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Abstract. We describe plausible lattice-based constructions with prop-
erties that approximate the sought-after multilinear maps in hard-discrete-
logarithm groups, and show an example application of such multi-linear
maps that can be realized using our approximation. The security of our
constructions relies on seemingly hard problems in ideal lattices, which
can be viewed as extensions of the assumed hardness of the NTRU func-
tion.

1 Introduction

Bilinear maps are extremely useful tools in cryptography. After being used
to construct non-interactive key agreement [SOK00], tripartite Diffie-Hellman
[Jou00], and identity-based encryption [BF01], the applications of bilinear maps
have become too numerous to name. Boneh and Silverberg [BS03] argued that
multilinear maps would have even more interesting applications, including multi-
partite Diffie-Hellman and very efficient broadcast encryption. They attempted
to construct multilinear maps from abelian varieties (extending known tech-
niques for constructing bilinear maps), but they identified serious obstacles, and
concluded that “such maps might have to either come from outside the realm
of algebraic geometry, or occur as ‘unnatural’ computable maps arising from
geometry”.

Since then, the persistent absence of cryptographically useful multilinear
maps as not stopped researchers from proposing applications of them. For ex-
ample, Rückert and Schröder [RS09] use multilinear maps to construct efficient
aggregate and verifiably encrypted signatures without random oracles. Papa-
manthou et al. [PTT10] show that compact multilinear maps give very efficient
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authenticated data structures. Rothblum [Rot13] uses multilinear maps to con-
struct a counterexample to the conjecture that all bit-encryption schemes are
KDM-secure (secure when given bit-encryptions of the secret key).

Here, we construct multilinear maps from ideal lattices. Our multilinear maps
are “noisy” and bounded to polynomial degree. For very high degree, the “nois-
iness” overwhelms the signal, somewhat like for ciphertexts in somewhat homo-
morphic encryption schemes. In light of their noisiness, one could say that our
multilinear maps are indeed “unnatural” computable maps arising from geome-
try. Our candidate multilinear maps differ quite substantially from the “ideal”
multilinear maps envisioned by Boneh and Silverberg, in particular some prob-
lems that are hard relative to contemporary bilinear maps are easy with our
construction (see Section 4.2). Nonetheless, the multilinear analog of the de-
cision Diffie-Hellman problem appears hard in our construction, which gives
cause for optimism about its applications in cryptography. In this paper we only
demonstrate the applicability of our candidate to the “obvious” application of
multipartite Diffie-Hellman key exchange, but other applications are surly pos-
sible.

The boundedness of our encodings has interesting consequences, both posi-
tive and negative. On the positive side, it hinders an attack based on Boneh and
Lipton’s subexponential algorithm for solving the discrete logarithm in black
box fields [BL96]. This attack cannot be used to solve the “discrete log” prob-
lem in our setting, since their algorithm requires exponentiations with expo-
nential degree. On the negative size, the dependence between the degree and
parameter-size prevents us from realizing applications such that Papamanthou
et al. [PTT10] that needs “compact” maps. Similarly, so far we were not able
to use our maps to realize Rothblum’s counterexample to the KDM-security of
bit encryption conjecture [Rot13]: That counterexample requires degree that is
polynomial, but a polynomial that is always just out of our reach of our param-
eters.

The security of the multilinear-DDH problem in our constructions relies on
new hardness assumptions, and we provide an extensive cryptanalysis to validate
these assumptions. To make sure that our constructions are not “trivially” inse-
cure, we prove that our constructions are secure against adversaries that merely
run a straight-line program. We also analyze our constructions with respect to
the best known averaging, algebraic and lattice attacks. Many of these attacks
have been published before [CS97,HKL+00,Gen01,GS02,Szy03,HGS04,NR06] in
cryptanalysis of the NTRU [HPS01,HHGP+03] and GGH [GGH97] signature
schemes. We also present new attacks on principal ideal lattices, which arise
in our constructions, that are more efficient than (known) attacks on general
ideal lattices. Our constructions remain secure against all of the attacks that we
present, both old and new. However, we feel that more cryptanalysis needs to
be done, and this is partly why we have tried to write our cryptanalysis sections
as a thorough survey that will serve as a useful starting point for cryptanalysts.

A brief overview. Our constructions work in polynomial rings and use principal
ideals in these rings (and their associated lattices). In a nutshell, an instance of



our construction has a secret short ring element g ∈ R, generating a principal
ideal I = 〈g〉 ⊂ R. In addition, it has an integer parameter q and another secret
z ∈ R/qR, which is chosen at random (and hence is not small).

We think of a term like gx in a discrete-log system as an “encoding” of the
“plaintext exponent” x. In our case the role of the “plaintext exponents” is played
by the elements in R/I (i.e. cosets of I), and we “encode” it via division by z in
Rq. In a few more details, our system provides many levels of encoding, where
a level-i encoding of the coset eI = e + I is an element of the form c/zi mod q
where c ∈ eI is short. It is easy to see that such encodings can be both added
and multiplied, so long as the numerators remain short. More importantly, we
show that it is possible to publish a “zero testing parameter” that enables to
test if two elements encode the same coset at a given level, without violating
security (e.g., it should still be hard to compute x from an encoding of x at
higher levels). Namely, we add to the public parameters an element of the form
pzt = h·zκ/g mod q for a not-too-large h, and show that multiplying an encoding
of 0 by pzt (mod q) yields a small element, while multiplying an encoding of a
non-zero by pzt (mod q) yields a large element. Hence we can distinguish zero
from non-zero, and by subtraction we can distinguish two encodings of the same
element from encodings of two different elements.

Our schemes are somewhat analogous to graded algebras, hence we some-
times call them graded encoding schemes. Our schemes are quite flexible, and for
example can be modified to support the analog of asymmetric maps by using
several different z’s. On the other hand, other variants such as composite-order
groups turn out to be insecure with our encodings (at least when implemented
in a straightforward manner).

Organization. We define the general notion of encoding that we use in Section 2,
as well an abstract notion of our main hardness assumption (which is a multi-
linear analog of DDH). Then in Section 3 we provide some background on ideal
lattices, and in Section 4 we describe our construction.

Applications. In the full version [GGH12]we describe the application to multi-
partite key agreement. Using our multilinear maps [GGH+13] have provided a
construction of an attribute based encryption (ABE) scheme for general circuits.
Concurrently and independently Gorbunov, Vaikuntanathan, and Wee [GVW13]
also achieve ABE for circuits. One nice feature of their result is that they reduce
security to the Learning with Errors (LWE) problem. Goldwasser, Kalai, Popa,
Vaikuntanathan, and Zeldovich [GKP+13] show how one can use such an ABE
scheme along with fully homomorphic encryption to construct a succinct single
use functional encryption scheme. This in turn implies results for reusable Yao
garbled circuits and other applications. Subsequent to our work, using our multi-
linear maps, Garg, Gentry, Sahai, and Waters [GGSW13] constructed a witness
encryption scheme where a user’s decryption key need not be an actual “key” at
all, but rather can be a witness for some arbitrary NP relation specified by the
encrypter (the encrypter itself may not know a witness).



2 Multilinear Maps and Graded Encoding Systems

Below we define formally our notion of a “approximate” multilinear maps, which
we call graded encoding schemes (termed after the notion of graded algebra).
Before presenting our notion, we briefly recall cryptographic multilinear maps as
defined by Boneh and Silverberg [BS03].

For κ + 1 cyclic groups G1, . . . , Gκ, GT (written additively) of the same or-
der p, a κ-multilinear map e : G1 × · · · × Gκ → GT is non-degenerate (in the
sense that if {gi ∈ Gi}i=1,...,κ are all generators of their respective groups, then
e(g1, . . . , gκ) is a generator of GT ), and it satisfies

e(g1, . . . , α · gi, . . . , gκ) = α · e(g1, . . . , gκ),

for any elements {gi ∈ Gi}i=1,...,κ, index i ∈ [κ] and integer α ∈ Zp. (Boneh
and Silverberg considered in [BS03] only the symmetric case G1 = · · · = Gκ,
the asymmetric case with different Gi’s was considered, e.g., by Rothblum in
[Rot13].)

Cryptographic multilinear maps come with efficient procedures for generating
parameters of such κ-multilinear map and for computing the group operation
in each group and the map itself. They also come with some hardness prop-
erties, at least the discrete logarithm must be hard in the respective groups.
Other hardness assumptions include the multilinear-DDH (MDDH) assumption
(among others), asserting that given κ+1 random elements in the source group,
it is hard to compute (or even recognize) the target-group element whose discrete
logarithm is the product of the logarithms of all these κ+ 1 elements.

2.1 Graded Encoding Schemes

The starting point for our new notion is viewing group elements in multilinear-
map schemes as just a convenient mechanism of encoding the exponent: Typ-
ical applications of bilinear (or multilinear) maps use α · gi as an “obfuscated
encoding” of the “plaintext integer” α ∈ Zp. This encoding supports limited
homomorphism (i.e., linear operations and a limited number of multiplications)
but no more. In our setting we retain this concept of a somewhat homomorphic
encoding, and have an algebraic ring (or field) R playing the role of the exponent
space Zp. However we dispose of the multitude of algebraic groups, replacing
them with “unstructured” sets of encodings of ring elements.

Perhaps the biggest difference between our setting and the setting of cryp-
tographic multilinear maps, is that our encoding is randomized, which means
that the same ring-element can be encoded in many different ways. (We do not
even insist that the “plaintext version” of a ring element has a unique represen-
tation.) This means that checking if two strings encode the same element may
not be trivial, indeed our constructions rely heavily on this check being feasible
for some encodings and not feasible for others.

Another important difference is that our system lets us multiply not only
batches of κ encodings at the time, but in fact any subset of encodings. This



stands in stark contrast to the sharp threshold in multi-linear maps, where you
can multiply exactly κ encodings, no more and no less.

A consequence of the ability to multiply any number of encodings is that
we no longer have a single target group, instead we have a different “target
group” for any number of multiplicands. This yields a richer structure, roughly
analogous to graded algebra. In its simplest form (analogous to symmetric maps
with a single source group), we have levels of encodings: At level zero we have
the “plaintext” ring elements α ∈ R themselves, level one corresponds to α · g
in the source group, and level-i corresponds to a product of i level-1 encodings
(so level-κ corresponds to the target group from multilinear maps).

Definition 1 (κ-Graded Encoding System). A κ-Graded Encoding System

consists of a ring R and a system of sets S = {S(α)
i ⊂ {0, 1}∗ : α ∈ R, 0 ≤ i ≤

κ, }, with the following properties:

1. For every fixed index i, the sets {S(α)
i : α ∈ R} are disjoint (hence they form

a partition of Si
def
=
⋃
α S

(α)
v ).

2. There is an associative binary operation ‘+’ and a self-inverse unary opera-
tion ‘−’ (on {0, 1}∗) such that for every α1, α2 ∈ R, every index i ≤ κ, and

every u1 ∈ S(α1)
i and u2 ∈ S(α2)

i , it holds that

u1 + u2 ∈ S(α1+α2)
i and − u1 ∈ S(−α1)

i

where α1 + α2 and −α1 are addition and negation in R.
3. There is an associative binary operation ‘×’ (on {0, 1}∗) such that for every

α1, α2 ∈ R, every i1, i2 with i1+i2 ≤ κ, and every u1 ∈ S(α1)
i1

and u2 ∈ S(α2)
i2

,

it holds that u1×u2 ∈ S(α1·α2)
i1+i2

. Here α1 ·α2 is multiplication in R, and i1+i2
is integer addition.

Clearly, Definition 1 implies that if we have a collection of n encodings uj ∈ S
(αj)
ij

,

j = 1, 2 . . . , n, then as long as
∑
j ij ≤ κ we get u1 × · · · × un ∈ S

(
∏
j αj)

i1+···+in .

Efficient Procedures, the Dream Version To be useful, we need efficient
procedures for manipulating encodings well as as hard computational tasks. To
ease the exposition, we first describe a “dream version” of the efficient procedures
(which we do not know how to realize), and then explain how to modify them
to deal with technicalities that arise from our use of lattices in the realization.

Instance Generation. The randomized InstGen(1λ, 1κ) takes as inputs the pa-
rameters λ, κ, and outputs (params,pzt), where params is a description of a
κ-Graded Encoding System as above, and pzt is a zero-test parameter for
level κ (see below).

Ring Sampler. The randomized samp(params) outputs a “level-zero encoding”

a ∈ S(α)
0 for a nearly uniform element α ∈R R. (Note that we require that

the “plaintext” α ∈ R is nearly uniform, but not that the encoding a is

uniform in S
(α)
0 .)



Encoding. The (possibly randomized) enc(params, i, a) takes a “level-zero” en-

coding a ∈ S(α)
0 for some α ∈ R and index i ≤ κ, and outputs the “level-i”

encoding u ∈ S(α)
i for the same α.

Addition and negation. Given params and two encodings relative to the same

index, u1 ∈ S(α1)
i and u2 ∈ S(α2)

i , we have add(params, i, u1, u2) = u1 + u2 ∈
S
(α1+α2)
i , and neg(params, i, u1) = −u1 ∈ S(−α1)

i .

Multiplication. For u1 ∈ S
(α1)
i1

, u2 ∈ S
(α2)
i2

such that i1 + i2 ≤ κ, we have

mul(params, i1, u1, i2, u2) = u1 × u2 ∈ S(α1·α2)
i1+i2

.

Zero-test. The procedure isZero(params, u) output 1 if u ∈ S(0)
κ and 0 other-

wise. Note that in conjunction with the subtraction procedure, this lets us
test if u1, u2 ∈ Sκ encode the same element α ∈ R.

Extraction. This procedure extracts a “canonical” and “random” representa-
tion of ring elements from their level-κ encoding. Namely ext(params,pzt, u)
outputs (say) s ∈ {0, 1}λ, such that:

(a) For any α ∈ R and two u1, u2 ∈ S(α)
κ , ext(params,pzt, u1) = ext(params,pzt, u2),

(b) The distribution {ext(params,pzt, u) : α ∈R R, u ∈ S(α)
κ } is nearly uni-

form over {0, 1}λ.

Efficient Procedures, the Real-Life Version Our realization of the proce-
dures above over ideal lattices uses noisy encodings, where the noise increases
with every operation and correctness is only ensured as long as it does not in-
crease too much. We therefore modify the procedures above, letting them take
as input (and produce as output) also a bound on the noise magnitude of the
encoding in question. The procedures are allowed to abort if the bound is too
high (relative to some maximum value which is part of the instance descrip-
tion params). Also, they provide no correctness guarantees if the bound on their
input is “invalid.” (When B is a noise-bound for some encoding u, we say that
it is “valid” if it is at least as large as the bound produced by the procedure that
produced u itself, and moreover any encoding that was used by that procedure
(if any) also came with a valid noise bound.) Of course we also require that these
procedure do not always abort, i.e. they should support whatever set of opera-
tions that the application calls for, before the noise becomes too large. Finally,
we also relax the requirements on the zero-test and the extraction routines. Some
more details are described next:

Zero-test. We sometime allow false positives for this procedure, but not false

negatives. Namely, isZero(params,pzt, u) = 1 for every u ∈ S
(0)
κ , but we

may have isZero(params,pzt, u) = 1 also for some u /∈ S
(0)
κ . The weakest

functionality requirement that we make is that for a uniform random choice
of α ∈R R, we have

Pr
α∈RR

[
∃ u ∈ S(α)

κ s.t isZero(params,pzt, u) = 1
]

= negligible(λ). (1)

Additional requirements are considered security features (that a scheme may
or may not possess), and are discussed later in this section.



Extraction. Our construction from Section 4 does not support full canoni-
calization. Instead, we settle for ext(Λ,pzt, u) that has a good chance of
producing the same output when applied to different encoding of the same
elements. Specifically, we replace properties (a)-(b) from above by the weaker
requirements:
(a′) For a randomly chosen a← samp(params), if we run the encoding algo-
rithm twice to encode a at level κ and then extract from both copies then
we get:

Pr

 ext(params,pzt, u1)
= ext(params,pzt, u2)

:
a← samp(params)
u1 ← enc(params, κ, a)
u2 ← enc(params, κ, a)

 ≥ 1−negligible(λ).

(b′) The distribution {ext(params,pzt, u) : a← samp(params), u← enc(params, κ, a)}
is nearly uniform over {0, 1}λ.
We typically need these two conditions to hold even if the noise bound that
the encoding routine takes as input is larger than the one output by samp
(upto some maximum value).

Hardness Assumptions Our hardness assumptions are modeled after the
discrete-logarithm and DDH assumptions in multilinear groups. For example,
the most direct analog of the discrete-logarithm problem is trying to obtain a

level-zero encoding a ∈ S(α)
0 for α ∈ R from an encoding relative to some other

index i > 0.
The analog of DDH in our case roughly says that it is hard to recognize

encoding of products, except relative to indexes upto κ. In other words, given
κ+ 1 level-one encoding of random elements it should be infeasible to generate
a level-κ encoding of their product, or even to distinguish it from random. One
way to formalize it is by the following process. (Below we suppress the noise
bounds for readability):

1. (params,pzt)← InstGen(1λ, 1κ)
2. For i = 1, . . . , κ+ 1:
3. Choose ai ← samp(params) // level-0 encoding of random αi ∈R R
4. Set ui ← enc(params, 1, ai) // level-1 encoding of the αi’s

5. Set ã =
∏κ+1
i=1 ai // level-0 encoding of the product

6. Choose â← samp(params) // level-0 encoding of a random element
7. Set ũ← enc(params, κ, ã) // level-κ encoding of the product
8. Set û← enc(params, κ, â) // level-κ encoding of random

(We note that with the noise bound, it may be important that the encoding
routines for both ã and â get as input the same bound, i.e., the largest of the
bounds for ã and â.) The GDDH distinguisher gets all the level-one ui’s and
either ũ (encoding the right product) or û (encoding a random element), and it
needs to decide which is the case. In other words, the GDDH assumption says
that for any setting of the parameters, the following two distributions, defined



over the experiment above, are computationally indistinguishable:

DGDDH = {(params,pzt, {ui}i, ũ)} and DRAND = {(params,pzt, {ui}i, û)}.

3 Preliminaries

Lattices. A lattice L ⊂ Rn is an additive discrete sub-group of Rn. Every
(nontrivial) lattice has bases: a basis for a full-rank lattice is a set of n linearly
independent points b1, . . . , bn ∈ L such that L = {

∑n
i=1 zibi : zi ∈ Z ∀i}. If

we arrange the vectors bi as the columns of a matrix B ∈ Rn×n then we can
write L = {Bz : z ∈ Zn}. If B is a basis for L then we say that B spans L. For
a lattice L ⊂ Rn, its dual lattice consists of all the points in span(L) that are
orthogonal to L modulo one, namely L∗ = {y ∈ span(L) : ∀x ∈ L, 〈x,y〉 ∈ Z}

Gaussians. For a real σ > 0, define the (spherical) Gaussian function on Rn
with parameter σ as ρσ(x) = exp(−π‖x‖2/σ2) for all x ∈ Rn. This generalizes
to ellipsoid Gaussians, where the different coordinates are jointly Gaussian but
not independent, where we replace the parameter σ ∈ R by the (square root
of the) covariance matrix Σ ∈ Rn×n. For a rank-n matrix S ∈ Rm×n, the
ellipsoid Gaussian function on Rn with parameter S is defined by ρS(x) = exp

(
−

πxT (STS)−1x
)
∀x ∈ Rn. Obviously this function only depends on Σ = STS

and not on the particular choice of S. It is also clear that the spherical case can
be obtained by setting S = σIn, with In the n-by-n identity matrix.

The ellipsoid discrete Gaussian distribution over lattice L with parameter S
is ∀ x ∈ L,DL,S(x) = ρS(x)/ρS(L), where ρS(L) denotes

∑
x∈L ρS(x). In other

words, the probability DL,S(x) is simply proportional to ρS(x), the denominator
being a normalization factor. The same definitions apply to the spherical case,
DL,σ(·).

Smoothing parameter. Micciancio and Regev defined in [MR07] the smooth-
ing parameter for a lattice L and real ε > 0, denoted ηε(L), as the smallest s
such that ρ1/s(L

∗ \ {0}) ≤ ε. Intuitively, for a small enough ε, the number ηε(L)
is sufficiently larger than L’s fundamental parallelepiped so that sampling from
the corresponding Gaussian “wipes out the internal structure” of L. It is easy to
show that the size of vectors drawn from DL,S is roughly bounded by the largest
singular value of S. (Recall that the largest and least singular values of a full
rank matrix X ∈ Rm×n are defined as σ1(X) = sup(UX) and σn(X) = inf(UX),
respectively, where UX = {‖Xu‖ : u ∈ Rn, ‖u‖ = 1}.)

Lemma 1. For a rank-n lattice L, constant 0 < ε < 1 and matrix S s.t. σn(S) ≥
ηε(L), we have Pr

v←DL,S

(
‖v‖ ≥ σ1(S)

√
n
)
≤ 1+ε

1−ε · 2
−n.

Sum of Discrete Gaussians. A recent work [AGHS12] considered the pro-
cess that begins by choosing “once and for all” m points in a lattice L, drawn
independently from a “wide discrete Gaussian” xi ← DL,S . Once the xi’s are



fixed, they are arranged as the rows of an m-by-n matrix X = (x1|x2| . . . |xm)T ,
and we consider the distribution DX,σ, induced by choosing an integer vector v
from a discrete spherical Gaussian over Zm with parameter σ and outputting

y = XTv, EX,σ
def
= {XTv : v ← DZm,σ}. [AGHS12] proved that with high

probability over the choice of X, the distribution DX,σ is statistically close to
the ellipsoid Gaussian DL,σX , and moreover the singular values of X are of size
roughly σ

√
m:

Theorem 1 ([AGHS12]). Let L be a full-rank lattice L ⊂ Rn and B a ma-
trix whose rows form a basis of L, and denote χ = σ1(B)/σn(B). Also let ε
be negligible in n, and let m, s, s′ be parameters such that s ≥ ηε(Zn), m ≥
10n log(8(mn)1.5sχ) and s′ ≥ 4mnχ ln(1/ε).

Then, when choosing the rows of an m-by-n matrix X from the spherical
Gaussian over L, X ← (DL,s)m, we have with all but probability 2−O(m) over the
choice of X, that the statistical distance between EX,s′ and the ellipsoid Gaussian
DL,s′X is bounded by 2ε.

Lemma 2 ([AGHS12]). There exists a universal constant K > 1 such that for
all m ≥ 2n, ε > 0 and every n-dimensional real lattice L ⊂ Rn, the following
holds: Choosing the rows of an m-by-n matrix X independently at random from
a spherical discrete Gaussian on L with parameter ρ > 2Kηε(L), X ← (DL,ρ)

m,
we have

Pr
[
s
√

2πm/K < σn(X) ≤ σ1(X) < ρK
√

2πm
]
> 1− (4mε+O(exp(−m/K))).

Ideal lattices. For n a power of two, we consider the 2n’th cyclotomic polyno-
mial ring R = Z[X]/(Xn+1), and identify an element u ∈ R with the coefficient
vector3 of the degree-(n−1) integer polynomial that represents u. In this way, R
is identified with the integer lattice Zn. Additionally we sometimes consider also
the ring Rq = R/qR = Zq[X]/(Xn+1) for a (large enough) integer q. Obviously,
addition in these rings is done component-wise in their coefficients, and multi-
plication is polynomial multiplication modulo the ring polynomial Xn + 1. In
some cases we also consider the corresponding number field K = Q[X]/(Xn+1),
which is likewise associated with the linear space Qn.

For an element g ∈ R, let 〈g〉 be the principal ideal in R generated by g
(alternatively, the sub-lattice of Zn corresponding to this ideal), namely 〈g〉 =
{g · u : u ∈ R}. We call 〈g〉 an ideal lattice to stress its dual interpretation as
both an ideal and a lattice. Let B(g) denote the basis of the lattice 〈g〉 consisting
of the vectors {g, Xg, X2g, . . . , Xn−1g}.

For an arbitrary element u ∈ R, denote by [u]g the reduction of u modulo
the fundamental cell of B(g), which is symmetric around the origin. To wit, [u]g
is the unique element u′ ∈ R such that u − u′ ∈ 〈g〉 and u′ =

∑n−1
i=0 αiX

ig
where all the αi’s are in the interval [− 1

2 ,
1
2 ). We use the similar notation [t]p for

integers t, p to denote the reduction of t modulo p into the interval [−p/2, p/2).

3 Other representations of polynomials are also possible, for example representing a
polynomial by its canonical embedding is sometimes preferable to the coefficient
representation. Here we stick to coefficient representation for simplicity.



4 The New Encoding Schemes

An instance of our basic construction is parametrized by the security parameter
λ and the required multi-linearity level κ ≤poly(λ). Based on these parameters,
we choose a cyclotomic ring R = Z[X]/(Xn + 1) (where n is large enough to
ensure security), a modulus q that defines Rq = R/qR (with q large enough to
support functionality), and another parameter m (chosen so that we can apply
Theorem 1). The specific constraints that these parameters must satisfy are
discussed at the end of this section, an approximate setting to keep in mind is
n = Õ(κλ2), q = 2n/λ and m = O(n2).

4.1 The Basic Graded Encoding Scheme

An instance of our scheme relative to the parameters above encodes elements of
a quotient ring QR = R/I, where I is a principal ideal I = 〈g〉 ⊂ R, generated
by a short vector g. Namely, the “ring elements” that are encoded in our scheme
are cosets of the form e + I for some vector e. The short generator g itself is
kept secret, and no “good” description of I is made public in our scheme. In
addition, our system depends on another secret element z, which is chosen at
random in Rq (and hence is not short).

A level-zero (“plaintext”) encoding of a coset e + I ∈ R/I is just a short
vector in that coset (which must exist, since the generator g is short and therefore
the basic cell of I is quite small). For higher-level encodings, a level-i encoding
of the same coset is a vector of the form c/zi ∈ Rq with c ∈ e + I short.
Specifically, for i ∈ {0, 1, . . . , κ} the set of all level-i encodings is Si = {c/zi ∈
Rq : ‖c‖ < q1/8}, and the set of levle-i encodings of the “plaintext element” e+I
is S

(e+I)
i = {c/zi ∈ Rq : c ∈ e + I, ‖c‖ < q1/8 }. Throughout the construction

we use the size of the numerator as the “noise level” in the encoding. Namely,
with each level-i encoding c/zi we produce also an upper bound on ‖c‖.

Instance generation: (params,pzt)← InstGen(1λ, 1κ). Our instance-generation
procedure chooses at random the ideal-generator g and denominator z, as well
as several other vectors that are used in the other procedures and are described
later in the section. The denominator z is chosen uniformly at random in Rq.
For technical reasons, the generator g ∈ R should be chosen so that both g and
g−1 ∈ K are short. (Recall that we denote K = Q[X]/(Xn + 1). The reason that
we need g−1 ∈ K to be short is explained when we describe the zero-testing
procedure.) We simply draw g from a discrete Gaussian over Zn, say g← DZn,σ
with σ = Õ(

√
n). Clearly g itself is short (of size less than σ

√
n), and we claim

that with good probability its inverse in the field of fractions is also rather short.
To see this, notice that with probability 1 − o(1/n), evaluating g at any com-
plex n’th root of unity ζ ∈ C yields g(ζ) which is not too tiny, say larger than
1/n. Hence with probability 1 − o(1) we have g−1(ζ) = 1/g(ζ) < n for all the
primitive 2n’th roots of unity ζ, which means that g−1 itself is not too large,
say ‖1/g‖ < n2. We can draw repeatedly until we get this condition to hold.



Once we have g, z, we choose and publish some other elements in Rq that will
be used for the various procedures below. Specifically we have m + 1 elements
rand1, . . . ,xm,y that are used for encoding, and an element pzt that is used as a
zero-testing parameter. These elements are described later. finally we also choose
a random seed s for a strong randomness extractor. The instance-generation
procedure outputs params = (n, q,y, {xi}i, s) and pzt.

Sampling level-zero encodings: d← samp(params). To sample a level-zero
encoding of a random coset, we just draw a random short element in R, d ←
DZn,σ′ , where σ′ = σn (for σ that was used to sample g). Since whp σ′ ≥ η2−λ(I),
then the induced distribution over the cosets of I is close to uniform, upto a
negligible distance. Also the size of this level-zero encoding is bounded by σ′

√
n

(and we use this as our noise-bound for this encoding).

Encodings at higher levels: ui ← enc(params, i,d). To allow encoding of cosets
at higher levels, we publish as part of our instance-generation a level-one encod-
ing of 1+I, namely an element y = [a/z]q where a ∈ 1+I is short. A simplistic
method of doing that is drawing a← D1+I,σ′ , then computing y from a. (Later
we describe a somewhat more involved procedure, which we believe is more se-
cure.) Given a level-zero encoding d as above, we can multiply it by y over Rq
to get u1 := [yd]q. Note that u1 = [da/z]q, where da ∈ d + I as needed, and
the size of the numerator is bounded by ‖d‖ ·‖a‖ ·

√
n = poly(n). More generally

we can generate a level-i encoding as ui := [dyi]q = [dai/zi]q. The numerator
dai is obviously in d + I, and its size is at most ‖d‖ · ‖a‖i · ni/2.

The above encoding is insufficient, however, since from u1 and y it is easy to
get back d by simple division inRq. We therefore include in the public parameters
also the “randomizers” xi, these are just random encodings of zero, namely xi =
[bi/z]q where the bi’s are short elements in I. A simplistic procedure for choosing
these randomizers would be to draw short these elements as bi ← DI,σ′ and
publish xi = [bi/z]q. As we note in the full version [GGH12], we have reasons to
suspect that this simplistic method is insecure so instead we use a somewhat more
involved sampling procedure, see details in the full version [GGH12]. Below we
denote by X the matrix with the vectors xi as rows, namely X = (x1| . . . |xm)T .
We also use B to denote the matrix with the numerators bi as rows, i.e., B =
(b1| . . . |bm)T .

We use the xi’s to randomize level-one encodings: Given u′ = [c′/z]q with
noise-bound ‖c′‖ < γ, we draw an m-vector of integer coefficients r ← DZm,σ∗

for large enough σ∗ (e.g. σ∗ = 2λγ), and output

u := [u′ + Xr]q = [u′ +

m∑
i=1

rixi]q (= [
c′ +

∑
i ribi

z
]q).

We write Br as a shorthand for
∑
i ribi and similarly Xr as a shorthand for∑

i rixi.
Since all the bi’s are in the ideal I, then obviously c′+

∑
i ribi is in the same

coset of I as c′ itself. Moreover since ‖bi‖ < poly(n) then ‖Br‖ < σ∗poly(m,n).
If indeed ‖c′‖ < γ, then ‖c′ + Br‖ < γ + σ∗poly(m,n). We also claim that



the distribution of u is nearly independent of original u′ (except of course its
coset). To see why, note that if the bi’s are chosen from a wide enough spherical
distribution then we can use Theorem 1 to conclude that Br is close to a wide
ellipsoid Gaussian. With our choice of σ∗ the “width” of that distribution is
much larger than the original c′, hence the distribution of c′ + Br is nearly
independent of c′, except in the coset that it belongs to.

A different approach is to re-randomize y, setting y′ := y + Xr and then
encode via u1 := [y′d]q. This does not have the information-theoretic same-
distribution guarantee as above (since the distributions [y′d]q and [y′d′]q may
differ, even if d,d′ are both short and in the same coset). But on the plus
side, it is more convenient to use this re-randomization method for encoding at
high levels i > 1: After computing the randomized y′, we can use it by setting
ui := [d(y′)i]q.

Remark 1. Note that in the above description we used the matrix X to random-
ize level-one encodings. Using similar pubic parameter Xi we can generalize the
re-randomization procedure to work at any level i ≤ κ. In particular we abstract
this procedure as reRand(y, i,u′): Given u′ = [c′/zi]q with noise-bound ‖c′‖ < γ,
we draw an m-vector of integer coefficients r ← DZm,σ∗ for large enough σ∗ (e.g.
σ∗ = 2λγ), and output u := [u′+Xir]q as a re-randomized version of u. Using
the same argument as above we can conclude that the distribution generated in
this way will be independent of c′, except in the coset that it belongs to.

Note that for some applications it might be useful to use the re-randomization
operation multiple times. We consider the case in which a constant number of
re-randomizations is needed. In this case, with the `th re-randomization (for
any constant `) we can generate an encoding by choosing r from DZm,σ∗ where

σ∗ = 2λ
`

and re-randomizing as above. Since the addition and multiplication of
constant number of terms increases noise by a small factor we can claim that
each re-randomization wipes the structure that was present previously (even
with multiple additions and multiplications).

We define a canonicalizing encoding algorithm cenc`(params, i,u′) which takes
as input an encoding of u′ and generates another encoding according with a noise

factor of 2λ
`

.

Adding and multiplying encodings. It is easy to see that the encoding as
above is additively homomorphic, in the sense that adding encodings yields an
encoding of the sum. This follows since if we have many short cj ’s then their sum
is still short, ‖

∑
j cj‖ � q, and therefore the sum c =

∑
j cj = [

∑
j cj ]q ∈ Rq

belong to the coset
∑
j(cj + I). Hence, if we denote uj = cj/z ∈ Rq then each

uj is an encoding of the coset cj + I, and the sum [
∑
j uj ]q is of the form c/z

where c is still a short element in the sum of the cosets.

Moreover, since I is an ideal then multiplying upto κ encodings can be in-
terpreted as an encoding of the product, by raising the denominator to the



appropriate power. Namely, for uj = cj/z ∈ Rq as above, we have

u =

κ∏
j=1

uj =

∏
j cj

zκ
(all the operations in Rq).

As long as the cj ’s are small enough to begin with, we still have ‖
∏
j cj‖ � q,

which means that [
∏
j cj ]q =

∏
j cj (operations in R), hence [

∏
j cj ]q belongs to

the product coset
∏
j(cj + I).

Thus, if each uj is a level-1 encoding of the coset cj + I with short-enough
numerator, then their product is a level-κ encoding of the product coset. We
note that just like level-1 encoding, level-κ encoding still offers additive homo-
morphism.

Zero testing: isZero(params,pzt,uκ)
?
= 0/1. Since the encoding is additively

homomorphic, we can test equality between encodings by subtracting them and
comparing to zero. To enable zero-testing, we generate the zero-testing param-
eter as follows: We draw a “somewhat small” ring element h ← DZn,√q, and
the zero-testing parameter is set as pzt = [hzκ/g]q. To test if a level-κ encoding
u = [c/zκ]q is an encoding of zero, we just multiply it in Rq by pzt and check
whether the resulting element w = [pzt · u]q is short (e.g., shorter than q3/4).
Namely, we use the test

isZero(params,pzt,u) =

{
1 if ‖[pztu]q‖∞ < q3/4

0 otherwise
(2)

To see why this works, note that

w = pzt · u =
hzκ

g
· c

zκ
= h · c/g (all the operations in Rq).

If u is an encoding of zero then c is a short vector in I, which means that it
is divisible by g in R. Hence the element c/g ∈ Rq is the same as the element
c ·g−1 ∈ K, which means that it has size at most ‖c‖·‖g−1‖·

√
n = ‖c‖·poly(n).

This, in turn, implies that ‖w‖ ≤ ‖h‖ · ‖c‖ · poly(n), which for our choice of
parameter is q1/2 · q1/8 · poly(n) < q3/4.

If u is an encoding of a different coset, then c is a short vector in some
coset of I. In this case we have w = [c · h/g]q, where c,g are small (and h
is “somewhat small”). Intuitively, since h/g is large whp then for a “random
enough” c we expect the size of w to be large. More formally, we argue below
that when choosing a uniformly random coset of I = 〈g〉, there are no short
elements c in that coset such that [c · h/g]q is small.

Lemma 3. Let w = [c ·h/g]q and suppose ‖g ·w‖ and ‖c ·h‖ are each at most
q/2. Suppose 〈g〉 is a prime ideal. Then, either c or h is in the ideal 〈g〉.

Proof. Since g · w = c · h mod q, and since ‖g · w‖ and ‖c · h‖ are each at
most q/2, we have g · w = c · h exactly. We also have an equality of ideals
〈g〉 · 〈w〉 = 〈c〉 · 〈h〉, and, since 〈g〉 is a prime ideal and our cyclotomic ring is
a unique factorization domain, we have that 〈g〉 divides either 〈c〉 or 〈h〉 (or
both). The result follows.



Lemma 4. Let n, q, σ be as in our parameter setting, suppose q = nω(1), and
consider drawing g ← DZn,σ′ subject to 〈g〉 being prime and h ← DZn,√q not
being in 〈g〉. Then, there is no ε > 0 and c in a nonzero coset of I such that
‖c‖ < q1/8 and ‖[c · h/g]q‖ < q1−ε.

Proof. This follows directly from Lemma 3, our parameter setting (with ‖g‖ =
poly(n)) and the fact that in the coefficient embedding ‖a · b‖ ≤ n · ‖a‖ · ‖b‖.

Extraction: s← ext(params,pzt, uκ). To extract a “canonical” and “random”
representation of a coset from an encoding u = [c/zκ]q, we just multiply by the
zero-testing parameter pzt, collect the (log q)/4−λ most-significant bits of each
of the n coefficients of the result, and apply a strong randomness extractor to
the collected bits (using the seed from the public parameters). Namely

ext(params,pzt,u) = Extracts(msbs([u·pzt]q)) (msbs of coefficient representation).

This works because for any two encodings u,u′ of the same coset we have

‖pztu− pztu
′‖ = ‖pzt(u− u′)‖ < q3/4,

so we expect pztu, pztu
′ to agree on their (log q)/4 − λ most significant bits.

(There is a negligible (in λ) chance that u and u′ are such that pztu and pztu
′

are on opposite sides of a boundary, such that they have different MSBs.) On
the other hand, by Lemma 4, we know that we cannot have ‖pzt(u−u′)‖ < q1−ε

when u − u′ encodes something nonzero, and therefore (since λ � log q/4) the
values pztu and pztu

′ cannot agree on their (log q)/4− λ MSBs.

This means, however, that no two points in the basic cell of I agree on their
collected bits when multiplied by pzt, so the collected bits from an encoding
of a random coset have min-entropy at least log |R/I|. We can therefore use
a strong randomness extractor to extract a nearly uniform bit-string of length
(say) blog |R/I|c − λ.

4.2 Security of Our Constructions

The security of our graded encoding systems relies on new, perhaps unconven-
tional assumptions, and at present it seems unlikely that they can be reduced
to more established assumptions, such as learning-with-errors (LWE) [Reg05],
or even the NTRU hardness assumption [HPS98]. Given that the construction
of multilinear maps has been a central open problem now for over a decade, we
feel that exploring unconventional assumptions for this purpose is well worth the
effort, as long as this exploration is informed by extensive cryptanalysis.

We attempted an extensive cryptanalysis of our scheme, including some new
extensions of tools from the literature that we devised in the course of this work.
These attempts are described at length in the full version [GGH12].



Easiness of other problems. In light of the apparent hardness of our CDH/DDH
analog, we could optimistically hope to get also the analog of other hardness
assumptions in bilinear maps, such as decision-linear, subgroup membership,
etc. Unfortunately, these problems turn out to be easy in our setting, at least
with the simple encoding methods from above.

To see why, observe that publishing level-1 encodings of 0 and 1 enables some
“weak discrete log” computation at any level strictly smaller than κ. Specifically,
consider one particular encoding of zero xj = [bj/z]q (where bj = cjg for
some cj), which is given in the public parameters together with an encoding of
one y = [a/z]q and the zero-testing parameter pzt = [hzκ/g]q. Given a level-i
encoding with 1 ≤ i � κ, u = [d/zi]q, we can multiply it by xj , pzt, and some
power of y to get

f = [u · xj · pzt · yκ−i−1]q =

[
d

zi
· cj · g

z
· hzκ

g
· a

κ−i−1

zκ−i−1

]
q

= d · cj · h · aκ−i−1︸ ︷︷ ︸
�q

= d · cj · h︸ ︷︷ ︸
∆j

(mod I).

We stress that the right-hand-side of the equality above is not reduced mod-
ulo q. This means that from a level-i encoding u of an element d + I, we can
get a “plaintext version” of d ·∆j from some fixed ∆j (that depends only on the
public parameters but not on u). This “plaintext version” is not small enough
to be a valid level-zero encoding (because ∆j is roughly the size of h, so in
particular ∆j >

√
q). Nonetheless, we can still use it in attacks.

For starters, we can apply the above procedure to many of the level-one
encodings of zero from the public parameters, thereby getting many elements in
the ideal I itself. This by itself still does not yield a basis of I (since all these
elements have the extra factor of h), but in the full version [GGH12] we show
how to remove this extra factor and nonetheless compute a basis for I. This
is not a small basis of course, but it tells us that we cannot hope to hide the
plaintext space R/I itself.

Next, consider the subgroup membership setting, where we have g = g1 · g2,
we are given a level-1 encoding u = [d/z]q and need to decide if d ∈ 〈g1〉. Using
the procedure above we can get f = d ·∆j , which belongs to the ideal 〈g1〉 if d
does. Taking the GCD of the ideals 〈f〉 and I will then give us the factor 〈g1〉
with high probability. It follows that the subgroup membership problem is easy
for the encoding method above.

Finally, consider getting a matrix of elements A = (ai,j)i,j , all encoded at
some level i � κ. Using the method above we can get a “plaintext version” of
∆j · M , which has the same rank as A. Since the decision linear problem is
essentially a matrix rank problem, this means that this problem too is easy for
this encoding method.

At this point it is worth stressing again that these attacks do not seem to ap-
ply to the GDDH problem, specifically because in that problem we need to make
a decision about a level-κ encoding, and the “weak discrete log” procedure from



above only applies to encoding at levels strictly below κ. The attacks above make
it clear that providing encodings of zero in the public parameters (in conjunction
with the zero-testing parameter) gives significant power to the adversary. One
interesting direction to counter these attacks is to find different randomization
tools that can be applied even when we do not have these encodings of zero in
the public parameters.
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