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Abstract. We give new methods for generating and using “strong trap-
doors” in cryptographic lattices, which are simultaneously simple, efficient,
easy to implement (even in parallel), and asymptotically optimal with
very small hidden constants. Our methods involve a new kind of trapdoor,
and include specialized algorithms for inverting LWE, randomly sampling
SIS preimages, and securely delegating trapdoors. These tasks were previ-
ously the main bottleneck for a wide range of cryptographic schemes, and
our techniques substantially improve upon the prior ones, both in terms of
practical performance and quality of the produced outputs. Moreover, the
simple structure of the new trapdoor and associated algorithms can be
exposed in applications, leading to further simplifications and efficiency
improvements. We exemplify the applicability of our methods with new
digital signature schemes and CCA-secure encryption schemes, which have
better efficiency and security than the previously known lattice-based
constructions.

1 Introduction

Cryptography based on lattices has several attractive and distinguishing features:

– On the security front, the best attacks on the underlying problems require
exponential 2Ω(n) time in the main security parameter n, even for quantum
adversaries. By constrast, for example, mainstream factoring-based cryptog-

raphy can be broken in subexponential 2Õ(n1/3) time classically, and even
in polynomial nO(1) time using quantum algorithms. Moreover, lattice cryp-
tography is supported by strong worst-case/average-case security reductions,
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which provide solid theoretical evidence that the random instances used in
cryptography are indeed asymptotically hard, and do not suffer from any
unforeseen “structural” weaknesses.

– On the efficiency and implementation fronts, lattice cryptography operations
can be extremely simple, fast and parallelizable. Typical operations are
the selection of uniformly random integer matrices A modulo some small
q = poly(n), and the evaluation of simple linear functions like

fA(x) := Ax mod q and gA(s, e) := stA + et mod q

on short integer vectors x, e.3 (For commonly used parameters, fA is surjective
while gA is injective.) Often, the modulus q is small enough that all the basic
operations can be directly implemented using machine-level arithmetic. By
contrast, the analogous operations in number-theoretic cryptography (e.g.,
generating huge random primes, and exponentiating modulo such primes) are
much more complex, admit only limited parallelism in practice, and require
the use of “big number” arithmetic libraries.

In recent years lattice-based cryptography has also been shown to be extremely
versatile, leading to a large number of theoretical applications ranging from
(hierarchical) identity-based encryption [20, 13, 1, 2], to fully homomorphic
encryption schemes [17, 16, 45, 12, 11, 18, 10], and much more (e.g., [29, 40, 26,
38, 39, 35, 6, 42, 9, 19, 22]).

Not all lattice cryptography is as simple as selecting random matrices A
and evaluating linear functions like fA(x) = Ax mod q, however. In fact, such
operations yield only collision-resistant hash functions, public-key encryption
schemes that are secure under passive attacks, and little else. Richer and more
advanced lattice-based cryptographic schemes, including chosen ciphertext-secure
encryption, “hash-and-sign” digital signatures, and identity-based encryption also
require generating a matrix A together with some “strong” trapdoor, typically in
the form of a nonsingular square matrix (a basis) S of short integer vectors such
that AS = 0 mod q. (The matrix S is usually interpreted as a basis of a lattice
defined by using A as a “parity check” matrix.) Applications of such strong
trapdoors also require certain efficient inversion algorithms for the functions
fA and gA, using S. Appropriately inverting fA can be particularly complex,
as it typically requires sampling random preimages of fA(x) according to a
Gaussian-like probability distribution (see [20]).

Theoretical solutions for all the above tasks (generating A with strong trap-
door S [3, 5], trapdoor inversion of gA and preimage sampling for fA [20]) are
known, but they are rather complex and not very suitable for practice, in either
runtime or the “quality” of their outputs. (The quality of a trapdoor S roughly
corresponds to the Euclidean lengths of its vectors — shorter is better.) The
current best method for trapdoor generation [5] is conceptually and algorith-
mically complex, and involves costly computations of Hermite normal forms

3 Inverting these functions corresponds to solving the “short integer solution” (SIS)
problem [4] for fA, and the “learning with errors” (LWE) problem [41] for gA, both of
which are widely used in lattice cryptography and enjoy provable worst-case hardness.



and matrix inverses. And while the dimensions and quality of its output are
asymptotically optimal (or nearly so, depending on the precise notion of quality),
the hidden constant factors are rather large. Similarly, the standard methods for
inverting gA and sampling preimages of fA [7, 24, 20] are inherently sequential
and time-consuming, as they are based on an orthogonalization process that
uses high-precision real numbers. A more efficient and parallelizable method for
preimage sampling (which uses only small-integer arithmetic) has recently been
discovered [36], but it is still more complex than is desirable for practice, and the
quality of its output can be slightly worse than that of the sequential algorithm
when using the same trapdoor S.

More compact and efficient trapdoors appear necessary for bringing advanced
lattice-based schemes to practice, not only because of the current unsatisfactory
runtimes, but also because the concrete security of lattice cryptography can be
quite sensitive to changes in the main parameters, and improvements by even
small constant factors can have a significant impact on concrete security. (See,
e.g., [15, 34], and the full version for a more detailed discussion.)

1.1 Contributions

The first main contribution of this paper is a new method of trapdoor generation
for cryptographic lattices, which is simultaneously simple, efficient, easy to
implement (even in parallel), and asymptotically optimal with small hidden
constants. The new trapdoor generator strictly subsumes the prior ones of [3, 5],
in that it proves the main theorems from those works, but with improved concrete
bounds for all the relevant quantities (simultaneously), and via a conceptually
simpler and more efficient algorithm. To accompany our trapdoor generator, we
also give specialized algorithms for trapdoor inversion (for gA) and preimage
sampling (for fA), which are simpler and more efficient in our setting than the
prior general solutions [7, 24, 20, 36].

Our methods yield large constant-factor improvements, and in some cases even
small asymptotic improvements, in the lattice dimension m, trapdoor quality4

s, and storage size of the trapdoor. Because trapdoor generation and inversion
algorithms are the main operations in many lattice cryptography schemes, our
algorithms can be plugged in as ‘black boxes’ to deliver significant concrete
improvements in all such applications. Moreover, it is often possible to expose
the special (and very simple) structure of our trapdoor directly in cryptographic
schemes, yielding additional improvements and potentially new applications.
In the full version we detail several improvements to existing applications. We
now give a detailed comparison of our results with the most relevant prior
works [3, 5, 20, 36]. The quantitative improvements are summarized in Figure 1.

Simpler, faster trapdoor generation and inversion algorithms. Our trapdoor
generator is exceedingly simple, especially as compared with the prior construc-

4 There are several notions quality for lattice trapdoors, of varying strength. For now,
the reader can think of the quality as a measure of the norm of the vectors in S,
where smaller values are better.



tions [3, 5]. It essentially amounts to just one multiplication of two random
matrices, whose entries are chosen independently from appropriate probability
distributions. Surprisingly, this method is nearly identical to Ajtai’s original
method [4] of generating a random lattice together with a “weak” trapdoor of one
or more short vectors (but not a full basis), with one added twist. And while there
are no detailed runtime analyses or public implementations of [3, 5], it is clear
from inspection that our new method is significantly more efficient, since it does
not involve any expensive Hermite normal form or matrix inversion computations.
Our specialized, parallel inversion algorithms for fA and gA are also simpler and
more practically efficient than the general solutions of [7, 24, 20, 36] (though
we note that our trapdoor generator is entirely compatible with those general
algorithms as well). In particular, we give the first parallel algorithm for inverting
gA under asymptotically optimal error rates (previously, handling such large
errors required the sequential “nearest-plane” algorithm of [7]), and our preimage
sampling algorithm for fA works with smaller integers and requires much less
offline storage than the one from [36].

Tighter parameters. To generate a matrix A ∈ Zn×mq that is within negligible
statistical distance of uniform, our new trapdoor construction improves the lattice
dimension from m > 5n lg q [5] down to m ≈ 2n lg q. (In both cases, the base of
the logarithm is a tunable parameter that appears as a multiplicative factor in the
quality of the trapdoor; here we fix upon base 2 for concreteness.) In addition, we
give the first known computationally pseudorandom construction (under the LWE
assumption), where the dimension can be as small as m = n(1 + lg q), although
at the cost of an Ω(

√
n) factor worse quality s.

Our construction also greatly improves the quality s of the trapdoor. The
best prior construction [5] produces a basis whose Gram-Schmidt quality (i.e.,
the maximum length of its Gram-Schmidt orthogonalized vectors) was loosely
bounded by 20

√
n lg q. However, the Gram-Schmidt notion of quality is useful only

for less efficient, sequential inversion algorithms [7, 20] that use high-precision
real arithmetic. For the more efficient, parallel preimage sampling algorithm
of [36] that uses small-integer arithmetic, the parameters guaranteed by [5]

are asymptotically worse, at m > n lg2 q and s ≥ 16
√
n lg2 q. By contrast, our

(statistically secure) trapdoor construction achieves the “best of both worlds:”
asymptotically optimal dimension m ≈ 2n lg q and quality s ≈ 1.6

√
n lg q or

better, with a parallel preimage sampling algorithm that is slightly more efficient
than the one of [36].

Altogether, for any n and typical values of q ≥ 216, we conservatively estimate
that the new trapdoor generator and inversion algorithms collectively provide
at least a 7 lg q ≥ 112-fold improvement in the length bound β ≈ s

√
m for

fA preimages (generated using an efficient algorithm). We also obtain similar
improvements in the size of the error terms that can be handled when efficiently
inverting gA.

New, smaller trapdoors. As an additional benefit, our construction actually
produces a new kind of trapdoor — not a basis — that is at least 4 times smaller
in storage than a basis of corresponding quality, and is at least as powerful,



i.e., a good basis can be efficiently derived from the new trapdoor. We stress
that our specialized inversion algorithms using the new trapdoor provide almost
exactly the same quality as the inefficient, sequential algorithms using a derived
basis, so there is no trade-off between efficiency and quality. (This is in contrast
with [36] when using a basis generated according to [5].) Moreover, the storage
size of the new trapdoor grows only linearly in the lattice dimension m, rather
than quadratically as a basis does. This is most significant for applications like
hierarchical ID-based encryption [13, 1] that delegate trapdoors for increasing
values of m. The new trapdoor also admits a very simple and efficient delegation
mechanism, which unlike the prior method [13] does not require any costly
operations like linear independence tests, or conversions from a full-rank set
of lattice vectors into a basis. In summary, the new type of trapdoor and its
associated algorithms are strictly preferable to a short basis in terms of algorithmic
efficiency, output quality, and storage size (simultaneously).

Ring-based constructions. Finally, and most importantly for practice, all of
the above-described constructions and algorithms extend immediately to the
ring setting, where functions analogous to fA and gA require only quasi-linear
Õ(n) space and time to specify and evaluate (respectively), which is a factor
of Ω̃(n) improvement over the matrix-based functions defined above. See the
representative works [32, 37, 28, 30, 44, 31] for more details on these functions
and their security foundations.

Applications. Our improved trapdoor generator and inversion algorithms can be
plugged into any scheme that uses such tools as a “black box,” and the resulting
scheme will inherit all the efficiency improvements. (Every application we know
of admits such a black-box replacement.) Moreover, the special properties of our
methods allow for further improvements to the design, efficiency, and security
reductions of existing schemes. In the full version we describe new and improved
applications, with a focus on signature schemes and chosen ciphertext-secure
encryption.

To illustrate the kinds of concrete improvements that our methods provide, in
Figure 2 we give representative parameters for the canonical application of GPV
sigantures [20], comparing the old and new trapdoor constructions for nearly
equal levels of concrete security. We stress that these parameters are not highly
optimized, and making adjustments to some of the tunable parameters in our
constructions may provide better combinations of efficiency and concrete security.
We leave this effort for future work.

1.2 Techniques

The main idea behind our new method of trapdoor generation is as follows. Instead
of building a random matrix A through some specialized and complex process,
we start from a carefully crafted public matrix G (and its associated lattice), for
which the associated functions fG and gG admit very efficient (in both sequential



[3, 5] constructions This work (fast f−1
A ) Impr. Factor

Dimension m
slow f−1

A [24, 20]: > 5n lg q ≈ 2n lg q (
s
≈)

2.5 to lg q
fast f−1

A [36]: > n lg2 q n(1 + lg q) (
c
≈)

Quality s
slow f−1

A : ≈ 20
√
n lg q

≈ 1.6
√
n lg q (

s
≈) 12.5 to 10

√
lg q

fast f−1
A : ≈ 16

√
n lg2 q

Length β ≈ s
√
m

slow f−1
A : > 45n lg q

≈ 2.3n lg q (
s
≈) 19 to 7 lg q

fast f−1
A : > 16n lg2 q

Fig. 1. Summary of parameters for our constructions versus prior ones. The symbols
s
≈ and

c
≈ denote constructions producing public keys A that are statistically and

computationally close to uniform, respectively. All quality terms s and length bounds β
omit the same “smoothing” factor for Z, which is about 4–5 in practice.

[5] with fast f−1
A This work Improvement Factor

Sec param n 436 284 1.53

Modulus logarithm log2(q) 32 24 1.33

Dimension m 446,644 13,812 32.3

Quality s 10.7× 103 418 25.6

Length β 12.9× 106 91.6× 103 141

Key size (bits) 6.22× 109 92.2× 106 67.5

Key size (ring-based) ≈ 16× 106 ≈ 361× 103 ≈ 44.3

Fig. 2. Representative parameters for GPV signatures (using fast inversion algorithms)
estimated using the methodology from [34] with δ ≤ 1.007, which is estimated to require
about 246 core-years on a 64-bit 1.86GHz Xeon [15, 14]. We used ωn = 4.5 for Z, which
corresponds to statistical error < 2−90 for each randomized-rounding operation during
signing. Key sizes for ring-based GPV signatures are approximated to be smaller by a
factor of about 0.9n.

and parallel complexity) and high-quality inversion algorithms. In particular,
preimage sampling for fG and inversion for gG can be performed in essentially
O(n log n) sequential time, and can even be performed by n parallel O(log n)-
time operations or table lookups. (This should be compared with the general
algorithms for these tasks, which require at least quadratic Ω(n2 log2 n) time,
and are not always parallelizable for optimal noise parameters.) We emphasize
that G is not a cryptographic key, but rather a fixed and public matrix that
may be used by all parties, so the implementation of all its associated operations
can be highly optimized, in both software and hardware. We also mention that
the simplest and most practically efficient choices of G work for a modulus q
that is a power of a small prime, such as q = 2k, but no LWE search/decision
reduction for such q was known till recently, despite its obvious practical utility.
The only such result we are aware of is the recent sample preserving reduction



of [33], which applies to arbitrary q (including powers of 2), but requires the
error distribution to be polynomially bounded. In the full version we provide a
different and very general reduction (generalizing and extending [8, 41, 35, 6],)
that also covers the q = 2k case and others, and is incomparable to [33], as it
requires all prime factors of q to be polynomially bounded, but does not impose
this restriction on the errors.

To generate a random matrix A with a trapdoor, we take two additional
steps: first, we extend G into a semi-random matrix A′ = [Ā | G], for uniform
Ā ∈ Zn×m̄q and sufficiently large m̄. (Concretely, m̄ ≈ n lg q for the statistically
secure construction, and m̄ = 2n or n for computational security.) As shown
in [13], inversion of gA′ and preimage sampling for fA′ reduce very efficiently to
the corresponding tasks for gG and fG. Finally, we simply apply to A′ a certain
random unimodular transformation defined by the matrix T =

[
I −R
0 I

]
, for a

random “short” secret matrix R that will serve as the trapdoor, to obtain

A = A′ ·T = [Ā | G− ĀR].

The transformation given by T has the following properties:

– It is very easy to compute and invert, requiring essentially just one multipli-
cation by R in both cases. (Note that T−1 = [ I R

0 I ].)
– It results in a matrix A that is distributed essentially uniformly at random,

as required by the security reductions (and worst-case hardness proofs) for
lattice-based cryptographic schemes.

– For the resulting functions fA and gA, preimage sampling and inversion very
simply and efficiently reduce to the corresponding tasks for fG, gG. The
overhead of the reduction is essentially just a single matrix-vector product with
the secret matrix R (which, when inverting fA, can largely be precomputed
even before the target value is known).

As a result, the cost of the inversion operations ends up being very close to that of
computing fA and gA in the forward direction. Moreover, the fact that the running
time is dominated by matrix-vector multiplications with the fixed trapdoor matrix
R yields theoretical (but asymptotically significant) improvements in the context
of batch execution of several operations relative to the same secret key R: instead
of evaluating several products Rz1,Rz2, . . . ,Rzn individually at a total cost
of Ω(n3), one can employ fast matrix multiplication techniques to evaluate
R[z1, . . . , zn] as a whole in subcubic time. Batch operations can be exploited in
applications like the multi-bit IBE of [20] and its extensions to HIBE [13, 1, 2].

Related techniques. At the surface, our trapdoor generator appears similar to the
original “GGH” approach of [21] for generating a lattice together with a short
basis. That technique works by choosing some random short vectors as the secret
“good basis” of a lattice, and then transforms them into a public “bad basis” for
the same lattice, via a unimodular matrix having large entries. (Note, though,
that this does not produce a lattice from Ajtai’s worst-case-hard family.) A closer
look reveals, however, that (worst-case hardness aside) our method is actually
not an instance of the GGH paradigm: in our case, the initial short basis of the



lattice defined by G (or the semi-random matrix [Ā|G]) is fixed and public, while
the random unimodular matrix T =

[
I −R
0 I

]
actually produces a new lattice by

applying a (reversible) linear transformation to the original one. In other words,
in contrast with GGH, we multiply a (short) unimodular matrix on the “other
side” of the original short basis, thus changing the lattice it generates. Moreover,
it is crucial in our setting that the transformation matrix T has small entries,
while with GGH the transformation matrix can be arbitrary.

A more appropriate comparison is to Ajtai’s original method [4] for generating
a random A together with a “weak” trapdoor of one or more short lattice
vectors (but not a full basis). There, one simply chooses a semi-random matrix
A′ = [Ā | 0] and outputs A = A′ · T = [Ā | −ĀR], with short vectors [ RI ].
Perhaps surprisingly, our strong trapdoor generator is just a simple twist on
Ajtai’s original weak generator, replacing 0 with the gadget G. We remark that
Ajtai’s method to generate strong trapdoors [3] and follow-up work [5] are quite
different and much more complex.

Our constructions and inversion algorithms also draw upon several other
techniques from throughout the literature. The trapdoor basis generator of [5]
and the LWE-based “lossy” injective trapdoor function of [40] both use a fixed
“gadget” matrix analogous to G, whose entries grow geometrically in a structured
way. In both cases, the gadget is concealed (either statistically or computationally)
in the public key by a small combination of uniformly random vectors. Our
method for adding tags to the trapdoor is very similar to a technique for doing
the same with the lossy TDF of [40], and is identical to the method used in [1] for
constructing compact (H)IBE. Finally, in our preimage sampling algorithm for
fA, we use the “convolution” technique from [36] to correct for some statistical
skew that arises when converting preimages for fG to preimages for fA, which
would otherwise leak information about the trapdoor R.

Other Related Work. Concrete parameter settings for a variety “strong” trapdoor
applications are given in [43]. Those parameters are derived using the previous
suboptimal generator of [5], and using the methods from this work would yield
substantial improvements. The recent work of [25] also gives improved key sizes
and concrete security for LWE-based cryptosystems; however, that work deals
only with IND-CPA-secure encryption, and not at all with strong trapdoors or
the further applications they enable (CCA security, digital signatures, (H)IBE,
etc.). In a concurrent and independent work, Lyubashevsky [27] constructs a
signature scheme in the random oracle model “without (strong) trapdoors,” i.e.,
without relying on short bases or a gadget matrix G. The form and sizes of his
public and secret keys are very similar to ours, but the schemes and their security
proofs work entirely differently.

2 Primitive Lattices

At the heart of our new trapdoor generation algorithm (described in Section 3)
is the construction of a very special family of lattices which have excellent
geometric properties, and admit very fast and parallelizable decoding algorithms.



The lattices are defined by means of what we call a primitive matrix. We say that
a matrix G ∈ Zn×wq is primitive G · Zw = Znq .5 The main results of this section
are summarized in the following theorem.

Theorem 1. For any integers q ≥ 2, n ≥ 1, k = dlog2 qe and w = nk, there is
a primitive matrix G ∈ Zn×wq such that

– The lattice Λ⊥(G) has a known basis S ∈ Zw×w with ‖S̃‖ ≤
√

5 and ‖S‖ ≤
max{

√
5,
√
k}. Moreover, when q = 2k, we have S̃ = 2I (so ‖S̃‖ = 2) and

‖S‖ =
√

5.
– Both G and S require little storage. In particular, they are sparse (with only
O(w) nonzero entries) and highly structured.

– Inverting gG(s, e) := stG + et mod q can be performed in quasilinear O(n ·
logc n) time for any s ∈ Znq and any e ∈ P1/2(q ·B−t), where B can denote

either S or S̃. Moreover, the algorithm is perfectly parallelizable, running
in polylogarithmic O(logc n) time using n processors. When q = 2k, the
polylogarithmic term O(logc n) is essentially just the cost of k additions and
shifts on k-bit integers.

– Preimage sampling for fG(x) = Gx mod q with Gaussian parameter s ≥
‖S̃‖ ·ωn can be performed in quasilinear O(n · logc n) time, or parallel polylog-
arithmic O(logc n) time using n processors. When q = 2k, the polylogarithmic
term is essentially just the cost of k additions and shifts on k-bit integers,
plus the (offline) generation of about w random integers drawn from DZ,s.

More generally, for any integer b ≥ 2, all of the above statements hold with
k = dlogb qe, ‖S̃‖ ≤

√
b2 + 1, and ‖S‖ ≤ max{

√
b2 + 1, (b− 1)

√
k}; and when

q = bk, we have S̃ = bI and ‖S‖ =
√
b2 + 1.

Let q ≥ 2 be an integer modulus and k ≥ 1 be an integer dimension. Our
construction starts with a primitive vector g ∈ Zkq , i.e., a vector such that

gcd(g1, . . . , gk, q) = 1. The vector g defines a k-dimensional lattice Λ⊥(gt) ⊂ Zk
having determinant |Zk/Λ⊥(gt)| = q, because the residue classes of Zk/Λ⊥(gt)
are in bijective correspondence with the possible values of 〈g,x〉 mod q for x ∈ Zk,
which cover all of Zq since g is primitive. Notice that when q = poly(n), we have
k = O(log q) = O(log n) and so Λ⊥(gt) is a very low-dimensional lattice. In the
full version, we prove that the vector g = (1, 2, 4, . . . , 2k−1) ∈ Zkq for k = dlg qe
admits a short basis for the lattice Λ⊥(gt), and we also describe specialized
inversion and sampling algorithms that are both very simple and more efficient
than generic solutions.

Let Sk ∈ Zk×k be a basis of Λ⊥(gt), that is, gt · Sk = 0 ∈ Z1×k
q and

|det(Sk)| = q. The primitive vector g and associated basis Sk are used to define
the parity-check matrix G and basis S ∈ Zq as G := In ⊗ gt ∈ Zn×nkq and

S := In ⊗ Sk ∈ Znk×nk. Equivalently, G, Λ⊥(G), and S are the direct sums of n

5 We do not say that G is “full-rank,” because Zq is not a field when q is not prime,
and the notion of rank for matrices over Zq is not well defined.



copies of gt, Λ⊥(gt), and Sk, respectively. It follows that G is a primitive matrix,
the lattice Λ⊥(G) ⊂ Znk has determinant qn, and S is a basis for this lattice. It

also follows (and is clear by inspection) that ‖S‖ = ‖Sk‖ and ‖S̃‖ = ‖S̃k‖.
By this direct sum construction, it is immediate that inverting gG(s, e) and

sampling preimages of fG(x) can be accomplished by performing the same
operations n times in parallel for ggt and fgt on the corresponding portions
of the input, and concatenating the results. For preimage sampling, if each of
the fgt-preimages has Gaussian parameter

√
Σ, then by independence, their

concatenation has parameter In ⊗
√
Σ. Likewise, inverting gG will succeed

whenever all the n independent ggt-inversion subproblems are solved correctly.
Theorem 1 follows by substituting appropriate primitive vectors g and bases Sk
into the definitions of G and S.

3 Trapdoor Generation and Operations

In this section we describe our new trapdoor generation, inversion and sampling
algorithms for hard random lattices. Recall that these are lattices Λ⊥(A) defined
by an (almost) uniformly random matrix A ∈ Zn×mq , and that the standard
notion of a “strong” trapdoor for these lattices (put forward in [20] and used in
a large number of subsequent applications) is a short lattice basis S ∈ Zm×m
for Λ⊥(A). There are several measures of quality for the trapdoor S, the most
common ones being (in nondecreasing order): the maximal Gram-Schmidt length

‖S̃‖; the maximal Euclidean length ‖S‖; and the maximal singular value s1(S).
Algorithms for generating random lattices together with high-quality trapdoor
bases are given in [3, 5] (and in [44], for the ring setting). In this section we
give much simpler, faster and tighter algorithms to generate a hard random
lattice with a trapdoor, and to use a trapdoor for performing standard tasks
like inverting the LWE function gA and sampling preimages for the SIS function
fA. We also give a new, simple algorithm for delegating a trapdoor, i.e., using a
trapdoor for A to obtain one for a matrix [A | A′] that extends A, in a secure
and non-reversible way.

The following theorem summarizes the main results of this section. Here we
state just one typical instantiation with only asymptotic bounds. More general
results and exact bounds are presented throughout the section.

Theorem 2. There is an efficient randomized algorithm GenTrap(1n, 1m, q) that,
given any integers n ≥ 1, q ≥ 2, and sufficiently large m = O(n log q), outputs
a parity-check matrix A ∈ Zn×mq and a ‘trapdoor’ R such that the distribution
of A is negl(n)-far from uniform. Moreover, there are efficient algorithms Invert
and SampleD that with overwhelming probability over all random choices, do the
following:

– For bt = stA+et, where s ∈ Znq is arbitrary and ‖e‖ < q/O(
√
n log q) or e←

DZm,αq for 1/α ≥
√
n log q · ωn, the deterministic algorithm Invert(R,A,b)

outputs s and e.



– For any u ∈ Znq and large enough s = O(
√
n log q), the randomized algorithm

SampleD(R,A,u, s) samples from a distribution within negl(n) statistical
distance of DΛ⊥

u (A),s·ωn
.

Throughout this section, we let G ∈ Zn×wq denote some fixed primitive matrix
that admits efficient inversion and preimage sampling algorithms, as described
in Theorem 1. (Recall that typically, w = ndlog qe for some appropriate base of
the logarithm.) All our algorithms and efficiency improvements are based on the
primitive matrix G and associated algorithms described in Section 2, and a new
notion of trapdoor that we define next.

3.1 A New Trapdoor Notion

We begin by defining the new notion of trapdoor, establish some of its most
important properties, and give a simple and efficient algorithm for generating
hard random lattices together with high-quality trapdoors.

Definition 1. Let A ∈ Zn×mq and G ∈ Zn×wq be matrices with m ≥ w ≥ n. A

G-trapdoor for A is a matrix R ∈ Z(m−w)×w such that A
[
R
I

]
= HG for some

invertible matrix H ∈ Zn×nq . We refer to H as the tag or label of the trapdoor.
The quality of the trapdoor is measured by its largest singular value s1(R).

We remark that, by definition of G-trapdoor, if G is a primitive matrix and A
admits a G-trapdoor, then A is primitive as well. In particular, det(Λ⊥(A)) = qn.
Since the primitive matrix G is typically fixed and public, we usually omit
references to it, and refer to G-trapdoors simply as trapdoors. Since G is primitive,
the tag H in the above definition is uniquely determined by (and efficiently
computable from) A and the trapdoor R.

In the full version we show that a good basis for Λ⊥(A) may be obtained from
knowledge of the trapdoor R. This is not used anywhere in the rest of the paper,
but it establishes that our new definition of trapdoor is at least as powerful as
the traditional one of a short basis. Our algorithms for Gaussian sampling and
LWE inversion do not need a full basis, and make direct (and more efficient) use
of the new type of trapdoor.

We also make the following simple but useful observations: (1) The rows of[
R
I

]
in Definition 1 can appear in any order, since this just induces a permutation

of A’s columns. (2) If R is a trapdoor for A, then it can be made into an equally
good trapdoor for any extension [A | B], by padding R with zero rows; this
leaves s1(R) unchanged. (3) If R is a trapdoor for A with tag H, then R is
also a trapdoor for A′ = A− [0 | H′G] with tag (H−H′) for any H′ ∈ Zn×nq ,
as long as (H −H′) is invertible modulo q. This is the main idea behind the
compact IBE of [1], and can be used to give a family of “tag-based” trapdoor
functions [23]. In the full version we recall explicit families of matrices H having
suitable properties for applications.



3.2 Trapdoor Generation

We now give an algorithm to generate a (pseudo)random matrix A together
with a G-trapdoor. The algorithm is straightforward, and in fact it can be easily
derived from the definition of G-trapdoor itself. A random lattice is built by first
extending the primitive matrix G into a semi-random matrix A′ = [Ā | HG]

(where Ā ∈ Zn×(m−w)
q is chosen at random, and H ∈ Zn×nq is the desired tag),

and then applying a random transformation T = [ I R
0 I ] ∈ Zm×m to the semi-

random lattice Λ⊥(A′). Since T is unimodular with inverse T−1 =
[
I −R
0 I

]
, this

yields the lattice T · Λ⊥(A′) = Λ⊥(A′ ·T−1) associated with the parity-check
matrix A = A′ ·T−1 = [Ā | HG− ĀR]. Moreover, the distribution of A is close
to uniform (either statistically, or computationally) as long as the distribution of
[Ā | 0]T−1 = [Ā | −ĀR] is. For details, see Algorithm 1.

Algorithm 1 Efficient algorithm GenTrapD(Ā,H) for generating a parity-check
matrix A with trapdoor R.

Input: Matrix Ā ∈ Zn×m̄q for some m̄ ≥ 1, invertible matrix H ∈ Zn×nq , and distribu-
tion D over Zm̄×w.
(If no particular Ā, H are given as input, then the algorithm may choose them
itself, e.g., picking Ā ∈ Zn×m̄q uniformly at random, and setting H = I.)

Output: A parity-check matrix A = [Ā | A1] ∈ Zn×mq , where m = m̄ + w, and
trapdoor R with tag H.

1: Choose a matrix R ∈ Zm̄×w from distribution D.
2: Output A = [Ā | HG− ĀR] ∈ Zn×mq and trapdoor R ∈ Zm̄×w.

We next describe two types of GenTrap instantiations. The first type generates
a trapdoor R for a statistically near-uniform output matrix A using dimension
m̄ ≈ n log q or less (there is a trade-off between m̄ and the trapdoor quality
s1(R)). The second type generates a computationally pseudorandom A (under the
LWE assumption) using dimension m̄ = 2n (this pseudorandom construction is
the first of its kind in the literature). Some applications allow for an optimization
that additionally decreases m̄ by an additive n term; this is most significant in
the computationally secure construction because it yields m̄ = n.

Statistical instantiation. This instantiation works for any parameter m̄ and
distribution D over Zm̄×w having the following two properties:

1. Subgaussianity :D is subgaussian with some parameter s > 0 (or δ-subgaussian
for some small δ). This impliesthat R ← D has s1(R) = s · O(

√
m̄ +

√
w),

except with probability 2−Ω(m̄+w). (Recall that the constant factor hidden
in the O(·) expression is ≈ 1/

√
2π.)

2. Regularity : for Ā← Zn×m̄q and R← D, A = [Ā | ĀR] is δ-uniform for some

δ = negl(n). In fact, there is no loss in security if Ā contains an identity
matrix I as a submatrix and is otherwise uniform, since this corresponds



with the Hermite normal form of the SIS and LWE problems. See, e.g., [34,
Section 5] for further details.

For example, let D = Pm̄×w where P is the distribution over Z that outputs 0
with probability 1/2, and ±1 each with probability 1/4. Then P (and hence D)
is 0-subgaussian with parameter

√
2π, and satisfies the regularity condition (for

any q) for δ ≤ w
2

√
qn/2m̄, by a version of the leftover hash lemma (see, e.g., [5,

Section 2.2.1]). Therefore, we can use any m̄ ≥ n lg q + 2 lg w
2δ . Other statistical

instantiations are presented in the full version.

Computational instantiation. Let Ā = [In | Â] ∈ Zn×m̄q for m̄ = 2n, and

let D = Dm̄×w
Z,s for some s = αq, where α > 0 is an LWE relative error rate

(and typically αq >
√
n). Clearly, D is 0-subgaussian with parameter αq. Also,

[Ā | ĀR = ÂR2 + R1] for R =
[
R1

R2

]
← D is exactly an instance of decision-

LWEn,q,α in its normal form, and hence is pseudorandom (ignoring the identity
submatrix) assuming that the problem is hard.

Further optimizations. In applications that use only a single tag H = I (e.g.,
GPV signatures [20]), we can save an additive n term in the dimension m̄ (and
hence in the total dimension m): instead of putting an identity submatrix in Ā,
we can instead use the identity submatrix from G (which exists without loss of
generality, since G is primitive) and conceal the remainder of G using either of
the above methods.

All of the above ideas also translate immediately to the ring setting, using
an appropriate regularity lemma (e.g., the ones from [44] or [31]) for a sta-
tistical instantiation, and the ring-LWE problem for a computationally secure
instantiation.

3.3 LWE Inversion

Algorithm 2 below shows how to use a trapdoor to solve LWE relative to A.
Given a trapdoor R for A ∈ Zn×mq and an LWE instance bt = stA+et mod q for
some short error vector e ∈ Zm, the algorithm recovers s (and e). This naturally
yields an inversion algorithm for the injective trapdoor function gA(s, e) =
stA + et mod q, which is hard to invert (and whose output is pseudorandom) if
LWE is hard.

Theorem 3. Suppose that oracle O in Algorithm 2 correctly inverts gG(ŝ, ê)
for any error vector ê ∈ P1/2(q · B−t) for some B. Then for any s and e of

length ‖e‖ < q/(2‖B‖s) where s =
√
s1(R)2 + 1, Algorithm 2 correctly inverts

gA(s, e). Moreover, for any s and random e← DZm,αq where 1/α ≥ 2‖B‖s · ωn,
the algorithm inverts successfully with overwhelming probability over the choice
of e.

Note that using our constructions from Section 2, we can implement O so
that either ‖B‖ = 2 (for q a power of 2, where B = S̃ = 2I) or ‖B‖ =

√
5 (for

arbitrary q).



Algorithm 2 Efficient algorithm InvertO(R,A,b) for inverting the function
gA(s, e).

Input: An oracle O for inverting the function gG(ŝ, ê) when ê ∈ Zw is suitably small.

– parity-check matrix A ∈ Zn×mq ;
– G-trapdoor R ∈ Zm̄×kn for A with invertible tag H ∈ Zn×nq ;
– vector bt = gA(s, e) = stA + et for any s ∈ Znq and suitably small e ∈ Zm.

Output: The vectors s and e.
1: Compute b̂t = bt

[
R
I

]
.

2: Get (ŝ, ê)← O(b̂).
3: return s = H−tŝ and e = b−Ats, interpreted in Zm with entries in [− q

2
, q

2
).

Proof. Let R̄ = [Rt | I], and note that s = s1(R̄). By the above description,
the algorithm works correctly when R̄e ∈ P1/2(q · B−t); equivalently, when

(btiR̄)e/q ∈ [− 1
2 ,

1
2 ) for all i. By definition of s, we have ‖btiR̄‖ ≤ s‖B‖. If

‖e‖ < q/(2‖B‖s), then |(btiR̄)e/q| < 1/2 by Cauchy-Schwarz. Moreover, if e is
chosen at random from DZm,αq, then by the fact that e is 0-subgaussian with
parameter αq, the probability that |(btiR̄)e/q| ≥ 1/2 is negligible, and the second
claim follows by the union bound.

3.4 Gaussian Sampling

Here we show how to use a trapdoor for efficient Gaussian preimage sampling for
the function fA, i.e., sampling from a discrete Gaussian over a desired coset of
Λ⊥(A). Our precise goal is, given a G-trapdoor R (with tag H) for matrix A
and a syndrome u ∈ Znq , to sample from the spherical discrete Gaussian DΛ⊥

u (A),s

for relatively small parameter s. As we show next, this task can be reduced, via
some efficient pre- and post-processing, to sampling from any sufficiently narrow
(not necessarily spherical) Gaussian over the primitive lattice Λ⊥(G).

The main ideas behind our algorithm, which is described formally in the
full version, are as follows. For simplicity, suppose that R has tag H = I, so
A
[
R
I

]
= G, and suppose we have a subroutine for Gaussian sampling from any

desired coset of Λ⊥(G) with some small, fixed parameter
√
ΣG ≥ ηε(Λ

⊥(G)).
For example, Section 2 describes algorithms for which

√
ΣG is either 2 or

√
5.

(Throughout this summary we omit the small smoothing factor ωn from all
Gaussian parameters.) The algorithm for sampling from a coset Λ⊥u (A) follows
from two main observations:

1. If we sample a Gaussian z with parameter
√
ΣG from Λ⊥u (G) and produce

y =
[
R
I

]
z, then y is Gaussian over the (non-full-rank) set

[
R
I

]
Λ⊥u (G) (

Λ⊥u (A) with parameter
[
R
I

]√
ΣG (i.e., covariance

[
R
I

]
ΣG[Rt | I]). The

(strict) inclusion holds because for any y =
[
R
I

]
z where z ∈ Λ⊥u (G), we have

Ay = (A
[
R
I

]
)z = Gz = u.

Note that s1(
[
R
I

]
·
√
ΣG) ≤ s1(

[
R
I

]
)·s1(

√
ΣG) ≤

√
s1(R)2 + 1·s1(

√
ΣG), so

y’s distribution is only about an s1(R) factor wider than that of z over Λ⊥u (G).



However, y lies in a non-full-rank subset of Λ⊥u (A), and its distribution is
‘skewed’ (non-spherical). This leaks information about the trapdoor R, so we
cannot just output y.

2. To sample from a spherical Gaussian over all of Λ⊥u (A), we use the ‘convolu-
tion’ technique from [36] to correct for the above-described problems with
the distribution of y. Specifically, we first choose a Gaussian perturbation
p ∈ Zm having covariance s2 −

[
R
I

]
ΣG [Rt | I], which is well-defined as long

as s ≥ s1(
[
R
I

]
·
√
ΣG). We then sample y =

[
R
I

]
z as above for an adjusted

syndrome v = u−Ap, and output x = p + y. Now the support of x is all of
Λ⊥u (A), and because the covariances of p and y are additive (subject to some
mild hypotheses), the overall distribution of x is spherical with Gaussian
parameter s that can be as small as s ≈ s1(R) · s1(

√
ΣG).

Quality analysis. Our algorithm can sample from a discrete Gaussian with
parameter s · ωn where s can be as small as

√
s1(R)2 + 1 ·

√
s1(ΣG) + 2. We

stress that this is only very slightly larger — a factor of at most
√

6/4 ≤ 1.23

— than the bound (s1(R) + 1) · ‖S̃‖ on the largest Gram-Schmidt norm of a
lattice basis derived from the trapdoor R. (Recall that our constructions from

Section 2 give s1(ΣG) = ‖S̃‖2 = 4 or 5.) In the iterative “randomized nearest-
plane” sampling algorithm of [24, 20], the Gaussian parameter s is bounded
from below by the largest Gram-Schmidt norm of the orthogonalized input basis
(times the same ωn factor used in our algorithm). Therefore, the efficiency and
parallelism of our algorithm comes at almost no cost in quality versus slower,
iterative algorithms that use high-precision arithmetic. (It seems very likely that
the corresponding small loss in security can easily be mitigated with slightly
larger parameters, while still yielding a significant net gain in performance.)

Runtime analysis. We now analyze the computational cost of the sampling algo-
rithm, with a focus on optimizing the online runtime and parallelism (sometimes
at the expense of the offline phase, which we do not attempt to optimize).

The offline phase is dominated by sampling from DZm,
√
Σ·ωn

for some fixed

(typically non-spherical) covariance matrix Σ > I. By [36, Theorem 3.1], this
can be accomplished (up to any desired statistical distance) simply by sampling
a continuous Gaussian D√Σ−I·ωn

with sufficient precision, then independently
randomized-rounding each entry of the sampled vector to Z using Gaussian
parameter ωn ≥ ηε(Z).

Naively, the online work is dominated by the computation of H−1(u − w̄)
and Rz (plus the call to O(v), which as described in Section 2 requires only
O(logc n) work, or one table lookup, by each of n processors in parallel). In general,
the first computation takes O(n2) scalar multiplications and additions in Zq,
while the latter takes O(m̄ · w), which is typically Θ(n2 log2 q). (Obviously, both
computations are perfectly parallelizable.) However, the special form of z, and
often of H, allow for some further asymptotic and practical optimizations: since
z is typically produced by concatenating n independent dimension-k subvectors
that are sampled offline, we can precompute much of Rz by pre-multiplying each



Algorithm 3 Efficient algorithm DelTrapO(A′ = [A | A1],H′, s′) for delegating
a trapdoor.

Input: an oracle O for discrete Gaussian sampling over cosets of Λ = Λ⊥(A) with
parameter s′ ≥ ηε(Λ).
– parity-check matrix A′ = [A | A1] ∈ Zn×mq × Zn×wq ;
– invertible matrix H′ ∈ Zn×nq ;

Output: a trapdoor R′ ∈ Zm×w for A′ with tag H′ ∈ Zn×nq .
1: Using O, sample each column of R′ independently from a discrete Gaussian with

parameter s′ over the appropriate coset of Λ⊥(A), so that AR′ = H′G−A1.

subvector by each of the n blocks of k columns in R. This reduces the online
computation of Rz to the summation of n dimension-m̄ vectors, or O(n2 log q)
scalar additions (and no multiplications) in Zq. As for multiplication by H−1, in
some applications (like GPV signatures) H is always the identity I, in which case
multiplication is unnecessary; in all other applications we know of, H actually
represents multiplication in a certain extension field/ring of Zq, which can be
computed in O(n log n) scalar operations and depth O(log n). In conclusion,
the asymptotic cost of the online phase is still dominated by computing Rz,
which takes Õ(n2) work, but the hidden constants are small and many practical
speedups are possible.

3.5 Trapdoor Delegation

Here we describe very simple and efficient mechanism for securely delegating
a trapdoor for A ∈ Zn×mq to a trapdoor for an extension A′ ∈ Zn×m′

q of A.
Our method has several advantages over the previous basis delegation algorithm
of [13]: first and most importantly, the size of the delegated trapdoor grows only
linearly with the dimension m′ of Λ⊥(A′), rather than quadratically. Second,
the algorithm is much more efficient, because it does not require testing linear
independence of Gaussian samples, nor computing the expensive ToBasis and
Hermite normal form operations. Third, the resulting trapdoor R has a ‘nice’
Gaussian distribution that is easy to analyze and may be useful in applications.
We do note that while the delegation algorithm from [13] works for any extension
A′ of A (including A itself), ours requires m′ ≥ m + w. Fortunately, this is
frequently the case in applications such as HIBE and others that use delegation.

Usually, the oracle O needed by Algorithm 3 would be implemented (up to
negl(n) statistical distance) by our Gaussian sampling algorithm above, using a
trapdoor R for A where s1(R) is sufficiently small relative to s′. The following
is immediate from the fact that the columns of R′ are independent and negl(n)-
subgaussian.

Lemma 1. For any valid inputs A′ and H′, Algorithm 3 outputs a trapdoor R′

for A′ with tag H′, whose distribution is the same for any valid implementation
of O, and s1(R′) ≤ s′ ·O(

√
m+

√
w) except with negligible probability.
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