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Abstract. Recent advances in lattice cryptography, mainly stemming
from the development of ring-based primitives such as ring-LWE, have
made it possible to design cryptographic schemes whose efficiency is
competitive with that of more traditional number-theoretic ones, along
with entirely new applications like fully homomorphic encryption. Unfor-
tunately, realizing the full potential of ring-based cryptography has so far
been hindered by a lack of practical algorithms and analytical tools for
working in this context. As a result, most previous works have focused
on very special classes of rings such as power-of-two cyclotomics, which
significantly restricts the possible applications.
We bridge this gap by introducing a toolkit of fast, modular algorithms
and analytical techniques that can be used in a wide variety of ring-based
cryptographic applications, particularly those built around ring-LWE.
Our techniques yield applications that work in arbitrary cyclotomic rings,
with no loss in their underlying worst-case hardness guarantees, and very
little loss in computational efficiency, relative to power-of-two cyclotomics.
To demonstrate the toolkit’s applicability, we develop two illustrative
applications: a public-key cryptosystem and a “somewhat homomorphic”
symmetric encryption scheme. Both apply to arbitrary cyclotomics, have
tight parameters, and very efficient implementations.

1 Introduction

The past few years have seen many exciting developments in lattice-based cryp-
tography. Two such trends are the development of schemes whose efficiency is
competitive with traditional number-theoretic ones (e.g., [27] and follow-ups), and
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the breakthrough work of Gentry [14, 13] (followed by others) on fully homomor-
phic encryption. While these two research threads currently occupy opposite ends
of the efficiency spectrum, they are united by their use of algebraically structured
ideal lattices arising from polynomial rings. The most efficient and advanced
systems in both categories rely on the ring-LWE problem [26], an analogue of the
standard learning with errors problem [31]. Informally (and a bit inaccurately),
in a ring R = Z[X]/(f(X)) for monic irreducible f(X) of degree n, and for an
integer modulus q defining the quotient ring Rq := R/qR = Zq[X]/(f(X)), the
ring-LWE problem is to distinguish pairs (ai, bi = ai · s + ei) ∈ Rq × Rq from
uniformly random pairs, where s ∈ Rq is a random secret (which stays fixed over
all pairs), the ai ∈ Rq are uniformly random and independent, and the error (or
“noise”) terms ei ∈ R are independent and “short.”

In all applications of ring-LWE, and particularly those related to homomorphic
encryption, a main technical challenge is to control the sizes of the noise terms
when manipulating ring-LWE samples under addition, multiplication, and other
operations. For correct decryption, q must be chosen large enough so that the final
accumulated error terms do not “wrap around” modulo q and cause decryption
error. On the other hand, the error rate (roughly, the ratio of the noise magnitude
to the modulus q) of the original published ring-LWE samples and the dimension n
trade off to determine the theoretical and concrete hardness of the ring-LWE
problem. Tighter control of the noise growth therefore allows for a larger initial
error rate, which permits a smaller modulus q and dimension n, which leads to
smaller keys and ciphertexts, and faster operations for a given level of security.

Regarding the choice of ring, the class of cyclotomic rings R ∼= Z[X]/Φm(X),
where Φm(X) is the mth cyclotomic polynomial (which has degree n = ϕ(m)
and is monic and irreducible over the rationals), has many attractive features
that have proved very useful in cryptography. For example, the search/decision
equivalence for ring-LWE in arbitrary cyclotomics [26] relies on their special
algebraic properties, as do many recent works that aim for more efficient fully
homomorphic encryption schemes (e.g., [32, 8, 17, 18, 16]). In particular, power-
of-two cyclotomics, i.e., where the index m = 2k for some k ≥ 1, are especially
nice to work with, because (among other reasons) n = m/2 is also a power of two,
Φm(X) = Xn + 1 is maximally sparse, and polynomial arithmetic modulo Φm(X)
can be performed very efficiently using just a slight tweak of the classical n-
dimensional FFT (see, e.g., [25]). Indeed, power-of-two cyclotomics have become
the dominant and preferred class of rings in almost all recent ring-based crypto-
graphic schemes (e.g., [25, 24, 21, 14, 15, 26, 33, 9, 8, 17, 18, 22, 5, 28, 20, 16]),
often to the exclusion of all other rings.

While power-of-two cyclotomic rings are very convenient to use, there are
several reasons why it is essential to consider other cyclotomics as well. The most
obvious, practical reason is that powers of two are sparsely distributed, and the
desired concrete security level for an application may call for a ring dimension
much smaller than the next-largest power of two. So restricting to powers of two
could lead to key sizes and runtimes that are at least twice as large as necessary.
A more fundamental reason is that certain applications, such as the above-



mentioned works that aim for more efficient (fully) homomorphic encryption,
require the use of non-power-of-two cyclotomic rings. This is because power-of-two
cyclotomics lack the requisite algebraic properties needed to implement features
like SIMD operations on “packed” ciphertexts, or plaintext spaces isomorphic to
finite fields of characteristic two (other than F2 itself). A final important reason
is diversification of security assumptions. While some results are known [16] that
relate ring-LWE in cyclotomic rings when one index m divides the other, no other
connections appear to be known. So while we might conjecture that ring-LWE
and ideal lattice problems are hard in every cyclotomic ring (of sufficiently high
dimension), some rings might turn out to be significantly easier than others.

Unfortunately, working in non-power-of-two cyclotomics is rather delicate, and
the current state of affairs is unsatisfactory in several ways. Unlike the special case
where m is a power of two, in general the cyclotomic polynomial Φm(X) can be
quite “irregular” and dense, with large coefficients. While in principle, polynomial
arithmetic modulo Φm(X) can still be done in O(n log n) scalar operations (on
high-precision complex numbers), the generic algorithms for achieving this are
rather complex and hard to implement, with large constants hidden by the O(·)
notation.

Geometrically, the non-power-of-two case is even more problematic. If one
views Z[X]/(Φm(X)) as the set of polynomial residues of the form a0 + a1X +
· · ·+ an−1X

n−1, and uses the naïve “coefficient embedding” that views them as
vectors (a0, a1, . . . , an−1) ∈ Zn to define geometric quantities like the `2 norm,
then both the concrete and theoretical security of cryptographic schemes depend
heavily on the form of Φm(X). This stems directly from the fact that multiplying
two polynomials with small norms can result in a polynomial residue having a
much larger norm. The growth can be quantified by the “expansion factor” [23]
of Φm(X), which unfortunately can be very large, up to nΩ(logn) in the case of
highly composite m [12]. Later works [17] circumvented such large expansion by
using tricks like lifting to the larger-dimensional ring Z[X]/(Xm − 1), but this
still involves a significant loss in the tolerable noise rates as compared with the
power-of-two case.

In [30, 26] a different geometric approach was used, which avoided any
dependence on the form of the polynomial modulus Φm(X). In these works, the
norm of a ring element is instead defined according to its canonical embedding
into Cn, a classical concept from algebraic number theory. This gives a much
better way of analyzing expansion, since both addition and multiplication in the
canonical embedding are simply coordinate-wise. Working with the canonical
embedding, however, introduces a variety of practical issues, such as how to
efficiently generate short noise terms having appropriate distributions over the
ring. More generally, the focus of [26] was on giving an abstract mathematical
definition of ring-LWE and proving its hardness under worst-case ideal lattice
assumptions; in particular, it did not deal with issues related to practical efficiency,
bounding noise growth, or designing applications in non-power-of-two cyclotomics.



1.1 Contributions

Our main contribution is a toolkit of modular algorithms and analytical techniques
that can be used in a wide variety of ring-based cryptographic applications,
particularly those built around ring-LWE. The high-level summary is that using
our techniques, one can design applications to work in arbitrary cyclotomic
rings, with no loss in their underlying worst-case hardness guarantees, and very
little loss in computational efficiency, relative to the best known techniques in
power-of-two cyclotomics. In fact, our analytical techniques even improve the
state of the art for the power-of-two case.

In more detail, our toolkit includes fast, specialized algorithms for all the
main cryptographic operations in arbitrary cyclotomic rings. Among others, these
include: addition, multiplication, and conversions among various useful represen-
tations of rings elements; generation of noise terms under probability distributions
that guarantee both worst-case and concrete hardness; and decoding of noise
terms as needed in decryption and related operations. Our algorithms’ efficiency
and quality guarantees stem primarily from our use of simple but non-obvious
representations of ring elements, which differ from their naïve representations as
polynomial residues modulo Φm(X). (See the second part of Section 1.2 for more
details.) On the analytical side, we give tools for tightly bounding noise growth
under operations like addition, multiplication, and round-off/discretization. (Re-
call that noise growth is the main factor determining an application’s parameters
and noise rates, and hence its key sizes, efficiency, and concrete security.)
Some attractive features of the toolkit include:

– All the algorithms for arbitrary cyclotomics are simple, modular, and highly
parallel, and work by elementary reductions to the (very simple) prime-
index case. In particular, they do not require any polynomial reductions
modulo Φm(X) – in fact, they never need to compute Φm(X) at all! The
algorithms work entirely on vectors of dimension n = ϕ(m), and run in
O(n log n) or even O(nd) scalar operations (with small hidden constants),
where d is the number of distinct primes dividing m. With the exception
of continuous noise generation, all scalar operations are low precision, i.e.,
they involve small integers. In summary, the algorithms are very amenable to
practical implementation. (Indeed, we have implemented all the algorithms
from scratch, which will be described in a separate work.)

– Our algorithm for decoding noise, used primarily in decryption, is fast (re-
quiring O(n log n) or fewer small-integer operations) and correctly recovers
from optimally large noise rates. (See the last part of Section 1.2 for details.)
This improves upon prior techniques, which in general have worse noise toler-
ance by anywhere between an m/2 and super-polynomial nω(1) factor, and
are computationally slower and more complex due to polynomial reduction
modulo Φm(X), among other operations.

– Our bounds on noise growth under ring addition and multiplication are exactly
the same in all cyclotomic rings; no ring-dependent “expansion factor” is
incurred. (For discretizing continuous noise distributions, our bounds are the
same up to very small 1 + o(1) factors, depending on the primes dividing m.)



This allows applications to use essentially the same underlying noise rate
as a function of the ring dimension n, and hence be based on the same
worst-case approximation factors, for all cyclotomics. Moreover, our bounds
improve upon the state of the art even for power-of-two cyclotomics: e.g.,
our (average-case, high probability) expansion bound for ring multiplication
improves upon the (worst-case) expansion-factor bound by almost a

√
n

factor.

To illustrate the toolkit’s applicability, in Section 5 we construct an efficient
and compact public-key cryptosystem, which is essentially the “two element”
system outlined in [26], but generalized to arbitrary cyclotomics, and with tight
parameters. Further applications are given in the full version of the paper.

A final contribution of independent interest is a new “regularity lemma” for
arbitrary cyclotomics, i.e., a bound on the smoothing parameter of random q-ary
lattices over the ring. Such a lemma is needed for porting many applications
of standard SIS and LWE to the ring setting, including SIS-based signature
schemes [19, 10, 7, 28], the “primal” [31] and “dual” [19] LWE cryptosystems,
chosen ciphertext-secure encryption schemes [29, 28], and (hierarchical) identity-
based encryption schemes [19, 10, 1]. In terms of generality and parameters,
our lemma essentially subsumes a prior one of Micciancio [27] for the ring
Z[X]/(Xn − 1), and an independent one of Stehlé et al. [34] for power-of-two
cyclotomics. (See Section 4 for further discussion.)

1.2 Techniques

The tools we develop in this work involve several novel applications of classical
notions from algebraic number theory. In summary, our results make central use
of: (1) the canonical embedding of a number field, which endows the field (and
its subrings) with a nice and easy-to-analyze geometry; (2) the decomposition of
arbitrary cyclotomics into the tensor product of prime-power cyclotomics, which
yields both simpler and faster algorithms for computing in the field, as well as
geometrically nicer bases; and (3) the “dual ” ideal R∨ and its “decoding” basis d,
for fast noise generation and optimal noise tolerance in decryption and related
operations. We elaborate on each of these next.

The canonical embedding. As in the previous works [30, 26], our analysis relies
heavily on using the canonical embedding σ : K → Cn (rather than, say, the naïve
coefficient embedding) for defining all geometric quantities, such as Euclidean
norms and inner products. For example, under the canonical embedding, the
“expansion” incurred when multiplying by an element a ∈ K is characterized
exactly by ‖σ(a)‖∞, its `∞ norm under the canonical embedding; no (worst-case)
ring-dependent “expansion factor” is needed. So in the average-case setting, where
the multiplicands are random elements from natural noise distributions, for
each multiplication we get at least a Ω̃(

√
n) factor improvement over using the

expansion factor in all cyclotomics (including those with power-of-two index),
and up to a super-polynomial nω(1) factor improvement in cyclotomics having



highly composite indices. In our analysis of the noise tolerance of decryption,
we also get an additional Ω̃(

√
n) factor savings over more simplistic analyses

that only use norm information, by using the notion of subgaussian random
variables. These behave under linear transformations in essentially the same way
as Gaussians, and have Gaussian tails. (This builds upon prior works that use
subgaussianity in lattice cryptography, e.g., [2, 28].)

Tensorial decomposition. An important fact at the heart of this work is that
the mth cyclotomic number field K = Q(ζm) ∼= Q[X]/(Φm(X)) may instead be
viewed as (i.e., is isomorphic to) the tensor product of prime-power cyclotomics:

K ∼=
⊗

`
K` = Q(ζm1

, ζm2
, . . .),

where m =
∏
`m` is the prime-power factorization of m and K` = Q(ζm`).

Equivalently, in terms of polynomials we may view K as the multivariate field

K ∼= Q[X1, X2, . . .]/(Φm1(X1), Φm2(X2), . . .), (1)

where there is one indeterminant X` and modulus Φm`(X`) per prime-power
divisor ofm. Similar decompositions hold for the ring of integersR ∼= Z[X]/Φm(X)
and other important objects in K, such as the dual ideal R∨ (described below).

Adopting the polynomial interpretation of K from Equation (1) for concrete-
ness, notice that a natural Q-basis is the set of multinomials

∏
`X

j`
` for each

choice of 0 ≤ j` < ϕ(m`). We call this set the “powerful” basis of K (and of R).
For non-prime-power m, under the field isomorphism with Q[X]/(Φm(X)) that
maps each X` → Xm/m` , the powerful basis does not coincide with the standard
“power” basis 1, X,X2, . . . , Xϕ(m)−1 usually used to represent the univariate field.
It turns out that in general, the powerful basis has much nicer computational
and geometric properties than the power basis, as we outline next.

Computationally, the tensorial decomposition of K (with the powerful basis)
allows us to modularly reduce essentially all operations in K (or R, or powers
of R∨) to their counterparts in much simpler prime-power cyclotomics (which
themselves easily reduce to the prime-index case). We can therefore completely
avoid all the many algorithmic complications associated with working with polyno-
mials modulo Φm(X). In particular, we obtain novel, simple and fast algorithms,
similar to the FFT, for converting between the multivariate “polynomial” repre-
sentation (i.e., the powerful basis) and the “evaluation” or “Chinese remainder”
representation, in which addition and multiplication are essentially linear time.
Similarly, we obtain linear-time (or nearly so) algorithms for switching between
the polynomial representation and “decoding” representation used in decryption
(described below), and for generating noise terms in the decoding representation.
A final advantage of the tensorial representation is that it yields trivial linear-time
algorithms for computing the trace function to subfields of K, which is at the
heart of the “ring-switching” technique from [16].

The tensorial representation also comes with important geometrical advan-
tages. In particular, under the canonical embedding the powerful basis is better-
conditioned than the power basis, i.e., the ratio of its maximal and minimal



singular values can be much smaller. This turns out to be important when
bounding the additional error introduced when discretizing (rounding off) field
elements in noise-generation and modulus-reduction algorithms, among others.

The dual ideal R∨ and its decoding basis. Under the canonical embedding, the
cyclotomic ring R of index m embeds as a lattice which, unlike Zn, is in general
not self-dual. Instead, its dual lattice corresponds to a fractional ideal R∨ ⊂ K
satisfying R ⊆ R∨ ⊆ m−1R, where the latter inclusion is nearly an equality.
(In fact, R∨ is a scaling of R exactly when m is a power of two, in which case
R = (m/2)R∨.) In [26] it is shown that the “right” definition of the ring-LWE
distribution, which arises naturally from the worst-case to average-case reduction,
involves the dual ideal R∨: the secret belongs to the quotient R∨q = R∨/qR∨, and
ring-LWE samples are of the form (a, b = a ·s+e mod qR∨) for uniformly random
a ∈ Rq and error e which is essentially spherical in the canonical embedding.

While it is possible [11] to simplify the ring-LWE definition by replacing
every instance of R∨ with R, while retaining essentially spherical error (but
scaled up by about m, corresponding to the approximate ratio of R to R∨), in
this work we show that it is actually advantageous to retain R∨ and expose it
in applications.4 The reason is that in general, R∨ supports correct bounded-
distance decoding—which is the main operation performed in decryption—under
a larger error rate than R does.5 In fact, R∨’s error tolerance is optimal for the
simple, fast lattice decoding algorithm used implicitly in essentially all decryption
procedures, namely Babai’s “round-off” algorithm [4]. The reason is that when
decoding a lattice Λ using some basis {bi}, the error tolerance depends inversely
on the Euclidean lengths of the vectors dual to {bi}. For R∨, there is a particular
“decoding” basis whose dual basis is optimally short (relative to the determinant
of R), whereas for R no such basis exists in general.6 In fact, the decoding basis
of R∨ is simply the dual of the powerful basis described above!

In addition to its optimal error tolerance, we also show that the decoding
basis has good computational properties. In particular, there are linear-time
(or nearly so) algorithms for converting to the decoding basis from the other
bases of R∨ or R∨q that are more appropriate for other computational tasks. And
Gaussian errors (especially spherical ones) can be sampled in (near-)linear time
in the decoding basis.

Acknowledgments. We thank Markus Püschel for his help with the sparse de-
composition of the “Chinese remainder transform,” and Damien Stehlé for useful
discussions.
4 This is unless m is a power of two, in which case nothing is lost by simply scaling up
by exactly m/2 to replace R∨ with R.

5 By “error rate” here we mean the ratio of the error (in, say, `2 norm) to the dimension-
normalized determinant det(Λ)1/n of the lattice Λ, so exact scaling has no effect on
the error rate.

6 We note that decoding by “lifting” R to the larger-dimensional ring Z[X]/(Xm−1), as
done in [17], still leads to an m or m/2 factor loss in error tolerance overall, because
some inherent loss is already incurred when replacing R∨ with R, and a bit more is
lost in the lifting procedure.



2 Preliminaries

For a positive integer k, we denote by [k] the set {0, . . . , k− 1}. For a real a ∈ R,
define bae = ba + 1

2c ∈ Z. For any ā ∈ R/Z, we let JāK ∈ R denote the unique
representative a ∈ (ā + Z) ∩ [−1/2, 1/2). Similarly, for ā ∈ Zq = Z/qZ we let
JāK denote the unique representative a ∈ (ā+ qZ) ∩ [−q/2, q/2). We extend b·e
and J·K entrywise to vectors and matrices. The radical of a positive integer m,
denoted rad(m), is the product of all primes dividing m. We also define m̂ = m/2
whenever m is even, and m̂ = m otherwise. For a vector x over R or C, we
define the `2 norm as ‖x‖2 = (

∑
i|xi|

2
)1/2, and the `∞ norm as ‖x‖∞ = maxi|xi|.

When the subscript is omitted, we mean the `2 norm.
Throughout this paper, the entries of a vector over a domain D are always

indexed (in no particular order) by some finite set S, and we write DS to denote
the set of all such vectors. Similarly, the rows and columns of an “R-by-C matrix”
over D are indexed by some finite sets R and C, respectively. All the standard
matrix and vector operations, including the Kronecker (or tensor) product, are
defined in the natural way.

2.1 The Space H

When working with cyclotomic number fields and ideal lattices, it is convenient
to work with the subspace H ⊆ CZ∗m for integer m ≥ 2, defined as

H = {x ∈ CZ∗m : xi = xm−i, ∀ i ∈ Z∗m}.

Letting n = ϕ(m), it is not difficult to verify that H (with the inner product
induced on it by CZ∗m) is isomorphic to R[n] as an inner product space. For m = 2
this is trivial, and for m > 2 this can seen via the Z∗m-by-[n] unitary basis matrix
1√
2

(
I
√
−1J

J −
√
−1I

)
of H, where here the Z∗m-indexed rows are in increasing order

according to their canonical representatives in {1, . . . ,m − 1}, the [n]-indexed
columns are in increasing order by index, I is the identity matrix, and J is the
reversal matrix (obtained by reversing the rows of I).

We equip H with the `2 and `∞ norms induced on it from CZ∗m . Namely, for
x ∈ H we have ‖x‖2 =

∑
i(|xi|

2
)1/2 =

√
〈x,x〉, and ‖x‖∞ = maxi|xi|.

2.2 Gaussians and Subgaussian Random Variables

For s > 0, define the Gaussian function ρs : H → (0, 1] as ρs(x) = exp(−π‖x‖2/s2).
By normalizing this function we obtain the continuous Gaussian probability dis-
tribution Ds of parameter s, whose density is given by s−n · ρs(x).

For much of our analysis it is convenient to use the standard notion of
subgaussian random variables, relaxed slightly as in [28]. For any δ ≥ 0, we
say that a random variable X (or its distribution) over R is δ-subgaussian with
parameter s > 0 if for all t ∈ R, the (scaled) moment-generating function satisfies

E[exp(2πtX)] ≤ exp(δ) · exp(πs2t2).



Notice that the exp(πs2t2) term on the right is exactly the (scaled) moment-
generating function of the one-dimensional Gaussian distribution of parameter s
over R.

Decoding In many applications we need to perform the following algorithmic
task, which is essentially that of bounded-distance decoding. Let Λ be a known
fixed lattice, and let x ∈ H be an unknown short vector. The goal is to recover x,
given x mod Λ. Although there are several possible algorithms for this task, here
we focus on a slight extension of the so-called “round-off” algorithm, originally
due to Babai [4]. This is due to its high efficiency and because for our lattices it
performs optimally (or nearly so). The algorithm is very simple: let {vi} be a
fixed set of n short, linearly independent vectors in the dual lattice Λ∨. Denote
the dual vectors of {vi} by {bi}, and let Λ′ ⊇ Λ be the (super)lattice generated
by {bi}. Given an input t = x mod Λ, we express t mod Λ′ in the basis {bi} as∑
i āibi where āi ∈ R/Z (so āi = 〈x,vi〉 mod 1), and output

∑
iJāiKbi ∈ H.

Lemma 2.1. Let Λ ⊂ H be a lattice, let {vi} be a set of n linearly independent
vectors in its dual, and let dmax = maxi‖vi‖. For any x of length less than
1/(2dmax), the above round-off algorithm succeeds in recovering x from x mod Λ.
Moreover, for any δ > 0, if x is a random vector such that 〈x,vi〉 is δ-subgaussian
with parameter s for every i (in particular, if x itself is δ-subgaussian with
parameter s/dmax), then the round-off algorithm succeeds with probability at least
1−2n exp(δ−π/(2s)2), which is 1−negl(n) when δ = O(1) and s = 1/ω(

√
log n).

Discretization We now consider another algorithmic task related to the one
in the previous subsection. This task shows up in applications, such as when
converting a continuous Gaussian into a discrete Gaussian-like distribution. Given
a lattice Λ = L(B) represented by a “good” basis B = {bi}, a point x ∈ H,
and a point c ∈ H representing a lattice coset Λ+ c, the goal is to discretize x
to a point y ∈ Λ + c, written y ← bxeΛ+c, so that the length (or subgaussian
parameter) of y − x is not too large. To do this, we sample a relatively short
offset vector f from the coset Λ+ c′ = Λ+ (c− x) , and output y = x + f . We
require that the method used to choose f be efficient and depend only on the
desired coset Λ+ c′, not on the particular representative used to specify it. In the
full version of the paper, we describe several valid ways of sampling f , offering
tradeoffs between efficiency and output guarantees.

2.3 Algebraic Number Theory Background

Cyclotomic Number Fields and Polynomials. For a positive integer m, the mth
cyclotomic number field is a field extension K = Q(ζm) obtained by adjoining an
element ζm of order m (i.e., a primitive mth root of unity) to the rationals. (Note
that we view ζm as an abstract element, and not, for example, as any particular
value in C.) The minimal polynomial of ζm is the mth cyclotomic polynomial

Φm(X) =
∏
i∈Z∗m

(X − ωim) ∈ Z[X], (2)



where ωm ∈ C is any primitivemth root of unity in C, e.g., ωm = exp(2π
√
−1/m).

Therefore, there is a natural isomorphism between K and Q[X]/(Φm(X)), given
by ζm 7→ X. Since Φm(X) has degree n = |Z∗m| = ϕ(m), we can view K as a
vector space of degree n over Q, which has {1, ζm, . . . , ζn−1

m } as a basis. This is
called the power basis of K.

For the mth cyclotomic number field K = Q(ζm) of degree n = ϕ(m), the
ring of integers is R = Z[ζm] ∼= Z[X]/Φm(X), and hence has the power basis
{ζjm}j∈[n] as a Z-basis.

Non-Prime-Power Cyclotomics. Let m have prime-power factorization m =∏
`m`, i.e., the m` are powers of distinct primes. Then K = Q(ζm) may be

seen as the tensor product
⊗

`K` of the fields K` = Q(ζm`), in the following
way. First, view each K` as a subfield of K, via the ring embedding ζm` 7→
ζ
m/m`
m . Then viewing K and K` as vector spaces over Q, the tensor product⊗
`K` is isomorphic to K, under the map (⊗` a`) 7→

∏
` a`.

7 In particular, if
B` are Q-bases of K` respectively (e.g., the power bases), then their tensor
product

⊗
`B` = {

∏
` b` ∈ K : b` ∈ B`} is a Q-basis of K. Moreover, endowing⊗

`K` with the multiplication operation induced by the mixed-product property
(⊗` a`) · (⊗` b`) = ⊗` (a` · b`) also makes the above mapping from

⊗
`K` to K a

field isomorphism, as desired.
Equivalently, in terms of polynomial rings we may view K ∼= Q[X]/(Φm(X))

instead as
K ∼= Q[X1, X2, . . .]/(Φm1(X1), Φm2(X2), . . .), (3)

where there is one indeterminant X` and modulus Φm`(X`) per prime divisor of
m, and where X` 7→ Xm/m` defines an isomorphism with Q[X]/(Φm(X)). Notice
that by tensoring the power bases {Xj

` }j∈[ϕ(m`)]
of each K`, we get the basis

{Xj1
1 X

j2
2 · · ·}j`∈[ϕ(m`)]

. Mapping this basis to Q[X]/(Φm(X)) yields the basis
{X

∑
`(m/m`)j`}j`∈[ϕ(m`)]

, which is not necessarily the power basis {Xj}j∈[ϕ(m)],
since the powers of X appearing in each basis can be different modulo m. (For
example, take m = 3 · 5.)

Embeddings and Geometry. Here we describe the embeddings of a cyclotomic
number field, which induce a ‘canonical’ geometry on it.

The mth cyclotomic number field K = Q(ζm) of degree n = ϕ(m) has exactly
n ring homomorphisms (embeddings) σi : K → C that fix every element of Q.
Concretely, for each i ∈ Z∗m there is an embedding σi defined by σi(ζm) = ωim,
where ωm ∈ C is some fixed primitive mth root of unity. Clearly, the embeddings
come in pairs of complex conjugates, i.e., σi = σm−i. The canonical embedding
σ : K → CZ∗m is defined as

σ(a) = (σi(a))i∈Z∗m .

7 The tensor product of two vector spaces K,L over a common base field can be defined
as the set of all finite sums of pure tensors a⊗ b for a ∈ K, b ∈ L, where ⊗ is bilinear.
The tensor product of multiple vector spaces is defined similarly.



When K is viewed as the tensor product of subfields K`, σ =
⊗

` σ
(`) is the

tensor product of the canonical embeddings σ(`) of K`. In this case, the index set
of σ is

∏
` Z∗m` , which corresponds to Z∗m via the Chinese remainder theorem.

The trace Tr = TrK/Q : K → Q can be defined as the sum of the embeddings:
Tr(a) =

∑
i σi(a). Clearly, Tr(a+ b) = Tr(a) + Tr(b) and Tr(c · a) = c · Tr(a) for

all a, b ∈ K and c ∈ Q. Moreover,

Tr(a · b) =
∑
i

σi(a)σi(b) = 〈σ(a), σ(b)〉.

Duality. For any fractional ideal I in K, its dual is defined as

I∨ = {a ∈ K : Tr(aI) ⊆ Z}.

It is easy to verify that I∨ is a fractional ideal, and that (I∨)∨ = I.
For any Q-basis B = {bj} of K, we denote its dual basis by B∨ = {b∨j }, which

is characterized by Tr(bi · b∨j ) = 1 if i = j, and 0 otherwise. It is immediate that
(B∨)∨ = B, and if B is a Z-basis of some fractional ideal I, then B∨ is a Z-basis
of its dual ideal I∨. An important fact is that if a =

∑
j aj · bj (where aj ∈ R)

is the unique representation of some a ∈ KR in basis B, then aj = Tr(a · b∨j ) by
linearity of Tr.

Except in the trivial number field K = Q, the ring of integers R is not
self-dual, nor are an ideal and its inverse dual to each other. However, an ideal
and its inverse are related by multiplication with the dual ideal R∨ of the ring:
for any fractional ideal I, its dual is I∨ = I−1 ·R∨. (Notice that for I = R this
holds trivially, since R−1 = R.) A standard fact is that R∨ = 〈t−1〉 is a principal
ideal generated by t−1 for some (non-unique) t ∈ R. When R ∼=

⊗
`R` is viewed

as the tensor product of rings of integers R` ⊂ K` (where K ∼=
⊗

`K`), its dual
ideal has an analogous tensorial form, as R∨ =

⊗
`R
∨
` .

2.4 Ring-LWE

We now provide the formal definition of the ring-LWE problem and recall the
worst-case hardness result shown in [26]. We remark that our definition here
differs very slightly from the one used in [26]: we scale the b component by a
factor of q, so that it is an element of KR/qR

∨ and not KR/R
∨ as in [26]. This

is done for convenience when later discretizing the b component, and the two
definitions are easily seen to be equivalent.

Definition 2.2 (Ring-LWE Distribution). For a “secret” s ∈ R∨q (or just
R∨) and a distribution ψ over KR, a sample from the ring-LWE distribution As,ψ
over Rq × (KR/qR

∨) is generated by choosing a ← Rq uniformly at random,
choosing e← ψ, and outputting (a, b = a · s+ e mod qR∨).

Definition 2.3 (Ring-LWE, Average-Case Decision). The average-case de-
cision version of the ring-LWE problem, denoted R-DLWEq,ψ, is to distinguish
with non-negligible advantage between independent samples from As,ψ, where
s← R∨q is uniformly random, and the same number of uniformly random and
independent samples from Rq × (KR/qR

∨).



Theorem 2.4. Let K be the mth cyclotomic number field having dimension n =
ϕ(m) and R = OK be its ring of integers. Let α = α(n) > 0, and let q = q(n) ≥ 2,
q = 1 mod m be a poly(n)-bounded prime such that αq ≥ ω(

√
log n). Then there

is a polynomial-time quantum reduction from Õ(
√
n/α)-approximate SIVP (or

SVP) on ideal lattices in K to the problem of solving R-DLWEq,ψ given only `
samples, where ψ is the Gaussian distribution Dξq for ξ = α · (n`/ log(n`))1/4.

In cryptographic applications it is often useful to work with a version of
ring-LWE whose error distribution is discrete. In the full version of the paper,
we show that for a wide family of discrete error distributions, it is easy to
deduce the hardness of the discrete version from that of the continuous one.
Another important variant of ring-LWE, known as the “normal form,” is the one
in which the secret, instead of being uniformly distributed, is chosen from the
error distribution (discretized to R∨). Showing that this variant of ring-LWE is
as hard as the original one follows from the techniques of [3].

3 The Powerful, CRT, and Decoding Bases

In this section we study certain Z-bases of certain (fractional) ideals I in K =
Q(ζm), which are also Zq-bases of the quotients Iq = I/qI for any positive
integer q. Fixing such a basis b and viewing it as a (column) vector over K, we
can represent any a ∈ I uniquely as a = 〈b,a〉 = bT · a for some coefficient vector
a over Z. Similarly, any ā ∈ Iq is represented uniquely as ā = 〈b, ā〉 for some ā
over Zq. Our algorithms that work with field elements simply store and operate
on these coefficient vectors, while also keeping track of the corresponding basis,
which will be among the few we consider below. Notice that by linearity, if we
have some a ∈ I represented by coefficient vector a in basis b, then a is also
the representation of ra ∈ rI in the basis rb, so we can switch between the two
values at essentially no cost.

3.1 The Powerful Basis

Here we define a certain useful Q-basis of K, and Z-basis of R. We call it the
“powerful” basis, due to its decomposition in terms of the power bases of K`, and
the fast algorithms associated with it. (We are aware of only one occurrence in
the literature of this basis; it coincides with what Bosma [6] calls the “canonical”
basis of R.)

Definition 3.1. The powerful basis p of K = Q(ζm) and R = Z[ζm] is defined
as follows:

– For a prime power m, define p to be the power basis (ζjm)j∈[ϕ(m)], treated as
a vector over R ⊂ K.

– For m having prime-power factorization m =
∏
`m`, define p =

⊗
` p`, the

tensor product of the power(ful) bases p` of each K` = Q(ζm`).



For any power I = (R∨)k of R∨ = 〈t−1〉, the powerful basis of I is t−k · p.

By definition of the tensor product, p is a vector with index set
∏
`[ϕ(m`)].

So to specify an entry of p we need one index j` ∈ [ϕ(m`)] per prime divisor of m,
and the specified entry is p(j`) =

∏
` ζ

j`
m`

. Note that because ζm` = ζ
m/m`
m ∈ K,

it is possible to “flatten” the index set to a size-ϕ(m) subset of [m], where index
(j`) maps to j =

∑
`(m/m`) · j` mod m, and pj = ζjm. We note that unless m is

a prime power, the flattened index set is not [ϕ(m)], so the powerful basis differs
from the power basis, although it still consists of powers of ζm. For instance,
for m = 15 and ζ = ζ15, the powerful basis consists of ζ0, ζ3, ζ5, ζ6, ζ8, ζ9, ζ11,
and ζ14. For our purposes, it is preferable to maintain the structured index set.

In the full version we prove the following lemma describing the good geometric
properties of the powerful basis.

Lemma 3.2. The length of each element pj of p in `2 norm is ‖pj‖ =
√
ϕ(m) =√

n, and in `∞ norm is ‖pj‖∞ = 1. The largest singular value of σ(pT ) is
s1(p) =

√
m̂, and the smallest singular value is sn(p) =

√
m/ rad(m), where

m̂ = m/2 if m is even, and m̂ = m otherwise.

We point out while the power basis elements also all have `2 and `∞ norms√
n and 1 (respectively), the power basis can be poorly conditioned. E.g., for

m = 1155 = 3 · 5 · 7 · 11 its ratio of largest to smallest singular value is ≈ 21.4
√
m,

whereas for the powerful basis it is exactly
√
m.

3.2 The CRT Basis and Fast Operations

In ring-LWE and its applications, we work in Rq and R∨q , and sometimes in Iq
for I = (R∨)k, where q = 1 mod m is a prime integer. Here we define Chinese
remainder (CRT) bases for these quotients, and describe how they yield fast
addition and multiplication.

Recalling that R ∼=
⊗

`R` where m =
∏
`m` is the prime-power factorization

of m and R` is the m`th cyclotomic ring, it is easy to verify that the quotient
ring Rq ∼=

⊗
`(R`/qR`). Therefore we may focus on the case of prime-power m.

A standard fact is that the ideal 〈q〉 ⊂ R factors into the product of n distinct
prime ideals qi, for i ∈ Z∗m.

Definition 3.3. For a positive integer m, the Chinese remainder (or CRT)
Zq-basis c of Rq is as follows:

– For a prime power m, c = (ci)i∈Z∗m is characterized by ci = 1 mod qi and
ci = 0 mod qj for i 6= j. (Its existence is guaranteed by the Chinese Remainder
Theorem.)

– For m having prime-power factorization m =
∏
`m`, define c =

⊗
i c`, the

tensor product of the CRT bases c` of each R`/qR`.

For any power I = (R∨)k of R∨ = 〈t−1〉, the CRT Zq-basis of Iq is t−k · c.



Similarly to the powerful basis, c is a vector over Rq having the Cartesian
product

∏
` Z∗m` as its index set, which may be flattened to the set Z∗m using the

bijective correspondence (j`)↔ j =
∑
`(m/m`) · j` ∈ Z∗m. But it is usually more

convenient to retain the structured index set.
In the full version of the paper we give a novel, fast “CRT transformation”

algorithm for converting between the powerful and CRT bases of Rq, or more
generally Iq for I = (R∨)kq . The algorithm is analogous to a combination of the
Cooley-Tukey and Good-Thomas (mixed radix) FFT algorithms, but specialized
to evaluate at only the primitive mth roots of unity in a ring. The algorithm is
simpler and more efficient than converting between the power and CRT bases,
which involves reducing modulo the cyclotomic polynomial Φm(X).

Working in the CRT basis yields very fast arithmetic operations. Suppose that
m is a prime power. Since c2i = ci ∈ Rq and ci ·ci′ = 0 ∈ Rq for distinct i, i′ ∈ Z∗m,
the CRT basis has the property that if a, b ∈ Rq have coefficient vectors a,b
(respectively) over Zq in the CRT basis—i.e., a = 〈c,a〉 and b = 〈c,b〉—then
the coefficient vector of a · b ∈ Rq is the componentwise product a� b over Zq.
(Addition is componentwise as well, simply by linearity.) Moreover, this extends
immediately to powers of R∨: if a,b are the respective coefficient vectors of
a ∈ (R∨)k1q , b ∈ (R∨)k2q in the respective CRT bases t−k1 · c and t−k2 · c, then
a � b is the coefficient vector of a · b ∈ (R∨)kq in the CRT basis t−k · c, where
k = k1 + k2.

3.3 The Decoding Basis of R∨

When working with ring-LWE we need to perform a variety of operations over
R∨ = 〈t−1〉 or R∨q . For certain operations it is best to use the following important
Z-basis of R∨ (and Zq-basis of R∨q ).

Definition 3.4. The decoding basis of R∨ is d = p∨, the dual of the powerful
basis p of R.8

The decoding basis therefore has the same index set as p. When m is a prime
power, d is simply the dual of the power basis p = (ζjm)j∈[ϕ(m)] of R. In general,
because p is the tensor product of the power bases for prime-power cyclotomics
R`, and (a ⊗ b)∨ = (a∨ ⊗ b∨), it follows that d is the tensor product of the
decoding bases for each R∨` .

In the full version of the paper, we prove several important and useful
properties of the decoding basis, summarized as follows:

– There are very fast linear transformations (requiring fewer than nd scalar
additions, where d is the number of prime divisors of m) for converting
between the decoding basis d and the powerful basis t−1p of R∨.

8 Note that unlike the powerful and CRT bases, we do not define a decoding basis for
any other power of R∨; see Section 3.4 for discussion.



– Short elements (as always, in the sense of the canonical embedding) of K
have optimally small coefficients with respect to d, making it a best choice
for decoding R∨. Moreover, d also yields (nearly) optimal decoding in higher
powers of R∨.

– Continuous Gaussians (especially spherical ones) as represented in the decod-
ing basis can be sampled very simply and efficiently.

The first fact, combined with the fast CRT transformation, means that we can
efficiently convert among the decoding, power, and CRT bases of R∨ (or R∨q ) as
needed. The latter two facts mean that the decoding basis is an excellent choice
for generating and decoding error terms (e.g., in encryption and decryption,
respectively). By contrast, the power(ful) basis and other natural bases of R
or R∨ do not typically enjoy the above properties (except when m is a power
of 2), and while they can in principle be used for all the same tasks, it would
come at a potentially large loss in tightness and/or computational efficiency.

3.4 Decoding R∨ and Its Powers

Recall from Section 2.2 the “round-off” decoding procedure, which uses short
linearly independent vectors in a dual lattice Λ∨ to recover a sufficiently short
x given x mod Λ. To decode from K/R∨ to K, we apply the procedure using
the decoding basis d of R∨; i.e., the linearly independent dual elements (in
(R∨)∨ = R) are those of the powerful basis p. Recall from Lemma 2.1 that the
tolerable decoding distance (or subgaussian parameter) depends inversely on the
maximum length of the dual elements, and that by Lemma 3.2, every pj in the
powerful basis has length ‖pj‖ =

√
n. From this we get corresponding bounds on

the decoding operation, as summarized below in Lemma 3.6. We remark that
the decoding basis is an optimal choice here.

In some applications (e.g., homomorphic encryption), we need to solve the
more general problem of decoding K/I to K, where I = (R∨)k = 〈t−k〉 for some
(usually small) k ≥ 1. The naïve way to do this would be to apply the round-off
procedure with the Z-basis t1−kd of I. This, however, turns out to be highly
suboptimal for many values of m, because the elements of the dual basis tk−1p
might be much longer than the shortest nonzero elements of I∨ = 〈tk−1〉.

Instead, in the round-off algorithm we use the scaled decoding basis m̂1−kd,
which generates the superideal J = m̂1−kR∨ = t−kg1−k ⊇ I, and whose dual
elements are m̂k−1p ⊆ I∨. (Recall that m̂ = m/2 if m is even, and m̂ = m
otherwise. It is easy to show that m̂ = t · g for some g ∈ R; see the full version.)
The lengths of the dual elements are therefore m̂k−1

√
n, from which one gets the

bounds summarized in Lemma 3.6 below.
We summarize the above discussion in the following definition and lemma.

As it will be more convenient for applications, here we consider a “scaled up and
discretized” version of the decoding procedure, where we decode from Iq to I
for some q ≥ 1. So the unknown short element is guaranteed to be in I, and
the output is also expected to be in I. The only difference this makes in the
above procedure (apart from the obvious scaling by q) is that for k ≥ 2, since the



scaled decoding basis may generate a strict superideal of I, when the round-off
procedure fails to decode correctly it might produce an element that is not in I.
In such a case we just consider the output to be undefined.

Definition 3.5 (Decoding Iq to I). For ā ∈ Iq where I = (R∨)k for some
k ≥ 1, let ā = 〈m̂1−kd, ā〉 mod qJ for some ā over Zq, where J = m̂1−kR∨.
Define JāK to be 〈m̂1−kd, JāK〉 if it is in I, otherwise JāK is undefined (where JāK
is a vector over Z, as defined in the beginning of Section 2).

Lemma 3.6. For any k ≥ 1 let I = (R∨)k and let q ≥ 1 be arbitrary. Then for
any a ∈ I of length less than q/(2m̂k−1

√
n), we have Ja mod qIK = a. Moreover,

if a is δ-subgaussian with parameter s, then for any b ∈ (R∨)` where ` ≥ 0, we
have Ja · b mod q(R∨)k+`K = a · b except with probability at most

2n exp(δ − πq2/(2s · m̂k+`−1‖b‖2)2).

4 Regularity

In this section we state a certain “regularity theorem” (whose proof appears in
the full version) that is useful in cryptographic applications of ring-LWE, such as
when adapting the ‘dual’ cryptosystem and IBEs of Gentry et al. [19] and others.
Independently, a closely related statement (specialized to power-of-2 cyclotomics)
was recently shown in [33] with a different proof.

The theorem says the following. Assume we are working with the mth cy-
clotomic of degree n = ϕ(m), and let q ≥ 1 be a prime integer. Let a1, . . . , a`−1

be chosen uniformly and independently from Rq. Then, with high probability
over the choice of the ai’s, the distribution of b0 +

∑`−1
i=1 biai is within statistical

distance 2−Ω(n) of uniform, where the bi are chosen from a discrete Gaussian
distribution on R of width essentially nq1/` (in the canonical embedding). Equiv-
alently, the lemma says that if a0 is any fixed invertible element of Rq and
a1, . . . , a`−1 are uniformly and independently chosen from Rq, then

∑`−1
i=0 biai

is within 2−Ω(n) of uniform, where the bi are chosen as before. The equivalence
follows by simply dividing by a0. (The lemma we prove is actually more general,
and applies to the joint distribution of k ≥ 1 sums as above; see Theorem 4.1
and Corollary 4.2 for the exact statement.)

This regularity statement is already interesting and non-trivial when ` is as
small as 2, and is close to being tight: for instance, in case m is a power of 2, a
width of at least

√
nq1/` is required just for entropy reasons. To see this, recall

that R is a rotation of
√
nZn, so roughly speaking, a discrete Gaussian of width

t covers (t/
√
n)n points.

One might wonder about the significance of the b0 term, and why we do not
analyze the regularity of

∑`−1
i=0 biai when all the ai are chosen uniformly from R.

In fact, a regularity lemma for exactly such sums was shown by Micciancio [27].
(His work is specialized to the ring R = Z[x]/〈xn − 1〉, but can be extended to
other rings, as observed in [34].) Unfortunately, such sums have a much worse



regularity property, and in particular require super-constant ` to get negligible
distance to uniformity. To see why this is the case, assume q is a prime satisfying
q = 1 mod m, so that 〈q〉 splits completely into n ideals of norm q each. Letting
q denote one of these prime factors, notice that with probability q−`, all the
ai are in q. In this case,

∑m
i=1 biai is in q with certainty, and its distribution is

therefore very far from uniform. By adding the b0 term we avoid this “common
divisor” problem and get much better regularity, providing exponentially small
distance to uniformity already for ` as small as 2.

The following is the regularity theorem. Here, for a matrix A ∈ R[k]×[`]
q we

define Λ⊥(A) = {z ∈ R[`] : Az = 0 mod qR}, which we identify with a lattice in
H`. Its dual lattice (which is again a lattice in H`) is denoted by Λ⊥(A)∨.

Theorem 4.1. Let R be the ring of integers in the mth cyclotomic number field
K of degree n, and q ≥ 2 an integer. For positive integers k ≤ ` ≤ poly(n), let
A = [I[k] | Ā] ∈ (Rq)

[k]×[`], where I[k] ∈ (Rq)
[k]×[k] is the identity matrix and

Ā ∈ (Rq)
[k]×[`−k] is uniformly random. Then for all r > 2n,

EĀ
[
ρ1/r(Λ

⊥(A)∨)
]
≤ 1 + 2(r/n)−n`qkn+2 + 2−Ω(n).

In particular, if r > 2n · qk/`+2/(n`) then EĀ[ρ1/r(Λ
⊥(A)∨)] ≤ 1 + 2−Ω(n), and

so by Markov’s inequality, η2−Ω(n)(Λ⊥(A)) ≤ r except with probability at most
2−Ω(n).

Using [31, Claim 3.8], we obtain the following corollary, which is often more
useful in applications.

Corollary 4.2. Let R, n, q, k, and ` be as in Theorem 4.1. Assume that A =
[I[k] | Ā] ∈ (Rq)

[k]×[`] is chosen as in Theorem 4.1. Then, with probability
1 − 2−Ω(n) over the choice of Ā, the distribution of Ax ∈ R

[k]
q where each

coordinate of x ∈ R[`]
q is chosen from a discrete Gaussian distribution of radius

r > 2n ·qk/`+2/(n`) over R, satisfies that the probability of each of the qnk possible
outcomes is in the interval (1±2−Ω(n))q−nk (and in particular is within statistical
distance 2−Ω(n) of the uniform distribution over R[k]

q ).

5 Example Cryptosystem

Here we give an example application of our toolkit which works in arbitrary
cyclotomic rings. In particular, we give a public-key cryptosystem whose public key
and ciphertext each consists of only two ring elements. In the full version, we also
give a simple adaptation of the “dual-style” LWE-based public-key cryptosystem
of [19], which uses our regularity theorem of Section 4, and which can serve as
a foundation for (hierarchical) identity-based encryption. Additionally, in the
full version we provide another (much more involved) example of a symmetric-
key “somewhat homomorphic” cryptosystem and all the associated “modulus
reduction” and “key switching” algorithms.



Let q be a positive integer that is coprime with every odd prime dividing m,
and let p be a positive integer coprime with q. The message space is Rp. Let
ψ be a continuous LWE error distribution over KR, and let b·e denote a valid
discretization to (cosets of) R∨ or pR∨. The cryptosystem is defined as follows.

– Gen: choose a uniformly random a ← Rq. Choose s ← bψeR∨ and e ←
bp ·ψepR∨ . Output (a, b = m̂(a · s+ e) mod qR) ∈ Rq ×Rq as the public key,
and s as the secret key.

– Enc(a,b)(µ ∈ Rp): choose z ← bψeR∨ , e′ ← bp · ψepR∨ , and e′′ ← bp ·
ψet−1µ+pR∨ .
Let u = m̂(a ·z+e′) mod qR and v = b ·z+e′′ ∈ R∨q . Output (u, v) ∈ Rq×R∨q .

– Decs(u, v): compute v − u · s = m̂(e · z − e′ · s) + e′′ mod qR∨, and decode it
to d = Jv − u · sK ∈ R∨ (see Definition 3.5). Output µ = t · d mod pR.

Lemma 5.1. The above cryptosystem is IND-CPA secure assuming the hardness
of R-DLWEq,ψ.

Lemma 5.2. Suppose that bψec+R∨ is δ-subgaussian with parameter r ≥ 1 and
δ = O(1), for any coset c + R∨. Then assuming q > m̂pr2 · ω(

√
n log n), the

decryption procedure is correct with probability negligibly close to one (over all
the random choices of Gen and Enc).
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