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Abstract. We give direct constructions of pseudorandom function (PRF)
families based on conjectured hard lattice problems and learning problems.
Our constructions are asymptotically efficient and highly parallelizable
in a practical sense, i.e., they can be computed by simple, relatively
small low-depth arithmetic or boolean circuits (e.g., in NC1 or even
TC0). In addition, they are the first low-depth PRFs that have no known
attack by efficient quantum algorithms. Central to our results is a new
“derandomization” technique for the learning with errors (LWE) problem
which, in effect, generates the error terms deterministically.

1 Introduction and Main Results

The past few years have seen significant progress in constructing public-key,
identity-based, and homomorphic cryptographic schemes using lattices, e.g., [35,
33, 15, 14, 13, 1] and many more. Part of their appeal stems from provable
worst-case hardness guarantees (starting with the seminal work of Ajtai [3]),
good asymptotic efficiency and parallelism, and apparent resistance to quantum
attacks (unlike the classical problems of factoring integers or computing discrete
logarithms).

Perhaps surprisingly, there has been comparatively less progress in using
lattices for symmetric cryptography, e.g., message authentication codes, block
ciphers, and the like, which are widely used in practice. While in principle most
symmetric objects of interest can be obtained generically from any one-way
function, and hence from lattices, these generic constructions are usually very
inefficient, which puts them at odds with the high performance demands of
most applications. In addition, generic constructions often use their underlying
primitives (e.g., one-way functions) in an inherently inefficient and sequential
manner. While most lattice-based primitives are relatively efficient and highly
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parallelizable in a practical sense (i.e., they can be evaluated by small, low-depth
circuits), those advantages are completely lost when plugging them into generic
sequential constructions. This motivates the search for specialized constructions
of symmetric objects that have comparable efficiency and parallelism to their
lower-level counterparts.

Our focus in this work is on pseudorandom function (PRF) families, a central
object in symmetric cryptography first rigorously defined and constructed by Gol-
dreich, Goldwasser, and Micali (“GGM”) [16]. Given a PRF family, most central
goals of symmetric cryptography (e.g., encryption, authentication, identification)
have simple solutions that make efficient use of the PRF. Informally, a family of
deterministic functions is pseudorandom if no efficient adversary, given adaptive
oracle access to a randomly chosen function from the family, can distinguish
it from a uniformly random function. The seminal GGM construction is based
generically on any length-doubling pseudorandom generator (and hence on any
one-way function), but it requires k sequential invocations of the generator when
operating on k-bit inputs.

In contrast, by relying on a generic object called a “pseudorandom syn-
thesizer,” or directly on concrete number-theoretic problems (such as decision
Diffie-Hellman, RSA, and factoring), Naor and Reingold [28, 29] and Naor, Rein-
gold, and Rosen [30] (see also [23, 9]) constructed very elegant and more efficient
PRFs, which can in principle be computed in parallel by low-depth circuits (e.g.,
in NC2 or TC0). However, achieving such low depth for their number-theoretic
constructions requires extensive preprocessing and enormous circuits, so their
results serve mainly as a proof of theoretical feasibility rather than practical
utility.

In summary, thus far all parallelizable PRFs from commonly accepted cryp-
tographic assumptions rely on exponentiation in large multiplicative groups,
and the functions (or at least their underlying hard problems) can be broken by
polynomial-time quantum algorithms. While lattices appear to be a natural candi-
date for avoiding these drawbacks, and there has been some partial progress in the
form of randomized weak PRFs [4] and randomized MACs [34, 21], constructing
an efficient, parallelizable (deterministic) PRF under lattice assumptions has,
frustratingly, remained open for some time now.

1.1 Results and Techniques

In this work we give the first direct constructions of PRF families based on
lattices, via the learning with errors (LWE) [35] and ring-LWE [25] problems,
and some new variants. Our constructions are highly parallelizable in a practical
sense, i.e., they can be computed by relatively small low-depth circuits, and the
runtimes are also potentially practical. (However, their performance and key sizes
are still far from those of heuristically designed functions like AES.) In addition,
(at least) one of our constructions can be evaluated in the circuit class TC0 (i.e.,
constant-depth, poly-sized circuits with unbounded fan-in and threshold gates),
which asymptotically matches the shallowest known PRF constructions based on
the decision Diffie-Hellman and factoring problems [29, 30].



As a starting point, we recall that in their work introducing synthesizers as a
foundation for PRFs [28], Naor and Reingold described a synthesizer based on
a simple, conjectured hard-to-learn function. At first glance, this route seems
very promising for obtaining PRFs from lattices, using LWE as the hard learning
problem (which is known to be as hard as worst-case lattice problems [35, 31]).
However, a crucial point is that Naor and Reingold’s synthesizer uses a determinis-
tic hard-to-learn function, whereas LWE’s hardness depends essentially on adding
random, independent errors to every output of a mod-q “parity” function. (Indeed,
without any error, parity functions are trivially easy to learn.) Probably the
main obstacle so far in constructing efficient lattice/LWE-based PRFs has been in
finding a way to introduce (sufficiently independent) error terms into each of the
exponentially many function outputs, while still keeping the function deterministic
and its key size a fixed polynomial. As evidence, consider that recent construc-
tions of weaker primitives such as symmetric authentication protocols [18, 19, 20],
randomized weak PRFs [4], and message-authentication codes [34, 21] from
noisy-learning problems are all inherently randomized functions, where security
relies on introducing fresh noise at every invocation. Unfortunately, this is not
an option for deterministic primitives like PRFs.

Derandomizing LWE. To resolve the above-described issues, our first main insight
is a way of partially “derandomizing” the LWE problem, i.e., generating the errors
efficiently and deterministically, while preserving hardness. This technique imme-
diately yields a deterministic synthesizer and hence a simple and parallelizable
PRF, though with a few subtleties specific to our technique that we elaborate
upon below.

Before we explain the derandomization idea, first recall the learning with errors
problem LWEn,q,α in dimension n (the main security parameter) with modulus q
and error rate α. We are given many independent pairs (ai, bi) ∈ Znq × Zq, where
each ai is uniformly random, and the bi are all either “noisy inner products”
of the form bi = 〈ai, s〉 + ei mod q for a random secret s ∈ Znq and “small”
random error terms ei ∈ Z of magnitude ≈ αq, or are uniformly random and
independent of the ai. The goal of the (decision) LWE problem is to distinguish
between these two cases, with any non-negligible advantage. In the ring-LWE
problem [25], we are instead given noisy ring products bi ≈ ai · s, where s
and the ai are random elements of a certain polynomial ring Rq (the canonical
example being Rq = Zq[z]/(zn + 1) for n a power of 2), and the error terms are
“small” in a certain basis of the ring; the goal again is to distinguish these from
uniformly random pairs. While the dimension n is the main hardness parameter,
the error rate α also plays a very important role in both theory and practice:
as long as the “absolute” error αq exceeds

√
n or so, (ring-)LWE is provably as

hard as approximating conjectured hard problems on (ideal) lattices to within
Õ(n/α) factors in the worst case [35, 31, 25]. Moreover, known attacks using
lattice basis reduction (e.g., [22, 37]) or combinatorial/algebraic methods [8, 5]

require time 2Ω̃(n/ log(1/α)), where the Ω̃(·) notation hides polylogarithmic factors
in n. We emphasize that without the error terms, (ring-)LWE would become



trivially easy, and that all prior hardness results for LWE and its many variants
(e.g., [35, 31, 17, 25, 34]) require random, independent errors.

Our derandomization technique for LWE is very simple: instead of adding a
small random error term to each inner product 〈ai, s〉 ∈ Zq, we just deterministi-
cally round it to the nearest element of a sufficiently “coarse” public subset of
p� q well-separated values in Zq (e.g., a subgroup). In other words, the “error
term” comes solely from deterministically rounding 〈ai, s〉 to a relatively nearby
value. Since there are only p possible rounded outputs in Zq, it is usually easier
to view them as elements of Zp and denote the rounded value by b〈ai, s〉ep ∈ Zp.
We call the problem of distinguishing such rounded inner products from uniform
samples the learning with rounding (LWRn,q,p) problem. Note that the problem
can be hard only if q > p (otherwise no error is introduced), that the “absolute”
error is roughly q/p, and that the “error rate” relative to q (i.e., the analogue of
α in the LWE problem) is on the order of 1/p.

We show that for appropriate parameters, LWRn,q,p is at least as hard as
LWEn,q,α for an error rate α proportional to 1/p, giving us a worst-case hardness
guarantee for LWR. In essence, the reduction relies on the fact that with high
probability, we have b〈a, s〉+ eep = b〈a, s〉ep when e is small relative to q/p, while
bU(Zq)ep ≈ U(Zp) where U denotes the uniform distribution. Therefore, given
samples (ai, bi) of an unknown type (either LWE or uniform), we can simply
round the bi terms to generate samples of a corresponding type (LWR or uniform,
respectively). (The formal proof is somewhat more involved, because it has to deal
with the rare event that the error term changes the rounded value.) In the ring
setting, the derandomization technique and hardness proof based on ring-LWE
all go through without difficulty as well. While our proof needs both the ratio
q/p and the inverse LWE error rate 1/α to be slightly super-polynomial in n, the
state of the art in attack algorithms indicates that as long as q/p is an integer
(so that bU(Zq)ep = U(Zp)) and is at least Ω(

√
n), LWR may be exponentially

hard (even for quantum algorithms) for any p = poly(n), and superpolynomially
hard when p = 2n

ε

for any ε < 1.

We point out that in LWE-based cryptosystems, rounding to a fixed, coarse
subset is a common method of removing noise and recovering the plaintext when
decrypting a “noisy” ciphertext; here we instead use it to avoid having to introduce
any random noise in the first place. We believe that this technique should be
useful in many other settings, especially in symmetric cryptography. For example,
the LWR problem immediately yields a simple and practical pseudorandom
generator that does not require extracting biased (e.g., Gaussian) random values
from its input seed, unlike the standard pseudorandom generators based on the
LWE or LPN (learning parity with noise) problems. In addition, the rounding
technique and its implications for PRFs are closely related to the “modulus
reduction” technique from a concurrent and independent work of Brakerski
and Vaikuntanathan [11] on fully homomorphic encryption from LWE, and a
very recent follow-up work of Brakerski, Gentry, and Vaikuntanathan [10]; see
Section 1.3 below for a discussion and comparison.



LWR-based synthesizers and PRFs. Recall from [28] that a pseudorandom synthe-
sizer is a two-argument function S(·, ·) such that, for random and independent
sequences x1, . . . , xm and y1, . . . , ym of inputs (for any m = poly(n)), the matrix
of all m2 values zi,j = S(xi, yj) is pseudorandom (i.e., computationally indistin-
guishable from uniform). A synthesizer can be seen as an (almost) length-squaring
pseudorandom generator with good locality properties, in that it maps 2m ran-
dom “seed” elements (the xi and yj) to m2 pseudorandom elements, and any
component of its output depends on only two components of the input seed.

Using synthesizers in a recursive tree-like construction, Naor and Reingold
gave PRFs on k-bit inputs, which can be computed using a total of about k
synthesizer evaluations, arranged nicely in only lg k levels (depth). Essentially, the
main idea is that given a synthesizer S(·, ·) and two independent PRF instances
F0 and F1 on t input bits each, one gets a PRF on 2t input bits, defined as

F (x1 · · ·x2t) = S
(
F0(x1 · · ·xt) , F1(xt+1 · · ·x2t)

)
. (1)

The base case of a 1-bit PRF can trivially be implemented by returning one of
two random strings in the function’s secret key. Using particular NC1 synthesizers
based on a variety of both concrete and general assumptions, Naor and Reingold
therefore obtain k-bit PRFs in NC2, i.e., having circuit depth O(log2 k).

We give a very simple and computationally efficient LWRn,q,p-based synthesizer
Sn,q,p : Znq × Znq → Zp, defined as

Sn,q,p(a, s) = b〈a, s〉ep. (2)

(In this and what follows, products of vectors or matrices over Zq are always
performed modulo q.) Pseudorandomness of this synthesizer under LWR follows by
a standard hybrid argument, using the fact that the ai vectors given in the LWR
problem are public. (In fact, the synthesizer outputs S(ai, sj) are pseudorandom
even given the ai.) To obtain a PRF using the tree construction of [28], we need
the synthesizer output length to roughly match its input length, so we actually
use the synthesizer Tn,q,p(S1,S2) = bS1 · S2ep ∈ Zn×np for Si ∈ Zn×nq . Note
that the matrix multiplication can be done with a constant-depth, size-O(n2)
arithmetic circuit over Zq. Or for better space and time complexity, we can
instead use the ring-LWR synthesizer SR,q,p(s1, s2) = bs1 · s2ep, since the ring
product s1 · s2 ∈ Rq is the same size as s1, s2 ∈ Rq. The ring product can also
be computed with a constant depth, size-O(n2) circuit over Zq, or in O(log n)
depth and only O(n log n) scalar operations using Fast Fourier Transform-like
techniques [24, 25].

Using the recursive input-doubling construction from Equation (1) above,
we get the following concrete PRF with input length k = 2d. Let qd > qd−1 >
· · · > q0 ≥ 2 be a chain of moduli where each qj/qj−1 is a sufficiently large
integer, e.g., qj = qj+1 for some q ≥

√
n. The secret key is a set of 2k matrices

Si,b ∈ Zn×nqd
for each i ∈ {1, . . . , k} and b ∈ {0, 1}. Each pair (Si,0,Si,1) defines a

1-bit PRF Fi(b) = Si,b, and these are combined in a tree-like fashion according
to Equation (1) using the appropriate synthesizers Tn,qj ,qj−1

for j = d, . . . , 1. As



a concrete example, when k = 4 (so x = x1 · · ·x4 and d = 2), we have

F{Si,b}(x) =
⌊
bS1,x1

· S2,x2
eq1· bS3,x3

· S4,x4
eq1
⌉
q0
. (3)

(In the ring setting, we just use random elements si,b ∈ Rqd in place of the
matrices Si,b.) Notice that the function involves d = lg k levels of matrix (or ring)
products, each followed by a rounding operation. In the exemplary case where
qj = qj+1, the rounding operations essentially drop the “least-significant” base-q
digit, so they can be implemented very easily in practice, especially if every qj is
a power of 2. The function is also amenable to all of the nice time/space trade-
offs, seed-compression techniques, and incremental computation ideas described
in [28].

In the security proof, we rely on the conjectured hardness of LWRqj ,qj−1
for

j = d, . . . , 1. The strongest of these assumptions appears to be for j = d, and
this is certainly the case when relying on our reduction from LWE to LWR. For
the example parameters qj = qj+1 where q ≈

√
n, the dominating assumption is

therefore the hardness of LWRqd+1,qd , which involves a quasi-polynomial inverse

error rate of 1/α ≈ qd = nO(lg k). However, because the strongest assumptions are
applied to the “innermost” layers of the function, it is unclear whether security
actually requires such strong assumptions, or even whether the innermost layers
need to be rounded at all. We discuss these issues further in Section 1.2 below.

Degree-k synthesizers and shallower PRFs. One moderate drawback of the above
function is that it involves lg k levels of rounding operations, which appears to
lower-bound the depth of any circuit computing the function by Ω(lg k). Is it
possible to do better?

Recall that in later works, Naor and Reingold [29] and Naor, Reingold,
and Rosen [30] gave direct, more efficient number-theoretic PRF constructions
which, while still requiring exponentiation in large multiplicative groups, can
in principle be computed in very shallow circuit classes like NC1 or even TC0.
Their functions can be interpreted as “degree-k” (or k-argument) synthesizers
for arbitrary k = poly(n), which immediately yield k-bit PRFs without requiring
any composition. With this in mind, a natural question is whether there are
direct LWE/LWR-based synthesizers of degree k > 2.

We give a positive answer to this question. Much like the functions of [29, 30],
ours have a subset-product structure. We have public moduli q � p, and the secret
key is a set of k matrices Si ∈ Zn×nq (whose distributions may not necessarily be
uniform; see below) for i = 1, . . . , k, along with a uniformly random a ∈ Znq .3 The

function F = Fa,{Si} : {0, 1}k → Znp is defined as the “rounded subset-product”

Fa,{Si}(x1 · · ·xk) =

⌊
at ·

k∏
i=1

Sxii

⌉
p

. (4)

3 To obtain longer function outputs, we can replace a ∈ Zn
q with a uniformly random

matrix A ∈ Zn×m
q for any m = poly(n).



The ring variant is analogous, replacing a with uniform a ∈ Rq and each Si
by some si ∈ Rq (or R∗q , the set of invertible elements modulo q). This function
is particularly efficient to evaluate using the discrete Fourier transform, as is
standard with ring-based primitives (see, e.g., [24, 25]). In addition, similarly
to [29, 30], one can optimize the subset-product operation via pre-processing,
and evaluate the function in TC0. We elaborate on these optimizations in the
full version of the paper [7].

For the security analysis of construction (4), we have meaningful security
proofs under various conditions on the parameters and computational assump-
tions, including standard LWE. In our LWE-based proof, two important issues are
the distribution of the secret key components Si, and the choice of moduli q and
p. For the former, it turns out that our proof needs the Si matrices to be short,
i.e., their entries should be drawn from the LWE error distribution. (LWE is no
easier to solve for such short secrets [4].) This appears to be an artifact of our
proof technique, which can be viewed as a variant of our LWE-to-LWR reduction,
enhanced to handle adversarial queries. Summarizing the approach, define

G(x) = Ga,{Si}(x) := at ·
∏
i

Sxii

to be the subset-product function inside the rounding operation of (4). The
fact that F = bGep lets us imagine adding independent error terms to each
distinct output of G, but only as part of a thought experiment in the proof. More
specifically, we consider a related randomized function G̃ = G̃a,{Si} : {0, 1}k → Znq
that computes the subset-product by multiplying by each Sxii in turn, but then
also adds a fresh error term immediately following each multiplication. Using the
LWE assumption and induction on k, we can show that the randomized function
G̃ is itself pseudorandom (over Zq), hence so is bG̃ep (over Zp). Moreover, we

show that for every queried input, with high probability bG̃ep coincides with

bGep = F , because G and G̃ differ only by a cumulative error term that is small
relative to q—this is where we need to assume that the entries of Si are small.
Finally, because bG̃ep is a (randomized) pseudorandom function over Zp that
coincides with the deterministic function F on all queries, we can conclude that
F is pseudorandom as well.

In the above-described proof strategy, the gap between G and G̃ grows expo-
nentially in k, because we add a separate noise term following each multiplication
by an Si, which gets enlarged when multiplied by all the later Si. So in order
to ensure that bG̃ep = bGep on all queries, our LWE-based proof needs both
the modulus q and inverse error rate 1/α to exceed nΩ(k). In terms of efficiency
and security, this compares rather unfavorably with the quasipolynomial nO(lg k)

bound in the proof for our tree-based construction, though on the positive side,
the direct degree-k construction has better circuit depth. However, just as with
construction (3) it is unclear whether such strong assumptions and large parame-
ters are actually necessary for security, or whether the matrices Si really need to
be short.

In particular, it would be nice if the function in (4) were secure if the Si
matrices were uniformly random over Zn×nq , because we could then recursively



compose the function in a k-ary tree to rapidly extend its input length.4 It would
be even better to have a security proof for a smaller modulus q and inverse error
rate 1/α, ideally both polynomial in n even for large k. While we have been
unable to find such a security proof under standard LWE, we do give a very tight
proof under a new, interactive “related samples” LWE/LWR assumption. Roughly
speaking, the assumption says that LWE/LWR remains hard even when the
sampled ai vectors are related by adversarially chosen subset-products of up to k
given random matrices (drawn from some known distribution). This provides some
evidence that the function may indeed be secure for appropriately distributed Si,
small modulus q, and large k. For further discussion, see Section 1.2, and for full
details see the full version of the paper [7].

PRFs via the GGM construction. The above constructions aim to minimize
the depth of the circuit evaluating the PRF. However, if parallel complexity is
not a concern, and one wishes to minimize the total amount of work per PRF
evaluation (or the seed length), then the original GGM construction with an
LWR-based pseudorandom generator may turn out to be even more efficient in
practice. We elaborate in the full version [7].

1.2 Discussion and Open Questions

The quasipolynomial nO(log k) or exponential nO(k) moduli and inverse error rates
used in our LWE-based security proofs are comparable to those used in recent fully
homomorphic encryption (FHE) schemes (e.g., [14, 38, 12, 11, 10]), hierarchical
identity-based encryption (HIBE) schemes (e.g., [13, 1, 2]), and other lattice-
based constructions. However, there appears to be a major difference between
our use of such strong assumptions, and that of schemes such as FHE/HIBE in
the public-key setting. Constructions of the latter systems actually reveal LWE
samples having very small error rates (which are needed to ensure correctness
of decryption) to the attacker, and the attacker can break the cryptosystems
by solving those instances. Therefore, the underlying assumptions and the true
security of the schemes are essentially equivalent. In contrast, our PRF uses
(small) errors only as part of a thought experiment in the security proof, not for
any purpose in the operation of the function itself. This leaves open the possibility
that our functions (or slight variants) remain secure even for much larger input
lengths and smaller moduli than our proofs require. We conjecture that this is
the case, even though we have not yet found security proofs (under standard
assumptions) for these more efficient parameters. Certainly, determining whether
there are effective cryptanalytic attacks is a very interesting and important
research direction.

Note that in our construction (4), if we draw the secret key components from
the uniform (or error) distribution and allow k to be too large relative to q, then
the function can become insecure via a simple attack (and our new “interactive”

4 Note that we can always compose the degree-k function with our degree-2 synthesizers
from above, but this would only yield a tree with 2-ary internal nodes.



LWR assumption, which yields a tight security proof, becomes false). This is
easiest to see for the ring-based function: representing each si ∈ Rq by its vector
of “Fourier coefficients” over Znq , each coefficient is 0 with probability about
1/q (depending on the precise distribution of si). Therefore, with noticeable
probability the product of k = O(q log n) random si will have all-0 Fourier
coefficients, i.e., will be 0 ∈ Rq. In this case our function will return zero on the
all-1s input, in violation of the PRF requirement. (A similar but more complicated
analysis can also be applied to the matrix-based function.) Of course, an obvious
countermeasure is just to restrict the secret key components to be invertible; to
our knowledge, this does not appear to have any drawback in terms of security.
In fact, it is possible to show that the decision-(ring-)LWE problem remains hard
when the secret is restricted to be invertible (and otherwise drawn from the
uniform or error distribution), and this fact may be useful in further analysis of
the function with more efficient parameters.

In summary, our work raises several interesting concrete questions, including:

– Is LWRn,q,p really exponentially hard for p = poly(n) and sufficiently large
integer q/p = poly(n)? Are there stronger worst-case hardness guarantees
than our current proof based on LWE?

– Is there a security proof for construction (4) (with k = ω(1)) for poly(n)-
bounded moduli and inverse error rates, under a non-interactive assumption?

– In construction (4), is there a security proof (under a non-interactive assump-
tion) for uniformly random Si? Is there any provable security advantage to
using invertible Si?

– Is there an efficient, low-depth PRF family based on the conjectured average-
case hardness of the subset-sum problem?

– Our derandomization technique and LWR problem require working with
moduli q greater than 2. Is there an efficient, parallel PRF family based on
the learning parity with noise (LPN) problem?

1.3 Other Related Work

In a companion paper [6], we have defined and implemented practically efficient
variants of our functions, using rounding over the ring ZN of integers modulo
large powers-of-2 N . The functions have throughput and security levels that
appear comparable with (or even exceed) those of ASE.

Most closely related to the techniques in this work are two very recent
results of Brakerski and Vaikuntanathan [11] and a follow-up work of Brakerski,
Gentry, and Vaikuntanathan [10] on fully homomorphic encryption from LWE.
In particular, the former work includes a “modulus reduction” technique for
LWE-based cryptosystems, which maps a large-modulus ciphertext to a small-
modulus one; this induces a shallower decryption circuit and allows the system
to be “bootstrapped” into a fully homomorphic scheme using the techniques
of [14]. The modulus-reduction technique involves a rounding operation much
like the one we use to derandomize LWE; while they use it on ciphertexts that
are already “noisy,” we apply it to noise-free LWE samples. Our discovery of



the rounding/derandomization technique in the PRF context was independent
of [11]. In fact, the first PRF and security proof we found were for the direct
degree-k construction defined in (4), not the synthesizer-based construction in (3).
As another point of comparison, the “somewhat homomorphic” cryptosystem
from [11] that supports degree-k operations (along with all prior ones, e.g., [14, 38])
involves an inverse error rate of nO(k), much like the LWE-based proof for our
degree-k synthesizer.

Building on the modulus reduction technique of [11], Brakerski et al. [10]
showed that homomorphic cryptosystems can support certain degree-k func-
tions using a much smaller modulus and inverse error rate of nO(log k). The
essential idea is to interleave the homomorphic operations with several “small”
modulus-reduction steps in a tree-like fashion, rather than performing all the
homomorphic operations followed by one “huge” modulus reduction. This very
closely parallels the difference between our direct degree-k synthesizer and the
Naor-Reingold-like [28] composed synthesizer defined in (3). Indeed, after we
found construction (4), the result of [10] inspired our search for a PRF having
similar tree-like structure and quasipolynomial error rates. Given our degree-2
synthesizer, the solution turned out to largely be laid out in the work of [28].
We find it very interesting that the same quantitative phenomena arise in two
seemingly disparate settings (PRFs and FHE).

2 Preliminaries

For a probability distribution X over a domain D, let Xn denote its n-fold
product distribution over Dn. The uniform distribution over a finite domain D
is denoted by U(D). The discrete Gaussian probability distribution over Z with
parameter r > 0, denoted DZ,r, assigns probability proportional to exp(−πx2/r2)
to each x ∈ Z. It is possible to efficiently sample from this distribution (up to
negl(n) statistical distance) via rejection [15].

For any integer modulus q ≥ 2, Zq denotes the quotient ring of integers
modulo q. We define a ‘rounding’ function b·ep : Zq → Zp, where q ≥ p ≥ 2 will
be apparent from the context, as

bxep = b(p/q) · x̄e mod p, (5)

where x̄ ∈ Z is any integer congruent to x mod q. We extend b·ep component-wise
to vectors and matrices over Zq, and coefficient-wise (with respect to the “power
basis”) to the quotient ring Rq defined in the next subsection. Note that we can
use any other common rounding method, like the floor b·c, or ceiling d·e functions,
in Equation 5 above, with only minor changes to our proofs. In implementations,
it may be advantageous to use the floor function b·c when q and p are both powers
of some common base b (e.g., 2). In this setting, computing b·cp is equivalent to
dropping the least-significant digit(s) in base b.

Learning With Errors. We recall the learning with errors (LWE) problem due
to Regev [35] and its ring analogue by Lyubashevsky, Peikert, and Regev [25].



For positive integer dimension n (the security parameter) and modulus q ≥
2, a probability distribution χ over Z, and a vector s ∈ Znq , define the LWE
distribution As,χ to be the distribution over Znq × Zq obtained by choosing a
vector a ← Znq uniformly at random, an error term e ← χ, and outputting
(a, b = 〈a, s〉 + e mod q). We use the following “normal form” of the decision-
LWEn,q,χ problem, which is to distinguish (with advantage non-negligible in n)
between any desired number m = poly(n) of independent samples (ai, bi)← As,χ

where s← χn mod q is chosen from the (folded) error distribution, and the same
number of samples from the uniform distribution U(Znq × Zq). This form of the
problem is as hard as the one where s ∈ Znq is chosen uniformly at random [4].

We extend the LWE distribution to w ≥ 1 secrets, defining AS,χ for S ∈ Zn×wq

to be the distribution obtained by choosing a ← Znq , an error vector et ←
χw, and outputting (a,bt = atS + et mod q). By a standard hybrid argument,
distinguishing such samples (for S← χn×w) from uniformly random is as hard
as decision-LWEn,q,χ, for any w = poly(n). It is often convenient to group many
(say, m) sample pairs together in matrices. This allows us to express the LWE
problem as: distinguish any desired number of pairs (At,Bt = AtS+E mod q) ∈
Zm×nq × Zm×wq , for the same S, from uniformly random.

For certain moduli q and (discrete) Gaussian error distributions χ, the decision-
LWE problem is as hard as the search problem, where the goal is to find s given
samples from As,χ (see, e.g., [35, 31, 4, 26], and [27] for the mildest known
requirements on q, which include the case where q is a power of 2). In turn, for
χ = DZ,r with r = αq ≥ 2

√
n, the search problem is as hard as approximating

worst-case lattice problems to within Õ(n/α) factors; see [35, 31] for precise
statements.5

Ring-LWE. For simplicity of exposition, we use the following special case of the
ring-LWE problem. (Our results can be extended to the more general form defined
in [25].) Throughout the paper we let R denote the cyclotomic polynomial ring
R = Z[z]/(zn + 1) for n a power of 2. (Equivalently, R is the ring of integers
Z[ω] for ω = exp(πi/n).) For any integer modulus q, define the quotient ring
Rq = R/qR. An element of R can be represented as a polynomial (in z) of
degree less than n having integer coefficients; in other words, the “power basis”
{1, z, . . . , zn−1} is a Z-basis for R. Similarly, it is a Zq-basis for Rq.

For a modulus q, a probability distribution χ over R, and an element s ∈ Rq,
the ring-LWE (RLWE) distribution As,χ is the distribution over Rq ×Rq obtained
by choosing a ∈ Rq uniformly at random, an error term x← χ, and outputting
(a, b = a · s+ x mod qR). The normal form of the decision-RLWER,q,χ problem
is to distinguish (with non-negligible advantage) between any desired number
m = poly(n) of independent samples (ai, bi) ← As,χ where s ← χ mod q, and
the same number of samples drawn from the uniform distribution U(Rq ×Rq).

5 It is important to note that the original hardness result of [35] for search-LWE is
for a continuous Gaussian error distribution, which when rounded näıvely to the
nearest integer does not produce a true discrete Gaussian DZ,r. Fortunately, a suitable
randomized rounding method does so [32].



We will use the error distribution χ over R where each coefficient (with respect
to the power basis) is chosen independently from the discrete Gaussian DZ,r for
some r = αq ≥ ω(

√
n log n).

For a prime modulus q = 1 mod 2n and the error distribution χ described
above, the decision-RLWE problem is as hard as the search problem, via a
reduction that runs in time q · poly(n) [25]. In turn, the search problem is as
hard as quantumly approximating worst-case problems on ideal lattices.6

3 The Learning With Rounding Problem

We now define the “learning with rounding” (LWR) problem and its ring analogue,
which are like “derandomized” versions of the usual (ring)-LWE problems, in that
the error terms are chosen deterministically.

Definition 1. Let n ≥ 1 be the main security parameter and moduli q ≥ p ≥ 2
be integers.

– For a vector s ∈ Znq , define the LWR distribution Ls to be the distribution
over Znq × Zp obtained by choosing a vector a ← Znq uniformly at random,
and outputting (a, b = b〈a, s〉ep).

– For s ∈ Rq (defined in Section 2), define the ring-LWR (RLWR) distribution
Ls to be the distribution over Rq×Rp obtained by choosing a← Rq uniformly
at random and outputting (a, b = ba · sep).

For a given distribution over s ∈ Znq (e.g., the uniform distribution), the
decision-LWRn,q,p problem is to distinguish (with advantage non-negligible in
n) between any desired number of independent samples (ai, bi) ← Ls, and the
same number of samples drawn uniformly and independently from Znq × Zp. The
decision-RLWRR,q,p problem is defined analogously.

Note that we have defined LWR exclusively as a decision problem, as this is
the only form of the problem we will need. By a simple (and by now standard)
hybrid argument, the (ring-)LWR problem is no easier, up to a poly(n) factor in
advantage, if we reuse each public ai across several independent secrets. That is,
distinguishing samples (ai, b〈ai, s1〉ep, . . . , b〈ai, s`〉ep) ∈ Znq × Z`p from uniform,
where each sj ∈ Znq is chosen independently for any ` = poly(n), is at least as
hard as decision-LWR for a single secret s. An analogous statement also holds for
ring-LWR.

6 More accurately, to prove that the search problem is hard for an a priori unbounded
number of RLWE samples, the worst-case connection from [25] requires the error dis-
tribution’s parameters to themselves be chosen at random from a certain distribution.
Our constructions are easily modified to account for this subtlety, but for simplicity,
we ignore this issue and assume hardness for a fixed, public error distribution.



3.1 Reduction from LWE

We now show that for appropriate parameters, decision-LWR is at least as hard
as decision-LWE. We say that a probability distribution χ over R (more precisely,
a family of distributions χn indexed by the security parameter n) is B-bounded
(where B = B(n) is a function of n) if Prx←χ[|x| > B] ≤ negl(n). Similarly, a
distribution over the ring R is B-bounded if the marginal distribution of every
coefficient (with respect to the power basis) of an x← χ is B-bounded.

Theorem 1. Let χ be any efficiently sampleable B-bounded distribution over Z,
and let q ≥ p ·B · nω(1). Then for any distribution over the secret s ∈ Znq , solving
decision-LWRn,q,p is at least as hard as solving decision-LWEn,q,χ for the same
distribution over s. The same holds true for RLWRR,q,p and RLWER,q,χ, for any
B-bounded χ over R.

We note that although our proof uses a super-polynomial q = nω(1), as long
as q/p ≥

√
n is an integer, the LWR problem appears to be exponentially hard (in

n) for any p = poly(n), and super-polynomially hard for p ≤ 2n
ε

for any ε < 1,
given the state of the art in noisy learning algorithms [8, 5] and lattice reduction
algorithms [22, 37]. We also note that in our proof, we do not require the error
terms drawn from χ in the LWE samples to be independent; we just need them
all to have magnitude bounded by B with overwhelming probability.

Proof (Sketch, Theorem 1). We give a rough proof sketch for the LWR case; the
one for RLWR proceeds essentially identically. For the full and detailed proof,
we refer the reader to the full version of the paper. The main idea behind the
reduction is simple: given pairs (ai, bi) ∈ Znq × Zq which are distributed either
according to an LWE distribution As,χ or are uniformly random, we translate them
into the pairs (ai, bbiep) ∈ Znq × Zp, which we show will be distributed according
to the LWR distribution Ls (with overwhelming probability) or uniformly random,
respectively.

4 Synthesizer-Based PRFs

We now describe the LWR-based synthesizer and our construction of a PRF
from it. We first define a pseudorandom synthesizer, slightly modified from the
definition proposed by Naor and Reingold [28].

Let S : A × A → B be a function (where A and B are finite domains,
which along with S are implicitly indexed by the security parameter n) and let
X = (x1, . . . , xk) ∈ Ak and Y = (y1, . . . , y`) ∈ A` be two sequences of inputs.
Then CS(X,Y ) ∈ Bk×` is defined to be the matrix with S(xi, yj) as its (i, j)th
entry. (Here C stands for combinations.)

Definition 2 (Pseudorandom Synthesizer). We say that a function S :
A×A→ B is a pseudorandom synthesizer if it is polynomial-time computable,
and if for every poly(n)-bounded k = k(n), ` = `(n),

CS

(
U(Ak) , U(A`)

) c
≈ U

(
Bk×`

)
.



That is, the matrix CS(X,Y ) for uniform and independent X ← Ak, Y ← A` is
computationally indistinguishable from a uniformly random k-by-` matrix over B.

4.1 Synthesizer Constructions

We now describe synthesizers whose security is based on the (ring-)LWR problem.

Definition 3 ((Ring-)LWR Synthesizer). For moduli q > p ≥ 2, the LWR
synthesizer is the function Sn,q,p : Znq × Znq → Zp defined as

Sn,q,p(x,y) = b〈x,y〉ep.

The RLWR synthesizer is the function SR,q,p : Rq ×Rq → Rp defined as

SR,q,p(x, y) = bx · yep.

Theorem 2. Assuming the hardness of decision-LWRn,q,p (respectively, decision-
RLWRR,q,p) for a uniformly random secret, the function Sn,q,p (respectively,
SR,q,p) given in Definition 3 above is a pseudorandom synthesizer.

It follows generically from this theorem that the function Tn,q,p : Zn×nq ×
Zn×nq → Zn×np , defined as Tn,q,p(X,Y) = bX ·Yep, is also a pseudorandom
synthesizer, since by the definition of matrix multiplication, we only incur a
factor of n increase in the length of the input sequences. This is the synthesizer
that we use below in the construction of a PRF.

4.2 The PRF Construction

Definition 4 ((Ring-)LWR PRF). For parameters n ∈ N, input length k =
2d ≥ 1, and moduli qd ≥ qd−1 ≥ . . . ≥ q0 ≥ 2, the LWR family F (j) for 0 ≤ j ≤ d
is defined inductively to consist of functions from {0, 1}2j to Zn×nqd−j

. We define

F = F (d).

– For j = 0, a function F ∈ F (0) is indexed by Sb ∈ Zn×nqd
for b ∈ {0, 1}, and is

defined simply as F{Sb}(x) = Sx. We endow F (0) with the distribution where
the Sb are uniform and independent.

– For j ≥ 1, a function F ∈ F (j) is indexed by some F0, F1 ∈ F (j−1), and is
defined as

FF0,F1(x0, x1) = T (j)
(
F0(x0) , F1(x1)

)
where |x0| = |x1| = 2j−1 and T (j) = Tn,qd−j+1,qd−j is the appropriate syn-

thesizer. We endow F (j) with the distribution where F0 and F1 are chosen
independently from F (j−1).

The ring-LWR family RF (j) is defined similarly to consist of functions from
{0, 1}2j to Rqd−j , where in the base case (j = 0) we replace each Sb with a
uniformly random sb ∈ Rqd , and in the inductive case (j ≥ 1) we use the
ring-LWR synthesizer S(j) = SR,qd−j+1,qd−j .



We remark that the recursive LWR-based construction above does not have to
use square matrices; any legal dimensions would be acceptable with no essential
change to the security proof. Square matrices appear to give the best combination
of seed size, computational efficiency, and input/output lengths.

4.3 Security

The security proof for our PRF hinges on the fact that the functions T (j) =
Tn,qd−j+1,qd−j are synthesizers for appropriate choices of the moduli. In fact, the
proof is essentially identical to Naor and Reingold’s [28] for their PRF construction
from pseudorandom synthesizers; the only reason we cannot use their theorem
exactly as stated is because they assume that the synthesizer output is exactly
the same size as its two inputs, which is not quite the case with our synthesizer
due to the modulus reduction. This is a minor detail that does not change the
proof in any material way; it only limits the number of times we may compose
the synthesizer, and hence the input length of the PRF. We thus refer the reader
to the full version for the proof.

Theorem 3. Assuming that T (j) = Tn,qd−j+1,qd−j is a pseudorandom synthesizer
for every j ∈ [d], the LWR family F from Definition 4 is a pseudorandom function
family.

The same is also true for the ring-LWR family RF , assuming that S(j) =
SR,qd−j+1,qd−j is a pseudorandom synthesizer for every j ∈ [d].

5 Direct PRF Constructions

Here we present another, potentially more efficient construction of a pseudoran-
dom function family whose security is based on the intractibility of the LWE
problem.

Definition 5 ((Ring-)LWE degree-k PRF). For parameters n ∈ N, moduli
q ≥ p ≥ 2, positive integer m = poly(n), and input length k ≥ 1, the family F
consists of functions from {0, 1}k to Zm×np . A function F ∈ F is indexed by some
A ∈ Zn×mq and Si ∈ Zn×n for each i ∈ [k], and is defined as

F (x) = FA,{Si}(x1 · · ·xk) :=

⌊
At ·

k∏
i=1

Sxii

⌉
p

. (6)

We endow F with the distribution where A is chosen uniformly at random, and
below we consider a number of natural distributions for the Si.

The ring-based family RF is defined similarly to consist of functions from
{0, 1}k to Rp, where we replace A with uniformly random a ∈ Rq and each Si
with some si ∈ R.



5.1 Efficiency

Consider a function F ∈ F as in Definition 5. Using ideas from [36], we see
that both binary matrix product and rounding can be implemented with simple
depth-2 arithmetic circuits, and hence in TC0, so at worst F can be computed in
TC1 by computing the subset product in a tree-like fashion, followed by a final
rounding step.

The ring variant of Construction 6 appears to be more efficient to evaluate,
by storing the ring elements in the discrete Fourier transform or “Chinese
remainder” representation modulo q (see, e.g., [24, 25]), so that multiplication of
two ring elements just corresponds to a coordinate-wise product of their vectors.
Then to evaluate the function, one would just compute a subset-product of the
appropriate vectors, then interpolate the result to the power-basis representation,
using essentially an n-dimensional Fast Fourier Transform over Zq, in order to
perform the rounding operation. In terms of theoretical depth, the multi-product
of vectors can be performed in TC0, as can the Fast Fourier Transform and
rounding steps [36]. This implies that the entire function can be computed in
TC0, matching (asymptotically) the shallowest known PRFs based on the DDH
and factoring problems [29, 30].

5.2 Security Under LWE

Theorem 4. Let χ = DZ,r for some r > 0, and let q ≥ p · k(Cr
√
n)k · nω(1) for

a suitable universal constant C. Endow the family F from Definition 4 with the
distribution where each Si is drawn independently from χn×n. Then assuming
the hardness of decision-LWEn,q,χ, the family F is pseudorandom.

An analogous theorem holds for the ring-based family RF , under decision-RLWE.

Theorem 5. Let χ be the distribution over the ring R where each coefficient
(with respect to the power basis) is chosen independently from DZ,r for some r > 0,
and let q ≥ p ·k(r

√
n ·ω(

√
log n))k ·nω(1). Endow the family RF from Definition 4

with the distribution where each si is drawn independently from χ. Then assuming
the hardness of decision-RLWEn,q,χ, the family RF is pseudorandom.

Proof (Sketch, Theorem 4). To aid the proof, it helps to define a family G of
functions G : {0, 1}k → Zn×nq , which are simply the unrounded counterparts of
the functions in F . That is, for A ∈ Zn×mq and Si ∈ Zn×n for i ∈ [k], we define

GA,{Si}(x1 · · ·xk) := At ·
∏k
i=1 Sxii . We endow G with the same distribution over

A and the Si as F has.
We proceed via a sequence of games, much like in the proof of Theorem 1. First

as a “thought experiment” we define a new family G̃ of functions from {0, 1}k to
Zm×nq . This family is a counterpart to G, but with two important differences: it
is a PRF family without any rounding (and hence, with rounding as well), but
each function in the family has an exponentially large key. Alternatively, one may
think of the functions in G̃ as randomized functions with small keys. Then we
show that with overwhelming probability, the rounding of G̃← G̃ agrees with the



rounding of the corresponding G ∈ G on all the attacker’s queries, because the
outputs of the two functions are relatively close. It follows that the rounding of
G← G (i.e., F ← F) cannot be distinguished from a uniformly random function,
as desired. We again refer the reader to the full version of the paper for the
formal proof.
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