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Abstract. Goldwasser and Micali (1984) highlighted the importance of
randomizing the plaintext for public-key encryption and introduced the
notion of semantic security. They also realized a cryptosystem meeting
this security notion under the standard complexity assumption of decid-
ing quadratic residuosity modulo a composite number. The Goldwasser-
Micali cryptosystem is simple and elegant but is quite wasteful in band-
width when encrypting large messages. A number of works followed to
address this issue and proposed various modifications.
This paper revisits the original Goldwasser-Micali cryptosystem using
2k-th power residue symbols. The so-obtained cryptosystems appear as
a very natural generalization for k ≥ 2 (the case k = 1 corresponds ex-
actly to the Goldwasser-Micali cryptosystem). Advantageously, they are
efficient in both bandwidth and speed; in particular, they allow for fast
decryption. Further, the cryptosystems described in this paper inherit
the useful features of the original cryptosystem (like its homomorphic
property) and are shown to be secure under a similar complexity as-
sumption. As a prominent application, this paper describes the most
efficient lossy trapdoor function based on quadratic residuosity.

Keywords: Public-key encryption, quadratic residuosity, Goldwasser-
Micali cryptosystem, homomorphic encryption, standard model.

1 Introduction

Encryption is arguably one of the most fundamental cryptographic primitives.
Although it seems an easy task to identify properties that a good encryption
scheme must fulfill, it turns out that rigorously defining the right security no-
tion is not trivial at all. Security is context sensitive. Merely requiring that the
plaintext cannot be recovered from the ciphertext is not enough in most appli-
cations. One may require that the knowledge of some a priori information on
the plaintext does not help the adversary to obtain any new information, that
is, beyond what can be obtained from the a priori information. This intuition is
formally captured by the notion of semantic security, introduced by Goldwasser

? Full version available at http://eprint.iacr.org/.



and Micali in their seminal paper [20]. They also introduced the equivalent no-
tion of indistinguishability of encryptions, which is usually easier to work with.
Given the encryption of any two equal-length (distinct) plaintexts, an adversary
should not be able to distinguish the corresponding ciphertexts.

Clearly, the latter notion is only achievable by probabilistic public-key en-
cryption schemes. One such cryptosystem was also presented in [20]. It achieves
ciphertext indistinguishability under the Quadratic Residuosity (QR) assump-
tion. Informally, this assumption says that it is infeasible to distinguish squares
from non-squares in JN (i.e., the set of elements in Z∗N whose Jacobi symbol
is 1) where N = pq is an RSA-type modulus of unknown factorization.

The Goldwasser-Micali cryptosystem is simple and elegant. The public key
comprises an RSA modulus N = pq and a non-square y ∈ JN while the private
key is the secret factor p. The encryption of a bit m ∈ {0, 1} is given by c =
ym x2 mod N for a random x ∈ Z∗N . The message m is recovered using p, by
checking whether c is a square: m = 0 if so, and m = 1 otherwise —observe that
a non-square y ∈ JN is also a non-square modulo p. The encryption of a string
m = (mk−1, . . . ,m0)2, with mi ∈ {0, 1}, proceeds by forming the ciphertexts
ci = ymi x2 mod N , for 0 ≤ i ≤ k − 1. The scheme is computationally efficient
but somewhat wasteful in bandwidth as k · log2N bits are needed to encrypt a
k-bit message. Several proposals were made to address this issue.

A first attempt is due to Blum and Goldwasser [8]. They achieve a better
ciphertext expansion: the ciphertext has the same length as the plaintext plus an
integer of the size of modulus. The scheme is proved semantically secure assum-
ing the unpredictability of the output of the Blum-Blum-Shub’s pseudorandom
generator [6, 7] which resides on the factorisation hardness assumption. Details
about this scheme can be found in [21].

Another direction, put forward by Benaloh and Fischer [12, 5], is to use a
k-bit prime r such that r | p − 1, r2 - p − 1 and r - q − 1. The scheme also
requires y ∈ Z∗N such that yφ(N)/r 6≡ 1 (mod N), where φ(N) = (p − 1)(q − 1)
denotes Euler’s totient function. A k-bit message m (with m < r) is encrypted
as c = ym xr mod N , where x ∈R Z∗N . It is recovered by searching over the
entire message space, [0, r) ⊆ {0, 1}k, for the element m satisfying (yφ(N)/r)m ≡
cφ(N)/r (mod N). The scheme is shown to be secure under the prime-residuosity
assumption (which generalizes the quadratic residuosity assumption). With the
Benaloh-Fischer cryptosystem, the ciphertext corresponding to a k-bit message
is short but the decryption process is now demanding. In practice, the scheme
is therefore limited to small values of k, say k < 40.

The Benaloh-Fischer cryptosystem was subsequently extended by Naccache
and Stern [39]. They observe that the decryption can be sped up by rather
considering a product of small (odd) primes R =

∏
i ri such that ri | φ(N) but

ri
2 - φ(N) for each prime ri. Given a ciphertext, the plaintext m is reconstructed

from mi := m mod ri through Chinese remaindering. The advantage is that each
mi is searched in the subspace [0, ri) instead of the entire message space. A
variant of this technique was used by Groth [22].



Other generalizations and extensions of the Goldwasser-Micali cryptosystem
but without formal security analysis can be found in [53, 32, 44]. More recently,
Monnerat and Vaudenay developed applications using the more general theory of
characters [38, 37], specifically with characters of order ≤ 4. Related cryptosys-
tems are described in [49, 48]. Yet another, different approach was proposed by
Okamoto and Uchiyama [42], who suggested to use moduli of the form N = p2q.
This allows encrypting messages of size up to log2 p bits. This was later extended
by Paillier [43] to the setting N = p2q2. In 2005, Boneh, Goh and Nissim [10]
showed an additively homomorphic system also supporting one multiplication.

A useful application of additive homomorphic encryption schemes resides in
the construction of lossy trapdoor functions (or LTDFs in short). These func-
tions, as introduced by Peikert and Waters [45], are function families wherein
injective functions are computationally indistinguishable from lossy functions,
which lose many bits of information about their input. LTDFs have proved to be
very powerful and versatile in the cryptographer’s toolbox. They notably imply
chosen-ciphertext-secure public-key encryption [45], deterministic encryption [2,
9] as well as cryptosystems that retain some security in the absence of reliable
randomness [3] or in the presence of selective-opening adversaries [4].

Our contributions

New Homomorphic Cryptosystem. We suggest an improvement of the orig-
inal Goldwasser-Micali cryptosystem. It can be seen as a follow-up of the earlier
works due to Benaloh and Fischer [12] and Naccache and Stern [39]. Before
discussing it, we quote from [39]:

“Although the question of devising new public-key cryptosystems ap-
pears much more difficult [. . . ] we feel that research in this direction
is still in order: simple yet efficient constructions may have been over-
looked.”

It is striking that the generalized cryptosystem in this paper was not already
proposed because, as will become apparent (cf. Section 3), it turns out to be
a very natural generalization. Our approach consists in considering nth-power
residues modulo N with n = 2k (the Goldwasser-Micali system corresponds to
the case k = 1). This presents certain advantages. First, the resulting cryptosys-
tem is bandwidth-efficient. Only log2N bits are needed for encrypting a k-bit
message in typical applications (e.g., using the KEM/DEM paradigm). Second,
the decryption process is very fast, even faster than in the Naccache-Stern cryp-
tosystem. Searches are no longer needed (not even in smaller subspaces) in the
decryption algorithm as plaintext messages can be recovered bit by bit. Third,
the underlying complexity assumption is similar. The proposed cryptosystem is
shown to be secure under the quadratic residuosity assumption for RSA moduli
N = pq such that p, q ≡ 1 (mod 2k).

We also note that, similarly to the Goldwasser-Micali cryptosystem, our gen-
eralized cryptosystem enjoys an additive property known as homomorphic en-
cryption. If c1 and c2 denote two ciphertexts corresponding to k-bit plaintexts



m1 and m2, respectively, then c1 · c2 (mod N) is an encryption of the mes-
sage m1 +m2 (mod 2k). This reveals useful in several applications like voting
schemes. An interesting extension would be to thresholdize it as was done in [29].

As another useful property, the new scheme also inherits the selective opening
security1 [16, 4] of the Goldwasser-Micali system (in the sense of a simulation-
based definition given in [4]). We actually prove its semantic security by showing
that its public key is indistinguishable from a so-called lossy key for which en-
cryptions reveal nothing about the encrypted message.

We thus believe our system to provide an interesting competitor to Paillier’s
cryptosystem for certain applications. As a salient example, we show that it
provides a dramatically improved lossy trapdoor function based on a quadratic
residuosity assumption.

New Efficient Lossy Trapdoor Functions. The initial LTDF realiza-
tions [45] were based on the Decision Diffie-Hellman and Learning-with-Error [47]
assumptions. More efficient examples based on the Composite Residuosity as-
sumption were given in [9, 17, 18] while Kiltz et al. [30] showed that the RSA per-
mutation provides a lossy function. Under the quadratic residuosity assumption,
three distinct constructions were put forth in [23, 17, 18, 51]. Those of Freeman
et al. [17, 18] and of Wee [51] must be used in combination with the results of
Mol and Yilek [36] as they only lose single bits of information about the input.
Hemenway and Ostrovsky [23] suggested a more efficient realization, of which
Wee’s framework [51] is a generalization. While their QR-based LTDF has found
applications in the design of deterministic encryption schemes [11], it is concep-
tually very similar to the Peikert-Waters matrix-based schemes and suffers from
similarly large outputs and descriptions.

We show that our variant of the Goldwasser-Micali cryptosystem drastically
improves the efficiency of the Hemenway-Ostrovsky LTDF. Specifically, it re-
duces the length of the output (resp. the description of the function) by a factor
of O(κ) (resp. O(κ2)), where κ is the security parameter. By appropriately se-
lecting the parameters, we obtain evaluation keys and outputs consisting of a
constant number of Z∗N elements (and thus O(κ) bits, instead of O(κ2) or O(κ3)
as in the previous constructions). We thus obtain a QR-based LTDF, whose effi-
ciency is competitive with Paillier-based realizations [9, 17, 18]. These improve-
ments carry over to the deterministic encryption setting, when the Hemenway-
Ostrovsky LTDF is used as a building block of the Brakerski-Segev system [11].

2 Background

We review some useful background and fix the notation. In particular, we define
the n-th power residue symbol. We refer the reader to [25, 50, 52] for further

1 This notion refers to an attack scenario where the adversary is given t encryptions
of possibly correlated messages, opens t/2 out of these (and thereby obtains the
messages and encryption coins) before attempting to harm the security of remaining
ciphertexts.



details on (quadratic) residuosity. More information about encryption schemes
can be found in textbooks in cryptography; e.g. [21, 28].

2.1 nth-power residues

Let N ∈ N. For each integer n ≥ 2, we define (Z∗N )n = {xn | x ∈ Z∗N} the set of
nth-power residues modulo N . If the relation a = xn has no solution in Z∗N then
a is called a nth-power non-residue modulo N . Suppose that p is an odd prime.
For any integer a with gcd(a, p) = 1, it is easily verified that a is a nth-power
residue modulo p if and only if

a
p−1

gcd(n,p−1) ≡ 1 (mod p) .

When n = 2 (and so gcd(n, p− 1) = 2), this is known as Euler’s criterion. It
allows one to distinguish quadratic residues from quadratic non-residues. This
defines the Legendre symbol. There are several ways to generalize the Legendre
symbol (see [33]). In this paper, we consider the n-th power residue symbol for
a divisor n of (p− 1), as presented in [52, Definition 1.6.21].

Definition 1. Let p be an odd prime and let n ≥ 2 such that n | p − 1. Then
the symbol (

a

p

)
n

= a
p−1
n mods p

is called the n-th power residue symbol modulo p, where a
p−1
n mods p represents

the absolute smallest residue of a
p−1
n modulo p (namely, the complete set of

absolute smallest residues are: −(p− 1)/2, . . . ,−1, 0, 1, . . . , (p− 1)/2).

2.2 Quadratic residuosity

Let N = pq be the product of two (odd) primes p and q. For an integer a co-prime
to N , the Jacobi symbol is the product of the corresponding Legendre symbols,
namely

(
a
N

)
=
(
a
p

)(
a
q

)
. This gives rise to the multiplicative group JN of integers

whose Jacobi symbol is 1, JN = {a ∈ Z∗N |
(
a
N

)
2

= 1}. A relevant subset of JN is

the set of quadratic residues modulo N , QRN = {a ∈ Z∗N |
(
a
p

)
=
(
a
q

)
2

= 1}.
The Quadratic Residuosity (QR) assumption says that, given a random ele-

ment a ∈ JN , it is hard to decide whether a ∈ QRN if the prime factors of N are
unknown. To emphasize that this should hold for moduli N = pq with p, q ≡ 1
(mod 2k), we will refer to it as the k-QR assumption. Formally, we have:

Definition 2 (Quadratic Residuosity Assumption). Let RSAGen be a prob-
abilistic algorithm which, given a security parameter κ, outputs primes p, q such
that p ≡ q ≡ 1 (mod 2k), and their product N = pq. The Quadratic Residuosity
(QR) assumption asserts that the function AdvQR

D (1κ), defined as the distance∣∣∣Pr[D(x,N) = 1 | x R← QRN ]− Pr[D(x,N) = 1 | x R← JN \QRN ]
∣∣∣



is negligible for any probabilistic polynomial-time distinguisher D; the proba-
bilities are taken over the experiment of running (N, p, q) ← RSAGen(1κ) and
choosing at random x ∈ QRN and x ∈ JN \QRN .

3 A New Public-Key Encryption Scheme

We generalize the Goldwasser-Micali cryptosystem so that it can efficiently sup-
port the encryption of larger messages while remaining additively homomorphic.

3.1 Description

The setting is basically the same as for the Goldwasser-Micali cryptosystem.
The only additional requirement is that primes p and q are chosen congruent to
1 modulo 2k where k denotes the bit-size of the messages being encrypted.

In more detail, our encryption scheme is the tuple (KeyGen,Encrypt,Decrypt)
defined as follows.

KeyGen(1κ) Given a security parameter κ, KeyGen defines an integer k ≥ 1,
randomly generates primes p, q ≡ 1 (mod 2k), and sets N = pq. It also picks
y ∈ JN \QRN . The public and private keys are pk = {N, y, k} and sk = {p}.

Encrypt(pk ,m) Let M = {0, 1}k. To encrypt a message m ∈ M (seen as an
integer in {0, . . . , 2k − 1}), Encrypt picks a random x ∈ Z∗N and returns the

ciphertext c = ym x2
k

mod N .

Decrypt(sk , c) Given c ∈ Z∗N and the private key sk = {p}, the algorithm first
computes z =

(
c
p

)
2k

and then finds m ∈ {0, . . . , 2k−1} such that the relation[(
y

p

)
2k

]m
= z (mods p)

holds. An efficient method to recover message m in a bit-by-bit fashion is
detailed in the next section (§ 3.2).

The correctness is easily verified by observing that α :=
(
y
p

)
2k

has order 2k as an

element in Z∗p. Indeed, letting n = ordp(α) the order of α, we have n | 2k since,

by definition, α ≡ y
p−1

2k (mod p). But n cannot be equal to 2k
′

for some k′ < k

because α2k
′

≡ 1 (mod p) would imply y
p−1
2 ≡ 1 (mod p), which contradicts

the assumption that y ∈ JN \ QRN ⇐⇒
(
y
p

)
=
(
y
q

)
= −1. The decryption

algorithm recovers the unique m ∈ {0, . . . , 2k − 1} such that αm ≡ z (mod p).

Remark 1. We notice that the case k = 1 corresponds to the Goldwasser-Micali
cryptosystem. Indeed, the 2k-th power residue symbol is then the classical Leg-
endre symbol and the assumption p, q ≡ 1 (mod 2k) is trivially verified.



3.2 Fast decryption

At first glance, from the above description, it seems that the decryption process
amounts to a search through the entire message space {0, 1}k, similarly to some
earlier cryptosystems. But we can do better. One of the main advantages of the
proposed cryptosystem is that it provides an efficient way to recover the message.
Hence, it remains practical, even for large values of k. The decryption algorithm
proceeds similarly to the Pohlig-Hellman algorithm [46] and is detailed below.

Algorithm 1 Decryption algorithm

Input: Ciphertext c, private key p (and public-key elements y and k)
Output: Plaintext m = (mk−1, . . . ,m0)2

1: m← 0; B ← 1
2: for i = 1 to k do
3: z ←

(
c
p

)
2i

; t←
(
y
p

)m
2i

mods p

4: if (t 6= z) then m← m+B

5: B ← 2B
6: end for
7: return m

The message m ∈ {0, 1}k is viewed as a k-bit integer given by its binary

expansion m =
∑k−1
i=0 mi 2i, with mi ∈ {0, 1}. Given c = ymx2

k

mod N , we have(
c

p

)
2i

=

(
ymx2

k

p

)
2i

=

(
y
∑i−1

j=0mj 2j

p

)
2i

=

(
y

p

)∑i−1
j=0mj 2j

2i
(mods p)

since ymx2
k

= y
∑i−1

j=0mj 2j ·
(
y
∑k−1

j=i mj 2j−i

x2
k−i)2i

, for 1 ≤ i ≤ k. As a result,
m can be recovered bit by bit using p, starting from the rightmost bit. The
algorithm uses an accumulator B which contains the successive powers of 2.

3.3 Security analysis

We prove that the scheme provides indistinguishable encryptions under the k-QR
assumption. The case k = 1 corresponds to the Goldwasser-Micali cryptosystem
and the standard Quadratic Residuosity assumption. So, we henceforth assume
k ≥ 2. In this case, since p, q ≡ 1 (mod 2k), we know that p, q ≡ 1 (mod 4) and(−1
p

)
=
(−1
q

)
= 1. This implies that the square roots of an element in QRN all

have the same Jacobi symbol.
The k-QR assumption states that, without knowing the factorization of N ,

random elements of QRN are computationally indistinguishable from random
elements of JN \ QRN . Here, it will be convenient to consider a gap variant
of the k-QR assumption. We chose the terminology “gap” (not to be confused
with computational problems which have an easy decisional counterpart [41]) by



analogy with certain lattice problems, where not every instance is a yes or no
instance since a gap exists between these.

Definition 3 (Gap 2k-Residuosity Assumption). Let N = pq be the prod-
uct of two large primes p and q with p, q ≡ 1 (mod 2k). The Gap 2k-Residuosity
(Gap-2k-Res) problem in Z∗N is to distinguish the distribution of the following
two sets given only N = pq:

V0 = {x ∈ JN \QRN} and V1 = {y2
k

mod N | y ∈ Z∗N} .

The Gap 2k-Residuosity assumption posits that the advantage AdvGap-2k-Res
D (1κ)

of any PPT distinguisher D, defined as the distance∣∣∣Pr[D(x, k,N) = 1 | x R← V0] − Pr[D(x, k,N) = 1 | x R← V1]
∣∣∣

where probabilities are taken over all coin tosses, is negligible.

The latter assumption was independently considered by Abdalla, Ben Hamouda
and Pointcheval [1] who used it to provide tighter security proofs for forward-
secure signatures. Our result thus implies that their tighter reduction holds under
the more standard k-QR assumption.

In the above definition, we explicitly give k to the distinguisher and re-
mark that this information should be of little help considering that it can al-
ways be guessed with non-negligible probability. Also observe that from p, q ≡ 1
(mod 2k), it follows that 2k | N − 1.

Theorem 1 (k-QR =⇒ Gap-2k-Res). The Quadratic Residuosity assumption
implies the Gap 2k-Residuosity assumption. More precisely, for any PPT distin-
guisher B0 against the former, there exists a QR distinguisher B1 with comparable

running time and for which AdvGap-2k-Res
B0

(1κ) ≤ 4 · k ·Advk-QR
B1

(1κ).

Proof. The proof is given in the full version of the paper. ut

It is not hard to see that the semantic security of the scheme is equivalent to
the Gap-2k-Res assumption. We thus obtain the following theorem as a corollary.

Theorem 2. The scheme is semantically secure under the k-QR assumption.
More precisely, for any IND-CPA adversary A, we have a k-QR distinguisher B
such that Advind-cpa

A (1κ) ≤ 4 · k ·Advk-QR(B).

Proof. The proof proceeds by simply changing the distribution of the public key.
Under the Gap-2k-Res assumption, instead of picking y uniformly in JN \QRN ,
we can choose it in the subgroup of 2k-th residue without the adversary noticing.
However, in this case, the ciphertext carries no information about the message
and the IND-CPA adversary has no advantage. ut

Interestingly, the proof of Theorem 2 implicitly shows that, like the original
Goldwasser-Micali system, our scheme is a lossy encryption scheme [4] (i.e., it ad-
mits an alternative distribution of public keys for which encryptions statistically



hide the plaintext), which provides security guarantees against selective-opening
attacks [16]. Moreover, for a lossy key (y,N), there exists an efficient algorithm
that opens a given ciphertext c to any arbitrary plaintext m (by finding random
coins that explain c as an encryption of m). It implies that our scheme satisfies
the simulation-based definition [4] of selective-opening security.

4 Implementation and Performance

We detail here some implementation aspects. We explain how to select the pa-
rameters involved in the system set-up and key generation. Finally, we discuss
the ciphertext expansion and give a comparison with previous schemes.

4.1 Parameter selection

The key generation (cf. § 3.1) requires two primes p and q such that p, q ≡ 1
(mod 2k) and an element y ∈ JN \ QRN , where N = pq. The condition y ∈
JN \QRN is equivalent to

(
y
p

)
=
(
y
q

)
= −1. So, we need to generate an element

y ∈ Z∗N such that (i) y mod p is primitive in Z∗p, and (ii) y mod q is primitive in
Z∗q . Finding a primitive element modulo a prime number p is not difficult when
the factorization of p− 1 is known. Therefore, we suggest to select prime p as a
k-quasi-safe prime, that is, p = 2k p′+ 1 for some prime p′ (likewise for prime q,
we take q = 2k q′ + 1 for some prime q′). An efficient algorithm for generating
k-quasi-safe primes is discussed in [27, Section 4.2].

Consider now the primitive 2k-th root of unity ζ2k = e2iπ/2
k

with i =
√
−1.

It generates a cyclic group of order 2k under multiplication. In our case, the key
observation is that, when p is 2k-quasi-safe prime, if y is a square modulo p then
ζ2k y is not. Indeed, we have(

ζ2k y

p

)
=

(
ζ2k

p

)(
y

p

)
≡ ζ2k

p−1
2

(
y

p

)
≡ (eiπ)p

′
(
y

p

)
= −

(
y

p

)
(mod p)

since p′ is odd. This leads to the following algorithm.

Algorithm 2 Generation of y

Input: Modulus N = pq (with p = 2k p′+ 1 and q = 2k q′+ 1), primes p, q, p′, q′, and
integer k ≥ 1

Output: y ∈ JN \QRN

1: Pick at random yp ∈ Z∗p and yq ∈ Z∗q
2: if

(yp
p

)
= 1 then yp ← ζ2k yp mod p

3: if
(yq

q

)
= 1 then yq ← ζ2k yq mod q

4: Set y ← yp + p
(
p−1(yq − yp) mod q

)
5: return y



The primes p and q are chosen so that p, q ≡ 1 (mod 2k). Sharing common
factors for (p − 1) and (q − 1) was used already in several other systems; see
e.g. [19, 34]. Letting r denote a common factor of (p−1) and (q−1), a baby-step
giant-step approach developed by McKee and Pinch [35] can factor RSA modulus
N = pq in essentially O(N1/4/r) operations. In our case, we have r = 2k. For
security it is therefore necessary that 1

4 log2N − k > κ, or equivalently,

k < 1
4 log2N − κ

where κ is the security parameter.
A powerful LLL-based technique due to Coppersmith [13, 14] also bounds

the size of k to at most 1
2 min(log2 p, log2 q) bits as, otherwise, the factors of N

would be revealed. Going beyond polynomial-time attacks, one should add an
extra security margin to take into account exhaustive searches [40]. RSA moduli
being balanced (i.e., 1

2 min(log2 p, log2 q) = 1
4 log2N), we so end up with the

same upper bound as for the McKee-Pinch’s approach: k < 1
4 log2N − κ.

In practice, this restriction on k is not a limitation because, as described in the
next section, long messages can be encrypted using the KEM/DEM paradigm.
For example, a specific parameter choice is k = 128 and log2N = 2048.

4.2 Ciphertext expansion

Hybrid encryption allows designing efficient asymmetric schemes, as suggested
by Shoup in the ISO 18033-2 standard for public-key encryption [26]. An asym-
metric cryptosystem is used to encrypt a secret key that is then used to encrypt
the actual message. This is the so-called KEM/DEM paradigm.

The next table compares the ciphertext expansion in the encryption of k-bit
messages for different generalized Goldwasser-Micali cryptosystems. Only cryp-
tosystems with a formal security analysis are considered. Further, the value of
k is assumed to be relatively small (e.g., 128 or 256) as the “message” being
encrypted is typically a symmetric key (for example a 128- or 256-bit AES key)
in a KEM/DEM construction.

Table 1. Ciphertext expansion in a typical encryption

Encryption scheme Assumption Ciphertext size

Goldwasser-Micali [20] Quadratic Residuosity (QR) k · log2N
Benaloh-Fisher [12] Prime residuosity (PR)

⌈
k

log2 r

⌉
· log2N

Naccache-Stern [39] Prime residuosity (PR) log2N
Okamoto-Uchiyama [42] p-subgroup log2N
Paillier [43] N -th residuosity 2 log2N

This paper Quadratic residuosity (k-QR) log2N

It appears that the Goldwasser-Micali cryptosystem has the higher ciphertext
expansion but its semantic security relies on the standard quadratic residuosity



assumption. The ciphertext expansion of Benaloh-Fischer cryptosystem is similar
to that of Naccache-Stern cryptosystem for small messages; i.e., when k ≤ log2 r.
For larger messages, the Naccache-Stern cryptosystem should be preferred. It
also offers the further advantage of providing a faster decryption procedure. The
same is true for the Okamoto-Uchiyama cryptosystem. The Paillier cryptosystem
produces twice larger ciphertexts.

The encryption scheme proposed in this paper has the same ciphertext expan-
sion as in the Naccache-Stern cryptosystem. Moreover, its decryption algorithm
is fast (it is even faster than in the Naccache-Stern cryptosystem), requires less
memory, and the security relies on a quadratic residuosity assumption.

5 More Efficient Lossy Trapdoor Functions from the
k-Quadratic Residuosity Assumption

In this section, we show that our homomorphic cryptosystem allows constructing
a lossy trapdoor function based on the k-QR assumption with much shorter
outputs and keys than in previous QR-based examples.

In comparison with the function of Hemenway and Ostrovsky [23], it com-
presses function values by a factor of k when we work with a modulus N = pq
such that p ≡ q ≡ 1 (mod 2k). Moreover, the size of the evaluation key is de-
creased by a factor of O(k2) while increasing the lossiness by 2k more bits.
Finally, our inversion trapdoor has constant size, whereas [23] uses a trapdoor
of size O(n) to recover n-bit inputs. Our function also compares favorably with
the QR-based function of Freeman et al. [17, 18], which only loses a single bit.

In fact, by appropriately tuning our construction, we obtain the first QR-
based lossy trapdoor function with short outputs and keys that loses many in-
put bits. Among known lossy trapdoor functions based on traditional number-
theoretic assumptions [45, 9, 17, 18, 30, 23, 36], this appears as a rare efficiency
tradeoff. To the best of our knowledge, it has only been achieved under the
Composite Residuosity assumption [9, 17, 18] so far.

Interestingly, our LTDF provides similar efficiency improvements to the QR-
based deterministic encryption scheme of Brakerski and Segev [11], which also
builds on the Hemenway-Ostrovsky LTDF. Note that the scheme of [11] is impor-
tant in the deterministic encryption literature since it is one of the only known
schemes providing security in the auxiliary input setting in the standard model.

5.1 Description and security analysis

We start by recalling the following definition.

Definition 4 ([45]). Let κ ∈ N be a security parameter and n : N→ N, ` : N→
R be non-negative functions of κ. A collection of (n, `)-lossy trapdoor functions
(LTDF) is a tuple of efficient algorithms (InjGen, LossyGen,Eval, Invert) with the
following specifications.



– Sampling an injective function: Given a security parameter κ, the randomized
algorithm InjGen(1κ) outputs the index ek of an injective function of the
family and an inversion trapdoor t.

– Sampling a lossy function: Given a security parameter κ, the probabilistic
algorithm LossyGen(1κ) outputs the index ek of a lossy function.

– Evaluation: Given the index of a function ek —produced by either InjGen or
LossyGen— and an input x ∈ {0, 1}n, the evaluation algorithm Eval outputs
Fek (x) such that:
• If ek is an output of InjGen, then Fek (·) is an injective function.
• If ek was produced by LossyGen, then Fek (·) has image size 2n−`. In this

case, the value n− ` is called residual leakage.

– Inversion: For any pair (ek , t) produced by InjGen and any input x ∈ {0, 1}n,
the inversion algorithm Invert returns F−1ek (t, Fek (x)) = x.

– Security: The two ensembles {ek | (ek , t)← InjGen(1κ)}κ∈N and {ek | ek ←
LossyGen(1κ)}κ∈N are computationally indistinguishable.

Our construction goes as follows.

Sampling an injective function. Given a security parameter κ, let `N (κ)
and k(κ) be security parameters determined by κ. Let also n(κ) be the
desired input length. Algorithm InjGen defines m = n/k (we assume that k
divides n for simplicity) and conducts the following steps.
1. Generate a modulus N = pq > 2`N such that p = 2kp′+1 and q = 2kq′+1

for primes p, q and odd co-prime integers p′, q′. Choose y
R← JN \QRN .

2. For each i ∈ {1, . . . ,m}, pick hi in the subgroup of order p′q′, by setting

hi = gi
2k mod N for a randomly chosen gi

R← Z∗N .

3. Choose r1, . . . , rm
R← Zp′q′ and compute a matrix Z =

(
Zi,j

)
i,j∈{1,...,m}

given by

Z =

 yz1,1 · h1r1 mod N . . . . . . yz1,m · hmr1 mod N
...

...
yzm,1 · h1rm mod N . . . . . . yzm,m · hmrm mod N

 ,

where (zi,j)i,j∈{1,...,m} denotes the identity matrix.

The evaluation key is ek :=
(
N, (Zi,j)i,j∈{1,...,m}

)
and the trapdoor is t := p.

Sampling a lossy function. The process followed by LossyGen is identical
to the above one but the matrix (zi,j)i,j∈{1,...,m} is replaced by the all-zeroes
m×m matrix.

Evaluation. Given ek =
(
N, (Zi,j)i,j∈{1,...,m}

)
, algorithm Eval parses the input

x ∈ {0, 1}n as a vector of k-bit blocks x̃ = (x1, . . . , xm), with xi ∈ Z2k for
each i. Then, it computes and returns ỹ = (y1, . . . , ym), with yj ∈ Z∗N , where

ỹ =
( m∏
i=1

Zi,1
xi mod N, . . . ,

m∏
i=1

Zi,m
xi mod N

)
=
(
y
∑m

i=1 zi,1xi · h1
∑m

i=1 rixi mod N, . . . , y
∑m

i=1 zi,mxi · hm
∑m

i=1 rixi mod N
)
.



Inversion. Given t = p and ỹ = (y1, . . . , ym) ∈ ZmN , Invert applies the de-
cryption algorithm of § 3.2 to each yj , for j = 1 to m. Observe that when

(zij)i,j∈{1,...,m} is the identity matrix,
(yj
p

)
2k
≡
[(
y
p

)
2k

]xj

(mod p). From the

resulting vector of plaintexts x̃ = (x1, . . . , xm) ∈ Z2k
m, it recovers the input

x ∈ {0, 1}n.

The Hemenway-Ostrovsky construction of [23] is slightly different in that, as
in the DDH-based construction of Peikert and Waters [45], the evaluation key
includes a vector of the form G = (gr1 , . . . , grm)T , where g ∈ QRN , and the
trapdoor is t = (logg(h1), . . . , logg(hm)). In their scheme, the evaluation algo-
rithm additionally computes

∏m
i=1 (gri)

xi while the inversion algorithm does not
use the factorization of N but rather performs a coordinate-wise ElGamal de-
cryption. Here, explicitly using the factorization of N in the inversion algorithm
makes it possible to process k-bit blocks at once.

Theorem 3. The above construction is a (n(κ), n(κ)− log2(p′q′))-LTDF if the
k-QR assumption holds.

Proof. The proof is given in the full version of the paper. ut

It is worth noting that, with N = pq such that p ≡ q ≡ 1 (mod 2k), a side
effect of working in the subgroup of odd order is an improved lossiness. Indeed,
we lose n− log2(p′q′) bits in comparison with n− log2 φ(N) in [23].

Using the techniques of Peikert and Waters [45], it is easy to construct an
equally efficient all-but-one trapdoor function providing the same amount of
lossiness under the QR assumption. A difference is that, in order to enable in-
version, the resulting all-but-one function handles k/2 bits (instead of k) in each
chunk. The details are given in the full version of the paper.

More importantly, the dimension m of the matrix and the output vector can
be reduced to a fairly small constant, as illustrated below.

5.2 Efficiency

Here, we consider chosen-ciphertext security as the targeted application.
By combining the lossy and all-but-one trapdoor function, a CCA-secure en-

cryption scheme can be obtained using the construction of [45]. We argue that
m = O(1) suffices for this purpose. Recall that the scheme of [45] combines a pair-
wise independent hash function H : {0, 1}n → {0, 1}τ , an (n, `)-lossy function
and an (n, `′)-all-but-one function such that `+`′ ≥ n+ν and τ ≥ ν−2 log2(1/ε),
for some ν ∈ ω(log n) and where ε is the statistical distance in the modified
Leftover Hash Lemma used in [15]. If we choose ε ≈ 2−κ and τ = k in order to
encrypt k-bit messages, we can set ν = k + 2κ. Setting ` = `′ = n − log2(p′q′),
the constraint ` + `′ ≥ n + ν translates into n − 2 log2(p′q′) ≥ ν. If we set
k = 1

4 log2N −κ, we have log2(p′q′) = log2 φ(N)−2k ≈ 4(k+κ)−2k = 2k+4κ,
which yields n ≥ 3k + 6κ. If k > κ, it is sufficient to set n ≥ 9k. If we take into
account the fact that our all-but-one function processes blocks of k/2 bits, we
find that m = 2n/k = 18 suffices here.



As it turns out, when the Peikert-Waters construction [45, § 4.3] of CCA-
secure encryption is instantiated with our lossy and all-but-one trapdoor func-
tions, it only requires a constant number of exponentiations while retaining
constant-size public keys and ciphertexts.

With the exception of [24] (which relies on a weaker assumption), to the
best of our knowledge, it yields the only known CCA-secure QR-based cryptosys-
tem combining the aforementioned efficiency properties. Up to now, the most
efficient chosen-ciphertext-secure cryptosystem strictly based on the QR assump-
tion was the one of Kiltz et al.[31], where O(κ) exponentiations are needed to
encrypt and the public key contains O(κ) group elements. On the other hand,
our construction requires more specific moduli than [31].

6 Conclusion

This paper introduced a new generalization of the Goldwasser-Micali cryptosys-
tem. The so-obtained cryptosystems are shown to be secure under the quadratic
residuosity assumption. Further, they enjoy a number of useful features includ-
ing fast decryption, optimal ciphertext expansion, and homomorphic property.
We believe that our proposal is the most natural yet efficient generalization of
the Goldwasser-Micali cryptosystem. It keeps the nice attributes and properties
of the original scheme while improving the overall performance.

When applied to the Peikert-Waters framework for building lossy trapdoor
functions, it yields a practical construction based on quadratic residuosity, with
companion deterministic encryption scheme and CCA-secure cryptosystem.
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