

∆ = e(c, k̃ID) 6= 1, then it outputs marked. Else if, it holds that ∆ = 1,
then it outputs unmarked.

Remove(rk, ẽk): It parses ẽk = (U ,V , k̃ID), runs algorithm Decomp(ṽi, (g
~d∗1 ,

. . . , g
~d∗m),D∗, (g

~d∗1 , . . . , g
~d∗8)) for all m < 8, and obtains gzj

~d∗j for all j =

1, . . . , 8 where zj ∈ Fq. It holds k̃ID = gz1
~d∗1+···+z8 ~d∗8 . It computes k′ID :=

k̃ID/g
z7 ~d∗7+z8

~d∗8 and outputs (U ,V ,k′ID) as an unmarked index.

Correctness, preserving functionality, and polynomial slowdown are easily
followed. Meaningfulness follows since (g

~d∗1 , . . . , g
~d∗8) are hidden. Note that if

we do not have secret key (g
~d∗1 , . . . , g

~d∗4), then we cannot compute a complete
function index, that is, we cannot compute conversion key kID. This seems to be
a restriction, but in the scenario of watermarking schemes, this is acceptable. We
use watermarking schemes to authorize objects, and such objects are privately
generated by authors. For example, movies, music files, and software are gen-
erated by some companies and they do not distribute unauthorized (unmarked)
objects. Moreover, in the experiment on security, the adversary is given a oracle
which gives marked function indices. Thus, it is reasonable that unauthorized
parties cannot efficiently sample functions by themselves.

4.1 Security Proofs for CWMmult

Our watermarking scheme CWMmult is secure under the DLIN assumption. We
prove this by proving Theorems 3 and 4.

Theorem 3. CWMmult is non-removable under the subspace assumption.

Proof. If A outputs (0, ek∗), where Detect(dk, ek)→ unmarked and IdealDtc
(ek∗) → marked, then we construct algorithm B, which solves the subspace
problem with k = 1 and n = 8. B is given Γ , D = (g

~b1 , g
~b2 , g

~b4 , . . . , g
~b8 , gη

~b∗1 ,

gβ
~b∗2 , g

~b∗3 , . . . , g
~b∗8 , U1), and Qb for b ∈ {0, 1}. We set Q0 := V1 = gτ1η

~b∗1+τ2β
~b∗2

and Q1 :=W1 = gτ1η
~b∗1+τ2β

~b∗2+τ3
~b∗3 . B sets

~d1 := ~b∗3
~d2 := ~b∗4

~d3 := ~b∗5
~d4 := ~b∗6

~d5 := ~b∗7
~d6 := ~b∗8

~d7 := ~b∗1
~d8 := ~b∗2

~d∗1 :=
~b3 ~d∗2 :=

~b4 ~d∗3 :=
~b5 ~d∗4 :=

~b6 ~d∗5 :=
~b7 ~d∗6 :=

~b8 ~d∗7 :=
~b1 ~d∗8 :=

~b2

B chooses θ, α′, σ U← Zp and can generate public key pk = (e(g, g)αθ
~d1·~d∗1 , g

~d1 ,

. . . , g
~d4) := (e(g

~b∗2 , g
~b2)α

′µ3θ, g
~b∗3 , g

~b∗4 , g
~b∗5 , g

~b∗6) and mark key mk = (g
~d∗7 , g

~d∗8)
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:= (g
~b1 , g

~b2). B has a detect key, which is essentially the same as g~d7 and
g
~d8 since gη~b

∗
1 , gβ

~b∗2 are given. Coefficients β and η do not affect the detect
algorithm. B can have (g

~d∗2 , . . . , g
~d∗8) but does not have g~d

∗
1 since g~b3 is not

given. That is, B has the mark key and perfectly simulates the mark oracle
but the secret key is incomplete as follows: sk = (⊥,⊥, gθ~d∗2 , gσ~d∗3 , gσ~d∗4) :=

(⊥,⊥, gθ~b4 , gσ~b5 , gσ~b6).
It implicitly holds α = α′µ3. To simulate the challenge oracle without the

complete sk, for ID, B chooses r′1, r2, t7, t8
U← Zp and computes

k̃ID := (U1)
(α′+r′1ID)θg−r

′
1µ3θ

~d∗2+r2IDσ
~d∗3−r2σ~d∗4+t7 ~d∗7+t8 ~d∗8

= g(α+r1ID)θ~d∗1−r1θ~d∗2+r2IDσ~d∗3−r2σ~d∗4+t′7 ~d∗7+t′8 ~d∗8

where t′7 = t7 − θ(α′ + r′1ID)µ1 and t′8 = t8 − θ(α′ + r′1ID)µ2 We set r1 :=
µ3r
′
1. This is a valid marked index. If A outputs valid unmarked index ek∗ =

(U∗,V ∗,k∗ID∗) where k∗ID∗ = g(α+r
∗
1ID

∗)θ~d∗1−r∗1θ~d∗2+r∗2ID∗σ~d∗3−r∗2σ~d∗4 , then B
computes ∆ := e(Qb,k

∗
ID∗). If ∆ = 1, then B outputs 0 (b = 0), otherwise,

it outputs 1. If Qb = gτ1η
~b∗1+τ2β

~b∗2 = gτ1η
~d7+τ2β~d8 , then ∆ = 1. If Qb =

gτ1η
~b∗1+τ2β

~b∗2+τ3
~b∗3 = gτ1η

~d7+τ2β~d8+τ3 ~d1 , then ∆ = e(g, g)(α+r1ID)θτ3 ~d1·~d∗1 6= 1.
That is, B breaks the problem. 2

Next, we prove unforgeability. Note that the adversary is not allowed to out-
put a function index whose identity is equal to those of indices generated by
the challenge oracle or are queried to the mark oracle. This is justified by the
following fact. If it is allowed, then it means the adversary has already had a
(functionally equivalent) marked index for the given or queried identity, that is,
an IBE private key for the same identity. This is unavoidable and in the experi-
ment on unforgeability, IdealDtc always returns marked for identities that ora-
cles used. For simplicity, we prove the unforgeability explained above, but we
can extend it to stronger ones by using known techniques that convert standard
unforgeable signature schemes into strongly unforgeable signature schemes. We
now define algorithm Xtr(pk, sk, ID). It chooses r1, r2

U← Fq and outputs
kID := g(α+r1ID)θ~d∗1−r1θ~d∗2+r2IDσ~d∗3−r2σ~d∗4 . We can consider kID be a signa-
ture for ID. In fact, Naor pointed out that signature schemes can be derived
from IBE schemes [2]. Thus, we can prove the unforgeability of our watermark-
ing scheme by using the unforgeability of signature schemes derived from IBE
schemes of Okamoto-Takashima and Lewko.

Huang, Wong, and Zhao proposed a generic transformation technique for
converting unforgeable signature schemes into strongly unforgeable ones [9].
We can achieve strong unforgeability of watermarking schemes by using their
technique and the strongly unforgeably property.

15



Theorem 4. CWMmult is unforgeable under the subspace assumption.

Proof. Let qM and qC be the number of queries to the mark oracle and the chal-
lenge oracle, respectively. There are two types of conversion keys kID.

Normal: g(α+r1ID)θ~d∗1−r1θ~d∗2+r2IDσ~d∗3−r2σ~d∗4+t7 ~d∗7+t8 ~d∗8

Semi-functional: g(α+r1ID)θ~d∗1−r1θ~d∗2+r2IDσ~d∗3−r2σ~d∗4+t5 ~d∗5+t6 ~d∗6+t7 ~d∗7+t8 ~d∗8 .
We can generate them if we have the secret key, mark key, and (g

~d∗5 , g
~d∗6).

Both types of conversion keys give a correct output (we can check this by simple
calculation). To show that our scheme satisfies unforgeability, we introduce the
following games: We consider game Game-i where the challenge oracle gen-
erates semi-functional conversion keys for the first i ∈ [qC] queries and semi-
functional conversion keys for the remaining qC − i queries. Note that the mark
oracle does not generate function indices. It only embeds marks for queried in-
dices. Let Advforge-Ni (resp. Advforge-Si ) denote the advantage of the adversary in
Game-(i) for outputting a normal (resp. semi-functional) conversion key for a
non-given or non-queried ID.

Lemma 2. If A outputs a semi-functional marked index in Game-(0), then we
can break the subspace assumption with k = 2 and n = 8.

Lemma 3. If there exists A, that distinguishes Game-(i− 1) from Game-(i),
then we can break the subspace assumption with k = 2 and n = 8.

Lemma 4. If A outputs a normal marked index in Game-(qC), then we can
break the subspace assumption with k = 1 and n = 8.

By Lemmas 2, 3, and 4, we can show the following:

AdvForgeA (λ) = Advforge-N0 + Advforge-S0 < (qC + 2)AdvdssB .

The theorem follows from the lemmas and Theorem 1. 2
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