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Abstract. The hardness of the Learning-With-Errors (LWE) Problem
has become one of the most useful assumptions in cryptography. It ex-
hibits a worst-to-average-case reduction making the LWE assumption
very plausible. This worst-to-average-case reduction is based on a Fourier
argument and the errors for current applications of LWE must be chosen
from a gaussian distribution. However, sampling from gaussian distribu-
tions is cumbersome.
In this work we present the first worst-to-average case reduction for LWE
with uniformly distributed errors, which can be sampled very efficiently.
This new worst-to-average-case connection comes with a slight drawback
and we need to use a bounded variant of the LWE problem, where the
number of samples is fixed in advance. Most applications of LWE can be
based on the bounded variant. The proof is based on a new tool called
lossy codes, which might be of interest in the context other lattice/coding-
based hardness assumptions.
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1 Introduction

The Learning-with-Errors (LWE) Problem asks to recover an unknown vector
x ∈ Znq , given a random matrix A ∈ Zm×nq and a noisy-codeword y = Ax + e,
where e ∈ Zmq is chosen from an error-distribution χm. This problem has had a
significant impact in cryptography since its conception in 2005 [Reg05]. Maybe
the most intriguing feature of this problem is its worst-to-average case connection
[Reg05,Pei09]. This basically allows to transform an efficient adversary solving
LWE on average, into an efficient (quantum) algorithm solving lattice prob-
lems in the worst case. Beyond this very strong hardness-guarantee, the prob-
lem has unmatched cryptographic versatility. It allows for IND-CPA and IND-
CCA secure encryption [Reg05,GPV08,Pei09], lossy-trapdoor functions [PW08],
(hierarchical) identity-based encryption [CHKP10,ABB10], fully homomorphic
encryption [BV11,BGV12,Bra12] and many more. The worst-to-average-case re-
ductions [Reg05,Pei09] crucially rely on the Fourier-properties of gaussian error-
distributions. This has the consequence that the cryptographic applications also



need to use a gaussian error-distribution. For the above-mentioned encryption-
schemes, sampling from a gaussian error-distribution is usually the computa-
tionally heaviest step (which occurs mostly during key-generation). It would
thus be desirable to have a variant of the LWE problem enjoying the same
worst-to-average-case connection, but that comes with an easier-to-sample error-
distribution. Micciancio and Mol [MM11a] write:

”Can lattice-based hardness results for search LWE be extended to
noise distributions other than Gaussian? Can we show similar lattice-
based hardness results if the noise is distributed uniformly at random
modulo 2i? The latter case is very attractive from a practical viewpoint
since arithmetic modulo 2 and sampling from uniform distributions can
be implemented very efficiently.”

1.1 Our Contribution

In this work we present the first instantiation of the LWE problem with worst-to-
average case connection where the error-distribution is the uniform distribution
on a small interval [−r, r] (call this distribution U([−r, r])). In particular, set-
ting r = 2i, this answers the question of [MM11a]. Rather than proving a new
worst-to-average case reduction, we will build ours on top of existing ones. More
precisely, the gaussian error-distributions will appear in the hardness-reduction,
but not in the LWE instantiation itself. Our main-lever to achieve this is a tech-
nique which we call lossy codes. Roughly speaking, lossy codes are pseudorandom
codes that seem to be good codes. However, encoding messages with a lossy code
and adding certain errors provably annihilates the message (on average). On the
other hand, encoding the same message using a truly random code and adding
the same type of error preserves the message, i.e. the message can be recovered
information theoretically (yet not efficiently). Using a proof-strategy pioneered
by Peikert and Waters [PW08], we conclude that recovering the message when
encoding with a random code and adding noise must be computationally hard. If
this was not the case, lossy codes could be efficiently distinguished from random
codes, contradicting the pseudorandomness-property of lossy codes. The main-
part of this work is devoted to proving that a very simple construction of lossy
codes for LWE actually is lossy for the error-distribution U([−r, r]). The key-
insight for this construction is that the standard LWE problem with gaussian
error-distribution allows us to implant many very short vectors into a random
looking lattice. Our resulting worst-to-average case connection-factor for LWE
with error-distribution U([−r, r]) depends on the number of samples provided
by LWE (while those for standard LWE [Reg05,Pei09] do not). We will therefore
consider an m-bounded LWE problem LWE(n,m, q,U([−r, r])), where the num-
ber of samples m has a fixed poly(n) upper bound (rather than being arbitrary
poly(n) depending on the adversary, like in the standard LWE problem). As lossy
codes are basically an information-theoretical technique, this seems unavoidable.
However, this drawback is still quite mild compared to the super-polynomial in-
approximability assumptions made in other works [GKPV10,BV11,Bra12]. We
now state our main-theorem.



Theorem 1 (Main Theorem). Let n be a security parameter and let σ ∈ (0, 1)
be an arbitrarily small constant. Let q = q(n) be a modulus and m = m(n) =
poly(n) be a integer with m ≥ 3n. Let ρ = ρ(n) ∈ (0, 1/10) be such that ρq ≥
2n0.5+σm. If there exists a PPT-algorithm that solves LWE(n,m, q,U([−ρq, ρq]))
with non-negligible probability, then there exists an efficient quantum-algorithm
that approximates the decision-version of the shortest vector problem (GAPSVP)
and the shortest independent vectors problem (SIVP) to within Õ(n1+σm/ρ) in
the worst case.

Applying the search-to-decision reduction of [MM11b], we can conclude as
a corollary that the decisional variant DLWE(n,m, q,U([−ρq, ρq])) is also hard.
Finally, we believe that the notion of lossy codes might also be useful to transform
other lattice/coding-based hardness-assumptions.

1.2 Outline of the Techniques

We will briefly outline the construction and the proof of our main results. The
Learning-With-Errors Problem is basically the decoding-problem for q-ary lat-
tices: Given a randomly chosen generator-matrix A and a vector y, find the
nearest lattice point (or codeword) Ax, under the promise that y was generated
by drawing a random point from the lattice and adding an error by some spec-
ified distribution. We want to show that this decoding-problem is hard if the
error is component-wise chosen by U([−r, r]), i.e. from the uniform distribution
on some interval [−r, r]. Assume that we knew that there exists a distribution of
lossy matrices A′ such that that the decoding-problem has no unique solution
if the errors come from U([−r, r]), i.e., adding noise to a lattice-point A′x loses
information about x. If distinguishing such matrices from truly random matri-
ces is hard, we can conclude that the decoding-problem must be hard for truly
random matrices. Otherwise, given a decoder for random matrices we can distin-
guish random matrices from lossy matrices. The distinguisher samples random
challenges for the decoder. If the decoder succeeds significantly often, i.e. if it
outputs the same x that was used to sample the instance, then the given matrix
must come from the random distribution, as this behavior is impossible for the
lossy distribution. Thus, our task is to construct a distribution of lossy codes for
the error-distribution U([−r, r]). Our starting-point to find such a distribution
is the observation that the standard LWE-problem allows us to construct pseu-
dorandom matrices that generate lattices which contain many vectors that are
significantly shorter than one would expect for lattices generated by truly ran-
dom matrices. Let G ∈ Zm×nq be component-wise chosen according to a (short)

discretized gaussian distribution Ψ̄α. We want to set the parameters α and r
such that the lattice generated by G is ”bad” on average against errors from
U([−r, r]). Put differently, if y = Gx+e, where x is chosen uniformly at random
and e is chosen from U([−r, r])m, we want that, with overwhelming probability,
there exist at least one more ”admissible” x′ 6= x and e′ ∈ [−r, r]m such that
y = Gx′+ c′. As e is distributed uniformly on the volume [−r, r]m, each x′ will
have the same posterior-probability given G and y. If there is at least one such



x′, then y statistically hides at least one bit of information about x and we can
implement the distinguisher sketched above. To make this lossy code pseudo-
random, we hide the matrix G in a bigger matrix A. This can be achieved in
a pretty standard way. Let A′ ∈ Zm×nq be chosen uniformly at random. Define
B = (A′‖G) as the concatenation of A′ and G. B now contains the G as a sub-
matrix. Thus, B has a lossy sub-code. As having a lossy sub-code is sufficient to
be lossy, A is also lossy. We can randomize the generator-matrix B = (A′‖G)
by applying the transformation

T =

(
I T′

0 I

)
,

for a T′ ∈ Zn×nq chosen uniformly at random. This yields the randomized gen-
erator A = BT = (A′‖A′T′ + G) for the same code. By the LWE-assumption
(for specific parameters), the matrix A is pseudorandom.

Assume that Ψ̄α is B-bounded, where B � r. We still need to show that
a matrix G chosen from Ψ̄m×nα is (with high probability) lossy for the error-
distribution U([−r, r]). By linearity, it is sufficient to show that for an e chosen
from U([−r, r])m there exist x′ 6= 0 and e′ ∈ [−r, r]m such that e = G · x′ + e′,
with high probability. Then e can be reached from either x1 = 0 or x2 = x′ 6= 0
and we have established 1-bit loss (which is sufficient for the above construction).

Consider a slightly simpler problem, namely when G only consists of a single
column g. We first observe that errors e drawn from U([−r, r])m show the follow-
ing typical behavior: If we draw g according to Ψ̄mα , then there is a substantial
chance (over the choice of g) that it holds e − g ∈ [−r, r]m. An e drawn from
U([−r, r])m has this property with high probability. To see this, note that there
are not too many components ei of e that have distance less than B from the
boundaries of the interval [−r, r]. Call a component ei with this property (i.e.
ei /∈ [−r + B, r − B]) bad. For each component ei, the probability ei is bad is
B/r. Thus, the expected number of components ei too close to the boundaries
is m ·B/r, which is < 1 for an appropriate choice of m, B and r. We can use a
tail-bound for this type of Bernoulli-distribution to show that with overwhelm-
ing probability, the number of bad components ei of e is less than log(n)/2. Now
fix an e with less than log(n)/2 bad components. For each good component ei of
e, it holds that ei + gi ∈ [−r, r] as gi is B− bounded. For all bad components ei,
the probability that ei− gi ∈ [−r, r] is at least 1/2, as Ψ̄α is symmetric and thus
there is only a 1/2 chance that gi goes the wrong way. All together, it holds that

e + g ∈ [−r, r]m with probability at least
(
1
2

)log(n)/2
= 1√

n
, which is substantial.

Now, return to the original problem. Fix an e that is typical in the above
sense. As G has n columns g1, . . . ,gn independently chosen from Ψ̄mα , the proba-
bility that there is at least one gi such that e−gi ∈ [−r, r]m is at least 1−e−

√
n,

which is overwhelming. Thus there exists an x′ 6= 0 (which is the i-th unit-vector)
such that e = Gx′ + e′ and we are done.



1.3 Related Work

Recently, there has been a growing interest to instantiate new LWE variants. In
[GKPV10] an LWE variant was introduced where the secret x is chosen by a dis-
tribution with a sufficient amount of min-entropy, rather than uniformly at ran-
dom. Lyubashevsky et. al [LPR10] introduced the Ring-LWE problem and pro-
vided a worst-to-average-case reduction from the GAPSVP problem in ideal lat-
tices to Ring-LWE. Applebaum et al. [AIK11] noticed, that if the LWE-modulus
q is super-polynomial, then the gaussian error-distribution can be ”overridden”
by a sufficiently (super-polynomially) wider rectangular uniform distribution.
This however requires the underlying worst-case lattice-problems to be hard to
approximate to within a super-polynomial factor. In [BPR12] an LWE-variant
called Learning-With-Rounding (LWR) was introduced. LWR-samples are of the
form (a, b〈a,x〉 ·p/qe) (for two moduli p and q). Remarkably, the problem inher-
its the worst-to-average case connection from the corresponding standard LWE
problem modulo q, without making use of a gaussian error-distribution by it-
self. To establish worst-case hardness of LWR, [BPR12] need to assume that
the underlying worst-case lattice-problems are hard to approximate to within a
super-polynomial factor. Bellare et al. [BKPW12] construct identity-based lossy
trapdoor functions based on the hardness of the decisional-linear problem and
LWE. The LWE-based construction of lossy trapdoor functions in [BKPW12]
has some similarities with the lossy-codes construction in this work, though the
technical details and analysis are incomparable. Finally, Pietrzak [Pie12] gave an
adaptively secure instantiation of LWE called Subspace-LWE, where the adver-
sary is allowed to learn inner products of the secret x after it has been projected
on an adversarially chosen subspace.

1.4 Concurrent Independent Work

Concurrently and independently of our work, Micciancio and Peikert [MP13]
established a worst-case connection for LWE with short uniform errors. Specif-
ically, [MP13] shows that a family of instantiations of LWE with short uniform
errors, at most linear number of samples and polynomial modulus are as hard
as approximating standard worst-case lattice problems to withing a factor of
Õ(
√
nq). For instance, their result can be instantiated with binary errors and

n · (1 + Ω(1/ log(n))) samples or polynomial errors (nε for some small ε) and a
linear number of samples (m = (1 + ε/3)n).

The main similarity of [MP13] and our work is on a conceptual level. In both
[MP13] and our work a lossiness-argument is essential to establish the main re-
sult. To prove their result, Micciancio and Peikert restate the LWE problem in
terms of SIS (Short Integer Solution) functions. This formulation states that,

given a randomly drawn SIS-function H ∈ Z(m−n)×m
q and y = Hx, where x is

drawn from an input-distribution χn, it is hard to find x. They establish lossiness
of a pseudorandom SIS function-family by counting the number of elements in
the image of functions H chosen from that family (on average). For appropriate
parameter-choices, they can conclude that the image H(X) contains noticeably



fewer elements than the domain X, thus H must be lossy for the uniform distri-
bution on its domain X.

For comparison, in the language of [MP13] our results might be restated as
follows. We first construct pseudorandom SIS-functions H with domain [−r, r]m
that have short vectors g1, . . . ,gk (drawn from a gaussian distribution) in their
kernel. Next, we show that elements e randomly chosen from [−r, r]m are well
behaved in the sense that (with overwhelming probability) there exists a gi such
that e + gi ∈ [−r, r]m. Thus, e and e + gi form a collision for H (as H(e + gi) =
He + Hgi = He) and we conclude that H loses at least 1-bit of information on
the uniform distribution on [−r, r]m.

2 Preliminaries

We will use the notation (A‖B) for the horizontal concatenation of two matrices
A and B and (x,y) for the vertical concatenation of two vectors x and y. Let
sgn(x) be the signum-function, i.e. sgn(x) = 1 if x > 0, sgn(x) = −1 if x < 0
and sgn(x) = 0 if x = 0. We denote computational indistinguishability of two
distributions X and Y by X ≈c Y.

2.1 Norms

We will use the ‖ · ‖2- and the ‖ · ‖∞-norm in this work. The ‖ · ‖2-norm on Rn
is defined by ‖x‖2 =

√∑n
i=1 x

2
i , the ‖ · ‖∞-norm on Rn is defined by ‖x‖∞ =

maxi=1,...,n |xi|. Norms ‖ · ‖ are multiplicative and obey the triangle-inequality,
i.e. for all x,y ∈ Rn and α ∈ R it holds that ‖αx‖ = |α|‖x‖ and ‖x + y‖ ≤
‖x‖+ ‖y‖. The set C = {x ∈ Rn|‖x‖∞ ≤ r} forms a hypercube of dimension n,
i.e. C = [−r, r]n.

2.2 Min-Entropy

Let χ be a probability distribution with finite support and let X be distributed
according to χ. Define the min-entropy as H∞(X) = − log(maxξ(Pr[X = ξ])).
Let Y be random-variable (possibly correlated with X) and let ỹ be a measure-
ment or outcome of Y . The conditional min-entropy H∞(X|Y = ỹ) is defined
as H∞(X|Y = ỹ) = − log(maxξ(Pr[X = ξ|Y = ỹ])). Instead of using the condi-
tional average min-entropy [DORS08], we will directly derive laws of the form
Prỹ[H∞(X|Y = ỹ) ≥ δ] ≥ 1 − ε, i.e. H∞(X|Y = ỹ) is at least δ, except with
probability ε over the choice of the measurement ỹ. This will enable a more fine-
grained analysis of the lossiness of our constructions (the average conditional
min-entropy H̃∞(X|Y ) would be lower-bounded by H̃∞(X|Y ) ≥ − log(2−δ + ε),
i.e. it compresses δ and ε into one scalar).

2.3 Binomial Distributions

Let Xi ∈ {0, 1} for i = 1, . . . , n be iid. random variables with Pr[Xi = 1] = p.
Then X =

∑n
i=1Xi is binomially distributed with Pr[X = k] =

(
n
k

)
pk(1−p)n−k.



The binomial-distribution assumes its maximum at an index kmax = bp(n+ 1)c.
The tails of a binomial-distribution can be bounded by the Chernoff-bound,
which states that Pr[X ≤ (1 − δ)E[X]] ≤ e−δ

2E[X]/2, where the expectation is
E[X] = p · n

2.4 Gaussian Distributions

We denote Φs the normal-distribution with variance s2/(2π), i.e. if X is dis-
tributed according to Φs, then X has the probability-density function pX(x) =

e−πx
2/s2/s. A standard tail-bound for Gaussians is Pr[|X| > t · s] < e−πt

2

. Fol-
lowing [Reg05], we denote by Ψ̄α the discretized gaussian distribution over Z (or
Zq) with variance (αq)2/(2π), where q is given by the context. More precisely,
Ψ̄α is sampled by taking a sample from Φαq and rounding it to the nearest inte-
ger. Let Y be distributed according to Ψ̄α, i.e. let Y = dXc with X distributed
by Φαq. If tαq ≥ 2, we can derive the tail-bound Pr[|Y | > tαq] ≤ Pr[|X| >
tαq − 1] ≤ Pr[|X| > tαq/2] ≤ e−πt2/4.

2.5 Lattices

Let B ∈ Zm×n be a full rank-matrix. The lattice Λ(B) is defined as Λ(B) =
{Bx ∈ Zm : x ∈ Zn}, i.e. the lattice Λ(B) is the set of all integer-linear com-
bination of columns of B. Let q ≥ 2 be an integer. The q-ary lattice Λq(B) is
defined as Λq(B) = {y ∈ Zm : ∃x ∈ Zn : y ≡ Bx mod q}. Observe that the
lattice Λq(B) contains qZm as a sublattice, therefore Λq(B) is always full-rank.
Moreover, it holds that Λ(B) ⊆ Λq(B), as x ∈ Λq(B), for each x ∈ columns(B).

We will generally assume that elements of Zq are given in the central residue-
class representation, i.e. if x′ ∈ Zq, we will identify x′ = x mod q with an
integer x in {−bq/2c, . . . , dq/2e − 1}. We can thus generically lift x′ from Zq
to Z. Moreover, with this we can define a meaningful ”norm” on Zq by ‖x
mod q‖∞ = ‖x‖∞.

2.6 Learning-With-Errors

As mentioned above, we will consider an m-bounded LWE-problem, where the
adversary is given m(n) = poly(n) samples (which we can write conveniently in
matrix-form).

Problem 1. m-bounded LWE Search-Problem, Average-Case Version. Let
n be a security parameter, let m = m(n) = poly(n) and q = q(n) ≥ 2 be integers
and χ be a distribution on Zq. Let x ∈ Znq be chosen uniformly at random, let
A ∈ Zm×nq be chosen uniformly at random an let e be chosen according to χm.
The goal of the LWE(n,m, q, χ) problem is, given (A,Ax + e), to find x.

We remark that most cryptographic applications of the LWE problem require
only an a-priori fixed number of samples. For those applications, the formula-
tion of Problem 1 poses no restriction. The notable exception to this are the



KDM-secure encryption scheme in [ACPS09] and the pseudorandom functions in
[BPR12]. For both schemes the number of LWE-samples required is determined
adversarially. Regev [Reg05] and Peikert [Pei09] established worst-to-average-
case connections between worst-case lattice problems and Problem 1 for suitable
parameter-choices. For our construction, we will rely on the theorem of Regev
[Reg05].

Theorem 2 (Worst-to-Average Case Reduction [Reg05]). Let n be a se-
curity parameter and q = q(n) be a modulus, let α = α(n) ∈ (0, 1) be such
that αq > 2

√
n. If there exists a PPT-algorithm solving LWE(n,m, q, Ψ̄α) with

non-negligible probability, then there exists an efficient quantum-algorithm that
approximates the decision-version of the shortest vector problem (GAPSVP) and
the shortest independent vectors problem (SIVP) to within Õ(n/α) in the worst
case.

The LWE distinguishing-problem DLWE asks to distinguish the distribution
of Problem 1 from uniform random. Thus, the hardness of the DLWE problem
states that the LWE-distribution is pseudorandom.

Problem 2. m-bounded LWE Distinguishing-Problem Let n be a security
parameter, let m = m(n) = poly(n) and q = q(n) ≥ 2 be integers and χ be a
distribution on Zq. Let x ∈ Znq be chosen uniformly at random, let A ∈ Zm×nq

be chosen uniformly at random an let e be chosen according to χm. The goal of
the DLWE(n,m, q, χ) problem is, given (A,y), to decide whether y is distributed
by Ax + e or chosen uniformly at random from Zmq .

There are several search-to-decision reductions basing the hardness of Prob-
lem 2 on the hardness of Problem 1 [Reg05,Pei09,MP12,MM11b]. The one most
suitable for our instantiation is due to Micciancio and Mol [MM11a,MM11b].
Their search-to-decision reduction works for any error-distribution χ and is
sample-preserving (i.e. the distinguisher requires the same amount of samples
as the search-adversary).

Theorem 3 (Search-to-Decision [MM11b]). Let q = q(n) = poly(n) be
a prime modulus and let χ be any distribution over Zq. Assume there exists
a PPT-distinguisher D that distinguishes DLWE(n,m, q, χ) with non-negligible
advantage, then there exists a PPT-adversary A that inverts LWE(n,m, q, χ)
with non-negligible success-probability.

Finally, we need a matrix-version of Problem 2. The hardness of the matrix-
version can be easily established using a hybrid-argument (see e.g. [ACPS09]).

Lemma 1. Let m(n), k(n) = poly(n). Assume that DLWE(n,m, q, χ) is pseu-
dorandom. Then the distribution (A,AX + E) is also pseudorandom, where
A ∈ Zm×nq and X ∈ Zn×kq are chosen uniformly at random and E is chosen

according to Ψ̄m×kα .



3 Lossy Codes

In this section, we introduce the main technical tool of this work, lossy codes,
and show that the existence of lossy codes implies that the associated decoding
problems for random codes are hard.

Definition 1 (Families of Lossy Codes). Let n be a security parameter, let
q = q(n) be a modulus, let m = m(n) = poly(n) and γ = γ(n). Let {Cn,m,q}
be a family of distributions where Cn,m,q is defined on Zm×nq and let χ be a
distribution on Zq. Finally, let U(Zm×nq ) be the uniform distribution on Zm×nq .
We say that {Cn,m,q} is γ-lossy for the error-distribution χ, if the following 3
properties hold.

1. Cn,m,q is pseudorandom: It holds that Cn,m,q ≈c U(Zm×nq ).
2. Cn,m,q is lossy: Let A be distributed according to Cn,m,q, y = A · x̃ + ẽ

(where x̃ is chosen uniformly from Znq and ẽ is distributed according to χm),
let x be chosen uniformly from Znq and let e be chosen according to χm. Then
it holds that Pr(A,y)[H∞(x|Ax + e = y) ≥ γ] ≥ 1− negl(n).

3. U(Zm×nq ) is non-lossy: Let A be distributed according to U(Zm×nq ), y =
A · x̃+ ẽ (where x̃ is chosen uniformly from Znq and ẽ is distributed according
to χm), let x be chosen uniformly from Znq and let e be chosen according to
χm. Then it holds that Pr(A,y)[H∞(x|Ax + e = y) = 0] ≥ 1− negl(n).

Remark Notice that while we require the error-distribution χ to be efficiently
samplable, we do not require the distribution Cn,m,q of lossy codes to be effi-
ciently samplable. In our construction in the next section however, Cn,m,q will
be efficiently samplable.

Our main motivation for defining lossy codes is proving that the decoding-
problem of recovering x given a matrix A and a noisy codeword Ax + e, where
A and x are chosen uniformly and e is chosen from χm, is computationally
hard, even though x is information-theoretically (with overwhelming probability)
uniquely defined.

Theorem 4. Let n be a security-parameter, let m = m(n) = poly(n) and let
q = q(n) be a modulus. Let the distribution χ on Zq be efficiently samplable.

1. Let χ be a uniform distribution with efficiently decidable support. Then the
problem LWE(n,m, q, χ) is hard, given that there exists a family of 1-lossy
codes Cn,m,q ∈ Zm×nq for the error-distribution χ.

2. Let γ = γ(n) = ω(log(n)). Then LWE(n,m, q, χ) is hard, given that there
exists a family of γ-lossy codes Cn,m,q ∈ Zm×nq for the error-distribution χ.

Proof. First notice that due to the non-lossiness property of U(Zm×nq ), instances
of LWE(n,m, q, χ) have a unique solution, except with negligible probability. For
contradiction, let A be a PPT-adversary that solves LWE(n,m, q, χ) with non-
negligible probability ε.

We will begin with the first statement of the theorem. Using A, we will
construct a PPT-distinguisher D that distinguishes Cn,m,q and U(Zm×nq ) with



non-negligible advantage. Say that a solution x for an instance (A,y) is valid,
if y −A · x is in the support of the error-distribution χ.

There are two different behaviors that algorithm A could exhibit when re-
ceiving inputs of the form (A,y), where A is chosen from Cn,m,q and y = Ax+e.
In the first case, the probability that A outputs a valid solution x is negligible.
In the second case, there exists a non-negligible ε′ such that the probability that
A outputs a valid solution x with probability at least ε′.

In the first case we can construct D as follows. Let A ∈ Zm×nq be D’s input.
It first samples x uniformly at random, samples e according to χm and sets
y = Ax + e. It then runs A on input (A,y). If A outputs x, D outputs 1,
otherwise D outputs 0. Clearly, if A is chosen according to U(Zm×nq ), then A
recovers x with probability at least ε. On the other hand, if A is chosen according
to Cn,m,q, then A recovers x only with negligible probability. Thus it holds that
Adv(D) = |Pr[D(U(Zm×nq )) = 1]−Pr[D(Cn,m,q) = 1]| = ε(n)− negl(n), which is
non-negligible.

In the second case, we construct D differently. Let A ∈ Zm×nq be D’s input.
D samples x uniformly at random, e according to χm and sets y = Ax + e. It
then runs A on input (A,y). If A outputs an x′ 6= x such that e′ = y−Ax′ is in
the support of χm, it outputs 1, otherwise 0. First, observe that such a collision
x′ 6= x cannot exist (except with negligible probability) if A is chosen according
to the uniform distribution U(Zm×nq ). This is due to the non-lossiness property
of U(Zm×nq ). On the other hand, consider that A is chosen according to Cn,m,q.
Then it holds (with overwhelming probability) that H∞(x|Ax + e = y) ≥ 1.
Thus it holds (even for an unbounded A) that A outputs the same x that was
chosen by D with probability at most 1/2, conditioned that A outputs a valid
x. Thus, conditioned that A gives a valid output, there is a chance of 1/2 that
A outputs a valid x′ 6= x. As A gives a valid output with probability at least
ε′, A outputs a collision x′ with probability at least ε′/2. Thus D distinguishes
U(Zm×nq ) from Cn,m,q with advantage at least ε′/2, which is non-negligible.

We now turn to the second statement of the theorem. In this case the con-
struction of the distinguisher D is straightforward. Let A ∈ Zm×nq be D’s input.
As before, D samples x uniformly at random, e according to χm, sets y = Ax+e
and runs A on input (A,y). If A outputs x it outputs 1, otherwise 0. Again, if
A was chosen from U(Zm×nq ), then A outputs x (which is in this case unique)
with probability at least ε. On the other hand, if A comes from the distribution
Cn,m,q, then A finds x with probability at most 2−H∞(x|Ax+e=y) ≤ 2−γ(n) (this
holds with overwhelming probability in the choice of A and y), which is negli-
gible (as γ(n) = ω(log(n))). All together, D distinguishes U(Zm×nq ) from Cn,m,q
with advantage at least ε− 2−γ , which is non-negligible.

4 Construction of Lossy Codes for Uniform Errors from
Standard-LWE

We will now provide the details of the construction outlined in Section 1.2.



Construction 1 Let n be a security parameter, let q = q(n) be a modulus,
m = m(n) = poly(n) and k = k(n) ≤ n. The distribution Cn,m,q,k,α defined

on Zm×nq is specified as follows. Choose A′ ∈ Zm×(n−k)q uniformly at random,

choose T′ ∈ Z(n−k)×(n−k)
q uniformly at random and sample G ∈ Zm×kq from

Ψ̄m×kα . Output A = (A′‖A′T′ + G).

We will show that, for certain parameter choices, Construction 1 yields a
lossy code for the error-distribution U([−r, r]). The pseudorandomness of the
distribution Cn,m,q,k,α can be established directly from Lemma 1, assuming the
hardness of LWE(n,m, q, Ψ̄α).

Lemma 2. Let n be a security-parameter, let q = q(n) be a modulus, let m =
m(n) = poly(n), let k = dβne for some constant β ∈ (0, 1) and let α = α(n) ∈
(0, 1) with αq ≥ 2

√
n. Assuming that LWE(n,m, q, Ψ̄α) is hard, it holds that

Cn,m,q,k,α ≈c U(Zm×nq ).

The non-lossiness of the truly random distribution U(Zm×nq ) can be estab-
lished by a simple Gilbert-Varshamov-type argument.

Lemma 3. Let n be a security parameter, let τ > 0 be a constant, r = poly(n),
q > (4r+ 1)1+τ and m > (1 + 2/τ)n. Let A be chosen from U(Zm×nq ). Then the
shortest vector of the lattice Λq(A) has length (in the ‖ · ‖∞-norm) greater than
2r, except with negligible probability. Thus it holds that Pr(A,y)[H∞(x|Ax + e =
y) = 0] ≥ 1− negl(n).

Proof. Let A ∈ Zm×nq be chosen uniformly at random. Clearly, it holds that
H∞(x|Ax + e = y) = 0 if the length of the shortest vector in Λq(A) (in the
‖·‖∞-norm) is greater than 2r. Now fix a vector x 6= 0 ∈ Znq . Then the vector A·x
is distributed uniformly at random in Zmq . Thus it holds that PrA[‖A · x‖∞ ≤
2r] ≤

(
4r+1
q

)m
. Thus, a union-bound yields that Pr[∃x 6= 0 ∈ Znq : ‖Ax‖∞ ≤

r] ≤ (4r+1)m

qm−n . This expression is negligible whenever (m−n) log(q)−m log(4r+

1) > ω(log(n)). This is certainly the case if r = poly(n), q > (4r + 1)1+τ and
m > (1 + 2/τ))n for some constant τ > 0.

We now turn to showing that Cn,m,q,k,α fulfills the lossiness-requirement.

Definition 2. We say that a vector y ∈ Zmq is N -ambiguous for a matrix A
and a distance r, if |{x ∈ Znq |‖y −A · x‖∞ ≤ r}| ≥ N . If A and r are clear by
context, we just say that y is N -ambiguous.

Notice that if y is N -ambiguous, then for every z ∈ Znq by linearity it holds
that y + Az is also N -ambiguous. Since we want to establish lossiness for the
uniform distribution U([−r, r]), counting the number of possible preimages is
sufficient, as each preimage is equally likely. This is formalized in the following
lemma.



Lemma 4. Let n be a security parameter, let q = q(n) be a modulus and let
r = r(n) and N = N(n). Fix a matrix A ∈ Zm×nq . Let y ∈ Zmq be N -ambiguous
for the matrix A and distance r. Let x ∈ Znq be chosen uniformly at random and
e be distributed according to U([−r, r])m. Then it holds that H∞(x|Ax + e =
y) ≥ log(N).

Proof. Since x and e are drawn from uniform distributions, p := Pr[x = x̃, e = ẽ]
is the same for all x̃ ∈ Znq and ẽ ∈ [−r, r]m. Let X := {z ∈ Znq |‖y −Az‖ ≤ r}.
As y is N -ambiguous it holds that |X| ≥ N , thus

Pr[Ax+e = y] =
∑
z∈Znq

Pr[Ax+e = y,x = z] =
∑
z∈X

Pr[e = y−Az,x = z] ≥ p·N.

Thus it holds for all z ∈ Znq that

Pr[x = z|Ax + e = y] =
Pr[x = z,Ax + e = y]

Pr[Ax + e = y]
≤ 1

N
.

This immediately implies H∞(x|Ax + e = y) ≥ log(N), which concludes the
proof.

The following lemma shows that if we sample e from U([−r, r])m, then with
overwhelming probability e is such that if we add a sample g from an appropri-
ately bounded distribution χm, e − g is, with substantial probability over the
choice of g, also in [−r, r]m. Say that a distribution χ is strictly B-bounded if
the support of χ is contained in [−B,B].

Lemma 5. Let n,m,B > 0 be integers, let r > (m+ 1)B and let ε < 1/2. Let χ
be a strictly B-bounded symmetrical distribution on Z. Let e be chosen uniformly
at random from [−r, r]m and let g be distributed according to χm. Then it holds
that

Pr
e

[
Pr
g

[‖e− g‖∞ ≤ r] ≥ ε
]
≥ 1−m · εlog(r/(m·B)).

Proof. We will first bound the probability that it holds for more than k =
b− log(ε)c components ei of e that |ei| > r−B, i.e. that ei is not in the interval
[−r +B, r −B]. For i = 1, . . . ,m let Zi be a random-variable that is 1 if |ei| >
r − B and 0 otherwise. As e1, . . . , em are iid., Z1, . . . , Zm are also iid. Thus let
p = Pr[Z1 = 1] = · · · = Pr[Zm = 1]. As e1 is distributed by U([−r, r]) and
p = Pr[Z1 = 1] = Pr[|e1| > r − B] it holds that (B − 1)/r ≤ p ≤ B/r. Set
Z =

∑m
i=1 Zi. Clearly, Z is the number of components of e that are not in the

interval [−r + B, r − B] and it is binomially distributed. We can bound the
probability Pr[Z > k] by

Pr[Z > k] =

m∑
i=k+1

(
m

i

)
pi(1− p)m−i

(1)

≤ m

(
m

k + 1

)
︸ ︷︷ ︸
≤mk+1

pk+1︸︷︷︸
≤(B/r)k+1

(1− p)m−k−1︸ ︷︷ ︸
≤1

≤ m ·
(
m ·B
r

)k+1
(2)
< m ·

(
m ·B
r

)− log(ε)

= m · εlog(r/(m·B)).



Inequality (1) holds, as
(
m
i

)
pi(1 − p)m−i is monotonically decreasing for i ≥

b(m+ 1)pc ≥ b(m+ 1)(B − 1)/rc = 0. Inequality (2) holds as m · B/r < 1 and
k + 1 > − log(ε).

Now, fix an e and assume that it holds that it holds for at most k components
ei1 , . . . , eik of e that |eij | > r−B. Let i ∈ {i1, . . . , ik}. If sgn(gi) = sgn(ei), then
it holds that |ei − gi| = |ei| − |gi| ≤ |ei| ≤ r. As χ is a symmetrical distribution,
it holds that Pr[sgn(gi) = sgn(ei)] ≥ 1

2 . Therefore, it holds that Pr[|ei − gi| ≤
r] ≥ 1

2 . For all other indexes j /∈ {i1, . . . , ik} it holds that |ej | ≤ r − B. The
triangle-inequality yields |ej − gj | ≤ |ej | + |gj | ≤ r − B + B = r. Therefore, we
have that Pr[|ej − gj | ≤ r] = 1. Putting this together, we get that

Pr[‖e− g‖∞ ≤ r] =

m∏
i=1

Pr[|ei − gi| ≤ r] ≥ 2−k ≥ ε.

All together, it holds that

Pr
e

[Pr
g

[‖e− g‖∞ ≤ r] ≥ ε] ≥ 1−m · εlog(r/(m·B)),

which concludes the proof.

We can now show that Construction 1 also suffices the lossiness-condition,
for appropriate parameters.

Lemma 6. Let n be a security-parameter, let m = m(n) = poly(n), let k =
k(n) = dβne for some constant β ∈ (0, 1) and let c ∈ (0, 1) be a constant. Let
q = q(n) be a modulus, α = α(n) ∈ (0, 1), let B = B(n) and assume that
the distribution Ψ̄α is B-bounded, except with negligible probability. Finally let
r = r(n) > 0 be such that r ≥ m ·Bnc.

Let G be chosen according to Ψ̄m×kα , let the matrix A′ be distributed according

to U(Zm×(n−k)q ), T′ be distributed according to U(Z(n−k)×(n−k)
q ) and let A =

(A′‖A′T′ + G). Let y = Ax′ + e′, with x′ chosen uniformly from Znq and
e′ chosen from U([−r, r])m. Also let x be chosen uniformly from Znq and e be
chosen from U([−r, r])m. Then it holds that Pr(A,y)[H∞(x|Ax + e = y) ≥ 1] ≥
1− negl(n).

Proof. Assume first that G was chosen from χm×k, where χ is a symmetrical
strictly B-bounded distribution. Fix an e′ with Prg[‖e′−g‖∞ ≤ r] ≥ n−c, where
g is distributed according to χm. Let g1, . . . ,gk be the columns of G, thus each
gi is distributed according to χm. We first show that e′ is 2-ambiguous for the
matrix G and distance r with high probability over the choice of G. If there is
at least one column gi of G such that ‖e′ − gi‖∞ ≤ r, then ‖e′ −Gx(i)‖∞ ≤ r
(where x(i) is the i-th unit vector) and we have that e′ is 2-ambiguous. Here
x1 = 0 and x2 = x(i) are two different points satisfying ‖e′ −G · x‖∞ ≤ r.

The probability of the event that it holds for all i = 1, . . . , k that ‖e′ −
gi‖∞ > r is at most (1 − n−c)k ≤ e−k·n

−c ≤ e−β·n
1−c

. Thus we have that

Pr[e′ 2-ambiguous for G] ≥ 1 − e−βn1−c
. The same holds for the matrix A =



(A′‖A′T′ + G), as we can obtain A from G by appending extra columns and
applying a basis-change. Both operations straightforwardly do not decrease the
ambiguity. Therefore it holds Pr[e′ 2-ambiguous for A] ≥ 1− e−βn1−c

Now let e′ be distributed by U([−r, r])m. It holds that r ≥ m·B·nc > (m+1)B
and ε := n−c < 1/2 for sufficiently large n. Thus the above and Lemma 5 imply

that Pre′ [PrA[e′ 2-ambiguous for A] ≥ 1− e−βn1−c
] ≥ 1−m · n−c·log(r/(m·B)) =

1 −m · n−c2 log(n). This immediately yields PrA,e′ [e
′ 2-ambiguous for A] ≥ 1 −

e−βn
1−c −m · n−c2 log(n) = 1 − negl(n). By linearity, this holds also if we shift

e′ by Ax′ for any x′ ∈ Znq . Thus we get PrA,y[y 2-ambiguous for A] ≥ 1 −
negl(n). Now, since Ψ̄α is statistically close to symmetrical strictly B-bounded
distribution χ (which can be sampled by rejecting samples of Ψ̄α greater than
B), this probability drops at most by a negligible amount if we sample G from
Ψ̄m×kα . Applying Lemma 4 yields Pr(A,y)[H∞(x|Ax + e = y) ≥ 1] ≥ 1− negl(n),
which concludes the proof.

We will summarize the statements of Lemmas 2, 3 and 6 in the following
theorem.

Theorem 5. Let n be a security-parameter and let σ ∈ (0, 1), β ∈ (0, 1) and
τ ≥ 1 be constants. Let q = q(n), m = m(n) = poly(n), k = dβne, α = α(n) ∈
(0, 1) and r = r(n) be such that the following holds

– m ≥ (1 + 2/τ)n
– r ≥ 2mn0.5+σ

– q > (4r + 1)τ

– 2
√
n ≤ αq ≤ r

mnσ

Then the distribution Cn,m,q,k,α given in Construction 1 is 1-lossy for the error-
distribution U [−r, r], provided that LWE(n,m, q, Ψ̄α) is hard.

Proof. It is straightforward that this parameter-set satisfies the requirements of
Lemmas 2 and 3, thus both lemmas holds. A gaussian tail-bound yields that Ψ̄α
is B = αqnσ/2-bounded, except with probability e−πn

σ/4, which is negligible.
Item 4 above implies that r ≥ mnσαq = mBnσ/2, thus setting c = σ/2 we can
apply Lemma 6 and the claim follows.

4.1 LWE with Uniform Errors

Using Theorems 4 and 5 we can translate the worst-case connection for standard-
LWE (Theorem 2) to LWE with uniform errors. For simplicity, we will set τ = 1,
β = 1/2 and r = ρ · q, for a parameter ρ = ρ(n) ∈ (0, 1/10).

Theorem 6 (Main Theorem). Let n be a security parameter and let σ ∈ (0, 1)
be an arbitrarily small constant. Let q = q(n) be a modulus and m = m(n) =
poly(n) be a integer with m ≥ 3n. Let ρ = ρ(n) ∈ (0, 1/10) be such that ρq ≥
2n0.5+σm. If there exists a PPT-algorithm that solves LWE(n,m, q,U([−ρq, ρq]))
with non-negligible probability, then there exists an efficient quantum-algorithm



that approximates the decision-version of the shortest vector problem (GAPSVP)
and the shortest independent vectors problem (SIVP) to within Õ(n1+σm/ρ) in
the worst case.

Proof. Set α = α(n) = ρ
mnσ . Then the requirements of Theorem 5 are fulfilled:

– For τ = 1 it holds that m ≥ 3n
– r = ρq ≥ 2mn0.5+σ

– q > 4r+ 1 is equivalent to r < (q− 1)/4, which holds for r = ρq < q/10 and
q ≥ 2.

– αq = ρq
mnσ ≥ 2

√
n and αq = ρq

mnσ = r
mnσ .

Thus by Theorem 5 there exists a 1-lossy code C for the error-distribution
U([−ρq, ρq]), provided that LWE(n,m, q, Ψ̄α) is hard. The uniform distribution
U([−ρq, ρq])m clearly has efficiently decidable support, and so the first state-
ment of Theorem 4 yields that LWE(n,m, q,U [−ρq, ρq]) is at least as hard as
LWE(n,m, q, Ψ̄α). Thus, setting α = ρ

mnσ the claim follows by Theorem 2.

Using the search-to-decision reduction of Theorem 3, we can establish the
hardness of the decisional LWE problem with error-distribution U([−ρq, ρq]).
We therefore need to restrict q to be a polynomially small prime integer.

Corollary 1. Let n be a security parameter and let σ ∈ (0, 1) be an arbitrarily
small constant. Let q = q(n) be a modulus and m = m(n) = poly(n) be a integer
with m ≥ 3n. Let ρ = ρ(n) ∈ (0, 1/10) be such that ρq ≥ 2n0.5+σm. If there
exists a PPT-distinguisher that distinguishes DLWE(n,m, q,U([−ρq, ρq])) with
non-negligible advantage, then there exists an efficient quantum-algorithm that
approximates the decision-version of the shortest vector problem (GAPSVP) and
the shortest independent vectors problem (SIVP) to within Õ(n1+σm/ρ) in the
worst case.

5 Conclusion

This work presented the first worst-to-average-case reduction for an LWE vari-
ant with polynomial modulus and uniformly distributed errors, thereby answer-
ing a question from Micciancio and Mol from Crypto 2011. The factor of this
worst-to-average-case connection depends on the number of samples given to the
adversary and we have to use a bounded LWE assumption where this number is
fixed in advance. Overcoming this limitation poses an interesting open problem.
The main ingredient in our proof is a new tool called lossy codes, i.e., codes which
lose information when decoding noisy code words. Another interesting question
is, if these techniques carry over to hardness assumptions for binary codes.
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